
Autonomous Pick-and-Place
Procedure with an Industrial Robot
Using Multiple 3D Sensors for Object
Detection and Obstacle Avoidance

Sindre Bokneberg

Even Falkenberg Langås

Supervisors
Ajit Jha
Martin Marie Hubert Choux

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering and Sciences

Acknowledgements

We would like to thank Atle Aalerud for his work leading up to this project, and for his brilliant
technical support in the beginning, helping us take good decisions at an early stage. He and his
collaborates has created a great learning platform for students as well as a great demonstration
platform to inspire the industry to close the gap to research on robotics and computer vision.

Further on, we would like to thank Ajit Jha and Martin Marie Hubert Choux at the University of
Agder for advisory and support throughout the entire project. A special thanks to Ajit for his drive
for us to think more academically, providing us with more pride and research in this project.

The lab engineers at the university met us with a helpful and positive mindset when enquired about
procuring mechanical and electrical components, and we would therefore like to thank them for
their help through the production phase of the project.

i

Abstract

This thesis proposes a full pipeline autonomous pick-and-place procedure, integrating perception,
planning, grasping and control for execution of tasks towards long term industrial automation.
Within perception, we demonstrate the detection of a large object (target) including position and
orientation (pose) estimation in 3D world. Further on, obstacles in the work area are mapped with
proposed filtering prior to motion planning and navigation of an industrial robot to the target’s
pose. The target is then picked using a custom built motorized 3D printed end gripper, and placed
at a desired location in the robot’s reachable environment. Point cloud based model-free obstacle
avoidance is performed throughout the whole process. The complete pipeline is targeted towards
typical tasks in various industries including offshore, logistics and warehouse domain with scanning
of the scene, picking and placing of a bulky object from one position to another without or with
minimal human intervention.

The proposed methodology was tested upon the point cloud representation of the scene using a
network of six RGB-D cameras covering the entire working environment. The empirical results
together with the statistical analysis show that the proposed methodology is able to map the
environment of volume 10 m x 10 m x 5 m with lesser noise and determine the target position of
length 1.2 m with accuracy of 4.8 mm and precision of 3.6 mm from 10000 measurements.

Integrating the proposed object detection and localization, obstacle mapping and gripper with an
industrial robot resulted in a consistent, versatile and autonomous pick-and-place procedure. 30
successive tests with multiple obstacles and with the target object placed vertically, horizontally
and angled, displayed no collisions and 100% success rate on both gripping and placement of the
target.

The entire code developed in the project can be found on Github including links to CAD-files of
the gripper. A video demonstrating the complete pick-and-place procedure can be seen here or in
the URL below. The executable source code can also be found in Appendix E.

Github: github.com/evenfl/p26_master

Video: youtu.be/1QShpxbUy2Q

ii

https://github.com/evenfl/p26_master
https://youtu.be/1QShpxbUy2Q
https://github.com/evenfl/p26_master
https://youtu.be/1QShpxbUy2Q

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Background . 2
1.2 Objective . 2
1.3 Project overview . 3

1.3.1 Report structure . 3
1.3.2 Project management . 4

2 State-of-the-art 5
2.1 Perception . 5
2.2 Point cloud processing . 6

2.2.1 Environment mapping . 7
2.2.2 Segmentation and model fitting . 8

2.3 Autonomous pick-and-place . 8

3 Experimental setup 10
3.1 Hardware setup . 10
3.2 Software setup . 12

3.2.1 Point Cloud Library . 12
3.2.2 Robot Operating System . 12
3.2.3 MoveIt . 13

4 Perception 15
4.1 Mapping the environment . 15
4.2 Object detection and localization . 16

4.2.1 RANSAC . 16
4.2.2 Segmentation . 17
4.2.3 Extracting the object’s pose . 19
4.2.4 Results . 20
4.2.5 Adding the cylinder to MoveIt . 30
4.2.6 Real world validation . 31

4.3 Obstacle mapping . 31
4.3.1 Denoising . 32
4.3.2 Results . 33
4.3.3 Creating an occupancy map with MoveIt . 34

5 Gripper development 36
5.1 Mechanical design . 36

5.1.1 Concepts . 36

iii

5.1.2 Soft robotics gripper . 40
5.1.3 Concept evaluation . 41
5.1.4 Gripper overall architecture . 41
5.1.5 Base . 43
5.1.6 Arms . 45
5.1.7 Synchronous gears . 45
5.1.8 Position sensor . 46
5.1.9 Complete assembly . 46

5.2 Hardware setup . 47
5.2.1 Controller . 47
5.2.2 Hardware components . 47
5.2.3 Installation and software setup . 49

5.3 Control setup . 53
5.3.1 Control architecture . 53
5.3.2 Sensor threshold values . 54
5.3.3 Motor control . 54

5.4 Complete prototype . 55
5.4.1 Mounting onto industrial robot . 55
5.4.2 Gripped target . 55

6 Autonomous pick-and-place 58
6.1 Building the robot model . 58

6.1.1 Unified Robot Description Format . 58
6.1.2 Semantic Robot Description Format . 59
6.1.3 Base link and end-effector link . 59
6.1.4 Collision detection . 59
6.1.5 Inverse kinematics solver . 60

6.2 Navigation and locomotion of the robot . 61
6.2.1 Grasping . 61
6.2.2 Orientation . 61
6.2.3 Motion planning . 64
6.2.4 Moving the robot with MoveIt . 64

6.3 System integration . 65
6.3.1 Pick-and-place functional description . 65
6.3.2 ROS nodes and topics . 66

6.4 Results . 67
6.4.1 Gripper . 67
6.4.2 Pick-and-place . 68

7 Discussions 70
7.1 Object detection and localization . 70
7.2 Obstacle mapping . 71
7.3 Gripper . 73
7.4 Motion Planning . 73

8 Conclusions 75

Bibliography 76

A MoveIt Setup Assistant 80
A.1 Self-collision checking . 80

B ABB IRB4400 Datasheet 81

C DC Motor w/Gearing 84

D DC Motor Driver VNH2SP30 86

E Source code 88
E.1 Object detection and localization . 88

E.1.1 > main.h . 88
E.1.2 > addCylinder.h . 89
E.1.3 > addCylinder.cpp . 90
E.1.4 > segment.h . 91
E.1.5 > segment.cpp . 91
E.1.6 > main.cpp . 95

E.2 Obstacle mapping . 101
E.2.1 > sensor_kinect_pointcloud.yaml . 101
E.2.2 > sensor_manager.launch . 102
E.2.3 > main.h . 102
E.2.4 > main.cpp . 104

E.3 Pick-and-place . 107
E.3.1 > p26_move.py . 107

E.4 Gripper . 117
E.4.1 > actuation.py . 117
E.4.2 > gripping.py . 120

v

Chapter 1

Introduction

Autonomous robotics are a growing industry with a wide range of applications. They are becoming a
necessity for companies to assert themselves in a competitive market. Many industries are applying
industrial robots to replace manual work or to solve new challenges inducing lower costs due to
improved efficiency and reduced lead time. However, automating industrial applications can come
at the cost of safety for humans and expensive equipment if used without caution. Through the
fourth industrial revolution (industry 4.0), research have introduced new methods for safer use of
robotics with collision handling and human-machine interaction.

Health, safety and the environment (HSE) is a hot topic now that the technology has come far
enough to be able to automate processes where machines can replace humans working in harsh
conditions. In the oil and gas industry, the easily accessible oil reservoirs are already explored, and
the industry is exploring reservoirs in less accessible areas such as in the Barents Sea. Here, winter
temperatures can range between -20°C and -30°C [1]. This makes it desirable to be able to use
industrial robots and being able to control and monitor the operations from onshore control rooms.
The same concept applies to smelters where humans work in extremely high temperatures. These
examples are just a few of many cases where humans work in harsh environments, and where it
would be desirable to use industrial robots.

Equinor is a company that owns and operates several oil rigs, where some of them are able to operate
unmanned due to the high amount of automation. One of these rigs is Valemon [2], which initially
had a crew of 40. Now, the rig has only a few operators controlling the machinery from an onshore
control room where they can monitor the rig using 147 cameras. When Valemon started operating
with only onshore operators in 2018, the offshore crew of 40 was moved to onshore positions within
the company, according to Nina Koch, the production director at the time [3]. This is an example
where automation led to cost reduction at the platform as well as new opportunities for the crew
and the company.

In manned environments, such as in the logistics and warehouse industry, there are many repetitive
and heavy operations that can be burdensome for humans to perform over a long period of time.
Picking and placing heavy objects can in many cases cause deepening of the worker’s spine load
problem, which can be a burden for life [4]. By using industrial robots to carry out these repetitive
tasks, the workers are spared for strain, and companies can save cost through improved efficiency
and reduced lead time.

To increase the safety of robotic applications in a manned environment, many robots are caged to
keep a fixed, predictable environment without putting human workers in danger. This is a very
inefficient approach in tight spaces and it limits the potential of multiple machines and humans
collaborating. HSE is crucial when placing a large machine outside a cage in a harsh environment
alongside humans and unpredictable obstacles. A focus area in the industry today is to use computer

1

vision to detect obstacles such as workers and equipment. State-of-the-art 3D sensors, such as the
Microsoft Kinect V2 used in this project, generates large datasets of the environment in 3D. It is
desirable to use these datasets to create position constraints for the robot to avoid colliding with
obstacles [5]. Obstacle avoidance can increase efficiency because the robots can be able to operate
simultaneously and alongside humans and other machinery without colliding.

This thesis demonstrates an autonomous pick-and-place procedure which can be applicable for mul-
tiple industries such as offshore, warehouse and logistics domain. Making the procedure autonomous
required both object detection and localization, and obstacle mapping through the use of 3D per-
ception algorithms. This is an important part of Industry 4.0 making machinery autonomous.
Detection algorithms can use 2D- or 3D sensors which are getting cheaper and cheaper as years go
by. Research and technology regarding computer vision is evolving at a rapid pace and it is used
for a wide range of applications, not only within robotics.

1.1 Background

This project was proposed by National Oilwell Varco (NOV). The department located in Kris-
tiansand, Norway, is currently working on research concerning robotics and computer vision.

The thesis builds on previous work done at a robotics lab at the University of Agder, see [5], [6]
and [7]. These papers describes how the robotics lab is 3D-mapped using 6 3D sensor nodes as well
as how these sensors are calibrated. They also propose a method for compressing and filtering the
data locally with one embedded system for each sensor node. This thesis will use the experimental
setup, calibration and filtration method proposed in these three papers as a base. From this, the
thesis will propose the software and gripper needed to lift a large object and place it at a goal
position with an industrial ABB robot without colliding with any obstacles surrounding it.

1.2 Objective

That leads us to the main objective of this thesis, which is to develop an autonomous pick-and-
place procedure. This should be done by using an industrial robot to carry out the pick-and-place
procedure of an object while avoiding static obstacles in the reachable environment. Both the object
and the obstacles are to be detected and localized by 6 sensor nodes covering the entire operational
environment. To solve this problem, the following tasks in prioritized order has to be performed:

1. Mapping the environment in 3D

2. Object detection and localization

3. Obstacle mapping

4. Design, production and implementation of automatic low-cost gripper

5. Navigation and locomotion of robot

6. Use point 1.-5. to perform the autonomous procedure in Figure 1.1 with obstacle avoidance

Limitations

The object to be detected, localized, picked and placed is limited to a large but light object with
a length of more than 1 m. Obstacle mapping should be model-free, meaning that the robot, also
with the cylindrical target object attached, should be able to avoid obstacles of any size or shape in

2

Start
3D environment

mapping
Detect and

localize object
Map obstacles

Move robot to
picking position

Pick the object
Move the object
to goal position

Release the
object

Stop

Figure 1.1: Objective

the work area. The gripper is not required to be model-free, and can therefore be developed based
on the target object chosen. This implies that the gripper itself will be automatic, and it should
work in the sequence of a complete pick-and-place procedure.

1.3 Project overview

Figure 1.2 shows the Work Breakdown Structure (WBS) of the project and how the project is split
up in different tasks which are reflected in the report structure.

Objective:
Autonomous

pick-and-place

Sensors and
perception

Object
detection and

localization

Obstacle
mapping

Navigation of
robot

Design of
gripper

3D environment
mapping

Figure 1.2: Work breakdown structure of the project

1.3.1 Report structure

This project is built up by a wide range of subjects, and the report is built up to separate them
in a tidy way. This section will explain the chapters shortly to give an understanding on how the
report is structured.

Chapter 2: State-of-the-art summarizes state-of-the-art research on the topics relevant for the meth-
ods used in this project. Next, Chapter 3: Experimental setup explains how the system is set up
with regards to both hardware and software. This chapter will also give an explanation on the most
important software tools used. Chapter 4: Perception explains the methods and results for the sub-
jects related to perception. The main topics here are object detection and localization and obstacle
mapping. Further on, Chapter 5: Gripper development will explain the design and production of
the gripper from the conceptual phase to a complete prototype. The integration of Chapter 4 and
5 into one autonomous pick-and-place procedure will then be explained in Chapter 6: Autonomous
pick-and-place. This chapter includes the navigation and locomotion of the robot as well as system

3

integration to make everything work together as one system. At last, it presents the final results
from the pick-and-place procedure. Chapter 7: Discussions presents discussions on relevant sub-
jects and on the final result. The final chapter, Chapter 8: Conclusions presents the conclusions on
the project in total.

1.3.2 Project management

A Gantt chart was made to get an overview of the expected progress in the project, the chart were
then updated continuously to keep track on the progress, see Figure 1.3 for the Gantt chart of the
final progress. Such a way of planning the project made it easier to keep track of the progress and
staying within schedule.

4-Jan 18-Jan 1-Feb 15-Feb 1-Mar 15-Mar 29-Mar 12-Apr 26-Apr 10-May 24-May

Preperations and planning

Familiarize with experimental setup

Object detection and localization

Design/production of gripper

Motion planning and obstacle avoidance

Obtacle mapping

Pick and place/testing

Writing report

Figure 1.3: Gantt chart showing final progress

In addition to the Gantt chart, a Trello board was used to implement the Scrum method. Scrum is
a method used in project planning to keep track of the progress in detail, while the Trello board is
a tool to implement this method. It is often used in software development because it is an effective
way of collaborating with other team members. In a large team, where a project manager manages
the progress, it can be beneficial to have lists for suggested tasks, approved tasks, tasks in review,
etc. Since there were only two students working on this project it was found satisfactory to use
three lists:

• To do • In progress • Completed

In addition to the lists, the following labels where used to categorize the tasks:

• On hold • Priority • Urgent • Report • Code

The software code developed in this project utilized git to enable the group to work simultaneously
and with backup and version control. Git allowed each team member to edit their own version of the
source code locally before merging it together. A repository was made by using a DevOps platform
(GitHub). This repository could then be cloned to any machine by users with access to the Git
repository. One of the members was made merge master and had the responsibility to merge the
different versions on the development branches without damaging the master branch. The GitHub
repository can be found here.

4

https://github.com/evenfl/p26_master

Chapter 2

State-of-the-art

Making a pick-and-place procedure autonomous is a comprehensive task. Gathering and using
previous research on the topic is crucial to make it work within the frames of a master thesis.
First and foremost, it requires advanced perception algorithms based on years of rapid research
and development. The goal of this chapter is to present relevant research on which this thesis
builds upon. It is divided into three sections, a hardware related section containing 3D sensors and
perception, a software related covering point cloud processing and a section covering autonomous
pick-and-place.

2.1 Perception

Perception is a crucial part of robotics for making processes autonomous. Its definition from [8]:

Perception is the organization, identification, and interpretation of sensory information
in order to represent and understand the presented information or environment.

For computational systems, perception can be obtained through various sensors. Within the field
of intelligent robotics, cameras are becoming the preferred choice for most applications due to the
rapid development of computer vision algorithms as the cost of computational power is reduced.
Traditional 2D cameras are used frequently for object detection and automatic incident detection
(AID) [9]. However, 2D cameras will in many application fall behind because of the lack of depth
information. Depth information can be estimated in 2D if the size of the perceived objects is known
[10]. This is not always the case, and for collision avoidance application with unknown obstacles,
the raw depth information from the sensors can be crucial [11]. This is where the advantage of
3D sensors, such as Light Detection And Ranging (Lidar) sensors and RGB-D cameras, plays an
important part.

Lidars use light pulses to estimate the distance to a point in 3D space using the time-of-flight
principle. They are often built up by several lasers placed on a rotating gimbal or by the emerging
solid state lidar technology with many static lasers. They are a popular choice for many robotic
applications such as UAV and automotive [12]. However, their small field of view (FOV) limits their
use [13], e.g. in a warehouses where the sensors often must be able to work at a short range, thus
requiring a larger FOV.

The development of RGB-D cameras is gaining lots of interest because of their information richness
[14] and scalability [7]. Compared to lidars, they generally have a shorter range but a larger FOV.
This makes them suitable for applications where a large FOV is desired and range is unimportant.
RGB-D cameras can be used for many purposes, and even cheap RGB-D cameras, such as the
Kinect V2 can accomplish great results [6]. However, when using cheap equipment, [14] faced
issues with noise affection in motion fusion due to precision issues when using Kinect cameras in

5

dynamic environments. RGB-D cameras such as the Kinect V2 utilizes active infra-red (IR) senors
to measure the depth using the time-of-flight principle [5]. This means that the sensor has one IR
emitter and one IR sensor. It emits an IR pulse from the emitter, and calculates the distance to an
object by measuring the time it takes before the IR sensor receives the pulse.

Perception systems together with industrial robot cells could be implemented as eye-in-hand [15],
eye-to-hand [5] and [16] also covered in this project, and a hybrid-combination [17] with both eye-
in-hand and eye-to-hand. The eye-in-hand method often establishes a narrow sight from the robots
perspective, providing a closer look at the point of interest, thus providing a higher resolution and
accuracy. And eye-to-hand providing wide coverage, enabling features like obstacle mapping and
hazardous detection around the robot. [16] shows the use of eye-to-hand perception, reducing system
maintenance on sensors inside a hot environment with nuclear fuel pellets, moving the perception
system outside the hot cell.

The projection of a single camera eye-in-hand sensor implies that it cannot look behind objects,
inducing a shadowed area. This shadow can be removed by utilizing multiple sensors spread around
the environment, covering all sides of the objects. In addition, several sensors nodes leads to
better resolution [5]. This makes it very beneficial for any industrial application with a variable
environment in a fixed area like robots moving in an environment with intervention from humans
and other equipment. A 3D sensor based virtual environment can be used for object detection [18],
obstacle mapping [19], human detection [20] and more, with loads of new research coming each year.

2.2 Point cloud processing

Point clouds are a product of the information obtained from 3D sensors. A point cloud is a set of
data points in 3D space. Each point has x-, y-, and z-coordinates, but they can also hold information
about color and intensity. Intensity represents the energy reflected by an object. For example, a
retroflective surface will have a very high intensity [7]. For points caused by dust in the air or
objects with either a dark colour or a large distance from the camera, the intensity will be low.
Just like digital 2D images, a point cloud is limited to a given resolution. The resolution is not
fixed in 3D space, and a nonuniform distribution of points can occur. A higher density of points in
an area implies a higher computational cost for processing of that area. Voxels are therefore often
used to set a uniform resolution in 3D space. A voxel represents a value on a regular grid in 3D
space. Point clouds are often compressed by organizing them in a voxel grid because it gives the
advantage of choosing the exact resolution of the grid [21], the same way the resolution in a 2D
image is determined by the number of pixels.

Point cloud processing can be a computationally expensive task [22]. Kaldestad, Hovland and Anisi
[23] shows how fast obstacle detection can be done through the octree method [24] and how it
greatly reduces the computational cost of point cloud processing. Octree is a method that organizes
data in a tree data structure where every node has exactly 8 children. It is often used to partition
3D space and can be closely related to point cloud processing. It divides space into octants and
suboctants as shown in Figure 2.1 [24]. While a raw point cloud is just a list of unstructured points,
the octree method is structured by nature. The advantage of the method lies within computational
power. An octree can remove lots of unnecessary computations in areas without any data and it is
expected to have time complexity O(log N).

[14] developed a multi-granularity environment perception algorithm that puts data from multiple
Kinect sensors in an octree occupancy grid to create a uniformly distributed representation of

6

Figure 2.1: Subdivision of a 3D cube into octants. On the right is the corresponding octree [25].

the environment. They point out the scalability issue with computational cost growing cubically
when the resolution or the space expands. By performing point cloud processing locally in an
embedded system, the perception system could be scaled more easily by adding more sensors with
local filtering algorithms. However, most embedded systems struggles with point cloud processing
due to the computational cost [14]. Nevertheless, Dybedal, Aalerud and Hovland proposed in [7] a
scalable embedded solution that compresses the point clouds locally at a Jetson TX2 development
board using an octree based method. Further on, they use a novel method to generate intensity
values which are not natively produced by the Kinect cameras. They then filter based on this
intensity. The intensity filter removes many spurious points by setting a threshold for the intensity
value of each point. The filter is very efficient, but for some applications the accuracy might not be
sufficient.

As most sensors, lidars and 3D cameras induces noise. The noise appearing in the point cloud
leads to outliers that corrupt the result. Outliers, by definition, is data points with a great distance
from the main distribution of other points [26]. This can be a critical problem depending on the
use case. Fortunately, there are methods to deal with such measurement errors. A commonly used
method is a statistical outlier removal (SOR) filter. What this filter does, is calculating the distance
from a point to its neighbours. Then, it removes the points, which do not meet a certain criterion.
The filter used in this project assumes a Gaussian distribution of data points including a mean
and a standard deviation. If a point’s mean distance is outside an interval based on the global
mean and standard deviation, it is considered an outlier and is therefore trimmed from the initial
dataset [27, 26]. The SOR filter is more comprehensive compared to the intensity filter. However,
its computational cost is much higher, but its reliability and accuracy makes it the preferred choice
for many applications [7, 26].

2.2.1 Environment mapping

A way of mapping the environment with multiple 3D sensors was developed and implemented in
a robot lab at the University of Agder by Aalerud et al. in [5], [6] and [7]. [5] covers the setup,
placement and manual calibration of 6 Microsoft Kinect RGB-D sensors, which together achieved
a mapping area of 10x15x5 m with an accuracy of 10 mm or better and a frame rate of 20 Hz. A
problem they faced was the time it took to manually calibrate each sensor, approximately 2 hours
per sensor node. Therefore, they proposed a solution of automatic calibration in [6] which led to an
Euclidean error of 3 cm at distances up to 9.45 m from the sensors. They also decreased the area to
10x10x5 m to increase the point cloud density. The automatic calibration method proposed in [6]

7

had a more reliable and robust verification compared to the manual calibration [5], and therefore,
Aalerud et al. chose to go on with the automatic calibration for further work.

Within robotics, such a point cloud can be used for obstacle avoidance by utilizing occupancy grid
mapping. This method was first proposed by Moravec and Elfes in 1985 [28] where they used wide
range sonars to create a map of an office. It remained nearly untouched by the industry until the 21st

century, and in recent years, the use of this technology has expanded rapidly due to the decreased
cost of computing power and sensors. In addition to being applied to industrial robot applications,
occupancy grid mapping is even emerging at a consumer level through the commercialization of
autonomous vehicles and even robot vacuum cleaners [29] because of the obstacle avoidance features
the technology provides. Occupancy grid mapping are in many cases closely related to the octree
method. Hornung et al. have created an open-source framework for 3D mapping called OctoMap
[30]. It uses probabilistic occupancy estimations together with octrees to create a memory compact,
multi-resolution 3D map.

2.2.2 Segmentation and model fitting

Segmentation is the task of specifying and labeling different regions within an image or point cloud.
By labeling each single point and determining the corresponding class, e.g. plane or cylinder,
semantic segmentation is performed.

Model fitting is the idea of matching predefined models with a data set. This is often used for
finding primitive geometrical shapes such as cube, plane and cylinder. When dealing with images
or point clouds, model fitting can be considered a segmentation approach. The most common model
fitting algorithms are Hugh Transform (HT) and Random Sample Consensus (RANSAC) [22].

RANSAC is a widely used and mature paradigm that fits models to experimental data, e.g. point
clouds [31]. Two main advantages of RANSAC compared to HT is that RANSAC is superior within
efficiency and success rate [32]. In addition, the RANSAC method is a very robust algorithm, even
with noisy point clouds with many outliers [33]. This makes RANSAC a very suitable choice for
cheap 3D sensors such as Microsoft Kinect. Sveier et al. shows in [18] how RANSAC can be used
to detect primitive shapes, such as planes, spheres and cylinders, even with lots of outliers.

2.3 Autonomous pick-and-place

Pick-and-place procedures are a common sight within many industrial environments today, and it is
desired to further exploit possibilities of making the procedures autonomous. With an autonomous
procedure, perception and environmental mapping is often utilized, making the system more adapt-
able to a dynamically changing environment, also making the system more flexible and easier to set
up in a new environment [34]. Perception could also provide distinct object localization algorithms
that detects what and where to pick [35]. Kotthauser et al. demonstrates in [16] how an autonomous
pick-and-place procedure can be used, carried out inside a hot environment with pick-and-place of
nuclear fuel pellets, moving the perception systems outside the hot cell.

In recent studies, the use of collaborative robots are substantial in autonomous pick-and-place
studies, as utilized in both [36] and [34]. These collaborative robots work well for their intended
use, but lacks strength and durability against harsh environments often encountered in industrial
applications. [37] states that the use of such robots is mainly used for smaller objects in a cleaner
environment. The target of combining hard robotics with system environment awareness is not
necessarily to obtain a fully secure system, but to make a base capable of cooperating with both

8

people and other systems, and also be independent from human and manual control. This could
also be more valuable for industries already using hard industrial robots, being able to maintain its
established selection of hardware while implementing a less hazardous environment.

9

Chapter 3

Experimental setup

The experimental setup is divided into two sections: Hardware setup and Software setup. The
hardware setup will explain all the hardware used in the project and briefly dive into the relevant
specifications. The software setup will explain what software tools was used and how the high level
system architecture looks.

3.1 Hardware setup

All testing was performed in a lab where the hardware was stationed. A rack computer, an industrial
robot and six 3D sensor nodes existed in the lab before the start of this project. The 3D sensor
nodes were strategically placed around the lab, covering the working environment, and calibrated by
Aalerud, Dybedal and Hovland in [5] and [6] to get an optimal 3D map of the robot’s working range.
Figure 3.1 shows the experimental setup including the 6 sensor nodes and two industrial robots, one
of them (the left one in the figure) being used in this project. Figure 3.2 shows each Kinect V2 low
cost cameras view of the environment, together covering the whole area. Each camera produces a
point cloud representation of the environment used for object and obstacle detection.

Figure 3.1: Overview of the experimental setup

10

(a) Image from sensor node 1 (b) Image from sensor node 2 (c) Image from sensor node 3

(d) Image from sensor node 4 (e) Image from sensor node 5 (f) Image from sensor node 6

Figure 3.2: Images from all kinect cameras

Figure 3.3: The Kinect V2 and the NVIDIA Jetson
TX2. Image of Kinect from Wikimedia Commons
2014, by courtesy of Evan-Amos. Image of Jetson TX2
from NVIDIA

Every Kinect camera was connected to a
NVIDIA Jetson TX2 development board
which filtered the point clouds and pub-
lished the filtered sensor data to the ROS
environment to each ROS topic, explained
in more detail in chapter 4. Every node
was connected through ethernet to the
rack computer. Both camera and board
is shown in Figure 3.3.

—
We reserve the right to make technical
changes or modify the contents of this
document without prior notice. With re-
gard to purchase orders, the agreed par-
ticulars shall prevail. ABB does not accept
any responsibility whatsoever for potential
errors or possible lack of information in
this document.

We reserve all rights in this document and
in the subject matter and illustrations con-
tained therein. Any reproduction, disclo-
sure to third parties or utilization of its
contents – in whole or in parts – is forbidden
without prior written consent of ABB.
Copyright© 2019 ABB
All rights reserved

—
abb.com/robotics

P
R

10
0

35
E

N
_R

8
 R

ev
.F

 A
p

ri
l 2

0
19

Position
repeatability

Path
repeatability*

IRB 4400/60 0.06 mm 0.09 mm

IRB 4400/L10 0.05 mm 0.16 mm

*At 1.6 m/s.

—
Performance (according to ISO 9283)

Electrical Connections

Supply voltage 200-600 V, 50/60 Hz

Rated power
transformer rating

7.8 kVA

—
Technical information

Physical

Robot base 920 x 640 mm

Robot weight 1040 kg

Environment

Ambient temperature for mechanical unit

During operation +5° C (41° F) to + 45°C (113°F)

Relative humidity Max. 95%

Noise level Max. 70 dB (A)

Safety Double circuits with
supervision, emergency stops
and safety functions, 3-position
enable device

Emission EMC/EMI-shielded

Data and dimensions may be changed without notice.

Axis
movement

Working
range

Axis max
speed
IRB 4400/60

Axis max
speed
IRB 4400/L10

Axis 1, Rotation +165° to -165° 150°/s 150°/s

Axis 2, Arm +95° to -70° 120°/s 150°/s

Axis 3, Arm +65° to -60° 120°/s 150°/s

Axis 4, Rotation +200° to -200° 225°/s 370°/s

Axis 5, Bend +120° to -120° 250°/s 330°/s

Axis 6, Turn +400° to -400°
Max. rev:
+200°1 to -2002

330°/s 381°/s

1 Max. rev: +183 to -183 valid for IRB 4400/L10
2 The default working range for axis 6 can be extended by changing parameter
values in the software.
There is a supervision function to prevent overheating in applications with
intensive and frequent movements.

—
Movement

1020

1225

2140 1720

300

290

1955

890

680

100 200

400

300

200

60 kg

100

 Working range, IRB 4400/60

 Working range, IRB 4400/L10

150085 300

300 200

390 530

1070
2547

(1477)

17
20

89
0

(1
50

)

14
8

24
50

90
5

68
0

—
Specification

Robot version Reach (m) Handling
capacity (kg)

IRB 4400/60 1.96 60

IRB 4400/L10 2.53 10

Supplementary load

 on axis 2 35 kg

 on axis 3 15 kg

 on axis 4 0-5 kg

Number of axes 6

Protection Standard version IP 54, Foundry
Plus 2 IP 67 and high pressure
steam washable

Mounting Floor

Controller IRC5 Single Cabinet

Integrated signal supply 23 signals and 10 power on
upper arm

Integrated air supply Max. 8 bar on upper arm

(a) ABB IRB4400 dimensions and working range
[Appendix B]

(b) ABB robot with track

Figure 3.4: Total working range of ABB IRB4400 with 5 m track (Lefty)

The robot used in this project was an ABB IRB 4400 industrial robot. This is a 6 degrees of freedom
(DOF) robot capable of lifting 60 kg at high speeds [Appendix B]. The working range can be seen
in Figure 3.4a. Further on, it can be seen in Figure 3.4b, that the ABB robot is placed on a 5 m
long track which gives it one extra DOF making it a redundant robot. This means that the robot

11

has more DOF than needed to achieve a goal pose for the end-effector. The fact that it is redundant
implies that it can achieve the goal pose in different ways, which might be necessary in an obstacle
avoidance application. The robot used in this project goes by the name of Lefty, frequently used in
the software.

As for the target object to be detected, localized and picked, a cylindrical shape was chosen. This
primitive shape is very common on an offshore platform and in warehouses. It leads to some
interesting and challenging grasping issues to be solved where the solutions can be applicable for
many other use cases. To be able to detect the cylinder with the Kinect cameras in the lab, a
relatively large casting pipe was used to compensate for the resolution. The hollow cylinder had an
outer diameter of 26 cm and a length of 1.2 m.

3.2 Software setup

To be able to utilize both point clouds, segmentation, robot control and overall system knowledge a
variety of software tools was used. Based on the already built operational environment with Kinect
sensors and the industrial ABB robot, Robot Operating System (ROS) and MoveIt was desireable
candidates for use as overall control architectures because of their compatibility within robotics.
In addition, Point Cloud Library (PCL) was utilized to handle point cloud processing. To get an
overall understanding as to how the system is built up and of the functionality of the system, it is
desirable to have some general knowledge to these software tools. This section will briefly explain
PCL, and how ROS and MoveIt were used to make the hardware components work together as one
system.

3.2.1 Point Cloud Library

PCL is an open-source 3D processing library, especially designed for 3D geometry and point cloud
processing:

From an algorithmic perspective, PCL is meant to incorporate a multitude of 3D process-
ing algorithms that operate on point cloud data, including: filtering, feature estimation,
surface reconstruction, model fitting, segmentation, registration, etc. [38, p. 1]

PCL is fully integrated within the ROS environment and C++.

3.2.2 Robot Operating System

Robot Operating System is a framework for writing robot software. It is a free and open source
system that contains tools and libraries that makes it easier to develop software for different robotic
disciplines [39]. ROS has a huge range of applications, and this section will only cover the parts
used in this project.

ROS is built up by several ROS processes communicating through a peer-to-peer network. A ROS
master holds the names and registration services and provides them to the different nodes. On
the other hand, a ROS node is the process that performs calculations. A robot control system can
contain many nodes that performs different computations in different coding languages such as C++
and Python. In this projects, C++ was used for perception algorithms because of the comprehensive
support PCL provides for C++, while Python was used for robot control and gripping. There can
for example be one node controlling the motion of the robot, one node detecting and localizing an
object, one node planning the path and one node visualizing data from the system [39].

12

The nodes can talk to each other through topics. When one node publishes to a topic another
node can subscribe to it. In this way, messages can be sent and received. Multiple nodes may
publish/subscribe to one specific topic, and one node may publish/subscribe to multiple topics.
ROS compares the topic to a message bus, where the bus has a name, and any node can connect
to this bus to send or receive messages as long as it uses the correct data type [39].

Publishing and subscribing to ROS topics can be done through pre-made commands. The publisher
publishes messages to a specific topic while the subscriber subscribes to a topic, and passes the
message to a custom callback function. Further on, the callback function decides what to do with
the information received [40].

ROS setup

All components communicated with each other through a ROS network. Figure 3.5 shows how
the components was physically connected using ethernet, and within each component the software
packages used out of ROS, MoveIt and PCL. The ROS master was running on the rack computer,
connected to the Jetson TX2 boards, the robot and the gripper and they communicated through
SSH connection. The ROS master used all three software packages, the robot controller and the
gripper only used ROS and the Jetson boards used ROS for communication and PCL for point
cloud processing. An advanced explanation of the setup will be explained in chapter 6, having a
better knowledge of the perception algorithms, gripper development and the robot navigation.

Robot controller

ROS

ROS Master

ROS, MoveIt, PCL

ROS, PCLROS, PCL ROS, PCL ROS, PCL ROS, PCL ROS, PCL

jetson6jetson1 jetson2 jetson3 jetson4 jetson5

Gripper

ROS

Figure 3.5: ROS network

3.2.3 MoveIt

MoveIt is an open-source state-of-the-art software, integrated within the ROS environment for safe
and efficient use of robots within an operational environment [41]. It was used to connect the
dots between object detection, obstacle mapping and navigation of the robot by combining the
cylindrical object and the other obstacles into one planning scene which was used to do collision-
free path planning. MoveIt consist of multiple software packages, each designed to cope with
different challenges regarding robotics, including obstacle avoidance, surrounding awareness and
efficient locomotion. This section will explain the parts of the MoveIt package which was used in
this project.

13

For manipulation of robots MoveIt works as a path planning tool that interpolates movement
between keypoints, giving waypoints. Keypoints are coordinates for the tip of the robot to "touch"
given by e.g. algorithms, while waypoints are iterative keypoints making up the path between
keypoints. MoveIt solves every inverse kinematic equations for the robots joints based on the
Cartesian space, giving the corresponding joint space. Joint space consists of parameters of every
single joint defining the translational and rotational displacements.

The system architecture of MoveIt is visualized in Figure 3.6. The figure shows how MoveIt handles
data in this project. Every box is marked with a color, where the yellow boxes are packages that
are part of MoveIt’s ROS package while the blue boxes are part of the MoveIt core package. Lastly,
the grey boxes represents external package dependencies [42].

Figure 3.6: MoveIt system architecture

MoveIt has a node called move_group , which can be seen in the system architecture. This node
serves as an integrator which pulls together all the individual components to provide the user with
certain ROS services and actions. After all, move_group is a ROS node and it uses the ROS param
server to access three kinds of information: URDF, SRDF and MoveIt configuration [42]. URDF
is short for Unified Robot Description Format which is a way of representing a robot model in
XML format. SRDF (Semantic Robot Description Format) on the other hand, is a representation
of semantic information about robots. Finally, the MoveIt configuration includes information such
as kinematics, joint limits, perception, motion planning, etc. [42]. These will be explained further
in chapter 6.1 on building the robot model in MoveIt.

Planning scenes are used in MoveIt to represent the robots current state and the surroundings such
as collision objects and other 3D objects. MoveIt has a great advantageous when it comes to picking
objects with a robot: The possibility to attach objects to the robot model [42].

The perception algorithms used PCL, ROS and MoveIt, and the next chapter will explain the
methods used to develop algorithms to perform both object detection and localization and obstacle
mapping.

14

Chapter 4

Perception

For a robotic application to become autonomous, it needs a perception of its environment and it
needs to understand how to solve the task at hand. To be able to perform object detection and
localization as well as model-free obstacle mapping, 3D sensors are used as explained in chapter
3. This chapter will explain three subjects related to perception: Mapping the environment, Object
detection and localization, and Obstacle mapping, all used to enable an autonomous pick-and-place
procedure. The source code for the perception can be seen Appendices E.1 and E.2

4.1 Mapping the environment

To be able to combine multiple sensor nodes to map the environment, transformations must be
performed from each sensor node’s local coordinate system to one common global coordinate system.
This was done through calibration by Atle Aalerud et al. [6]. They placed ArUco markers around
the lab and created an automatic calibration algorithm. The raw point clouds from the Kinect
cameras was being processed and compressed to a voxel grid with a resolution of 4 cm because the
accuracy achieved in [6] was 3 cm. Fusing the point clouds on the other hand, had not been done.

Based on the work explained above, the scope is expanded as summarized in the flow chart in
Figure 4.1, which explains the flow of the code made to fuse the data from the sensor nodes. The
orange area represents the work already performed by Aalerud et al. [5, 6, 7]. The compressed
point clouds from the Jetson boards are available on 6 different ROS topics. The point cloud on
each topic is filtered locally before being published, utilizing an intensity filter to remove some
spurious points. This filter removes any point with an intensity value lower than a given threshold
value of 1-255, where 255 represents maximum intensity. When subscribing to the ROS topics, the
data type is sensor_msgs::PointCloud2 , while the datatype required by the PCL functions is
pcl::PointCloud<pcl::PointXYZ> . To convert the ROS message to the correct datatype, the
pcl::fromROSMsg() function is used. The implementation is available in Appendix E.2.

After the conversion, the point clouds from the 6 sensors could be merged. With the PCL library,
this is done by adding the point clouds together. The point clouds are saved to a variable called
cloud_merged . A counter is used to count how many messages are received. Since all sensor
nodes publish with the same frame rate, the different point clouds would come in sequence so that
when the counter reached a total of 6, the algorithm has received messages from every sensor node.
The algorithm summarized in Figure 4.1 is used inside the callback functions for the subscribers
subscribing to the sensor nodes. The output of this algorithm is cloud_merged , which is a 3D
mapped point cloud of the whole work area. This is used for object detection and localization and
obstacle mapping.

15

jetson6

Start
Input:

input_cloud

Stop

jetson1 jetson2 jetson3 jetson4 jetson5

Increment
counter

counter
>= 6

Output:
cloud_merged

True

False

cloud_merged = cloud_merged + input_cloud

Convert to
correct data

type

Figure 4.1: Flow chart for the point cloud merging

4.2 Object detection and localization

Within the reachable environment of the industrial robot, a target object (cylinder, explained in
section 3.1) was placed to be detected, localized, grasped and then moved. This section will explain
the process of establishing and testing a detection and localization algorithm, and in chapter 6, this
algorithm will be used to perform a pick-and-place procedure on the cylinder. This depends heavily
on a reliable estimation of the targets pose.

The lab was cluttered with different random objects, making it close to an industrial environment
towards which the work is dedicated. If one tries to detect a cylindrical object in a 2D image, the
cylinder will be close to a rectangle, and therefore many non-cylindrical 2D rectangles could be
incorrectly interpreted as cylinders. 3D point clouds could be used to avoid this specific issue. In
this way, the curvature of the cylinder could be measured by using the RANSAC method.

4.2.1 RANSAC

The cylinder segmentation was based on the RANSAC method which was introduced in chapter
2.2.2. The algorithm is built up by two main phases:

1. Hypothesis generation

2. Hypothesis evaluation / Model verification

Step 1. is done by using random samples to generate a hypothesis, while step 2. is to verify it to
the data [43]. In addition, because this is a model fitting algorithm, the model has to be manually
defined before step 1.

When generating a hypothesis, RANSAC chooses N random samples and estimates certain model
parameters based on these points. For plane segmentation, 3 non-collinear points are enough to
make out a plane, thus N=3. A plane model can be defined by the following equation [22]:

aX + bY + cZ + d = 0 (4.1)

where [a, b, c, d]T are the parameters to be estimated.

16

RANSAC uses equation 4.2 to solve the selection problem, which can be considered an optimization
problem [43].

M̂ = argmin{
∑
d∈D

Loss(Err(d;M))} (4.2)

where D is data, Loss is a loss function and Err represents an error function, for example geometrical
distance errors.

To get the most out of the RANSAC method, some parameters can be tuned to fit the specific use
case. The parameters that are tuned in this project are the following:

• Distance threshold: A distance threshold from each inlier point to the model

• Normal distance weight: Weight factor for the surface normals influence

• Radius limits: Limits the maximum radius deviations from the defined model

• Max iterations: How many iterations the algorithm will perform at maximum

4.2.2 Segmentation

The implementation of the proposed algorithm for object detection from 3D point cloud is demon-
strated in Figure 4.2. First, the point clouds from all the sensor nodes are subscribed to and
merged as proposed in Figure 4.1. Then the point clouds are filtered to remove all points outside
the working area which are considered spurious points. The direction vector of the cylinder is then
estimated using the RANSAC algorithm followed by a sphere filter used to estimate the center of
mass (COM). Filtration and RANSAC are both part of the segment function, while the sphere
filter is implemented in a function called passThroughFilterSphere . These will be explained later
in this section. To improve the precision by reducing the stochastic noise, a method of obtaining
the result based on the average from multiple frames is proposed. The effect of this method will be
presented in the results in section 4.2.4. The program will check if the desired number of frames is
achieved. If not, it will repeat the segmentation process and keep on calculating the average of the
obtained results. When the desired number of frames is achieved, the target will be created as a
3D object in MoveIt. The source code can be seen in Appendix E.1.

Function:
segment

Function:
passthroughFilterSphere

Start Input:
cloud_merged

Merge
point

clouds

Filter point
cloud

Stop
Output:

cloud_cylinder

To: move_group

Point cloud

topics from all

sensor nodes

Estimate cylinder
direction vector

with RANSAC

Estimate cylinder
center of mass with

sphere filter

Is desired number
of frames achieve?

Calculate
average of all

iterations

No

Yes

Figure 4.2: Flow chart for the object segmentation

17

Firstly, the cylinder segmentation algorithm was tested with the point cloud from one of the cameras
as a proof of concept. It was observed that the target object was well detected using it. However,
one camera is not sufficient to be able to detect the target object in the whole working area (not
shown for brevity). All 6 point clouds are therefore merged as explained in section 4.1. This leads
to a more versatile and reliable perception of the environment. Using 6 sensor nodes also makes the
algorithm less prone to shadowed areas caused by potential obstacles.

Then, the point cloud are filtered using computationally inexpensive methods to reduce the number
of points to be fed into the cylinder segmentation, making it computationally efficient. Figure 4.3
shows a flow chart of the segment function from Figure 4.2. Firstly, the segment function filters
out all points outside the work area. This is done by using a passthrough filter that removes all
points exceeding a given x-, y-, or z-value. These passthrough filters removed the floor and other
unnecessary and spurious points from the sensors. The x-, y-, and z-limits are summarized in Table
4.1, which makes out the detection zone shown in Figure 4.4. Narrowing the detection zone from
the initial 10 m x 10 m x 5 m to 1.8 m x 9.0 m x 1.95 m greatly reduced the computational cost of
the algorithm while keeping a satisfactory detection zone for the task at hand, covering the entire
reachable area. To test the reliability of the algorithm, the testing and tuning is done at the whole
10 m x 10 m x 5 m area to be able to spot possible issues.

Start Input:
cloud_merged

Set filter limits for
x, y, z

Filter
cloud

Stop
Set method type:

RANSAC
Set model type:

CYLINDER

Set:
normal distance weight,

max iterations,
distance threshold,

radius limits

Segment
cylinder

cloud_
filtered

Output:
cloud_cylinder

Figure 4.3: Flow chart of the segmentation algorithm

Table 4.1: Coordinate limits for the cylinder segmentation

x_min x_max y_min y_max z_min z_max
Limit [m] 4.2 6.0 1.0 10.0 0.05 2.0

Finally, when most of the irrelevant points were removed, the cylinder segmentation could start.
RANSAC was considered the most suitable approach because of its robust and accurate results
for primitive geometrical shapes, even when working with point clouds with noise and outliers as
explained in chapter 2.2.2. The RANSAC algorithm had to be tuned to be able to achieve a high
accuracy and precision. After tuning the algorithm the values in Table 4.2 was set.

Table 4.2: RANSAC parameters after tuning

Value Unit
Distance threshold 0.08 m
Normal distance weight 0.2 -
Radius limits Rcylinder ± 0.03 m
Max iterations 10 000 -

18

Figure 4.4: Object detection zone

4.2.3 Extracting the object’s pose

To be able to pick up the cylinder, both the position and orientation must be estimated. The
RANSAC algorithm is able to detect the cylinder. However, it has no conception of the cylinder
length. Because of the lack of length conception, the segmentation included spurious data along
the axis of the detected cylinder as shown as noise in Figure 4.5.

Figure 4.5: Sphere filtering

The RANSAC algorithm was tuned to give the direction vector representing the orientation of the
cylinder as well as a point on the z-axis of the detected cylinder. The known length of the cylinder
could be used to filter out the outlying points shown as noise in Figure 4.5. This is done through a
sphere filter with a diameter making it large enough to include the complete cylinder. The sphere
radius is calculated using Pythagoras’ based on the cylinder length and radius as shown in equation
4.3.

Rsphere =
√
(Lcylinder/2)2 +R2

cylinder (4.3)

19

The sphere filter removes all points outside the sphere and keeps all points inside. The sphere filter is
then moved along the longitudinal axis of the cylinder. The center point is saved at the point where
the sphere picked up the highest number of points from the cylinder point cloud obtained from the
segment function. The sphere filter is visualized in Figure 4.5. In this figure, the grey rectangle
represents the detection zone where the cylinder is known to be. The green sphere represents the
sphere that picks up the highest number of points. After sphere filtering, all unwanted points outside
the green sphere in Figure 4.5is removed.

Start Input: CPC

Is point i
from CPC

within
sphere

Increment nr of
points inside
sphere by 1

Yes

Is i> nr of
points in

CPC

No

No

Yes

Set a starting
SCP along

cylinder axis

Increment SCP
along cylinder

axis

Is SCP within
the

environment
Stop

Output: SCP with
most points

Does sphere
have the highest

nr of points

Save SCP and
number of

points

No

Yes

No

Yes

i = i + 1

CPC: Cylinder point cloud
SCP: Sphere center point

Figure 4.6: Flow chart of the sphere filter algorithm

Figure 4.6 shows the flow chart explaining the implementation of the sphere filter. The function
can be seen in Appendix E.1.5. First it took the cylinder point cloud (CPC) as input. Then it set a
starting sphere center point (SCP) at a point where the direction vector of the cylinder crossed the
edge of the detection zone, see the red dots in Figure 4.5. The algorithm then checks the distance
between SCP and the points in the CPC and discards all points outside Rsphere. If a sphere holds the
highest number of points, the algorithm will save the SCP and number of points inside this sphere.
The algorithm increments the position of the SCP with 1 mm along the cylinder’s longitudinal axis.
The process is repeated until the sphere has a center point outside the detection zone. Once the
loops are finished, the SCP of the sphere with the most points will be considered the COM of the
cylinder.

4.2.4 Results

The direction vector from the RANSAC algorithm, COM from the sphere filter and the dimensions
of the cylinder gave a fully defined 3D object that could be used for a pick-and-place procedure.
However, to be able to grasp the target, the system is depending on high accuracy and precision of
the segmentation. Figure 4.7a, 4.7d and 4.7g shows images from sensor node 1, and the cylinder can
be seen in the middle of the picture. Further on, the merged point cloud from all sensor nodes is
shown in Figure 4.7b, 4.7e and 4.7h. This point cloud was passed through the algorithm in Figure
4.2 and the result can be seen in Figure 4.7c, 4.7f and 4.7i with the detected cylinder marked in red.

20

(a) Image from sensor node 1, ver-
tical case

(b) Point cloud from all 6 sensor
nodes, vertical case

(c) Point cloud with the cylinder
marked in red, vertical case

(d) Image from sensor node 1, hor-
izontal case

(e) Point cloud from all 6 sensor
nodes, horizontal case

(f) Point cloud with the cylinder
marked in red, horizontal case

(g) Image from sensor node 1, gen-
eral case

(h) Point cloud from all 6 sensor
nodes, general case

(i) Point cloud with the cylinder
marked in red, general case

Figure 4.7: Results from cylinder segmentation for a vertical case (a,b,c), horizontal case (d,e,f)
and general case (g,h,i)

To evaluate the accuracy and precision of the segmentation, the target was placed on a 3D printed
base built specifically for this use. It was placed accurately on a reference point that Aalerud,
Dybedal and Hovland [6] had measured by using a Leica AT960 high-precision laser tracker. This
reference point has a measured distance in x- and y-direction in the global coordinate system and
it was considered the ground truth for testing. The z-direction was the height of the base plus half
the target length. The frame and the reference point can be seen in Figure 4.8, the ground truth
coordinates for the targets COM can be seen in Table 4.3.

Table 4.3: Validation of the reference point

x [m] y [m] z [m]
Ground truth (laser) 5.27510 5.28855 0.75200

21

Figure 4.8: Validation of the cylinder segmentation using laser measured point as ground truth

To evaluate the results, 10 000 measurements was obtained using the algorithm in Figure 4.2. Figure
4.9 shows the histogram of the error compared to the ground truth, and it shows how the z-value
has two peaks with approximately 2-3 cm between them. This is likely due to the voxel size of 4
cm. The issue is that the number of voxels on the top layer of the object is varying. With the target
in a vertical position, the z-axis has the same direction as the cylinder’s direction vector.

Figure 4.9: Histogram of the errors in x-, y- and z-direction

The accuracy of 3D sensor systems is often given as the mean Euclidean distance between the ground
truth and the measured point [6]. This Euclidean distance is calculated for each measurement point
using equation 4.4.

e =
√
(x̂− xref)2 + (ŷ − yref)2 + (ẑ − zref)2 =

√
e2x + e2y + e2z (4.4)

where,

Description Unit
e Euclidean distance between measured point and ground truth [m]
ex, ey, ez x-,y- and z-error between the measured point and the reference value [m]
x̂t, ŷt, ẑt Estimated x, y- and z-position [m]
xref , yref , zref Reference x-, y- and z-position [m]

22

0 0.01 0.02 0.03 0.04 0.05

Euclidean distance to ground truth [m]

0

10

20

30

40

50

60

D
en

si
ty

 Mean

14.8 mm Euclidean error

Gaussian fit

Figure 4.10: Histogram of the euclidean error between measurement and ground truth

A histogram of the Euclidean distance between the measured point and the ground truth is shown
in Figure 4.10. The graph also shows the Gaussian fit of the histogram, marked with red, obtained
using Matlab distribution fitting. The mean, µ, of this normal distribution is the accuracy of the
system, found to be 14.8 mm. Further on, the precision for COM, Pcom, is calculated as shown in
equation 4.5

Pcom = 2 · σcom = 2 · 8.9mm = 17.8mm (4.5)

Where σcom is the standard deviation of the normal distribution found to be 8.9 mm.

The orientation was also important to be able to grasp with the right angle. The angle between the
ground truth (vertical) and estimated direction vector was calculated using equation 4.6 [44, p. 5].
This angle is illustrated in Figure 4.11.

θ = arccos

 ax · bx + ay · by + az · bz√
a2x + a2y + a2z ·

√
b2x + b2y + b2z

 (4.6)

where,

Description Unit
θ The angle between the two vectors [◦]
a Ground truth direction vector [m]
b Estimated direction vector [m]

Figure 4.12 shows the histogram of the angular error illustrated in Figure 4.11. The accuracy is
equal to µ of the normal distribution in Figure 4.12, found to be 0.84◦. The precision, Pangle, is
calculated the same way as for the COM, and equation 4.7 shows that the angular precision is 0.88◦.

Pangle = 2 · σangle = 2 · 0.44◦ = 0.88◦ (4.7)

Both stochastic noise and the fact that z had two peaks in the histogram in Figure 4.9 limited the
precision, and the accuracy and precision of 14.8 and 17.8 mm respectively, is not sufficient for a

23

Ground truth

Estimated

𝜃

Figure 4.11: Angle er-
ror illustration

Figure 4.12: Histogram of the angular error

sensible gripper. Since the precision is caused by systematic error, it can be improved by increasing
the sample size. A method of calculating the average COM and direction vector obtained from
multiple point cloud frames, f , was proposed as a solution to the problem. The hypothesis was that
this would lead to lesser outliers, i.e. a better precision.

R R1

S10000

𝑓𝑖: Frame number 𝑖 containing point cloud data from all sensors nodes

𝑆 𝑛𝑟 : Segmentation algorithm from Figure 4.2 with [nr] as desired number of frames

𝑅[𝑛𝑟]: Result from 𝑆[𝑛𝑟]

ҧ𝑥, ത𝑦, ҧ𝑧 =
[𝑥𝑟𝑒𝑓, 𝑦𝑟𝑒𝑓 , 𝑧𝑟𝑒𝑓]

S1𝑓1

𝑥1 𝑦1 𝑧1
⋮ ⋮ ⋮

𝑥1000 𝑦1000 𝑧1000

⋮

𝑓1
𝑓2
⋮

𝑓10000
S1𝑓2

S1𝑓1000

R2

S2
𝑓1

ҧ𝑥1 ത𝑦1 ҧ𝑧1
⋮ ⋮ ⋮
ҧ𝑥1000 ത𝑦1000 ҧ𝑧1000

⋮
S2

𝑓2

S2
𝑓2000

𝑓3
𝑓4

𝑓1999

R35

S35
𝑓1

ҧ𝑥1 ത𝑦1 ҧ𝑧1
⋮ ⋮ ⋮
ҧ𝑥1000 ത𝑦1000 ҧ𝑧1000

⋮

S35

𝑓35

S35

⋮

⋮

𝑓36

𝑓70

⋮

𝑓34966

𝑓35000

⋮

Figure 4.13: Explanation of testing of object segmentation

To test this hypothesis, the cylindrical target is placed at a random position in the detection zone.
The object is first segmented on 10 000 frames outputting the average COM. This can be seen as R
in Figure 4.13, which was considered the most precise achievable result from the system. Therefore,
R is used as reference position when evaluating the effect of using multiple frames. Further on,
the desired number of frames is set to 1 and the algorithm S1 in Figure 4.13 corresponds to the
segmentation algorithm in Figure 4.2 with 1 as the desired number of frames. S1, S2, S3 and so
on, is performed 1000 times, giving 1000 measurements of the center of mass, where the results are
matrices of size 1000x3. Since every row of the matrix R35 is the mean of the segmentation on 35
frames, it is expected that the result from R35 will have a lower error than R1 when comparing with
the reference, R. The reason it stops at 35 is that it is observed that the errors starts to converge

24

with 20-30 as desired number of frames. These results will be presented later.

The error between the R1-35 and R was calculated by using the root-mean-square error (RMSE)
method as shown in equation 4.8.

ERMS =

√∑T
t=1 e

2
t

T
(4.8)

where,

Description Unit
ERMS The root mean square error [m]
T Number of measurements [−]
et Euclidean error between reference position and position from measurement t [m]

The results are from now on split into two use cases, vertical and horizontal position. When a
suitable number of frames are chosen, the accuracy and precision with the optimal number of
frames will be presented as final results for object detection and localization.

Vertical position

First, the experiment was performed with the cylinder in a vertical position. The RMSE between
R1-35 and R is shown in Figure 4.14. It can be seen that increasing the number of frames decreased
this error significantly, and at 15-20 frames (R15-R20), it starts to converge.

0 5 10 15 20 25 30 35 40

Number of frames, [-]

0

5

10

15

A
b

so
lu

te
 e

rr
o

r
[m

m
]

Figure 4.14: RMSE on COM with the cylinder in a vertical position

The reduction of outliers when increasing the number of frames was also significant, as shown in
Figure 4.15, where the left graph shows the number of points with an Euclidean error larger than 2
cm and the right graph shows the number of points with an Euclidean error larger than 1 cm. By
using one frame only, 321 out of 1000 measurements (from R1) had an Euclidean error of 2 cm or
more as the left plot in Figure 4.15 shows. If the number of frames are increased, e.g. 20, it can be
seen on the right plot in Figure 4.15 that the number of outliers above 1 cm is only 15 (from R20).

The reliability function is a way to show the probability of an object surviving beyond a given
parameter value, thus it is also known as the survival function. In engineering, this statistical
approach can be used to represent the reliability of a product based on the products lifetime or its
accuracy and precision. In this case, the object was the cylinder localization, and the parameter
of interest is the measurement error. The reliability function can give the probability of the error
being larger than a given size [45, 46].

25

Figure 4.15: Nr of outliers with the cylinder in a vertical position. The left graph shows outliers
outside 2 cm while the right graph shows outliers outside 1 cm

The reliability function is defined by letting E be a random continuous variable. It has a cumulative
distribution function (CDF) F (e) on the interval [0,∞). The reliability function is then [46]:

S(e) = P (E > e) =

∫ ∞
e

f(u)du = 1− F (e) (4.9)

The reliability function is shown in Figure 4.16. This figure shows the probability of getting an
euclidean error larger than a given value with different numbers of frames. It could be observed
that the probability of getting a large error drops significantly when taking the average of multiple
frames. It seems to converge at around 20 frames. Based on 1000 measurements, the probability of
getting an euclidean error above 10 mm is 1.5% from R20. For comparison, it can be seen in the
curve that there is the probability of reaching such an error with only 1 frame is 53.2%.

Figure 4.16: Reliability function with the cylinder in vertical position. It shows the probability of the
euclidean error being larger than a given error

To get a closer look at where the error came from, the error in x-, y-, and z-direction was plotted,
and it can be seen in Figure 4.17 that the error was still undoubtedly largest in z-direction both for
1 and 20 frames. Figure 4.17a shows the results from R1 in Figure 4.13 while Figure 4.17b shows
the results from R20.

26

(a) (b)

Figure 4.17: Comparison between the error in x-, y- and z-direction for 1 frame and 20 frames with
the cylinder in a vertical position along the z-axis

Horizontal position

The same approach as for the vertical position was used to estimate the reference position, R, of
the cylinder. Equivalents to the results with the cylinder in a vertical position results are presented
in this section for a horizontal position. The horizontal case shows no significant difference in the
RMSE compared to the vertical case, see Figure 4.18.

0 5 10 15 20 25 30 35

Number of frames, [-]

0

5

10

15

A
b

so
lu

te
 e

rr
o

r
[m

m
]

Figure 4.18: Average absolute error on the COM with the cylinder in a horizontal position

0 5 10 15 20 25 30 35

Number of frames, [-]

-100

0

100

200

300

400

500

0 5 10 15 20 25 30 35

Number of frames, [-]

-50

0

50

100

150

200

250

N
u
m

b
e
r

o
f

o
u
tl

ie
rs

 [
-]

Figure 4.19: Nr. of outliers with the cylinder in a horizontal position. The left graph shows outliers
outside 2 cm while the right graph shows outliers outside 1 cm

27

The number of outliers with regards to Euclidean error shown in Figure 4.19, is however a bit lower
for low number of frames compared to the vertical case, but overall, there is no remarkable difference
when comparing to Figure 4.15.

The reliability function in Figure 4.20 shows that the probability of getting an error above 10 mm
with the target placed horizontally with 20 frames is 0.2% based on the 1000 measurements done
(from R20). For comparison, the probability of getting such an error when using only one frame is
41.8%.

Figure 4.20: Reliability function with the cylinder in a horizontal position

(a) (b)

Figure 4.21: Comparison between the error in x-, y- and z-direction for 1 frame and 20 frames with
the cylinder in a horizontal position along the z-axis

When looking at the absolute error in x-, y-, and z-direction with the cylinder with the longitudinal
direction along the y-axis, it was observed that the error was now largest in y-direction, see Figure
4.21. This was the longitudinal direction, and the two peaks in Figure 4.21a is similar to what was
seen in the longitudinal direction in the vertical case. The peaks have a distance of 3-4 cm between
them, which corresponds to the voxel size of 4 cm. The two peaks became one when increasing the
number of frames as shown in Figure 4.21b.

Summary of object segmentation results

After evaluating the results from the two use cases, 20 was chosen as the default number of frames
which was considered a nice trade off between precision and computational cost. Without any

28

obstacles in the frame, it segments the target with a frequency of approximately 9 Hz. For 20 frames
that means around 2.2 seconds which is satisfactory for this application since the segmentation only
happens once before every pick-and-place procedure. However, the computation time increases
drastically when introducing obstacles inside the detection zone.

To compare 1 and 20 frames in a visual and intuitive way, they are plotted as points in the xy- and
xz-plane. Figure 4.22 shows the result with 1 frame, while equivalently Figure 4.23 shows the same
results, but with 20 frames. These figures shows how the precision was improved significantly when
increasing the number of frames. The mean COM is placed a bit differently with 1 and 20 frames.
Likely due to the fact that the tests were performed on different occasions, and the placement of
the target object was therefore slightly different.

5.26 5.265 5.27 5.275 5.28 5.285 5.29

x-direction [m]

5.28

5.285

5.29

5.295

5.3

5.305

5.31

y
-d

ir
ec

ti
o

n
 [

m
]

Measured COM

Mean COM

Ground truth

(a) 1 frame

5.25 5.26 5.27 5.28 5.29 5.3 5.31

x-direction [m]

0.72

0.74

0.76

0.78

z
-d

ir
e
c
ti

o
n

 [
m

]

Measured COM

Mean COM

Ground truth

(b) 1 frame

Figure 4.22: 10 000 measurements of the COM with 1 frame. The ground truth is the laser measured
reference point

5.26 5.265 5.27 5.275 5.28 5.285 5.29

x-direction [m]

5.28

5.285

5.29

5.295

5.3

5.305

5.31

y
-d

ir
ec

ti
o

n
 [

m
]

Measured COM

Mean COM

Ground truth

(a) 20 frames

5.25 5.26 5.27 5.28 5.29 5.3 5.31

x-direction [m]

0.72

0.74

0.76

0.78

z
-d

ir
e
c
ti

o
n

 [
m

]

Measured COM

Mean COM

Ground truth

(b) 20 frames

Figure 4.23: 10 000 measurements of the COM with 20 frames. The ground truth is the laser
measured reference point

With an increased number of frames, the euclidean distance decreases, and the histogram in Figure
4.24a shows the equivalent to Figure 4.10, but with 20 frames. In addition it shows the Gaussian
fit in red. The accuracy of the system is the mean of the normal distribution, µ, which is 4.8 mm.

29

(a) Histogram of the euclidean error between measure-
ment and ground truth

(b) Histogram of the angular error

Figure 4.24: Results with 20 frames

The precision for COM, Pcom, on the other hand, is defined in equation 4.10

Pcom = 2 · σcom = 2 · 1.8[mm] = 3.6[mm] (4.10)

Where σcom is the standard deviation of the normal distribution. It is worth mentioning that the
precision in the transverse plane of the object is significantly better than in the longitudinal direction
as the histograms for x-, y- and z-position shows (Figure 4.9, 4.17, 4.21). Lastly, the results from
orientation is shown in Figure 4.24b where the red line shows the Gaussian fit. The mean of this
normal distribution is 0.62◦ while the angular precision, Pangle is calculated using equation 4.11

Pangle = 2 · σangle = 2 · 0.16◦ = 0.32◦ (4.11)

Table 4.4: Accuracy and precision of the system from 10000 measurements comparing 1 and 20
frames

1 frame 20 frames
Euclidean precision [mm] 17.8 3.6
Euclidean accuracy [mm] 14.8 4.8
Angular precision [◦] 0.88 0.32
Angular accuracy [◦] 0.84 0.62

4.2.5 Adding the cylinder to MoveIt

When the target’s pose is determined, the next step is to add it to MoveIt. This is done through
a function called addCylinder based on the script from [47]. This function was modified to
take cylinder parameters as input and to output a MoveIt compatible collision object. The cylinder
parameters are stored in a struct called AddCylinderParams . This struct held 4 parameters: radius,
direction vector, centre of mass and length. The direction vector and the COM are arrays with 3
elements (x, y and z). Further on, this collision object can be published to the collision_object
topic. From this topic it is subscribed to by the planning scene [48, p. 7]. Figure 4.25 shows how the
cylinder is visualized in RViz. RViz is a 3D vizualisation tool for ROS. First, in Figure 4.25a, only

30

the RGB point cloud is shown while Figure 4.25b shows the point cloud with the cylinder object
upon.

(a) RViz RGB pointclouds with the cylinder in the
middle

(b) Cylinder object added to RViz

Figure 4.25: With and without the cylinder object from MoveIt

4.2.6 Real world validation

Figure 4.26: Validation of the cylinder
segmentation with the robot

When testing the pick-and-place procedure later in the
project, the cylinder segmentation was validated by mov-
ing the robot automatically to the target’s pose. Figure
4.26 shows where the robot stopped when told to move its
end effector to a distance of 20 cm from the cylinder COM.
Since the cylinder has a radius of 13 cm, the expected re-
sult should be 7 cm between the robot’s end effector and
the cylinder edge. The test shows a deviation of 1 mm
in the transverse direction and 10 mm in the longitudinal
direction. Similar results were obtained for the horizontal
and general use case.

When an accurate and precise object detection and local-
ization was achieved, the obstacles were to be mapped for
obstacle avoidance.

4.3 Obstacle mapping

To be able to perform obstacle avoidance, the system needs a 3D map of the environment to locate
obstacles. This can be done by simply modeling the whole work area offline using CAD software
before moving the robot. However, this is a very fixed approach resulting in a low adaptability
to potential changes. This report presents a method based on online mapping using multiple 3D
sensors that creates one point cloud of the whole work area. In this way, the environment can be
mapped and obstacles can be detected with a completely model-free approach, making it highly
adaptable for changes to the environment. The approach also opens the possibility for real-time
collision avoidance.

3D sensor based collision avoidance can be a computationally expensive task [11]. However, there
are tools to make this process more efficient when working with point clouds. One method is to
map the environment with point clouds using the octree method introduced in chapter 2.2.

31

Within MoveIt, there is functionality for adding an occupancy map to the robot environment based
on the octree method, and in that way it creates a map with a variable resolution based on the
localization of datapoints. This functionality is provided through a plugin package called OctoMap.
The great advantage of utilizing MoveIt’s functionality for mapping the environment is how it
integrates with the ROS system. Because the target object was segmented before the mapping, and
the robot model was predefined, the inliers to these objects could be removed. Then, a map could be
created with a given resolution resulting in an octree based point cloud of all other unknown objects
in the lab. It was then possible to have an accurate model of the objects of interest, in this case
the cylinder and the robot, while keeping a low resolution of the obstacles to reduce computational
cost and to add a safety margin to the algorithm.

4.3.1 Denoising

To create such a map, point clouds from all cameras are merged using the method proposed in
chapter 4.1. An issue with using these point clouds directly is noise. Practically, that meant lots
of points in thin air as shown in Figure 4.27. This would mean that the robot would struggle with
planning around all these individual points.

Figure 4.27: Noise in the occupancy map

A way to reduce the noise is to remove outliers by using a SOR filter introduced in chapter 2.2.
cloud_merged , obtained from the algorithm shown with a flow chart in Figure 4.1, is used as
input for the SOR filter. The output of the SOR filter is cloud_filtered , which is the cloud
that is used as input for the occupancy map generator. Applying the filter directly resulted in a
significant improvement. However, some outlying points were still appearing mid air. This issue
caused problems when planning with obstacle avoidance. There were two main areas where outlying
points was still present after applying the filter. These are highlighted in Figure 4.28 where all the
coloured points are spurious. These spurious points could cause MoveIt to plan a strange motion
around them, or even fail planning. To get the most out of the SOR filter, it can be tuned by
changing two parameters:

• Number of neighbour points to analyze for each point (KNN)

• Standard deviation multiplier

When tuning the SOR filter, the optimal standard KNN was found at 50, with the deviation
multiplier threshold set to 0.25. This reduced the number of spurious points caused by Problem 2
from Figure 4.28 significantly. However, Problem 1 was still a frequent issue.

32

Figure 4.28: Problem in the occupancy map

By looking at the point clouds from the different Kinect cameras, it was discovered that the calibra-
tion of the Kinect cameras connected to jetson1 and jetson4 was slightly offset. They registered
points around 10 cm above the track which was assumed to be the reason for Problem 1 in Figure
4.28. jetson1 was calibrated by adjusting the pitch and jetson4 was adjusted downwards in
the z-direction. They where calibrated by using the robot, floor, track and other point clouds as
reference. Problem 1 was eliminated by this calibration. It is worth mentioning that the result
obtained for object detection and localization was performed after this calibration.

At first, the tuning and calibration seemed to be sufficient. However, by monitoring many consec-
utive frames, it was discovered that Problem 2 was still present. After monitoring 200 frames, it
was found that in 2% of the frames, points would appear right in front of the robot. It was discov-
ered through eliminating one Kinect camera at a time that this point was caused by jetson4 and
jetson6 . They were placed in the opposite end of the lab relative to the robot. The robot was
just inside the sensors range, thus causing inaccuracies with a collection of low intensity points in
this area.

Since the point clouds from the Kinect cameras held information about intensity, a threshold value
for intensity could be set locally at the Jetson boards as proposed in [7]. Since this is just a
threshold, it is a computationally cheap operation with a negligible increase in computational cost.
The intensity is represented as a value between 0 and 255. By increasing the threshold from 0 to 10,
the issue shown in Figure 4.28 disappeared and the accuracy of the occupancy map’s representation
of the environment did not undergo any noticeable change. Another upside of this intensity filter
was the reduction in number of points to undergo the more comprehensive SOR filtering. The
average total number of points from all kinect cameras dropped from 216650 points to 215030 when
applying the intensity filter, in other words a reduction of 0.75%. What this shows is that even
though the intensity filter removed the issue, it did not lead to any significant loss of information.

4.3.2 Results

Figure 4.29 shows the results from the different filters used. It shows the mean distance to K
nearest neighbours or the 50 nearest neighbours in this case. The unfiltered cloud (blue) had a
huge amount of outliers. The intensity filter (red) removed lots of those spurious points, but it
can be seen that there are still many outliers present. When applying the SOR filter (green) on
the intensity filtered cloud, most outliers disappeared, and the graph reflects the significance of the
SOR filter. Comparing the unfiltered occupancy map in Figure 4.27 with the intensity and SOR
filtered map in Figure 4.30 gives a new perspective of the results shown in Figure 4.29.

33

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Point index 10
5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
ea

n
 d

is
ta

n
ce

 t
o
 K

-n
ea

re
st

 n
ei

g
h
b
o
u
rs Unfiltered

Intensity filter

Intensity and SOR filter

Figure 4.29: Results on filtering

Figure 4.30: Filtered occupancy map after tuning

4.3.3 Creating an occupancy map with MoveIt

Integrating the result from Figure 4.30 with MoveIt is necessary to be able to use this map for
collision-free motion planning. To create an occupancy map with MoveIt, the first step was to make
a config file that can be seen in Appendix E.2.1. The most important parameters in this file are
listed below:

• point_cloud_topic : Specifies what ROS topic the occupancy map should listen to.

• max_range : Specifies the maximum distance from the origin to the points to be included in
the occupancy map.

• point_subsample : Specifies how many points are required within a voxel to be included as
a point in the occupancy map.

The point cloud topic was set to /master/merged_point_cloud which was the output from merged
and filtered (intensity and SOR) point cloud. Max range was set to 15 m to include the whole work
area. Lastly, point subsample was set to 1 to include all registered points. It was found that
increasing this led to holes in the floor and some loss of information on objects near the edge of the
work area because they were not covered by multiple sensor nodes and therefore had fewer points.

34

To make sure that the config file from Appendix E.2.1 is used, the following command was added
to one of the launch files:

<rosparam command="load" file="$(find
p26_lefty_moveit_config)/config/sensors_kinect_pointcloud.yaml" />↪→

The parameters set in the sensor_manager.launch file in Appendix E.2.2 was used to configure
the occupancy map. These parameters are listed below:

• octomap_frame : Specifies the coordinate frame in which this representation will be stored.
When working with a mobile robot, this frame should be a fixed frame in the world.

• octomap_resolution : Specifies the resolution of the OctoMap (in meters).

First, the OctoMap frame was changed to the base frame of the robot, lefty_track_left which
was the left side of the fixed track. Further on, the OctoMap resolution was changed to a relatively
low resolution of 12 cm which corresponds to the size of 3 voxels from the voxel grid with 4 cm
resolution. This induces an uncertainty about the points true position inside the blocks of the
occupancy map because the point can be anywhere inside the 12 cm blocks. For object detection,
that could have been a problem, but since the only use of this occupancy map is to map obstacles
without any detection algorithms, a low resolution will be cheaper computationally and it will add
a safety margin to the occupancy map for obstacle avoidance.

When the pick-and-place procedure starts, move_group.launch is launched. This launch file in-
cludes all the configurations done above, and made MoveIt create an occupancy map based on these
configurations. Figure 4.31b shows how MoveIt perceived the target object (green) and a pallet, as
well as other surroundings. Figure 4.31a shows the real world for comparison.

(a) Photo of robot, cylinder and pallet. (b) MoveIt’s perception of robot, cylinder and pallet
with a resolution of 12 cm

Figure 4.31: Comparison between real world and MoveIt’s perception

35

Chapter 5

Gripper development

A gripper was developed as a proof of concept for the complete pipeline pick-and-place procedure,
with a goal of no manual intervention. The gripper must fit the cylindrical target object used in
this project, whilst using cheap materials and components that were easily accessible to achieve
a low-cost system. It should be able to grasp and pick the target from random poses inside the
reachable environment, and holding it while performing the locomotion of the industrial robot from
one point, then releasing it at the goal position.

In this chapter the conceptual and design phase of the mechanical system and its parts are reviewed,
in addition to the setup of the manipulators hardware and software including controller, electronics
and actuation. The grasping of the target must work in an automatic sequence with the rest of the
pick-and-place procedure, without any interruption of the complete sequence.

An autonomous model-free grasping is not focused for this project, because the target object is
known and due to the complexity of developing a completely autonomous gripper. Therefore, the
gripper itself is limited to being automatic.

5.1 Mechanical design

This section includes the selection of overall mechanical architecture based on evaluation of concepts
made. With a concept chosen, a compatible actuator was found from the university’s collection. A
detailed and final design was performed for every component of the chosen architecture, completed
by final assembly and improvements.

5.1.1 Concepts

Some guidelines were made in front of the conceptual phase based on the task at hand. These
reduced the amount of considerations that had to be made in addition to simplifying the system
software integration. The guidelines are listed below:

• Grasp around a 26 cm wide cylindrical target object radially

• Utilize rotational movement from one electric motor for actuation

• Simplify design for efficient production performed preferably with 3D-printing

• Reduce the distance from object COM to base to minimize bending moment at base

• Synchronous movement of multiple arms, ensuring a centered target COM when grasped

Three conceptual designs for grasping the target were made with the guidelines in mind. All designs
utilized arms moving radially towards the target, but differs with the placement, joints and actuation

36

of the arms. Arms are what moves and interacts with the target. The idea was to apply force on
the side of the target to obtain sufficient friction force to be able to lift the target while stabilizing
it.

A scoring system was made to distinguish the concepts qualities, evaluating each concept upon
given parameters. Every concept received a score between 1-5 for each parameter, where 5 is best.
Intuition and sense was used to score each concept, in addition to comparing the concepts qualities.
Every parameter is weighted equal, and the highest total score determined what concept to proceed
with. The parameters are listed and explained below:

• Ease of production • Ease of design • Modularity • Robustness • Load applied

Ease of design and production, i.e. the estimated time and complexity needed to construct a
final and working product of each concept. The estimated time includes, but was not limited to,
3D design with various considerations, 3D printing, processing with cutting and fastening, and
assembly. Ease of production also includes possible difficulties with different components, such as
potential for plastic breaking, and other fastening methods implying uncertainties. Modularity was
each concepts potential for interchangeable components as well as possibility for use with different
cylinder sizes with the same design. The robustness was estimated based on joint positions and
overall design, with focus on potential weak points. Load applied indicated the utilization of torque
from the motor directly translated to the nominal force applied on the target, thus increasing both
friction and rigidity.

Each concept shown below are simplified versions, and was utilized as guidance for a final design.
The chosen concept was to be designed and produced as a working prototype capable of grasping
the cylindrical target object, in addition to holding it steady while the robot was moving. Some
of each concepts advantages could also be implemented in another concept, if the final concept
benefited from this.

Concept 1, linear actuator

The first concept is based on the linear translation from a linear actuator with lead screws and nuts,
the concept can be seen in Figure 5.1. With the additional gearing obtained from the lead screw the
maximum force applied would be greater, and a smaller motor could be implemented compared to
a direct drive. Due to the design of the arms and the linear translation, the centre of the cylinders
with different diameters would all have equal distance from the center to the base. By having these
distances similar for any size of the cylinders, the grasping action and cylinder position in MoveIt
were independent for the different cylinders.

Friction could become an issue between the arms and sliders, especially with tension increased.
The wide base and the placement of the motor could limit the movement of the robot by inducing
constraints. However, the base could be narrowed by increasing the lower part angle on the arms,
and reduced to the required travelling length from extended position to grasped on the smallest
cylinder. The slider rods would be smooth steel or carbon fiber and coated with a friction reducing
lube. As the translational movement of the arms are opposite, the lead screw had to consist of
two parts, where one side is links. The production of this concept, with a wide base, fastening of
opposite lead screws and assembly of rods could be difficult and time consuming.

37

(a) Side view of concept 1, linear actuator (b) Front view of concept 1, linear actuator with 26
cm cylinder

Figure 5.1: Illustrations of concept 1, linear actuator

Concept 2, Circular arms

With this concept the motor acts directly on one of the arms which is connected to the non-actuated
arm through gears making sure for synchronous movement. The conceptual illustrations can be seen
in Figure 5.2. This concept had the fewest number of parts and was assumed to be the easiest to
both design, produce and assemble. The arms could be made straight like in concept 1, adding
more modularity but with less strength and fewer stability possibilities at the base as well as a
smaller contact area. For this explicit design the circular gears were limited in size to minimize the
distance from the base to the COM due to their radius. With non-circular gears, as in concept 3,
this distance could be kept to a minimum and the joint distance would be widened. A widened
base and joint distance would increase the strength of the base and make the arms move more
perpendicular to the cylindrical target.

(a) Side view of concept 2, circular arms (b) Front view of concept 2, circular arms with 26 cm
cylinder

Figure 5.2: Illustrations of concept 2, circular arms

38

Concept 3, Rod-type

The last concept, and the most complex with the moving arms disconnected from the direct drive
of the motor. The concept illustrations can be seen in Figure 5.3. Here, rods are placed between
the direct gears and the translating arms. The idea was to apply load towards the opposite side of
the target, pushing the target towards the center of the gripper base. By applying force from this
direction, more of the circumference would be attached to the gripper base, ensuring more friction
and rigidity with a rigidity-enhancing design placed here.

(a) Side view of concept 3, rod-type (b) Front view of concept 3, rod-type with 26 cm cylin-
der

Figure 5.3: Illustrations of concept 3, rod-type

All rods could be of carbon fibre, ensuring a light and strong construction together with 3D-printed
leavers and rod connectors. To fasten the rods and levers, glue could be applied, implying a non-
reversible action of the assembly. Otherwise, bolts could be used through the rods, thus weakening
the carbon fibre with a hole. In addition, the difference of the cylinder COM position is vast between
a smaller and a bigger cylinder.

Load applied

Each concept has a different utilization of the motor torque, thus having different applied force with
an equal motor. Figure 5.4 shows the geometries of concept 2 and 3, and their lengths affecting the
applied force. Equations (5.1-5.3) shows how the different lengths and designs utilizes the torque.
Every length is based on concept CAD-models, and losses are not included. It is clear that the
applied force achieved with concept 1 and lead screw is superior, and a smaller motor could be used
here, also reducing the width of the base. For concept 3, with the outer link between Ls2 and Ls3

not being perpendicular to the actuated arm, some torque is lost in the translation, thus further
reducing the applied force. However, as concept 3 applies force more towards the base, it is believed
that more stability could be achieved due to pressure between the target and base.

FN,1 = Tm ·
2π

Ls · LL
(5.1)

FN,2 =
Tm
LL

(5.2)

39

FN,3 = Tm ·
L2

L1 · L3
(5.3)

where,

Description Value Unit
FN,1 Applied force for concept 1 28 · Tm N

FN,2 Applied force for concept 2 7 · Tm N

FN,3 Applied force for concept 3 3 · Tm N

Tm Motor torque − Nm

Ls Lead screw pitch distance 1.5 mm

LL Length arm concept 1 and 2 0.15 m

L1 Length 1 0.03 m

L2 Length 2 0.1 m

L2 Length 3 0.1 m

௦ଷ

௦ଶ

௦ଵ

ே
ே

Figure 5.4: Concepts 2 and 3 with corresponding force-influencing lengths

5.1.2 Soft robotics gripper

Another approach could be to make a soft robotics gripper. Within soft robotics, the idea is to
make robots less hazardous for people and the surroundings. One part is the danger of rigid-body
grippers and their powerful actuators and applied force, where many industrial "hard" grippers
have a gripper force sufficient to potentially hurt people. Soft robotic grippers with soft and flexible
materials tend to utilize vacuum, air pressure or wires to actuate the gripper components, and
different adhesives to increase friction. An example can be found in [49], which utilize air pressure
to inflate the outside bladders to control the actuation of the arms, and a gecko-inspired adhesive
to enhance friction. The gripper can be seen in Figure 5.5, and a similar and bigger design could
be used to pick the target used in this project. However, the combination of different materials and
actuation control was assumed to be time consuming and hard to implement in rapid and low-cost
prototyping. With soft materials and bodies, more complex force sensing and control would be
required due to less rigidity in the assembly [50].

40

Figure 5.5: Example of a soft gripper with air pressure and special adhesive[49]

5.1.3 Concept evaluation

Each concept were evaluated upon the described parameters and compared to each other, and their
result can be seen in Figure 5.6, including the total score next to their names. Based on the overall
technical impression and total score, concept 2 with circular arms was determined to be proceeded
with. Due to its primitive design it is considered the most efficient to both design and produce, with
fewer parts and joints. It is also considered the most robust with a solid base and arms in addition
to directly connected motor to the actuated arm, thus giving a fair utilization of motor torque.

0

1

2

3

4

5
Ease of design

Ease of production

ModularityRobustness

Load applied

Linear actuator (21) Circular arms (22) Rod-type (13)

Figure 5.6: Radar diagram of concepts score and total score

5.1.4 Gripper overall architecture

With the concept chosen, the components could be further developed with regards to smaller details
and to improve the overall design together with actuator and position sensor.

Motor selection

Motor speed, size, weight and stall torque were important parameters when selecting a compatible
motor to be used on the gripper. Its size and weight were to be kept to a minimum reducing the
necessary support from the base. The motor speed should be slow as the arms only needed to rotate

41

a few degrees. The required torque had to be estimated based on preliminary design and objects to
be grasped, the minimum required torque was calculated as shown in equations (5.4-5.7) based on
the free body diagram illustrated in Figure 5.7.

L

ேே

Figure 5.7: Free body diagram of gripper acting on target

The friction force comes from the arms being pushed radially towards the target. With arms made
from 3D-printed PLA and the target made from cardboard the friction coefficient was found to be
relatively low. By attaching sealant strips made from rubber on the arms the friction was increased.
The point of contact was assumed to be at the outside of the COM of the target, the distance from
the arm joints to the contact point is illustrated as L in Figure 5.7. This distance was not set at
the time of the motor selection, but was assumed to be somewhat larger than the radius of the
cylindrical target.

Ff = µ · 2 · FN (5.4)

FN =
Tm
2 · L

(5.5)

Ff > Mc · g (5.6)

⇓

Tm >
Mc · g · L

µ
(5.7)

where,

Description Value Unit
Tm Minimum required motor stall torque 9.7 Nm

Mc 26 cm cylinder mass 3.3 kg

g Gravitational acceleration 9.81 m
s2

L Length from joint center to nominal force acting on cylindrical target 0.15 m

µ Friction coefficient between rubber and cardboard [51] 0.5 −
Ff Friction force N

FN Nominal force N

42

Now, a motor could be selected from the university’s assortment of actuators based on the calculated
minimum required torque calculated and an idea of its size, weight and speed. An Actobotics 12
V DC motor with a vast gearing was found suitable for the task at hand, with a small size, slow
and controllable speed and high rated stall torque. The minimum stall torque was rated at 418
kgf-cm which corresponds to 41 Nm, greater than the estimated required torque. Its dimensions
and characteristics can be seen in Appendix C.

5.1.5 Base

The base is the foundation of the complete gripper with both arms, motor, position sensor and
gears connected to the base. It carries all the weight, including the target and should be designed
tough, yet not difficult nor time consuming to produce and 3D-print.

By making the base as shallow as possible the bending moment caused by the target mass would
be lower, applying less stress on the base. The arms should also have a widened joint separation
causing a more horizontal movement of the arms as illustrated in Figure 5.8. By doing this the
change in position for smaller and bigger cylinders was reduced, with a more horizontal movement
than vertical. In addition, the arms could be made shorter while keeping the same property of
reaching around the cylindrical target, pushing it towards the base reducing the risk of it slipping
out.

Figure 5.8: Movement with wider base

The combination of a widened and shallower
base, and the placement of the motor meant
that it would interact with the six-bolt pattern
for the fastening to the industrial robot tip. It
was decided to only use four bolts, and assume
that this would be adequate to fasten the base
and gripper to the base. By twisting the top of
the base from the flat part bolted to the robot
end, the motor would also not interact with the
bolt pattern. The four-bolt pattern and twisting
can be seen in Figure 5.9. The notches around
each bolt hole facilitates space for the hex socket
needed for fastening the bolts and also spread
the tension from the bolts at an even and flat
area.

A double-D notch, similar to the one found on
the motor front chassis was made in the base
where the motor was fastened to better coun-
teract the torque. A vertical plate was imple-
mented to the side of the motor, by attaching the motor bracket to this plate, the motor was
completely fastened to the base, both counteracting its weight and induced torque. The plate can
be seen in Figure 5.9b and is the vertical part besides the right hole. A similar plate was placed on
the other side of the base, and both were extended in height and used as stabilizers for the target.
The other plate was also made with a bracket facilitating the use of rotational position sensor, such
as potentiometer or encoder.

43

(a) Top side of base (b) Side view of base

Figure 5.9: Top and side view of base

Motor connector

With a minimum stall torque of more than 40 Nm, a 6 mm D-shaft on the motor and a corresponding
connection in the 3D-printed plastic, the plastic would likely break at an early stage. A leverage
that would fit both the motor shaft and distribute the forces at a larger area on the arm was
implemented. A tail rotor hub from a RC-helicopter was found suitable and was cut in half and
used as leverage. A notch in the arm was made making a snug fit for the leverage, and a set screw
was used to connect the leverage to the motor shaft through a hole in the arm. An illustration of
the assembly in exploded view can be seen in Figure 5.10. The hole in the motor shaft had to be
fabricated to fit the smooth end of the set screw.

Figure 5.10: Exploded view of the motor connection with leverage

44

5.1.6 Arms

With this design, the arms are what mainly holds the target in place, thus requiring a tough design
capable of stabilizing the target. The arms were designed quite long, being able to reach above
center of the circumference of the cylindrical target, pushing the target towards the base, utilizing
the stabilizing elements there as well. A notch in the upper part of the arm was made, where a
longer rod was placed to further stabilize the target, especially in the longitudinal direction. The
actuated arm and rod can be seen in Figure 5.11. The stabilizing rods and the shaft between the
arms and base were of carbon fiber to maintain a low weight of the complete assembly. A rubber
sealing strip was added with double-sided tape to the inside of the arms and stabilizing rods to add
more friction between the gripper and target.

Figure 5.11: Arm with stabilizing carbon rod

5.1.7 Synchronous gears

A widened base and a greater distance between the joints would directly impact the required size
of the gears providing synchronous movement of the non-actuated arm. If a circular gear was to be
used, the vast radius would require the target to be moved away from the base due to the size of
such gears, increasing the required torque at base and the required arm lengths. The gears overall
radius had to be reduced to minimize the distance from the base to the centre of the target. This
was done by only producing a fraction of a gear, which was possible due to the small rotation needed
of the arms to grasp the target. 3D-printing was seen as the best solution to be able to produce
these custom gears although lacking the strength and integrity of "ordinary" circular cast plastic or
metal gears. As the arms were quite large, and took some time to print, it was desired to maintain
a level of modularity for the printed parts. By implementing the custom gears as separate parts
they could be easily interchanged if broken or in the need of modifications.

The gears were fastened to the arms with the narrow part at the outside tip which can be seen in
Figure 5.12. These fits into the arms and were additionally fastened with bolts and nuts. It was not
considered necessary to have more than one complete tooth at the passive side due to the limited
rotation, the passive gear is the left one in Figure 5.12. The highest load was applied when grasping
the target, and the gears were designed such that the complete face of the teeth were interacting in

45

this position, the same position are shown in Figure 5.12. The gears induced minor slack, but this
was not a problem when actuating in one direction at a time, which is the case for such a gripper.

Figure 5.12: Synchronous gears

5.1.8 Position sensor

A rotational position sensor was added to the assembly to have control over the movement of the
arms. This was fastened to the base at the center of the arm joint and to the non-actuated arm
through a link. The position sensor was not added directly to the motor to have control even if the
motor should be slipping in its attachments or detect if the arms would move differently, i,e. broken
gears or arms.

5.1.9 Complete assembly

(a) Real life assembly with cables, fasteners and rub-
ber seals

(b) CAD-model of assembly

Figure 5.13: Real and CAD-model of complete gripper assembly

With all parts designed and printed these were assembled with bolts, nuts, tape, cable ties and
carbon shafts. It was chosen to use a orange filament to better fit the orange industrial robot, in
addition to it being a hazardous color easier to spot. A comparison between the clean CAD-model
and the real life assembly with all accessories and fasteners can be seen in Figure 5.13. The complete
assembly and corresponding parts can be found at GrabCAD. The placement of the sealant strips
can also be seen in Figure 5.13a, where the gripper is bolted to the industrial robot end-effector

46

https://grabcad.com/library/p26-gripper-1

link. The black tape was holding the cables to the motor and position sensor in position, keeping
them from being squeezed.

5.2 Hardware setup

In this section different hardware components are chosen, set up and combined giving a sufficient
control of the gripper actuation.

5.2.1 Controller

A controller communicating over ROS as a node was determined to use together with the gripper,
enabling a running sequence together with the main computer. Through ROS, the idea was to
communicate when to extend and retract the arms, and feedback the applied force and arms position
so the sequence could proceed when feedback values are within defined threshold values. With an
actuator and with sensors, I/O-control was implemented to be able to perform the different actions
of the gripper.

The industrial ABB-robot had some I/O-ports, see Appendix B, which could feed through signals
controlling actuation and containing sensor feedback data. However, the signals would only be
passing through the robot, and all calculations and controlling signals would come from the main
computer. In addition, the internal RAPID-code on the ABB-robot had to be manipulated in order
to pass these signals through ROS, and compatible physical connectors were not available at the
university during this project.

An additional ROS node extending the existing ROS network, controlling the actuator directly was
seen as a more versatile solution and reduced the computational resources on the main computer.
This node would not be dependant on a specific kind of robot, and could be implemented in any
sort of ROS network.

5.2.2 Hardware components

All major hardware used for the gripper are listed below:

• Raspberry Pi 4B w/Power Supply

• 12 V DC motor with gearing

• DC Motor Driver Module

• Arduino Uno

• Potentiometer

Raspberry Pi 4B

A Raspberry Pi 4B (RPi) was used as the gripper controller and ROS node. RPi was able to
run Ubuntu, with ROS Kinetic through ethernet connection to the local LAN. The RPi included
many general purpose input-output (GPIO) digital pins, including pulse width modulation (PWM)-
channels that could control the actuator. The RPi 4B-version also included WiFi, which was handy
when performing troubleshooting from a laptop, without the need of connection to the local LAN.

The RPi 4B may be small in size, but did not lack the computational resources required for the
intended use in this project, the processor runs at 1.5 GHz and the version used in this project

47

had 4GB of memory (RAM). The main reason for using the RPi was due to its small footprint,
possibilities for using Ubuntu and ROS, the ethernet connection enabling use with the local LAN
and the 40 pins GPIO, in addition to the fact that it was available at the university. However,
some issues became prominent while setting up the RPi, it did not include analog pins, being able
to interpret analog sensor signals. Also, the pins were only designed for 3.3V, as oppose to many
electrical components that works with 5V, which if sent to the RPi, may permanently damage the
ports as it does not include protection for the GPIO [52, p. 14].

DC Motor Driver Module

From the university, a DC motor driver module was given to be able to control the input voltage
to the DC motor. The driver module was built upon a VNH2SP30 H-bridge motor driver for
automotive applications and used PWM and two logical inputs to determine speed and direction of
the motor, see Appendix D. With the VNH2SP30, PWM could be run at up to 20kHz and current
sense could be implemented, facilitating force sensor when grasping the target. Even without the
analog pins on the RPi, PWM enables the use of a similar approach by using the RPi’s hardware
PWM or by software.

The current sense voltage runs approximately proportional with the current through the motor, and
enabled the use of resemblance of force feedback on the force from the gripper arms applied on the
target. This was possible due to the DC motor characteristics and torque being inverse proportional
to the rotational speed of the motor shaft, and the proportional relationship between torque and
current drawn, resulting in increased current drawn with more load applied i.e. less speed. For
this purpose a separate and more precise current sensor was not deemed necessary, as the specific
current drawn was of no interest as opposed to the proportional and consistent value corresponding
to the load applied from the gripper arms. Also, the planned use of the force feedback would be
as a threshold value for the motor to stop when reached. This threshold value would be set based
upon empirical testing and validation.

Potentiometer

Many solutions for observing the arms position exists, both digital (e.g. encoder and limit switch)
and analog (e.g. potentiometer and ultrasonic depth sensor). An encoder or potentiometer were
prominent methods to be able to constantly observe the arms rotational movement. However, the
need of calibrating the encoder for every boot-up made the potentiometer the best solution for the
intended use. From the mechanical design the potentiometer was placed at the non-actuated arm
joint, and connected though a link to the arm following the rotational movement.

Arduino Uno

An Arduino was utilized as an interpreter for the analog signals from the current sensor and po-
tentiometer, as the RPi did not have analog pins. The university did not have a separate ADC nor
a motor driver running with serial communication. The Arduino had a built-in ADC and could
communicate serially over USB to the RPi using different libraries and protocols. In addition, the
Arduino had multiple analog inputs and outputs which prepared the manipulator for extension with
more sensors or actuators if necessary.

48

Connections

A connection diagram for the different hardware parts can be seen in Figure 5.14 showing all
connections between the different hardware components. The USB-cable represent the connection
between the Raspberry Pi and the Arduino Uno, which both powered the Arduino and handled
signal transfer. The Raspberry Pi was connected to a power supply and ethernet to the local LAN.
The 12V DC power supply to the motor driver comes from the 220V AC - 12V DC transformer.

Motor Control B

Motor Control A

Motor PWM Ctrl

5V

GND

Current Sense

+
10 µF

+
- 12V M

+
10 µF

Figure 5.14: Electrical diagram for connections between Raspberry Pi, Arduino Uno, potentiometer
and DC Motor Driver

5.2.3 Installation and software setup

Raspberry Pi

As the rest of the system utilize ROS Kinetic for communication, this was also desired to use on
the RPi to reduce the risk of compatibility issues across the different devices. To be able to run
ROS Kinetic, Ubuntu 16.04 was considered the most suitable and compatible operating system
[53]. A complete Ubuntu 16.04 image installation, made especially for RPi 3/4, was found [54] and
installed on the RPi. This image was pre-installed with ROS Kinetic for robotic use, but required
some changes regarding network setup and time synchronization.

Ubiquity Robotics Ubuntu 16.04

Ubiquity Robotics was the manufacturer of the installed Ubuntu 16.04 operating system on the
RPi, and stated that it worked on both RPi 3 (Model B and B+) and RPi 4B. The image is based
on Ubuntu 16.04 and came pre-installed with ROS Kinetic and a catkin workspace already setup.
However, as this image was primarily built for use with their robots some startup scripts had to be
disabled, including the automatic startup of roscore , which is not applicable for the lab setup with
the main computer running roscore . The startup scripts were disabled by running the following
commands [55]:

sudo systemctl disable magni-base

49

sudo systemctl disable roscore

Network

To be able to connect the Raspberry Pi to the local net in the lab, a static IP, with correspond-
ing gateway, DNS and netmask had to be configured for the ethernet connection. The following
connection properties were used:

• IP: 10.225.120.56

• Netmask: 255.255.255.0

• Gateway: 10.225.120.0

• DNS: 10.225.120.50

The local LAN was a closed net without connection to the internet to prevent any impact from
intruders. The lack of internet access was unfortunate when there was a need of installing different
packages and libraries on the RPi. To solve this a hotspot from a laptop was setup and connected
at boot whenever working on the RPi. With successful connection to both the local net and
the internet over WiFi the next step was to setup the different ROS network parameters to be
able to connect through the main computer running the master node roscore . With this the
following parameters had to be declared in ∼\.bashrc to be initialized at boot, with the command
export ROS_... [56]:

• ROS_MASTER_URI = "http://10.225.120.50:11311"

• ROS_IP = "10.225.120.56"

• ROS_HOSTNAME = "p26_raspberry.local"

Pinging and the commands rosptopic list and rostopic hz <rostopic> were used to confirm
the connection to the local net and ROS setup in the lab with the RPi. However, there were some
trouble when trying to use the latter and subscribing to a ROS topic. From [56] the idea of time
discrepancy between the different components appeared.

Time synchronization

By installing chrony with sudo apt install chrony , initializing it at boot by including it in
∼\.bashrc with systemctl enable chronyd and setting up the main computer as the reference
client with its IP, the RPi clock was following the reference clock in the main computer as can
be seen in Figure 5.15. However, the RPi was still not able to subscribe to any topic found by
rosptopic list . By looking up the time and date settings on the RPi with timedatectl , it was
observed that the realtime clock (RTC) was not similar to both the local and universal time as can
be seen in Figure 5.16. This was due to the fact that Raspberry Pis do not have a realtime clock
built-in, which was presumably used by ROS. However, there was a quick work-around that manip-
ulated the RPi to mirror the reference time as RTC. This was performed by installing fake-hwclock
[57] and enabling it with sudo systemctl enable fake-hwclock . Now, the realtime clock was
following chrony with the main computer as host, and subscribing to different topics in ROS worked
without any noticeable issues.

50

Figure 5.15: Time synchronization between RPi and main computer

Figure 5.16: Raspberry without real-time clock (RTC)

General Purpose Input Output

The general purpose input/output (GPIO) on the RPi consists of a 40-pin header with digital pins,
continuous 3.3 and 5V power outputs and ground pins. Two of the pins included hardware operated
PWM channels, enabling control of the DC driver and speed of the motor. Together with the DC
motor driver, five pins and connections were required as can be seen in Figure 5.14, with 5V power,
ground, PWM and two connections for controlling the state of the bridge. With only digital GPIO
on the RPi, and to be able to perceive the current sense and potentiometer voltage, a separate
analog to digital-converter (ADC) was used in the form of an Arduino Uno serially connected to
the RPi using USB.

The serial communication between the RPi and Arduino was feasible with the use of Firmata[58],
a software communication protocol between host computer and different microcontrollers. On the
Arduino, Firmata was implemented using an example script given directly from the Arduino app
called StandardFirmata. With this script all Arduino pins could be read and controlled using a host
computer, i.e. RPi connected serially with the Arduino. On the RPi and with Firmata for python,
pyFirmata [59] implemented, the Arduino pins could be accessed. The implementation code can be
seen in Appendix E.4.1. Using pyFirmata, the signal input range on the RPi was 0 to 1.

Motor actuation and sensor filtration

With the current sense and potentiometer connected and set up, motor actuation was initialized
using PWM. It was determined to further evaluate two libraries with the RPi and PWM, either
pigpio[60] with hardware timed PWM or RPi.GPIO[61] with software PWM. Every output pin
could be used with software PWM, whereas hardware PWM on the RPi only has two channels with
a total of 4 original PWM pins. However, pigpio controls the GPIO on the RPi and every pin can be
used with hardware PWM, but limited to two channels i.e. a total of two PWM frequencies running
simultaneously. With only the motor driver utilizing the PWM-signal, the accuracy was of utmost
importance when choosing between pigpio and RPi.GPIO. With the motor running at constant
speed with no load the current sense voltage was measured with both methods, the comparison can
be seen in Figure 5.17.

51

0 50 100 150 200

Number of measurements [-]

0.1

0.2

0.3

0.4

0.5

M
o

to
r

c
u

rr
e

n
t

[A
]

pigpio

RPi.GPIO

Figure 5.17: PWM noise for pigpio and RPi.GPIO

From Figure 5.17 it was noticeable that pigpio with hardware PWM had the least amount of noise
and higher accuracy than RPi.GPIO. Jerk was also prominent when using RPi.GPIO with the
motor having sudden and rapid accelerations. However, with RPi.GPIO and software PWM the
motor would stop running if the script failed or was killed. In the same case with pigpio and
hardware PWM, the motor would continue to run, and potentially destroy mechanical components
if assembled. By including a try block containing the source code, and an exception block containing
a function that stopped the motor, this issue was suppressed.

The gripper would be actuating while the current sense would be within a set threshold value. The
high spikes seen when using RPi.GPIO would make this type of actuating less accurate, and the
treshold value could randomly be exceeded. A low-pass filter with a small capacitor was implemented
for the current sensor and potentiometer as seen in Figure 5.14. The low-pass filter greatly reduced
the noise for both analog sensors, the reduction for the current sensor as seen in Figure 5.18.

0 50 100 150 200

Number of measurements [-]

0.1

0.15

0.2

0.25

0.3

0.35

M
o

to
r

c
u

rr
e

n
t

[A
]

Non-filtered

Filtered

Figure 5.18: Current sense noise with and without low-pass filtering

The average of every 40 measurements was utilized to further smoothen the current sense signal.

The signal was also multiplied with
5

0.13
to obtain an estimation of the real current, 5 acquired

52

the Arduino voltage, 0.13 is the approximate V/A from the current sense. However, as the current
sense voltage was proportional to the real current, the estimation was only utilized as an indication
and prevent potential overloading of the motor driver.

5.3 Control setup

1

2

Figure 5.19: Sequence of grasping

With the motor rotating the arms, sensors work-
ing and every component assembled, the control
architecture could be developed. The idea for
the gripper was to work as a state-machine with
actuation of the arms in both directions work-
ing in sync with the navigation of the industrial
robot. The planned sequence of the grasping
action is shown in Figure 5.19, and represents
a simple procedure with the navigation to the
COM of the target (1), followed by the retrac-
tion of the gripper arms gripping around the
cylindrical target (2). In this section the con-
trol algorithm for the extension and retraction
of the arms will be explained utilizing sensor
data in combination with threshold values.

5.3.1 Control architecture

To control the arms, two different algorithms were made, extension and retraction of the arms. The
different algorithm flow charts can be seen in Figures 5.20-5.21 and their source code can be seen
in Appendix E.4.2 called extend and retract . Both are similar, but differs mainly with the
pre-check of gripper is already extended with the extend-function and the motor brake with applied
torque with retraction. The main component is the while-loop running with motor spinning while
the sensor measurements are within the set threshold values. If the position or current sense data
is greater than the set threshold values the motor will stop and hold.

Is gripper
already
open?

Input:
Position

CW rotation of
motorStart

Stop

No

Yes

Input:
Current

Is arm position or
current value

within threshold?

NoYes
Hold motor

Figure 5.20: Flow chart of the extension of the gripper arms

53

Input:
Position

Set threshold
values

dependant on
cylinder size

Start

Stop

Input:
Current

Is arm position or
current value

within threshold?

NoYes Hold motor
with applied

torque

CCW rotation
of motor

Input:
Cylinder size

Figure 5.21: Flow chart of the retraction of the gripper arms

5.3.2 Sensor threshold values

Both sensors would work together with treshold values, determining where and when the arm should
stop extending or retracting. These threshold values were found by empirical testing with and
without the target grasped. The different sensors to first interact were dependant on the actuation
of the arms, if they were retracting or extending. If extending, the position sensor should reach the
threshold first, not applying too much stress and potential fatigue on the mechanical stop, i.e. the
3D-printed base. When extending, the current sensor is working as a backup if the position sensor
should fail, but with a lower threshold than for the retraction on the target. For the retraction of
the arms on the target, the arms position, when applied sufficient force, could be different for each
grasping due to a potential change in grasping pose and target placement. Here, the current sensor
is used as the main stopping threshold as the gripping force on the target is of utmost importance.

While testing to find the maximum threshold current, i.e. the applied force on the target to get
sufficient friction force, the motor started spin within its mounting due to the double-D socket in the
base being rounded from excessive stress. A threshold current value just below the limit of spin on
the motor gave sufficient force to be able to lift the target. The maximum threshold current value
when extending the arms was found by observing the current value while extending. The threshold
value was set somewhat higher than the minimum required for the arms not to stop prematurely.

5.3.3 Motor control

The DC motor driver was controlled by PWM and two direction pins. The direction pins were set
to high and low, and vice versa to control the rotational direction of the motor. The PWM was set
to 20 kHz to be at the end of the audible range, this was also the maximum PWM input frequency
of the motor driver [62]. Four different control cases for the motor was established, rotation in both
directions, low torque hold and high torque hold. The different control cases can be seen in Table
5.1 and shows how the direction pins were set and the motor speed for each case. The motor speed
represents the PWM duty cycle in percentage.

A high torque braking for the motor was deemed necessary to maintain a sufficient gripping force
while the arms were still. At first the low torque hold was applied with braking to ground, i.e. both
direction pins low. This was not adequate and a torque had to be constantly applied. By setting
the motor to apply force with a smaller speed setting in the same direction as for retraction the
motor would brake with sufficient force to maintain the gripping force. With a small speed setting

54

Table 5.1: Motor control on direction pins and speed

CCW for retraction CW for extension Low torque hold High CCW torque hold
Pin 11 Low High Low Low
Pin 13 High Low Low High
Speed 30% 20% 0% 9%

the motor would not start to spin, but act as a brake for the opposite direction.

5.4 Complete prototype

The gripper assembly could now be attached to the industrial robot with the control system running
and actuating the gripper in a controlled manner within threshold values.

5.4.1 Mounting onto industrial robot

Both an ethernet and power cable had to be drawn up to the industrial robot, to be able to
communicate with and power the gripper. On the industrial robot with track, the cables were
drawn inside the cable track arrangement and through the robot arm’s main vertical body as seen
in Figure 5.22b, the blue cable is the power cable. With the cables managed in this way the robot
could navigate without any constraint made from the cables. The power connections for the gripper,
i.e. power supply for DC motor and RPi can be seen in Figure 5.22d with the use of a multi power
outlet from the power cable.

The gripper control unit with RPi, Arduino, DC motor driver w/power source can be seen mounted
on the industrial robot in Figure 5.22c. The 12V power source was mounted to the robot using
double sided tape. The RPi, Arduino and motor driver were mounted to the power source using
double sided tape and cable ties. From the control components, the different signal and power
cables to the gripper were jointed and stretched, with tape holding it in place at the gripper and at
the industrial robot. The placement of the tape on the robot can be seen with the yellow tape just
above the right "ABB"-logo in Figure 5.22a.

5.4.2 Gripped target

The grasped, picked and lifted target can be seen in Figures 5.23a-5.23b in both vertical and
horizontal pose. With the lifted target the industrial robot was manually navigated with multiple
poses of the target, and with rapid and sudden movements to verify a stable and firm grip. The
manual navigation included greater and more rapid movements of the target than what was expected
with the automatic navigation using MoveIt due to the smoothness from the motion planning. A
limited automatic speed of the industrial robot was a requirement for use in the lab, this reduced
the end-effector maximum speed with 75% to 250 mm/s [63].

55

(a) Side view of robot with complete gripper assembly mounted

(b) Cable tray at rear of robot

(c) Gripper control mounted

(d) Gripper control power source

Figure 5.22: Industrial robot with complete gripper assembly mounted

56

(a) Side view of vertically lifted target (b) Front view of horizontally lifted target

Figure 5.23: Lifted target

With the target gripped near dead center with the object detection having an accuracy of 4.8
mm, minimum torque would be statically applied due to the equilibrium as performed in the tests
seen in Figures 5.23a-5.23b. However, to verify the integrity and strength of the gripper design a
longitudinal offset from the centre of the target larger than the accuracy of the object detection
was applied. In Figure 5.24, the target was lifted with a longitudinal offset of 20 mm, and tested
with the gripper on top. With the gripper on top, the target objects mass was pulling it away
from the base, reducing the longitudinal rigidity. Less rigidity caused some slack in the gripping of
the target, but not significant in regards to creating issues with obstacles. In addition, the gripper
would not be in this position relative to the target at all times while navigating the robot.

Figure 5.24: Target lifted from top

57

Chapter 6

Autonomous pick-and-place

The previous chapters explained cylinder segmentation, mapping of the environment and the devel-
opment of a custom gripper. The last task of this thesis is to combine all these topics to be able to
perform a collision-free autonomous pick-and-place procedure. This chapter will first explain how
the robot model was configured in MoveIt, integrating the gripper to be used for collision checking.
Further on, the concepts of navigating the robot will be explained, followed by the system integra-
tion explaining the technical details on the integration in ROS. Lastly, the results on autonomous
pick-and-place with obstacle avoidance will be presented.

6.1 Building the robot model

Before the pick-and-place operation could begin, the robot had to be configured correctly in MoveIt.
That meant adding the custom gripper, defining the new base link, end-effector link and self collision
detection as well as setting up the inverse kinematic solver. A robot model of the ABB IRB4400
itself was already configured and made available by ABB. MoveIt has a GUI called MoveIt Setup
Assistant, which is used to configure robot models. This program was used to add the gripper to
the robot model.

In the lab, there were two robots connected to the same computer. This complicates the use of
ROS and MoveIt because the default setup does not account for the utilization of multiple seperate
robotic systems. This can cause nodes with identical names to collide when doing similar operations
on both robots simultaneously. This would likely become an issue as another group was working
on the other robot in the lab at the time of this project. By giving them different names and using
namespaces for the ROS nodes common for both robots, the issue was prevented. p26_lefty was
used as our robot name and as namespace for all necessary ROS nodes in this project. p26 is the
project number given from the university. This is a safe approach to avoid node names colliding.
For example, when controlling a robot through MoveIt the move_group topic needs to be launched.
If two users launches move_group without a namespace, the first will crash while the most recently
started node will run. With a namespace, the ROS node will now be p26_lefty/move_group
which is independent and does not collide with other similar nodes.

6.1.1 Unified Robot Description Format

Unified Robot Description Format (URDF) is a file format in ROS, which represent different pa-
rameters of a robot model, such as links and joints [41]. A chain of these kinematic joints including
corresponding parent and child links combines with the robots geometric and collision model and
meshes. The URDF also implies the different joint limits and facilities for internal collision detection
for the robots links and joints. Here the different use of the geometric and collision mesh applies,

58

where the collision mesh is preferably much less apprehensive in details, thereby smaller in size.
This reduces the required processing power when performing collision detection.

When combining different robots or adding tools to a robot model, xacro can be used in a simple
and clean manner to make an updated combined URDF-file. Xacro is a macro XML language
that performs simple math, constants and macros [64], which is beneficial when adding e.g. end-
effectors with offset origin including coordinates and Cartesian’s angles relative to the specified
parent link. With URDF, all joints and links are dummies and only specifies their relative position
and limitations, it is desired to combine these into groups and configurations semantically.

6.1.2 Semantic Robot Description Format

Semantic Robot Description Format (SRDF) covers semantic information about the robot which is
not covered in the URDF. The SRDF file tells MoveIt how to use the URDF file correctly. Therefore,
it holds information such as passive joints, group states, base and tip link and self collision detection.
Group states can be a state for a group of joints, for example a group state called all_zero was
used as an initial state in this project. Passive joints are a list of joints without any form of
actuation.

6.1.3 Base link and end-effector link

MoveIt needs to know the base link and the end-effector link on the robot. The base link was
in this case lefty_track_left which is the part of the track where the robot is placed when in
the initial position. The end-effector on the other hand, is the tool, or the gripper of the robot,
called lefty_tool . The two links can be seen in Figure 6.1 where lefty_track_left is red and
lefty_tool is white.

Figure 6.1: Base link (red) and end-effector (white)

6.1.4 Collision detection

Self collision detection is an important step to a collision-free motion planning. In the MoveIt Setup
Assistant, a collision matrix could be defined. This matrix is used to determine the links which are
able to collide, thus checking for collision between these. By removing collision detection between
links unable to collide, less computational resources are required. By default, the robot’s self collision
matrix is setup for the robot to avoid collision between any parts. A problem encountered with this
setup was that MoveIt could not plan a path where the robot moved on the track because collision

59

was detected between the track and the base of the robot. Therefore, collision detection was disabled
between the base of the robot called lefty_base_link and the track which was divided into 4
links: lefty_track_left , lefty_track_mid_1 , lefty_track_mid_2 and lefty_track_mid_3 .
These names came directly from the xacro models from ABB, with "lefty_" as a prefix. Several
other parts on the robot model was not able to collide and was therefore excluded from collision
detection. Appendix A.1 shows the full collision matrix from MoveIt Setup Assistant.

The geometries used for collision detection in MoveIt were defined by CAD-models consisting of
different STL-files. By utilizing distinct collision object geometries with reduced level of details
and comprehensiveness the computational cost of collision detection was further reduced. From
ABB, a collision geometry was given of the industrial robot as seen in Figure 6.3 with a slightly
larger volume than for the original model seen in Figure 6.1. The larger volume establishes a safety
margin when performing collision detection. For the gripper such a geometry with a greater volume
and less details was made. The embracing collision geometry around the more detailed version
can be seen in Figure 6.2 and placed on the robot in Figure 6.3. Notice how the gripper collision
geometry is not covering the top of the base. This was intentionally performed to acquire sufficient
control with the collision detection while grasping the cylinder. With the base covering the top,
the minimum allowable planning distance was too long from the gripper to the target without it
colliding, resulting in a imperfect grip. Once during testing, one of the stabilizing rods collided
with an obstacle. It was clear that the rod was not aligned correctly on the physical model, not
corresponding to the collision geometry.

Figure 6.2: Collision geometry of the gripper em-
bracing the more detailed CAD-model

Figure 6.3: Collision model of the robot

6.1.5 Inverse kinematics solver

After defining the collision matrix, the next step was to define what kinematic solver to use. A
widely used plugin-based solver for MoveIt is based on IKFast [48, p. 6]. Unlike many kinematic
solvers, IKFast analytically solves kinematics equations and generates code for later use. This results
in stable and fast solutions, and is therefore the choice for most robotic applications in MoveIt [65].

60

6.2 Navigation and locomotion of the robot

This section will explain the concepts of navigating the robot to pick-and-place the target with the
optimal pose.

6.2.1 Grasping

The closest point to the robot on the central periphery of the cylindrical target was assumed to
be the most efficient way to grasp. This point would be the tip of the green arrow on Figure 6.4.
All the points on this periphery could be reached by approaching the target with a tool orientation
perpendicular to the direction vector of the target which is illustrated as a blue arrow in Figure 6.4.

Figure 6.4: Up vector candidates

6.2.2 Orientation

MoveIt uses quaternions to represent the orientation of the tool. To achieve the desired quaternions
to approach the target perpendicularly, a direction vector is not sufficient. This is where the up
vector comes in. The red and green arrows in Figure 6.4 are up vectors, and in this case, the
optimal up vector would be the green vector which is pointing towards the tool. These up vectors
could be achieved by calculating the cross product between the direction vector and any vector not
parallel to the itself. Lets call such a vector the dummy vector. This dummy vector was set to be a
vertical unit vector. However, this could cause an issue if the direction vector was perfectly vertical,
i.e. being parallel to the dummy vector. In this case, the cross product would be equal to zero.
Therefore, if the direction vector was close to being vertical, the dummy vector would be set to be
horizontal pointing in positive x-direction, to avoid this issue. See the code below where v0 is the
dummy vector, D is the direction vector of the cylinder, D[2] is the z-component of D while v1
is a unit vector perpendicular to the direction vector generated from the cross product between D
and v0 .

v0 = [0,0,1]
if D[2] > 0.9: # if z component is larger than 0.9

v0 = [1,0,0]

u = np.cross(D, v0)
u = normalize(u)

61

A list of candidate vectors was then created by rotating u around D with a resolution of 1◦

between each, resulting in 360 possible up vectors. To perform such a transformation on the vector,
an adaptation of Rodrigues’ rotation formula [66] was applied. Rodrigues’ rotation formula is an
efficient algorithm for rotating a vector in space. In this case, the vector to be rotated is the
up vector, ~u, and the axis of rotation is the direction vector ~D. Firstly, the vector ~u has to be
decomposed into components parallel and perpendicular to ~D:

~u = ~u‖ + ~u⊥ (6.1)

The fact that they are perpendicular to each other makes the calculations less complex as the
parallel component disappears.

~urot = ~u⊥rot = ~u · cos(θ) + (~u× ~D) · sin(θ) (6.2)

where,

Description
urot Rotated up vector
u Initial up vector
θ Angle of rotation
D Direction vector of the cylinder, and axis of rotation in this case.

The candidates could now be generated with θ varying from 0-2π to generate up vectors in all
directions. They were represented as a class object of type GraspingPointCandidate which held
two variables:

• u - The rotated vector after Rodrigues’ algorithm

• d - Distance between the tool and the center of mass plus u

The member variable d was calculated as shown in equation 6.3

d = |Ptool − (Pcom + u) | (6.3)

The chosen candidate is the one with the shortest distance, d . This candidate’s up vector would
then be the one pointing closest to the robot’s tool. From here, this up vector will be referred to as
~U .

At this point, the direction vector, ~D and the up vector, ~U , of the cylinder was known, meaning a
fully defined rotation. In terms of the robot direction, the cylinder’s up vector, ~U , will represent
the direction vector of the robot’s tool, while the cylinder’s direction vector will represent the up
vector of the robot’s tool. For the following calculations, ~U and ~D will represent the cylinder’s up
vector and direction vector while the goal of the calculations is to find the desired robot orientation
represented in quaternions. Two ways of converting such vectors to quaternions are by going through
Euler angles or rotation matrices. By going through Euler angles, the desired yaw, ψ, and pitch, θ,

62

of the robot’s tool could be calculated by simple trigonometry equations as shown in equation 6.4
and 6.5 as functions of the cylinder’s up vector, ~U .

ψ = atan2(Uy, Ux) (6.4)

θ = asin(Uz) (6.5)

Finally, for the roll angle, a vector parallel to the ground and perpendicular to the direction vector
is created:

~W0 = [−Uy, Ux, 0] (6.6)

The cross product between the direction vector, ~D, and this horizontal vector, ~W0, will be equal to
a reference up vector, ~U0, (equation 6.7) representing no roll.

~U0 = ~W0 × ~U (6.7)

This means that if ~U is equal to ~U0, the roll angle is equal to zero. However, if they are not equal,
the angle between them represents the roll angle, φ, which is then calculated as shown in equation
6.8

φ = atan2

(
~W0 · ~D
| ~W0|

,
~U0 · ~D
|~U0|

)
(6.8)

Now that the desired orientation of the robot’s tool is defined in terms of Euler angles, the conversion
to quaternions can be done. The approach is shown in the pseudocode below [67]:

cy = cos(yaw * 0.5)
sy = sin(yaw * 0.5)
cp = cos(pitch * 0.5)
sp = sin(pitch * 0.5)
cr = cos(roll * 0.5)
sr = sin(roll * 0.5)

qw = cr * cp * cy + sr * sp * sy
qx = sr * cp * cy - cr * sp * sy
qy = cr * sp * cy + sr * cp * sy
qz = cr * cp * sy - sr * sp * cy

The results from the calculations above was tested through the simulated environment in RViz, and
in that way, it could be validated virtually before testing it in the real world, leading to safe and
controlled testing.

63

6.2.3 Motion planning

MoveIt supports several different types of planners. The most commonly used planner is called
Open Motion Planning Library (OMPL) [68, 69, 70] which is an open-source library. The creators
of OMPL define motion planning as the following:

Motion planning is the problem of finding a continuous path that connects a given start
state of a robotic system to a given goal region for that system, such that the path satisfies
a set of constraints (e.g., collision avoidance, bounded forces, bounded acceleration). [68]

OMPL is directly integrated in MoveIt and it is the most supported motion planner. It is based on
randomized, abstract motion planners, meaning that the planner has no conception of the robot.
However, MoveIt configures OMPL such that it can work with complex problems in robotics [48,
p. 7].

6.2.4 Moving the robot with MoveIt

MoveIt has many tools for moving a robot through a script with great support for both Python
and C++. According to [48, p. 5], the Python API is recommended for building applications
and scripting demos by using the moveit_commander package. Python was therefore chosen as
the preferred language when developing this pick-and-place procedure. The most important class
objects for moving the robot are listed below:

• RobotCommander - An outer level interface to the robot.

• PlanningSceneInterface - An interface to the representation of the world surrounding the
robot.

• MoveGroupCommander - An inteface for a group of joints, i.e. all robot joints. Used to plan
and execute motions on the robot.

To move the robot, a start pose was set based on the current pose of the robot. Then a goal state
was set to the desired pose. By calling group.go() , where group was a MoveGroupCommander
object, MoveIt would plan the motion with OMPL, and the robot would start to move. When the
motion plan was done executing, a stop function was called to make sure there were no residual
movement. This is summarized by the code snippet below:

group.set_start_state(state)
group.set_pose_target(pose_goal)
group.go(wait=True)
group.stop()

64

6.3 System integration

All the blocks under the WBS diagram in Figure 1.2 has been explained earlier in the report,
and to perform an autonomous pick-and-place procedure, all the work had to be integrated as one
complete system. Mechanically, the gripper was mounted on the robot as shown in chapter 5. It was
then connected to the rack computer. ROS was used to combine the perception systems with the
industrial robot and the gripper. First, the functional description of the program will be presented,
followed by a technical explanation of the ROS nodes and topics.

6.3.1 Pick-and-place functional description

A state machine was implemented to have control over the program flow. Every procedure starts
with the extension of the gripper to make sure that the gripper is in the correct position. Further
on comes object detection and obstacle mapping. The industrial robot (IR) is then moved to the
target’s pose and the gripper is closed. For safety reasons, the obstacle map is refreshed so that
the system is updated in case of a changed environment due to human intervention or obstacles
tipping over if a collision avoidance failure was to happen. The industrial robot then moves to the
goal pose, and the target is then released by extending the gripper. A pick-and-place procedure is
then finished, and the program can either stop or be repeated several times. The transitions are
explained in Figure 6.5.

Detect
target

Map
obstacles

Start
Extend
gripper

Move IR
to object

pose

Close
gripper

Move IR
to goal
pose

Stop

1 2 3 4 5

6

8

9 7

Figure 6.5: State machine

Transitions

1. All ROS nodes are done launching

2. Gripper is extended

3. Target is detected

4. Obstacles are mapped

5. IR is moved to objects pose

6. Gripper is closed

7. Obstacles are mapped

8. IR is moved to goal pose

9. Program is physically stopped. Transition 2 can also be initiated manually

65

6.3.2 ROS nodes and topics

7 ROS packages was created to perform the task at hand in addition to the packages from Aalerud
et al. [5, 6, 7] and ABB. The blue boxes in Figure 6.6 shows ROS nodes running during a pick-
and-place procedure. The texts on the arrows between these boxes are the ROS topic they use
to talk to each other. Black arrows are unidirectional while orange arrows represents bidirectional
communication. Note that this is not the complete schematic of nodes and topics. There are lots
of nodes running in the background talking on many different topics, but Figure 6.6 is simplified
to include the core components important to understand the software behind the pick-and-place
procedure. Further on, the nodes and topics from this figure are explained in Table 6.1 and Table
6.2.

/*/pick_and_place

/*/move_group_commander_wrappers

/gripper

/*/move_group

/*/cylinder_segmentation

/obstacle_mapping

/jetson1_decomp_kinect

/jetson6_decomp_kinect

/*/robot_state_publisher

→ /*/collision_object

/*/cylinder_com
/*/cylinder_dirvec

↓/*/find_cylinder ↑

→ /*/gripper/actuation

← /*/gripper/position

* p26_lefty

→ /*/place/goal

← /*/move_group/feedback

→ /master/merged_point_cloud

→ /tf_static← /tf_static

/master/jetson1/kinect_decomp
.

.

.

/master/jetson6/kinect_decomp

→ /*/octomap_created

← /*/create_octomap→

/master/jetson1/kinect_decomp
.

.

.

/master/jetson6/kinect_decomp →

Figure 6.6: Simplified schematic of the ROS topics

Table 6.1: Explanation of ROS nodes. *p26_lefty

ROS node Description

/jetson[nr]_decomp_kinect
Jetson boards publishing point clouds from the
Kinect sensors

/*/cylinder_segmentation
Cylinder segmentation using point clouds and
RANSAC.

/*/obstacle_mapping
Merges point clouds, filters them and creates an
octomap of the obstacles

/*/pick_and_place
Controls the pick-and-place procedure by sending
poses to /*/move_group_commander_wrappers
and actuation commands to the gripper

/*/move_group_commander_wrappers
A wrapper for the functionalities provided by
MoveIt

/gripper Gripper actuation and sensing

/*/move_group Explained in chapter 3.2.3

/*/robot_state_publisher
Takes the robot joint positions obtained from
internal sensors in the robot as input, and outputs
the pose of all the robot links

66

Table 6.2: Explanation of ROS topics. *p26_lefty

ROS topic Description Type

/master/jetson[nr]/
kinect_decomp

Point cloud from sensor
node [nr]. [nr] is a number
from 1-6

sensor_msgs/PointCloud2

/*/collision_object Used for cylinder object moveit_msgs/CollisionObject

/*/find_cylinder
Initiates the cylinder
segmentation

std_msgs/Bool

/*/cylinder_com Cylinder center of mass geometry_msgs/Point

/*/cylinder_dirvec Cylinder direction vector geometry_msgs/Point

/*/gripper/actuation Used for gripper setpoints std_msgs/Uint8

/*/gripper/position
Info on the gripper
position

std_msgs/Uint8

/*/octomap_created
High when octomap has
been created

std_msgs/Bool

/*/create_octomap
Initiates the obstacle
mapping

std_msgs/Bool

/*/place/goal Goal position moveit_msgs/PlaceActionGoal

/*/move_group/feedback
Information on what the
action server is doing

moveit_msgs/
MoveGroupActionFeedback

/master/merged_point_cloud
Merged point cloud for
the octomap

sensor_msgs/PointCloud2

/tf_static Poses for all the robot links tf2_msgs/TFMessage

6.4 Results

This section will present the results from gripping followed by the complete pick-and-place procedure
results.

6.4.1 Gripper

When grasping the target, it was observed in approximately 1 out of 5 times that the gripper could
not establish an ideal rigidity of the target making it wobbly within the gripper base. The issue was
prominent while the detection was at its upmost inaccurate, resulting in space between the gripper
base and target at grasping. This distance minimized the utilization of the rigidity properties of
the base. However, the target was grasped with sufficient rigidity to avoid collisions and to be able
to place it at a goal position.

From the beginning it was determined not to use hard surfaces as stand for the cylinder, making
a suspension weaker than the cylinder, gripper and robot, deliberately compressing the stand if
something were to fail. The inaccuracy of the object detection could sometimes move the gripper
base into the cylinder. With some suspension in the stand, this was never an issue with the cylinder
placed horizontally. The gripper base encountered some stress in this situation, compressed onto
the cylinder, but endured it without suffering during testing. The compressed stand from one test
can be seen in Figure 6.7.

67

Figure 6.7: Object stand compressed from applied robot force

6.4.2 Pick-and-place

Figure 6.8: Pick-and-place test conditions

Merging all the work presented until now resulted in a consistent and versatile pick-and-place
procedure. To test the consistency of the system, 30 tests was performed with the setup seen in
Figure 6.8. The test was considered successful if the target was placed on the blue goal area (31 cm
x 48 cm) without falling over. The tests was divided into 3 different sections, vertical, horizontal
and at an angle, see Figure 6.9, where all three was tested 10 times each. The target was placed
on cardboard boxes to avoid breaking the gripper or the target object. This could be a problem
for the horizontal case especially, where the target or the gripper could be crushed if the detection
algorithm detected the target slightly too low and the target was on the hard floor. In addition,
the detection zone of the target was set to 5 cm above the ground as explained in chapter 4.2.2.

Figure 6.9: Vertical, horizontal and angled test conditions

68

The 30 tests displayed no collisions and a 100% success rate for the repositioning of the target. An
example from the vertical case is shown in Figure 6.10. To increase the complexity with regards
to motion planning and obstacle mapping, a bridge was made for the robot and target to move
underneath, see Figure 6.11. Both tests were performed multiple times without collisions and with
successful gripping of the target. However, sometimes the precision of the object detection and
localization caused a slightly skewed gripping causing the target to be a bit wobbly. The errors
propagated through the pick-and-place procedure resulting in a lower precision with regards to
target placement. The skewed gripping did not cause any collisions with obstacles during testing.

Figure 6.10: 4 images showing the sequence of a pick-and-place procedure with a vertical target
starting pose

(a) Photo of the test (b) RViz visualization of the test

Figure 6.11: Pick-and-place test with a bridge over the robot

69

Chapter 7

Discussions

The autonomous pick-and-place procedure carried out in this project worked well as a prototype,
and included both advantages and disadvantages compared to other methods. As a prototype, it had
some improvement potential regarding different parts of the autonomous pick-and-place procedure
within perception, gripping and motion planning. This chapter will discuss these and propose
methods to solve these issues found for further work.

7.1 Object detection and localization

The results from the object detection and localization shows a larger error in one specific direction
depending on the cylindrical target’s pose. Chapter 4.2.4 shows that when the target was in a
vertical position, the error in z-direction was significantly larger than the error in x- and y-direction.
However, when the target was in a horizontal position, the y-error was largest. What these two had
in common was that the largest error was found in the longitudinal direction of the target. On the
other hand, the error in the transverse plane was low. Fortunately, the transverse plane proved to
be the most critical when gripping the target. Nevertheless, the error in the longitudinal direction
was massively decreased by the method of averaging based on multiple frames. Thus, the error in
both the transverse and longitudinal direction was considered well within what was required to be
able to grasp the target with the proposed gripper.

The accuracy in the transverse plane shows the power of the RANSAC method. The RANSAC
method did not consider the length of the cylinder and the larger error in longitudinal direction
may question the sphere filter explained in chapter 4.2.3. If one were to improve the error in
the longitudinal direction, the error might be low enough for 1 frame to be sufficient. However,
the work-around of taking the average of multiple frames made it possible to perform the task at
hand comfortably. The disadvantage with this method was of course computational cost, but since
the segmentation only happened once before the pick-and-place procedure started, this was not
considered a problem of significance for this application. It was considered more effectively to have
one accurate segmentation at the start, and let MoveIt keep track of the position in real-time when
manipulating the target, rather than having a real-time cylinder segmentation which would have
been less accurate and computationally more expensive.

To reduce the computational cost even further, a RANSAC based plane segmentation was considered
to reduce the number of measurement points in the point cloud. However, the planar segmentation
was not necessary as the floor and the robot tracks are excluded by limiting the detection zone.
However, it could be desirable to remove planar surfaces from obstacles. When testing with the
target placed horizontally, it was observed that the planar segmentation removed parts of the target
in the same plane as planar surfaces (e.g. from a box). This caused the algorithm to fail finding
the cylindrical object. Therefore, the plane segmentation was discarded, but it is worth keeping in

70

mind if testing in different environments where planar surfaces creates lots of data points.

Figure 7.1: The large and the
small cylinder shown from above
from a photo (left) and a point
cloud (right)

With a reliable segmentation achieved with the 26 cm cylinder,
the algorithm was tested on a smaller casting pipe with a diameter
of 16 cm to evaluate the algorithm’s versatility. The voxel grid
resolution made it hard to see the curvature of the small cylinder
as shown in Figure 7.1, showing the difference in curvature of both
16 cm and 26 cm cylinder. The lack of curvature on the smaller
cylinder made it difficult to distinguish it from other flat objects.

A higher resolution of the perception system would make it pos-
sible to detect smaller objects with a reliable result. There are
multiple ways to establish a higher resolution. Three methods are
proposed below:

1. Replacing the existing sensor nodes with higher resolution
3D sensors

2. Mounting an additional 3D sensor on the robot to get a
closer look at the object to be detected (eye-in-hand)

3. Placing the nodes closer to the work area improving the
resolution

These solutions would have their own disadvantages. 1. and 2. would have increased the overall
cost. 2. would also increase the complexity of the system and it could introduce a potential precision
issue when gathering data during robot motion as stated in [14]. Lastly, 3. would decrease the area
covered by the 3D sensors.

In addition, by utilizing 2. and mounting a 3D sensor on the industrial robot, the accuracy of the
object detection could be further improved. The eye-to-hand global perception system could first
make a coarse detection, giving an indication of the position of the object, or points of interests if
the objects are too small to be detected. Then moving the robot within the area of interest, making
a closer sweep and scan giving an updated point cloud preferably with lesser noise and higher
resolution of the object to be grasped. The updated point cloud would establish better conditions
for the detection algorithm and would also enable detection of smaller objects. Otherwise, the
eye-to-hand system would only cover the obstacle mapping, specifically utilizing the eye-in-hand for
object detection.

A 3D sensor placed on the robot would be exposed to more of the potential filth and dust often
occurring in an industrial environment, likely reducing the quality of the sensed data over time.
The eye-to-hand 3D sensors would not be similarly exposed, placed above and away from the most
harsh parts of the environment. Eye-in-hand would also induce a more lumpy geometry on the
robot, reducing its agility and access in tight spaces.

7.2 Obstacle mapping

With the placement of the 3D sensors, there was only coverage from top, making it difficult to
evaluate the obstacle’s geometrical properties from underneath. This never led to any collisions
during testing. A bridge for the robot to move under is shown in Figure 6.11. Since the roof used in
the test was thin, the points mapped covered the whole roof avoiding any motion planning through

71

it. If the roof was a thick box, the box would only be covered at top, thus be considered hollow,
enabling motion planning inside it.

As the 3D sensors utilizes time-of-flight principle with IR light they are dependent on the parts
being somewhat reflective. On dark objects intensity issues were prominent, some not appearing at
all in the occupancy map. Figure 7.2 shows the the robot colliding with a black chair not detected
and present in the occupancy map. It also shows how the combination of low resolution, dark color
and the intensity filter neglects the thin swivel and back on the chair in the occupancy map. The
size and color of obstacles should therefore be a consideration for them to be detected.

(a) Photo of the robot colliding with the chair (b) Parts of the chair not present in the occupancy
map

Figure 7.2: Issue with dark objects

Figure 7.3: Gripper control unit

The gripper control unit seen in Figure 7.3
mounted at the rear of the industrial robot
was not added to the robot collision geometry.
Sometimes the control unit was considered an
obstacle in the occupancy map making motion
planning more challenging. The robot would
therefore move around the spurious points from
the control unit it perceived as obstacles, caus-
ing interesting detours. The issue was encoun-
tered in approximately 1 out of 20 procedures,
and the robot managed to plan around the point
every time the issue was encountered. The prob-
lem could have been solved by creating an STL
file of the control unit, then adding it to the
corresponding robot link the same way the gripper was added when building the robot model in
chapter 6.1.

72

7.3 Gripper

Figure 7.4: Motor bracket and former D-socket

The complete gripper assembly gave sufficient
gripping force and stabilization to be able to
lift a cylinder with a radius of 26 cm from both
horizontal and vertical picking position. How-
ever, while finding the maximum applicable mo-
tor torque, i.e. current threshold, and verifying
the assembly while grasping, the flat plastic part
of the double-D socket in the base broke, the O-
socket and motor mount can be seen in Figure
7.4. The gripping force could have been higher
if the motor did not spin within the socket, in-
creasing stability even further. The double-D
socket were presumed to be a solid piece hold-
ing a fair amount of torque, thus implying an
even more rugged construction on the rest of the
assembly. Now, with only the motor bracket re-
maining, the maximum applicable force is some-
what lower, but still sufficient to obtain friction
and stability to lift and move the target in a
rigid and safe manner.

With a further reduction of grip, the lack of rigidity could cause the gripper to loose the target
and dropping it. In addition, it could have imposed collisions with obstacles. However, the lack
of rigidity never inflicted with obstacles or the robot and the target was never dropped with more
than 50 pick-and-place procedures completed. Sealant strips were utilized to increase the friction
between the gripper and target. However, with a slightly skewed position while grasping, especially
present when a distance between the base and the target occured, the retraction of the arms did
not manage to push the cylinder towards the base, inducing less rigidity between the gripper and
target. Spring loaded stabilization parts could be implemented, always pushing towards the grasped
cylinder. This induce more friction and rigidity with lesser dependency of the distance to the target
when grasping. Another alternative could be to redesign the arms, applying more pressure on the
top of the cylinder at the start of retraction, pushing it more towards the base. Alternatively using
wider or twin-acting arms.

Ordinary rigid-body gripper concepts with hard materials were chosen to be proceeded with. Neither
is the ABB IRB4400 industrial robot considered soft, e.g. being able to knock a person down without
noticing and crushing body parts between different links and joints. However, with the development
of this project the overall goal is to achieve a more alert and less hazardous robotic cell, especially
for surroundings, imposing a safer robotic system, even without soft robotics hardware.

7.4 Motion Planning

Due to the static obstacles used in this project, dynamic motion planning was not required to prove
the use of multiple 3D sensors to achieve an autonomous pick-and-place procedure with obstacle
avoidance. However, dynamic motion planning could be used as a task to further exploit and develop
the autonomous possibilities for the system. Together with the SOR-filter, an octomap refresh rate

73

of 0.5-1 Hz was achieved. It could be worth looking into a Fast Cluster Statistical Outlier Removal
(FCSOR) filter [71] to increase the frequency. FCSOR improves the time complexity compared to
the more traditional SOR-filter, coming closer to a real-time obstacle mapping. The low refresh rate
would not be able to catch any rapid dynamic changes in the environment to utilize dynamic motion
planning without slowing down the robotic movements significantly. Also, MoveIt and OMPL
are not yet compatible with continuous collision checking [72]. By utilizing this system, dynamic
obstacle avoidance could be implemented by making new motion planning with new occupancy
maps for every given seconds, or any traveled distance, or by making an algorithm that discovers if
updated obstacles interacts with the set trajectory. However, with the motion planning taking up
to multiple seconds, the system would be slower than whats reasonable for an industrial application.

74

Chapter 8

Conclusions

For safer and efficient use of robotics, it is desired to make processes autonomous with surrounding
awareness. This thesis proposes a complete pipeline autonomous pick-and-place procedure including
object detection and localization, obstacle avoidance, gripper development and robot control.

The experimental setup used in this project, including placement, configuration and calibration
of 3D sensors with embedded intensity filtering was proposed by [5], [6] and [7]. We propose the
integration of their work together with proposed perception algorithms, robot control and gripper
design to one complete autonomous pick-and-place procedure. The proposed perception algorithms
involved merging the point clouds from 6 RGB-D cameras of type Kinect V2 for object detection
and localization and model-free obstacle mapping. Further on, a low-cost automatic gripper was
developed, including actuation, sensorization, production and implementation with the experimental
setup.

The empirical results together with the statistical analysis show that the proposed methodology is
able to map the environment of volume of 10 m x 10 m x 5 m with lesser noise, determine the target
position with accuracy of 4.8 mm and precision of 3.6 mm, and orientation with accuracy of 0.62◦

and precision of 0.32◦ from 10000 measurements. The autonomous pick-and-place procedure was
tested 30 times successively with multiple obstacles and with the target object placed vertically,
horizontally and angled. The tests displayed no collisions and 100% success rate on both gripping
and placement of the target at a given goal position.

The proposed methods used only open-source software and it is highly applicable for industrial
applications as a cheap way to make industrial robots safer and more efficient through advanced
perception and control algorithms. This project shows how many components in multiple engineer-
ing disciplines could be developed and implemented in a relatively short period of time. However,
object detection and localization, obstacle mapping, gripper development and motion planning are
all components with room for improvements.

To further exploit the setup, achieving a higher degree of safety and modularity for pick-and-place
applications, some key properties could be further developed. Within most industrial environments
the scene is continuously changing, imposing multiple challenges regarding collision-free motion. Dy-
namic obstacle avoidance would be a valuable addition, significantly reducing the hazard of working
close to an industrial robot. By also implementing a human detection algorithm as proposed in [20],
an additional safety precaution could be made, e.g. maintaining a greater distance around people.
With the resolution of the point cloud mapping the environment, minor objects and obstacles could
not be detected. By upgrading the 3D sensors, placing them closer to the environment or intro-
ducing an eye-in-hand camera, a higher resolution could be obtained also increasing the accuracy
of the perception algorithms.

75

Bibliography

[1] K. A. Iden et al. “Vær, is og andre fysiske utfordringer ved Barentshavet sørøst”. In: (2012).
[2] Valemon. url: https://www.equinor.com/no/what-we-do/norwegian-continental-

shelf-platforms/valemon.html. (accessed: 15.02.2021).
[3] Joakim (22) skal styre denne plattformen fra land. url: https://www.vg.no/nyheter/

innenriks/i/zRKn9/joakim-22-skal-styre-denne-plattformen-fra-land. (accessed:
15.02.2021).

[4] Senad Burak and Fikret Veljovic. “Ergonomic Analysis and Redesign of Workspace in Order
to Minimize Workers’ Workload and Optimize Their Nutrition”. eng. In: TEM Journal 8.2
(2019), pp. 572–576. issn: 2217-8309.

[5] Atle Aalerud et al. “Industrial Environment Mapping Using Distributed Static 3D Sensor
Nodes”. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications (MESA). 2018, pp. 1–6. doi: 10.1109/MESA.2018.8449203.

[6] Atle Aalerud, Joacim Dybedal, and Geir Hovland. “Automatic Calibration of an Industrial
RGB-D Camera Network Using Retroreflective Fiducial Markers”. eng. In: Sensors (Basel,
Switzerland) 19.7 (2019), p. 1561. issn: 1424-8220.

[7] Joacim Dybedal, Atle Aalerud, and Geir Hovland. “Embedded Processing and Compression
of 3D Sensor Data for Large Scale Industrial Environments”. eng. In: (2019). issn: 1424-8220.
url: https://hdl.handle.net/11250/2648520.

[8] D. L. Schacter. Psychology. New York, NY : Worth Publishers, 2011.
[9] M.S Shehata et al. “Video-Based Automatic Incident Detection for Smart Roads: The Outdoor

Environmental Challenges Regarding False Alarms”. eng. In: IEEE transactions on intelligent
transportation systems 9.2 (2008), pp. 349–360. issn: 1524-9050.

[10] Mozhdeh Shahbazi et al. “Range camera self-calibration based on integrated bundle adjust-
ment via joint setup with a 2d digital camera”. eng. In: Sensors (Basel, Switzerland) 11.9
(2011), pp. 8721–8740. issn: 1424-8220.

[11] K. B. Kaldestad, G. Hovland, and D. A. Anisi. “Implementation of a Real-Time Collision
Avoidance Method on a Standard Industrial Robot Controller”. In: IEEE International Con-
ference on Intelligent Robots and Systems, Chicago, Illinois (2014).

[12] S Khan, L Aragão, and J Iriarte. “A UAV-lidar system to map Amazonian rainforest and its
ancient landscape transformations”. eng. In: International journal of remote sensing 38.8-10
(2017), pp. 2313–2330. issn: 0143-1161.

[13] Atle Aalerud, Joacim Dybedal, and Dipendra Subedi. “Reshaping Field of View and Resolu-
tion with Segmented Reflectors: Bridging the Gap between Rotating and Solid-State LiDARs”.
eng. In: Sensors (Basel, Switzerland) 20.12 (2020), p. 3388. issn: 1424-8220.

[14] Ge Zhang et al. “Multi-granularity environment perception based on octree occupancy grid”.
eng. In: Multimedia tools and applications 79.35-36 (2020), pp. 26765–26785. issn: 1380-7501.

[15] Paolo Bellandi, Franco Docchio, and Giovanna Sansoni. “Roboscan: a combined 2D and 3D
vision system for improved speed and flexibility in pick-and-place operation”. eng. In: In-
ternational journal of advanced manufacturing technology 69.5 (2013), pp. 1873–1886. issn:
0268-3768.

76

https://www.equinor.com/no/what-we-do/norwegian-continental-shelf-platforms/valemon.html
https://www.equinor.com/no/what-we-do/norwegian-continental-shelf-platforms/valemon.html
https://www.vg.no/nyheter/innenriks/i/zRKn9/joakim-22-skal-styre-denne-plattformen-fra-land
https://www.vg.no/nyheter/innenriks/i/zRKn9/joakim-22-skal-styre-denne-plattformen-fra-land
https://doi.org/10.1109/MESA.2018.8449203
https://hdl.handle.net/11250/2648520

[16] Tobias Kotthauser and Georg F. Mauer. “Vision-based autonomous robot control for pick and
place operations”. In: 2009 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics. 2009, pp. 1851–1855. doi: 10.1109/AIM.2009.5229792.

[17] V Lippiello, B Siciliano, and L Villani. “Position-Based Visual Servoing in Industrial Multi-
robot Cells Using a Hybrid Camera Configuration”. eng. In: IEEE transactions on robotics
23.1 (2007), pp. 73–86. issn: 1552-3098.

[18] Aksel Sveier et al. “Object Detection in Point Clouds Using Conformal Geometric Algebra”.
eng. In: Advances in applied Clifford algebras 27.3 (2017), pp. 1961–1976. issn: 0188-7009.

[19] Xinyu Wang et al. “Robot manipulator self-identification for surrounding obstacle detection”.
eng. In: Multimedia tools and applications 76.5 (2017), pp. 6495–6520. issn: 1380-7501.

[20] Atle Aalerud and Geir Hovland. “Dynamic Augmented Kalman Filtering for Human Motion
Tracking under Occlusion Using Multiple 3D Sensors”. eng. In: 2020 15th IEEE Conference on
Industrial Electronics and Applications (ICIEA). IEEE, 2020, pp. 533–540. isbn: 1728151694.

[21] J. D. Foley et al. Computer Graphics: Principles and Practice. Addison–Wesley, 1990.
[22] Y. Xie, J. Tian, and X. X. Zhu. “Linking Points With Labels in 3D: A Review of Point Cloud

Semantic Segmentation”. In: IEEE Geoscience and Remote Sensing Magazine 8.4 (2020),
pp. 38–59. doi: 10.1109/MGRS.2019.2937630.

[23] K. B. Kaldestad, G. Hovland, and D. A. Anisi. “3D Sensor-Based Obstacle Detection Com-
paring Octrees and Point clouds Using CUDA”. In: Modeling, identification and control 33.4
(2012), pp. 123–130. doi: http://dx.doi.org/10.4173/mic.2012.4.1.

[24] D. J. R. Meagher. “Octree encoding : a new technique for the representation, manipulation
and display of arbitrary 3-D objects by computer.” In: (1980).

[25] Octree. url: https://en.wikipedia.org/wiki/Octree. (accessed: 31.03.2021).
[26] F. Pirotti et al. “Implementation and assessment of two density-based outlier detection meth-

ods over large spatial point clouds”. In: Open Geospatial Data, Software and Standards (2018).
doi: 10.1186/s40965-018-0056-5.

[27] Removing outliers using a StatisticalOutlierRemoval filter. url: https://pcl.readthedocs.
io/en/latest/statistical_outlier.html. (accessed: 09.04.2021).

[28] H. Moravec and A. Elfes. “High resolution maps from wide angle sonar”. In: Proceedings. 1985
IEEE International Conference on Robotics and Automation. Vol. 2. 1985, pp. 116–121. doi:
10.1109/ROBOT.1985.1087316.

[29] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. “A review of mobile robots:
Concepts, methods, theoretical framework, and applications”. eng. In: International Journal
of Advanced Robotic Systems 16.2 (2019), p. 172988141983959. issn: 1729-8814.

[30] Armin Hornung et al. “OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees”. In: Autonomous Robots (2013). Software available at http://octomap.github.com.
doi: 10.1007/s10514-012-9321-0. url: http://octomap.github.com.

[31] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography”. In: Commun.
ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782. doi: 10.1145/358669.358692. url:
https://doi.org/10.1145/358669.358692.

[32] F. Tarsha-Kurdi, T. Landes, and P. Grussenmeyer. “Hough-transform and extended ransac
algorithms for automatic detection of 3d building roof planes from lidar data”. In: ISPRS
Workshop on Laser Scanning 2007 and SilviLaser 36 (2007), pp. 407–412.

[33] R. Schnabel, R. Wahl, and R. Klein. “Efficient ransac for point-cloud shape detection”. In:
Computer graphics forum 26 (2007), pp. 214–226.

77

https://doi.org/10.1109/AIM.2009.5229792
https://doi.org/10.1109/MGRS.2019.2937630
https://doi.org/http://dx.doi.org/10.4173/mic.2012.4.1
https://en.wikipedia.org/wiki/Octree
https://doi.org/10.1186/s40965-018-0056-5
https://pcl.readthedocs.io/en/latest/statistical_outlier.html
https://pcl.readthedocs.io/en/latest/statistical_outlier.html
https://doi.org/10.1109/ROBOT.1985.1087316
http://octomap.github.com
https://doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692

[34] Daniel Wahrmann et al. “An Autonomous and Flexible Robotic Framework for Logistics
Applications”. eng. In: Journal of intelligent robotic systems 93.3 (2019), pp. 419–431. issn:
0921-0296.

[35] Wenhai Liu, Jie Hu, and Weiming Wang. “A Novel Camera Fusion Method Based on Switching
Scheme and Occlusion-Aware Object Detection for Real-Time Robotic Grasping”. eng. In:
Journal of intelligent robotic systems 100.3-4 (2020), p. 791. issn: 0921-0296.

[36] Salvatore D’Avella, Paolo Tripicchio, and Carlo Alberto Avizzano. “A study on picking objects
in cluttered environments: Exploiting depth features for a custom low-cost universal jamming
gripper”. eng. In: Robotics and computer-integrated manufacturing 63 (2020), p. 101888. issn:
0736-5845.

[37] George M Whitesides. “Soft Robotics”. eng. In: Angewandte Chemie (International ed.) 57.16
(2018), pp. 4258–4273. issn: 1433-7851.

[38] R. B. Rusu and S. Cousins. “3D is here: Point Cloud Library (PCL)”. In: 2011 IEEE Inter-
national Conference on Robotics and Automation. 2011, pp. 1–4. doi: 10.1109/ICRA.2011.
5980567.

[39] Steve Cousins. “Welcome to ROS Topics. (English)”. In: IEEE Robotics Automation Magazine
(2010).

[40] ROS Tutorials. url: http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%
28c%2B%2B%29. (accessed: 07.01.2021).

[41] S. Chitta, I. Sucan, and S. Cousins. “MoveIt! [ROS Topics]”. In: IEEE Robotics Automation
Magazine 19.1 (2012), pp. 18–19. doi: 10.1109/MRA.2011.2181749.

[42] MoveIt Concepts. url: https://moveit.ros.org/documentation/concepts/. (accessed:
18.02.2021).

[43] S. Choi, T. Kim, and W. Yu. “Performance evaluation of ransac family”. In: Proceedings of
the British Machine Vision Conference (2009).

[44] Hal Voepel et al. “Development of a vector-based 3D grain entrainment model with application
to X-ray computed tomography scanned riverbed sediment”. eng. In: 44.15 (2019), pp. 3057–
3077. issn: 0197-9337.

[45] S. O. Nyberg. Statistikk - en bayesiansk tilnærming. Universitetsforlaget 2016, 2017.
[46] D. G. Kleinbaum and M. Klein. Survival analysis: A Self-learning text. Springer, 2012.
[47] GitHub moveit_tutorials. url: https://github.com/ros-planning/moveit_tutorials/

blob/master/doc/perception_pipeline/src/cylinder_segment.cpp. (accessed: 18.02.2021).
[48] Sachin Chitta. “MoveIt!: An Introduction”. eng. In: Robot Operating System (ROS). Studies in

Computational Intelligence. Cham: Springer International Publishing, 2016, pp. 3–27. isbn:
3319260529.

[49] Paul Glick et al. “A Soft Robotic Gripper With Gecko-Inspired Adhesive”. In: IEEE Robotics
and Automation Letters PP (Jan. 2018), pp. 1–1. doi: 10.1109/LRA.2018.2792688.

[50] Jun Shintake et al. “Soft Robotic Grippers”. eng. In: Advanced materials (Weinheim) 30.29
(2018), e1707035–n/a. issn: 0935-9648.

[51] Friction and Friction Coefficients. url: https://www.engineeringtoolbox.com/friction-
coefficients-d_778.html. (accessed: 08.04.2021).

[52] Stewart Watkiss. Learn Electronics with Raspberry Pi : Physical Computing with Circuits,
Sensors, Outputs, and Projects. eng. Berkeley, CA, 2016.

[53] Ubuntu install of ROS Kinetic. url: http://wiki.ros.org/kinetic/Installation/Ubuntu.
(accessed: 03.03.2021).

[54] Raspberry Pi Images. url: https://downloads.ubiquityrobotics.com/pi.html. (accessed:
04.03.2021).

78

https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/ICRA.2011.5980567
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29
https://doi.org/10.1109/MRA.2011.2181749
https://moveit.ros.org/documentation/concepts/
https://github.com/ros-planning/moveit_tutorials/blob/master/doc/perception_pipeline/src/cylinder_segment.cpp
https://github.com/ros-planning/moveit_tutorials/blob/master/doc/perception_pipeline/src/cylinder_segment.cpp
https://doi.org/10.1109/LRA.2018.2792688
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
http://wiki.ros.org/kinetic/Installation/Ubuntu
https://downloads.ubiquityrobotics.com/pi.html

[55] Using Our Raspberry Pi Image Without A Magni. url: https://learn.ubiquityrobotics.
com/image_no_magni. (accessed: 04.03.2021).

[56] ROS Network Setup. url: http://wiki.ros.org/ROS/NetworkSetup. (accessed: 05.03.2021).
[57] fake-hwclock. url: https://packages.debian.org/unstable/fake-hwclock. (accessed:

12.03.2021).
[58] Arduino - Firmata. url: https://www.arduino.cc/en/reference/firmata. (accessed:

12.04.2021).
[59] pyFirmata. url: https://pypi.org/project/pyFirmata/. (accessed: 16.03.2021).
[60] pigpio library. url: http://abyz.me.uk/rpi/pigpio/. (accessed: 12.04.2021).
[61] RPi.GPIO Python Module. url: https://sourceforge.net/p/raspberry-gpio-python/

wiki/Home/. (accessed: 12.04.2021).
[62] Automotive fully integrated H-bridge motor driver VNH2SP30. url: https://www.pololu.

com/file/0J52/vnh2sp30.pdf. (accessed: 20.03.2021).
[63] Product specification IRB4400. LTC3600. Rev. D. Linear Technology. 2011. url: https :

//www.analog.com/media/en/technical-documentation/data-sheets/3600fd.pd.
[64] Using Xacro to Clean Up a URDF File. url: http://wiki.ros.org/urdf/Tutorials/

Using%20Xacro%20to%20Clean%20Up%20a%20URDF%20File. (accessed: 26.02.2021).
[65] IKFast: The Robot Kinematics Compiler. url: http://openrave.org/docs/latest_stable/

openravepy/ikfast/#ikfast-the-robot-kinematics-compiler. (accessed: 02.04.2021).
[66] Rodrigues. “Des lois géométriques qui régissent les déplacements d’un système solide dans

l’espace, et de la variation des coordonnées provenant de ces déplacements considérés in-
dépendamment des causes qui peuvent les produire.” fre. In: Journal de Mathématiques Pures
et Appliquées (1840), pp. 380–440. url: http://eudml.org/doc/234443.

[67] D. M Henderson. Euler angles, quaternions, and transformation matrices for space shuttle
analysis. eng. 1977.

[68] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning Library”. In:
IEEE Robotics & Automation Magazine 19.4 (Dec. 2012). https://ompl.kavrakilab.org,
pp. 72–82. doi: 10.1109/MRA.2012.2205651.

[69] Mark Moll, Ioan A. Şucan, and Lydia E. Kavraki. “Benchmarking Motion Planning Algo-
rithms: An Extensible Infrastructure for Analysis and Visualization”. In: IEEE Robotics &
Automation Magazine 22.3 (Sept. 2015), pp. 96–102. doi: 10.1109/MRA.2015.2448276.

[70] Zachary Kingston, Mark Moll, and Lydia E. Kavraki. “Exploring Implicit Spaces for Con-
strained Sampling-Based Planning”. In: Intl. J. of Robotics Research 38.10–11 (Sept. 2019),
pp. 1151–1178. doi: 10.1177/0278364919868530.

[71] Haris Balta et al. “Fast Statistical Outlier Removal Based Method for Large 3D Point Clouds
of Outdoor Environments”. eng. In: IFAC PapersOnLine 51.22 (2018), pp. 348–353. issn:
2405-8963.

[72] MoveIt OMPL Planner. url: http://docs.ros.org/en/kinetic/api/moveit_tutorials/
html/doc/ompl_interface/ompl_interface_tutorial.html. (accessed: 08.04.2021).

79

https://learn.ubiquityrobotics.com/image_no_magni
https://learn.ubiquityrobotics.com/image_no_magni
http://wiki.ros.org/ROS/NetworkSetup
https://packages.debian.org/unstable/fake-hwclock
https://www.arduino.cc/en/reference/firmata
https://pypi.org/project/pyFirmata/
http://abyz.me.uk/rpi/pigpio/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://www.pololu.com/file/0J52/vnh2sp30.pdf
https://www.pololu.com/file/0J52/vnh2sp30.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/3600fd.pd
https://www.analog.com/media/en/technical-documentation/data-sheets/3600fd.pd
http://wiki.ros.org/urdf/Tutorials/Using%20Xacro%20to%20Clean%20Up%20a%20URDF%20File
http://wiki.ros.org/urdf/Tutorials/Using%20Xacro%20to%20Clean%20Up%20a%20URDF%20File
http://openrave.org/docs/latest_stable/openravepy/ikfast/#ikfast-the-robot-kinematics-compiler
http://openrave.org/docs/latest_stable/openravepy/ikfast/#ikfast-the-robot-kinematics-compiler
http://eudml.org/doc/234443
https://ompl.kavrakilab.org
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/MRA.2015.2448276
https://doi.org/10.1177/0278364919868530
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/ompl_interface/ompl_interface_tutorial.html
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/ompl_interface/ompl_interface_tutorial.html

Appendix A

MoveIt Setup Assistant

A.1 Self-collision checking

80

Appendix B

ABB IRB4400 Datasheet

81

—
RO B OTI C S

IRB 4400
Fast, compact and versatile industrial robot

IRB 4400 is an extremely fast,
compact robot for medium to
heavy handling. It has exceptional
all-round capabilities which makes it
suitable for a variety of manufacturing
applications. The load capacity of
60 kg at very high speeds usually
permits handling of two parts at a
time.

Fast, compact and versatile industrial robot
IRB 4400 is a rigid, well-balanced design and patented
TrueMoveTM function provide smooth and fast move-
ment throughout the entire working range. This ensures
very high quality in applications such as cutting. Rapid
maneuverability makes the IRB 4400 perfectly matched
for applications where speed and flexibility are
important. The compact design and protected versions
enables use in situations where conventional robots
cannot work, such as foundry and spraying applications.
The Foundry Plus 2 version is IP 67 protected and can
be washed with high pressure steam, which makes it
ideal for use in harsh environments.

Reliability and economy
The robust, rigid construction means long intervals
between routine maintenance. Well-balanced steel
arms with double bearing joints, a torque-strut on
axis 2 and use of maintenance-free gearboxes and
cabling also contribute to the very high levels of
reliability. The drive train is optimised to give high
torque with the lowest power consumption for eco-
nomic operation.

Extensive communication for easy integration
The extensive communication capabilities include
serial links, network interfaces, PLC, remote I/O and
field bus interfaces. This makes for easy integration
in small manufacturing stations as well as large
scale factory automation systems.

Global service and support
For worry-free operation, ABB also offers Remote-
Service, which gives remote access to equipment for
monitoring and support. Moreover, ABB customers
can take advantage of the company’s service organi-
zation; with more than 35 years of experience in the
arc welding sector, ABB provides service support in
over 100 locations in 53 countries.

Main Applications
• Cutting/Deburring
• Die Spraying
• Dispensing
• Grinding/Polishing
• Measuring

—
We reserve the right to make technical
changes or modify the contents of this
document without prior notice. With re-
gard to purchase orders, the agreed par-
ticulars shall prevail. ABB does not accept
any responsibility whatsoever for potential
errors or possible lack of information in
this document.

We reserve all rights in this document and
in the subject matter and illustrations con-
tained therein. Any reproduction, disclo-
sure to third parties or utilization of its
contents – in whole or in parts – is forbidden
without prior written consent of ABB.
Copyright© 2019 ABB
All rights reserved

—
abb.com/robotics

P
R

10
0

35
E

N
_R

8
 R

ev
.F

 A
p

ri
l 2

0
19

Position
repeatability

Path
repeatability*

IRB 4400/60 0.06 mm 0.09 mm

IRB 4400/L10 0.05 mm 0.16 mm

*At 1.6 m/s.

—
Performance (according to ISO 9283)

Electrical Connections

Supply voltage 200-600 V, 50/60 Hz

Rated power
transformer rating

7.8 kVA

—
Technical information

Physical

Robot base 920 x 640 mm

Robot weight 1040 kg

Environment

Ambient temperature for mechanical unit

During operation +5° C (41° F) to + 45°C (113°F)

Relative humidity Max. 95%

Noise level Max. 70 dB (A)

Safety Double circuits with
supervision, emergency stops
and safety functions, 3-position
enable device

Emission EMC/EMI-shielded

Data and dimensions may be changed without notice.

Axis
movement

Working
range

Axis max
speed
IRB 4400/60

Axis max
speed
IRB 4400/L10

Axis 1, Rotation +165° to -165° 150°/s 150°/s

Axis 2, Arm +95° to -70° 120°/s 150°/s

Axis 3, Arm +65° to -60° 120°/s 150°/s

Axis 4, Rotation +200° to -200° 225°/s 370°/s

Axis 5, Bend +120° to -120° 250°/s 330°/s

Axis 6, Turn +400° to -400°
Max. rev:
+200°1 to -2002

330°/s 381°/s

1 Max. rev: +183 to -183 valid for IRB 4400/L10
2 The default working range for axis 6 can be extended by changing parameter
values in the software.
There is a supervision function to prevent overheating in applications with
intensive and frequent movements.

—
Movement

1020

1225

2140 1720

300

290

1955

890

680

100 200

400

300

200

60 kg

100

 Working range, IRB 4400/60

 Working range, IRB 4400/L10

150085 300

300 200

390 530

1070
2547

(1477)

17
20

89
0

(1
50

)

14
8

24
50

90
5

68
0

—
Specification

Robot version Reach (m) Handling
capacity (kg)

IRB 4400/60 1.96 60

IRB 4400/L10 2.53 10

Supplementary load

 on axis 2 35 kg

 on axis 3 15 kg

 on axis 4 0-5 kg

Number of axes 6

Protection Standard version IP 54, Foundry
Plus 2 IP 67 and high pressure
steam washable

Mounting Floor

Controller IRC5 Single Cabinet

Integrated signal supply 23 signals and 10 power on
upper arm

Integrated air supply Max. 8 bar on upper arm

Appendix C

DC Motor w/Gearing

84

Appendix D

DC Motor Driver VNH2SP30

The complete datasheet can be found here [62].

86

September 2013 Rev 9 1/33

1

VNH2SP30-E

Automotive fully integrated H-bridge motor driver

Features

•5V logic level compatible inputs

•Undervoltage and overvoltage shut-down

•Overvoltage clamp

•Thermal shut down

•Cross-conduction protection

•Linear current limiter

•Very low stand-by power consumption

•PWM operation up to 20 kHz

•Protection against loss of ground and loss of VCC

•Current sense output proportional to motor
current

•Package: ECOPACK®

Description

The VNH2SP30-E is a full bridge motor driver
intended for a wide range of automotive
applications. The device incorporates a dual
monolithic high side driver and two low side
switches. The high side driver switch is designed
using STMicroelectronic’s well known and proven
proprietary VIPower™ M0 technology which
permits efficient integration on the same die of a
true Power MOSFET with an intelligent
signal/protection circuitry.

The low side switches are vertical MOSFETs
manufactured using STMicroelectronic’s
proprietary EHD (‘STripFET™’) process. The
three die are assembled in the MultiPowerSO-30
package on electrically isolated leadframes. This
package, specifically designed for the harsh
automotive environment offers improved thermal
performance thanks to exposed die pads.
Moreover, its fully symmetrical mechanical design
allows superior manufacturability at board level.
The input signals INA and INB can directly
interface to the microcontroller to select the motor
direction and the brake condition. The
DIAGA/ENA or DIAGB/ENB, when connected to an
external pull-up resistor, enable one leg of the
bridge. They also provide a feedback digital
diagnostic signal. The normal condition operation
is explained in Table 12: Truth table in normal
operating conditions on page 14. The motor
current can be monitored with the CS pin by
delivering a current proportional to its value. The
speed of the motor can be controlled in all
possible conditions by the PWM up to 20 kHz. In
all cases, a low level state on the PWM pin will
turn off both the LSA and LSB switches. When
PWM rises to a high level, LSA or LSB turn on
again depending on the input pin state.

Type RDS(on) Iout Vccmax

VNH2SP30-E
 19mmax

per leg)
30A 41V

MultiPowerSO-30™

Table 1. Device summary

Package
Order codes

Tube Tape and Reel

MultiPowerSO-30 VNH2SP30-E VNH2SP30TR-E

www.st.com

Appendix E

Source code

E.1 Object detection and localization

E.1.1 > main.h

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/main.
h

1 #pragma once
2

3 #include <pcl/ModelCoefficients.h>
4 #include <pcl/io/pcd_io.h>
5 #include <pcl/point_types.h>
6 #include <pcl/filters/extract_indices.h>
7 #include <pcl/filters/passthrough.h>
8 #include <pcl/features/normal_3d.h>
9 #include <pcl/sample_consensus/method_types.h>

10 #include <pcl/sample_consensus/model_types.h>
11 #include <pcl/segmentation/sac_segmentation.h>
12 #include <pcl/common/distances.h>
13 #include "pcl_ros/point_cloud.h"
14 #include <boost/foreach.hpp>
15 #include <iostream>
16 #include <string>
17 #include <fstream> //For saving to text file
18 #include <ros/ros.h>
19 #include "std_msgs/String.h"
20 #include "std_msgs/Bool.h"
21 #include <sstream>
22 #include <pcl_conversions/pcl_conversions.h>
23 #include <sensor_msgs/PointCloud.h>
24 #include <sensor_msgs/PointCloud2.h>
25 #include <sensor_msgs/point_field_conversion.h>
26 #include <sensor_msgs/point_cloud_conversion.h>
27 #include <math.h> /* round, floor, ceil, trunc */
28 #include <cmath> /* std::abs */
29 #include "geometry_msgs/Point.h"

88

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/main.h
https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/main.h

30

31 typedef pcl::PointXYZ PointT;
32 typedef pcl::PointCloud<pcl::PointXYZ> PointCloud;
33

34 //const double cylinderDiameter = 0.169; // Yellow pipe in lab
35 //const double cylinderLength = 0.53; // Yellow pipe in lab
36 const double cylinderDiameter = 0.26;
37 const double cylinderRadius = cylinderDiameter/2;
38 const double cylinderLength = 1.2;
39

40 const float x_min = 4.2;
41 const float x_max = 6.0;
42 const float y_min = 1.0;
43 const float y_max = 10.0;
44 const float z_min = 0.05;
45 const float z_max = 2.0;
46

47

48 struct AddCylinderParams
49 {
50 /* Radius of the cylinder. */
51 double radius;
52 /* Direction vector towards the z-axis of the cylinder. */
53 double direction_vec[3];
54 /* Center point of the cylinder. */
55 double center_pt[3];
56 /* Height of the cylinder. */
57 double height;
58 };

E.1.2 > addCylinder.h

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/addCylinder.
h

1 #pragma once
2

3 #include "main.h"
4 #include <moveit/planning_scene_interface/planning_scene_interface.h>
5 #include <moveit_msgs/CollisionObject.h>
6

7 // MoveIt
8 #include <moveit/robot_model_loader/robot_model_loader.h>
9 #include <moveit/planning_scene/planning_scene.h>

10

11 #include <moveit/kinematic_constraints/utils.h>
12

89

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/addCylinder.h
https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/addCylinder.h

13 moveit_msgs::CollisionObject addCylinder(const AddCylinderParams
cylinder_params);↪→

E.1.3 > addCylinder.cpp

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/addCylinder.
cpp

1 #include "addCylinder.h"
2

3 moveit_msgs::CollisionObject addCylinder(const AddCylinderParams
cylinder_params)↪→

4 {
5 // Define a collision object ROS message.
6 moveit_msgs::CollisionObject collision_object;
7 collision_object.header.frame_id = "world";
8 collision_object.id = "cylinder";
9

10 // Define a cylinder which will be added to the world.
11 shape_msgs::SolidPrimitive primitive;
12 primitive.type = primitive.CYLINDER;
13 primitive.dimensions.resize(2);
14 /* Setting height of cylinder. */
15 primitive.dimensions[0] = cylinder_params.height;
16 /* Setting radius of cylinder. */
17 primitive.dimensions[1] = cylinder_params.radius;
18

19 // Define a pose for the cylinder (specified relative to frame_id).
20 geometry_msgs::Pose cylinder_pose;
21 /* Computing and setting quaternion from axis angle representation. */
22 Eigen::Vector3d cylinder_z_direction(cylinder_params.direction_vec[0],

cylinder_params.direction_vec[1],↪→

23 cylinder_params.direction_vec[2]);
24 Eigen::Vector3d origin_z_direction(0., 0., 1.);
25 Eigen::Vector3d axis;
26 axis = origin_z_direction.cross(cylinder_z_direction);
27 axis.normalize();
28 double angle = acos(cylinder_z_direction.dot(origin_z_direction));
29 cylinder_pose.orientation.x = axis.x() * sin(angle / 2);
30 cylinder_pose.orientation.y = axis.y() * sin(angle / 2);
31 cylinder_pose.orientation.z = axis.z() * sin(angle / 2);
32 cylinder_pose.orientation.w = cos(angle / 2);
33

34 // Setting the position of cylinder.
35 cylinder_pose.position.x = cylinder_params.center_pt[0];
36 cylinder_pose.position.y = cylinder_params.center_pt[1];
37 cylinder_pose.position.z = cylinder_params.center_pt[2];

90

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/addCylinder.cpp
https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/addCylinder.cpp

38

39 // Add cylinder as collision object
40 collision_object.primitives.push_back(primitive);
41 collision_object.primitive_poses.push_back(cylinder_pose);
42 collision_object.operation = collision_object.ADD;
43

44 return collision_object;
45

46 }

E.1.4 > segment.h

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/segment.
h

1 #pragma once
2

3 #include "main.h"
4

5 pcl::PointCloud<PointT>::Ptr segment(const pcl::PointCloud<PointT>::Ptr&
input, pcl::ModelCoefficients::Ptr coefficients_cylinder);↪→

6

7 pcl::PointCloud<pcl::PointXYZ>::Ptr
8 passThroughFilterSphere(pcl::PointCloud<PointT>::Ptr& cloud,
9 pcl::PointXYZ sphereCenterPoint, const double radius, bool remove_outside);

E.1.5 > segment.cpp

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/segment.
cpp

1 #include "segment.h"
2

3 pcl::PointCloud<PointT>::Ptr segment(const pcl::PointCloud<PointT>::Ptr&
input, pcl::ModelCoefficients::Ptr coefficients_cylinder) //const
sensor_msgs::PointCloudConstPtr& input)

↪→

↪→

4 {
5

6 // All the objects needed
7 //pcl::PCDReader reader;
8 pcl::PassThrough<PointT> pass;
9 pcl::NormalEstimation<PointT, pcl::Normal> ne;

10 pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;
11 pcl::PCDWriter writer;
12 pcl::ExtractIndices<PointT> extract;
13 pcl::ExtractIndices<pcl::Normal> extract_normals;
14 pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ());

91

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/segment.h
https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/segment.h
https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/segment.cpp
https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/segment.cpp

15

16 // Datasets
17 //pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
18 pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);
19 pcl::PointCloud<PointT>::Ptr filter_x (new pcl::PointCloud<PointT>);
20 pcl::PointCloud<PointT>::Ptr filter_y (new pcl::PointCloud<PointT>);
21 pcl::PointCloud<PointT>::Ptr filter_z (new pcl::PointCloud<PointT>);
22 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new

pcl::PointCloud<pcl::Normal>);↪→

23 pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>);
24 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new

pcl::PointCloud<pcl::Normal>);↪→

25 pcl::ModelCoefficients::Ptr coefficients_plane (new
pcl::ModelCoefficients);//, coefficients_cylinder (new
pcl::ModelCoefficients);

↪→

↪→

26 pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices),
inliers_cylinder (new pcl::PointIndices);↪→

27

28 // Read in the cloud data
29 //reader.read ("table_scene_mug_stereo_textured.pcd", *cloud);
30 //std::cerr << "PointCloud has: " << cloud->size () << " data points." <<

std::endl;↪→

31 //std::cerr << "PointCloud has: " << input->size () << " data points." <<
std::endl;↪→

32

33 // Build a passthrough filter to remove spurious NaNs
34 //pass.setInputCloud (cloud);
35 pass.setInputCloud (input);
36 pass.setFilterFieldName ("x");
37 pass.setFilterLimits (x_min, x_max); //5.5 works
38 pass.filter (*cloud_filtered);
39

40 pass.setInputCloud (cloud_filtered);
41 pass.setFilterFieldName ("y");
42 pass.setFilterLimits (y_min, y_max); //5.5 works
43 pass.filter (*cloud_filtered);
44

45 pass.setInputCloud (cloud_filtered);
46 pass.setFilterFieldName ("z");
47 pass.setFilterLimits (z_min, z_max); //5.5 works
48 pass.filter (*cloud_filtered);
49

50 //std::cerr << "PointCloud after filtering has: " << cloud_filtered->size ()
<< " data points." << std::endl;↪→

51

52 // Estimate point normals

92

53 ne.setSearchMethod (tree);
54 ne.setInputCloud (cloud_filtered);
55 ne.setKSearch (50);
56 ne.compute (*cloud_normals);
57

58 // Create the segmentation object for the planar model and set all the
parameters↪→

59 // seg.setOptimizeCoefficients (true);
60 // seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
61 // //seg.setNormalDistanceWeight (0.1);
62 // seg.setMethodType (pcl::SAC_RANSAC);
63 // //seg.setMaxIterations (100);
64 // seg.setDistanceThreshold (0.01); //0.31 if 1 segmentation
65 // seg.setInputCloud (cloud_filtered);
66 // seg.setInputNormals (cloud_normals);
67 // // Obtain the plane inliers and coefficients
68 // seg.segment (*inliers_plane, *coefficients_plane);
69 // //std::cerr << "Plane coefficients: " << *coefficients_plane <<

std::endl;↪→

70

71 // // Extract the planar inliers from the input cloud
72 // extract.setInputCloud (cloud_filtered);
73 // extract.setIndices (inliers_plane);
74 // extract.setNegative (false);
75

76 // // Write the planar inliers to disk
77 // pcl::PointCloud<PointT> cloud_plane; //(new pcl::PointCloud<PointT> ());
78 // extract.filter (cloud_plane);
79 // //std::cerr << "PointCloud representing the planar component: " <<

cloud_plane->size () << " data points." << std::endl;↪→

80 // //writer.write ("src/P26_cylinder_segmentation/pointclouds/plane.pcd",
*cloud_plane, false);↪→

81

82 // // Remove the planar inliers, extract the rest
83 // extract.setNegative (true);
84 // extract.filter (*cloud_filtered2);
85 // extract_normals.setNegative (true);
86 // extract_normals.setInputCloud (cloud_normals);
87 // extract_normals.setIndices (inliers_plane);
88 // extract_normals.filter (*cloud_normals2);
89

90 // Create the segmentation object for cylinder segmentation and set all the
parameters↪→

91 seg.setOptimizeCoefficients (true);
92 seg.setModelType (pcl::SACMODEL_CYLINDER);
93 seg.setMethodType (pcl::SAC_RANSAC);

93

94 seg.setNormalDistanceWeight (0.2); //0.01 works (0.1 seperated the robot
from the cylinder)↪→

95 seg.setMaxIterations (10000);
96 seg.setDistanceThreshold (0.08);//0.1 works
97 seg.setRadiusLimits (cylinderRadius-0.03, cylinderRadius+0.03);//0.08, 0.16

works↪→

98 seg.setInputCloud (cloud_filtered);
99 seg.setInputNormals (cloud_normals);

100

101

102 // Obtain the cylinder inliers and coefficients
103 seg.segment (*inliers_cylinder, *coefficients_cylinder);
104

105 // Write the cylinder inliers to disk
106 extract.setInputCloud (cloud_filtered);
107 extract.setIndices (inliers_cylinder);
108 extract.setNegative (false);
109 pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT>

());↪→

110 extract.filter (*cloud_cylinder);
111 if (cloud_cylinder->points.empty ()){
112 // Can't find the cylindrical component.
113 std::cerr << "x";
114 }
115

116 // writer.write ("input_cloud.pcd", *input, false);
117 // writer.write ("cloud_filtered.pcd", *cloud_filtered, false);
118 // writer.write ("cylinder.pcd", *cloud_cylinder, false);
119

120

121 return cloud_cylinder;
122

123 }
124

125 pcl::PointCloud<pcl::PointXYZ>::Ptr
126 passThroughFilterSphere(pcl::PointCloud<PointT>::Ptr& cloud,
127 pcl::PointXYZ sphereCenterPoint, const double radius, bool remove_outside)
128 {
129 pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new

pcl::PointCloud<pcl::PointXYZ>);↪→

130 float distanceFromSphereCenterPoint;
131 bool pointIsWithinSphere;
132 bool addPointToFilteredCloud;
133 for (int point_i = 0; point_i < cloud->size(); ++point_i)
134 {

94

135 distanceFromSphereCenterPoint = pcl::euclideanDistance(cloud->at(point_i),
sphereCenterPoint);↪→

136 pointIsWithinSphere = distanceFromSphereCenterPoint <= radius;
137 addPointToFilteredCloud = (!pointIsWithinSphere && remove_outside) ||

(pointIsWithinSphere && !remove_outside);↪→

138 if (addPointToFilteredCloud){
139 filteredCloud->push_back(cloud->at(point_i));
140 }
141 }
142 return filteredCloud;
143 }

E.1.6 > main.cpp

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/main.
cpp

1 #include "main.h"
2 #include "segment.h"
3 #include "addCylinder.h"
4

5 typedef pcl::PointCloud<pcl::PointXYZ> PointCloud;
6

7 PointCloud::Ptr cloud_merged (new PointCloud);
8 PointCloud::Ptr cloud_cylinder (new PointCloud);
9 PointCloud::Ptr cloud_cylinder_tmp (new PointCloud);

10 void callback(const sensor_msgs::PointCloud2ConstPtr& input);
11 void callback_find_cylinder(const std_msgs::Bool::ConstPtr& data);
12 int counter = 0;
13 bool findCylinder = true;
14

15 // Declare a variable of type AddCylinderParams and store relevant values from
ModelCoefficients.↪→

16 AddCylinderParams cylinder_params;
17

18 int main(int argc, char** argv)
19 {
20 ros::init(argc, argv, "cylinder_segmentation");
21 ros::NodeHandle nh;
22 ros::Subscriber sub1 = nh.subscribe ("/master/jetson1/kinect_decomp", 1,

callback);↪→

23 ros::Subscriber sub2 = nh.subscribe ("/master/jetson2/kinect_decomp", 1,
callback);↪→

24 ros::Subscriber sub3 = nh.subscribe ("/master/jetson3/kinect_decomp", 1,
callback);↪→

25 ros::Subscriber sub4 = nh.subscribe ("/master/jetson4/kinect_decomp", 1,
callback);↪→

95

https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/main.cpp
https://github.com/evenfl/p26_master/blob/master/p26_cylinder_segmentation/src/main.cpp

26 ros::Subscriber sub5 = nh.subscribe ("/master/jetson5/kinect_decomp", 1,
callback);↪→

27 ros::Subscriber sub6 = nh.subscribe ("/master/jetson6/kinect_decomp", 1,
callback);↪→

28 ros::Subscriber sub_find_cylinder = nh.subscribe
("/p26_lefty/find_cylinder", 1, callback_find_cylinder);↪→

29 // ros::Subscriber sub6 = nh.subscribe ("/master/merged_point_cloud", 1,
callback); // merged point cloud (Lower frame rate)↪→

30 ros::Publisher pub = nh.advertise<PointCloud> ("cloud_cylinder", 1);
31 ros::Publisher cylinder_object_publisher =

nh.advertise<moveit_msgs::CollisionObject>("collision_object", 1);↪→

32 ros::Publisher pub_com = nh.advertise<geometry_msgs::Point> ("cylinder_com",
1);↪→

33 ros::Publisher pub_dirvec = nh.advertise<geometry_msgs::Point>
("cylinder_dirvec", 1);↪→

34

35 ros::Rate rate(20);
36

37 int iterations = 0;
38

39 PointT point_com_avg;
40 PointT dirvec_avg;
41 const int nrOfIterations = 20;
42 const float deviance = 0.06; // For 26 cm cylinder
43 // const float deviance = 0.1; // For 16 cm cylinder
44

45 unsigned int inconsistencyCounter = 0;
46

47 std::cerr << "Segmenting cylinder." << std::endl;
48

49 std::cerr << "0%";
50 for (int i = 0; i < nrOfIterations-6; i++){std::cerr << " ";};
51 std::cerr << "100%" << std::endl;
52

53 while (ros::ok())
54 {
55 ros::spinOnce();
56 rate.sleep();
57

58 if (counter >= 6 && findCylinder == true)
59 {
60 // If all pointclouds are received, find the pose
61

62 pcl::ModelCoefficients::Ptr coefficients_cylinder (new
pcl::ModelCoefficients);↪→

63 cloud_cylinder = segment(cloud_merged, coefficients_cylinder);

96

64

65 // BEGIN SPHERE FILTER
66 PointT point;
67 point.x = coefficients_cylinder->values[0];
68 point.y = coefficients_cylinder->values[1];
69 point.z = coefficients_cylinder->values[2];
70 PointT dirvec;
71 dirvec.x = coefficients_cylinder->values[3];
72 dirvec.y = coefficients_cylinder->values[4];
73 dirvec.z = coefficients_cylinder->values[5];
74

75 float adj = 0.0f;
76 float increment = 0.001f; //Check again every 1 mm
77

78 adj = (x_min - point.x)/dirvec.x;
79 point.x = x_min;
80 point.y = point.y + adj*dirvec.y;
81 point.z = point.z + adj*dirvec.z;
82

83 if (point.y < y_min)
84 {
85 adj = (y_min - point.y)/dirvec.y;
86 point.x = point.x + adj*dirvec.x;
87 point.y = y_min;
88 point.z = point.z + adj*dirvec.z;
89 }
90 else if (point.y > y_max)
91 {
92 adj = (y_max - point.y)/dirvec.y;
93 point.x = point.x + adj*dirvec.x;
94 point.y = y_max;
95 point.z = point.z + adj*dirvec.z;
96 }
97 if (point.z < z_min)
98 {
99 adj = (z_min - point.z)/dirvec.z;

100 point.x = point.x + adj*dirvec.x;
101 point.y = point.y + adj*dirvec.y;
102 point.z = z_min;
103 }
104 else if (point.z > z_max)
105 {
106 adj = (z_max - point.z)/dirvec.z;
107 point.x = point.x + adj*dirvec.x;
108 point.y = point.y + adj*dirvec.y;
109 point.z = z_max;

97

110 }
111 if (point.x + increment*dirvec.x > x_max || point.x + increment*dirvec.x

< x_min ||↪→

112 point.y + increment*dirvec.y > y_max || point.y + increment*dirvec.y
< y_min ||↪→

113 point.z + increment*dirvec.z > z_max || point.z + increment*dirvec.z
< z_min)↪→

114 {
115 increment = std::abs(increment)*(-1);
116 }
117

118 PointT point_com;
119 unsigned long biggestCloudSize = 0;
120

121 while (point.x >= x_min && point.x <= x_max && point.y >= y_min &&
point.y <= y_max && point.z >= z_min && point.z <= z_max)↪→

122 {
123 // cloud_cylinder_tmp = passThroughFilterSphere(cloud_cylinder, point,

cylinderLength/2, false);↪→

124 cloud_cylinder_tmp = passThroughFilterSphere(cloud_cylinder, point,
sqrt((cylinderLength/2)*(cylinderLength/2)+cylinderRadius*cylinderRadius),
false);

↪→

↪→

125 if (cloud_cylinder_tmp->size () > biggestCloudSize)
126 {
127 biggestCloudSize = cloud_cylinder_tmp->size ();
128 point_com = point;
129 }
130 point.x = point.x + increment*dirvec.x;
131 point.y = point.y + increment*dirvec.y;
132 point.z = point.z + increment*dirvec.z;
133 }
134

135 cloud_cylinder = passThroughFilterSphere(cloud_cylinder, point_com,
sqrt((cylinderLength/2)*(cylinderLength/2)+cylinderRadius*cylinderRadius),
false);

↪→

↪→

136

137 // END SPHERE FILTER
138

139 counter = 0;
140

141 if (iterations == 0 && point_com.x != 0.0)
142 {
143 point_com_avg.x = point_com.x;
144 point_com_avg.y = point_com.y;
145 point_com_avg.z = point_com.z;
146 dirvec_avg.x = dirvec.x;

98

147 dirvec_avg.y = dirvec.y;
148 dirvec_avg.z = dirvec.z;
149 iterations++;
150 inconsistencyCounter = 0;
151 std::cerr << "#";
152 }
153

154 if (std::abs(dirvec.x - dirvec_avg.x) > 0.5 || std::abs(dirvec.y -
dirvec_avg.y) > 0.5 || std::abs(dirvec.z - dirvec_avg.z) > 0.5)↪→

155 {
156 dirvec.x = -dirvec.x;
157 dirvec.y = -dirvec.y;
158 dirvec.z = -dirvec.z;
159 }
160

161 if (std::abs(point_com.x - point_com_avg.x) > deviance ||
std::abs(point_com.z - point_com_avg.z) > deviance ||
std::abs(point_com.z - point_com_avg.z) > deviance && point_com.x !=
0)

↪→

↪→

↪→

162 {
163 inconsistencyCounter++;
164 std::cerr << "-";
165 if (inconsistencyCounter >= round(0.25*nrOfIterations))
166 {
167 iterations = 0;
168 inconsistencyCounter = 0;
169 std::cerr << " Inconsistent result, starting over." << std::endl;
170 }
171 }
172 else if (point_com.x != 0.0)
173 {
174 point_com_avg.x = (point_com_avg.x*iterations +

point_com.x)/(iterations+1);↪→

175 point_com_avg.y = (point_com_avg.y*iterations +
point_com.y)/(iterations+1);↪→

176 point_com_avg.z = (point_com_avg.z*iterations +
point_com.z)/(iterations+1);↪→

177 dirvec_avg.x = (dirvec_avg.x*iterations + dirvec.x)/(iterations+1);
178 dirvec_avg.y = (dirvec_avg.y*iterations + dirvec.y)/(iterations+1);
179 dirvec_avg.z = (dirvec_avg.z*iterations + dirvec.z)/(iterations+1);
180 iterations++;
181 //inconsistencyCounter = 0;
182 std::cerr << "#" << iterations;
183 }
184 if (iterations >= nrOfIterations)
185 {

99

186 //cylinder_object_publisher.publish(addCylinder(cylinder_params));
187 std::cerr << std::endl << "Direction vector: [" << dirvec_avg.x << ",

" << dirvec_avg.y << ", " << dirvec_avg.z << "]" << std::endl;↪→

188 std::cerr << std::endl << "Centre of mass: [" << point_com_avg.x <<
", " << point_com_avg.y << ", " << point_com_avg.z << "]" <<
std::endl << std::endl;

↪→

↪→

189 iterations = 0;
190

191 cylinder_params.center_pt[0] = point_com_avg.x;
192 cylinder_params.center_pt[1] = point_com_avg.y;
193 cylinder_params.center_pt[2] = point_com_avg.z;
194

195 cylinder_params.height = cylinderLength;
196 cylinder_params.radius = cylinderRadius;
197

198 cylinder_params.direction_vec[0] = dirvec_avg.x;
199 cylinder_params.direction_vec[1] = dirvec_avg.y;
200 cylinder_params.direction_vec[2] = dirvec_avg.z;
201 cylinder_object_publisher.publish(addCylinder(cylinder_params));
202 geometry_msgs::Point pub_com_msg;
203 geometry_msgs::Point pub_dirvec_msg;
204 pub_com_msg.x = point_com_avg.x;
205 pub_com_msg.y = point_com_avg.y;
206 pub_com_msg.z = point_com_avg.z;
207 pub_dirvec_msg.x = dirvec_avg.x;
208 pub_dirvec_msg.y = dirvec_avg.y;
209 pub_dirvec_msg.z = dirvec_avg.z;
210 pub_com.publish(pub_com_msg);
211 pub_dirvec.publish(pub_dirvec_msg);
212

213 moveit_msgs::CollisionObject collision_object;
214 collision_object.header.frame_id = "world";
215 collision_object.id = "box";
216

217 shape_msgs::SolidPrimitive primitive;
218 primitive.type = primitive.BOX;
219 primitive.dimensions.resize(3);
220 primitive.dimensions[0] = 0.3;
221 primitive.dimensions[1] = 0.4;
222 primitive.dimensions[2] = 0.25;
223 geometry_msgs::Pose box_pose;
224 box_pose.orientation.w = 1.0;
225 box_pose.position.x = 5.42;
226 box_pose.position.y = 9.23;
227 box_pose.position.z = 0.125;
228

100

229 collision_object.primitives.push_back(primitive);
230 collision_object.primitive_poses.push_back(box_pose);
231 collision_object.operation = collision_object.ADD;
232

233 cylinder_object_publisher.publish(collision_object);
234

235 // Write pointcloud to pcd files
236 // pcl::PCDWriter writer;
237 // writer.write

("src/p26_master/p26_cylinder_segmentation/pointclouds/cylinder_filtered.pcd",
*cloud_cylinder, false);

↪→

↪→

238 // writer.write
("src/p26_master/p26_cylinder_segmentation/pointclouds/cloud_merged.pcd",
*cloud_merged, false);

↪→

↪→

239

240 findCylinder = false;
241 // ros::shutdown();
242 }
243 cloud_merged->header.frame_id = "world";
244 pub.publish(*cloud_merged);
245 cloud_merged->clear();
246 }
247 else if(findCylinder == false){
248 cloud_merged->clear();
249 counter = 0;
250 }
251 }
252 }
253

254 void callback(const sensor_msgs::PointCloud2ConstPtr& input)
255 {
256 pcl::PointCloud<PointT> cloud;
257 pcl::fromROSMsg (*input, cloud);//cloud is the output
258 *cloud_merged += cloud;
259 counter++;
260 }
261

262 void callback_find_cylinder(const std_msgs::Bool::ConstPtr& data)
263 {
264 findCylinder = true;
265 }

E.2 Obstacle mapping

E.2.1 > sensor_kinect_pointcloud.yaml

101

1 sensors:
2 - sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater
3 point_cloud_topic: /master/merged_point_cloud
4 max_range: 15.0
5 point_subsample: 1
6 padding_offset: 0.1
7 padding_scale: 1.0
8 max_update_rate: 1.0
9 filtered_cloud_topic: filtered_cloud

E.2.2 > sensor_manager.launch

1 <launch>
2

3 <!-- This file makes it easy to include the settings for sensor managers
-->↪→

4

5 <!-- Params for 3D sensors config -->
6 <!-- <rosparam command="load" file="$(find

p26_lefty_moveit_config)/config/sensors_3d.yaml" />-->↪→

7

8 <!-- Params for the octomap monitor -->
9 <param name="octomap_frame" type="string" value="lefty_track_left" />

10 <!-- <param name="octomap_frame" type="string" value="lefty_tool" />-->
11 <param name="octomap_resolution" type="double" value="0.12" />
12 <param name="max_range" type="double" value="15.0" />
13

14 <!-- Load the robot specific sensor manager; this sets the
moveit_sensor_manager ROS parameter -->↪→

15 <arg name="moveit_sensor_manager" default="p26_lefty" />
16 <include file="$(find p26_lefty_moveit_config)/launch/$(arg

moveit_sensor_manager)_moveit_sensor_manager.launch.xml" />↪→

17

18 </launch>

E.2.3 > main.h

https://github.com/evenfl/p26_master/blob/master/p26_pick_and_place/src/main.h

1 #pragma once
2

3 #include <pcl/ModelCoefficients.h>
4 #include <pcl/io/pcd_io.h>
5 #include <pcl/point_types.h>
6 #include <pcl/filters/extract_indices.h>
7 #include <pcl/filters/passthrough.h>
8 #include <pcl/features/normal_3d.h>

102

https://github.com/evenfl/p26_master/blob/master/p26_pick_and_place/src/main.h

9 #include <pcl/sample_consensus/method_types.h>
10 #include <pcl/sample_consensus/model_types.h>
11 #include <pcl/segmentation/sac_segmentation.h>
12 #include <pcl/common/distances.h>
13 #include <pcl/filters/statistical_outlier_removal.h>
14 #include "pcl_ros/point_cloud.h"
15 #include <boost/foreach.hpp>
16 #include <iostream>
17 #include <string>
18 #include <fstream> //For saving to text file
19 #include <ros/ros.h>
20 #include "std_msgs/String.h"
21 #include <sstream>
22 #include <pcl_conversions/pcl_conversions.h>
23 #include <sensor_msgs/PointCloud.h>
24 #include <sensor_msgs/PointCloud2.h>
25 #include <sensor_msgs/point_field_conversion.h>
26 #include <sensor_msgs/point_cloud_conversion.h>
27 #include <math.h> /* round, floor, ceil, trunc */
28 #include <cmath> /* std::abs */
29 #include "geometry_msgs/Point.h"
30

31 #include <moveit/planning_scene_interface/planning_scene_interface.h>
32 #include <moveit_msgs/CollisionObject.h>
33

34 // MoveIt
35 #include <moveit/robot_model_loader/robot_model_loader.h>
36 #include <moveit/planning_scene/planning_scene.h>
37

38 #include <moveit/kinematic_constraints/utils.h>
39

40

41

42 typedef pcl::PointXYZ PointT;
43 typedef pcl::PointCloud<pcl::PointXYZ> PointCloud;
44

45

46 //const double cylinderDiameter = 0.169; // Yellow pipe in lab
47 const double cylinderDiameter = 0.25;
48 const double cylinderRadius = cylinderDiameter/2;
49 //const double cylinderLength = 0.53; // Yellow pipe in lab
50 const double cylinderLength = 1.2;
51

52 const float x_min = 3.0;
53 const float x_max = 6.0;
54 const float y_min = 1.0;

103

55 const float y_max = 10.0;
56 const float z_min = 0.05;
57 const float z_max = 2.0;
58

59

60 struct AddCylinderParams
61 {
62 /* Radius of the cylinder. */
63 double radius;
64 /* Direction vector towards the z-axis of the cylinder. */
65 double direction_vec[3];
66 /* Center point of the cylinder. */
67 double center_pt[3];
68 /* Height of the cylinder. */
69 double height;
70 };

E.2.4 > main.cpp

https://github.com/evenfl/p26_master/blob/master/p26_pick_and_place/src/main.cpp

1 #include "main.h"
2

3 #include <std_srvs/Empty.h>
4

5 typedef pcl::PointCloud<pcl::PointXYZ> PointCloud;
6

7 //PointCloud::Ptr cloud_merged (new PointCloud);
8

9

10 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_merged (new
pcl::PointCloud<pcl::PointXYZ>);↪→

11 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new
pcl::PointCloud<pcl::PointXYZ>);↪→

12

13 void callback(const sensor_msgs::PointCloud2ConstPtr& input);
14 void callback_create_octomap(const std_msgs::String::ConstPtr& msg);
15 int counter = 0;
16 bool createOctomap = false;
17 //bool createOctomap = true;
18

19 int main(int argc, char** argv)
20 {
21 ros::init(argc, argv, "collision_map");
22 ros::NodeHandle nh;
23 ros::Publisher pub = nh.advertise<PointCloud>("/master/merged_point_cloud",

1);↪→

104

https://github.com/evenfl/p26_master/blob/master/p26_pick_and_place/src/main.cpp

24 ros::Publisher pub_octomap_created =
nh.advertise<std_msgs::String>("/p26_lefty/octomap_created", 1);↪→

25

26 ros::Subscriber sub1 = nh.subscribe ("/master/jetson1/kinect_decomp", 1,
callback);↪→

27 ros::Subscriber sub2 = nh.subscribe ("/master/jetson2/kinect_decomp", 1,
callback);↪→

28 ros::Subscriber sub3 = nh.subscribe ("/master/jetson3/kinect_decomp", 1,
callback);↪→

29 ros::Subscriber sub4 = nh.subscribe ("/master/jetson4/kinect_decomp", 1,
callback);↪→

30 ros::Subscriber sub5 = nh.subscribe ("/master/jetson5/kinect_decomp", 1,
callback);↪→

31 ros::Subscriber sub6 = nh.subscribe ("/master/jetson6/kinect_decomp", 1,
callback);↪→

32

33 ros::Subscriber sub_create_octomap = nh.subscribe
("/p26_lefty/create_octomap", 1, callback_create_octomap);↪→

34

35 // ros::Publisher pub = nh.advertise<PointCloud>
("/jetson/wp3/points_nocolor", 1);↪→

36

37 ros::Rate rate(20);
38

39 while (ros::ok())
40 {
41 ros::spinOnce();
42 rate.sleep();
43

44 if (counter >= 12 && createOctomap == true)
45 {
46 cloud_merged->header.frame_id = "world";
47

48

49 // Create the filtering object
50 pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
51 sor.setInputCloud (cloud_merged);
52 sor.setMeanK (50);
53 sor.setStddevMulThresh (0.25);
54 sor.filter (*cloud_filtered);
55

56

57 // pcl::PCDWriter writer;
58 // writer.write ("cloud_unfiltered.pcd", *cloud_merged, false);
59 // writer.write ("cloud_filtered_sor.pcd", *cloud_filtered, false);
60

105

61

62 //ros::service::waitForService("p26_lefty/clear_octomap"); //this is
optional↪→

63 ros::ServiceClient clearClient =
nh.serviceClient<std_srvs::Empty>("p26_lefty/clear_octomap");↪→

64 std_srvs::Empty srv;
65 clearClient.call(srv);
66 pub.publish(*cloud_filtered);
67

68 // std::cerr << cloud_merged->size() << std::endl;
69

70 cloud_merged->clear();
71 cloud_filtered->clear();
72 counter = 0;
73 createOctomap = false;
74 std_msgs::String msg;
75 std::stringstream ss;
76 int count = 0;
77 ss << "1" << count;
78 msg.data = ss.str();
79 pub_octomap_created.publish(msg);
80 // ros::shutdown();
81

82 }
83 else if(createOctomap == false){
84 cloud_merged->clear();
85 counter = 0;
86 }
87

88

89 }
90

91 }
92

93

94 void callback(const sensor_msgs::PointCloud2ConstPtr& input)
95 {
96 //cloud_merged->clear();
97 pcl::PointCloud<pcl::PointXYZ> cloud;
98 pcl::fromROSMsg (*input, cloud);//cloud is the output
99 *cloud_merged += cloud;

100 counter++;
101 }
102

103 void callback_create_octomap(const std_msgs::String::ConstPtr& msg)
104 {

106

105 createOctomap = true;
106 }

E.3 Pick-and-place

E.3.1 > p26_move.py

1 #!/usr/bin/env python
2

3 # Software License Agreement (BSD License)
4 #
5 # Copyright (c) 2013, SRI International
6 # All rights reserved.
7 #
8 # Redistribution and use in source and binary forms, with or without
9 # modification, are permitted provided that the following conditions

10 # are met:
11 #
12 # * Redistributions of source code must retain the above copyright
13 # notice, this list of conditions and the following disclaimer.
14 # * Redistributions in binary form must reproduce the above
15 # copyright notice, this list of conditions and the following
16 # disclaimer in the documentation and/or other materials provided
17 # with the distribution.
18 # * Neither the name of SRI International nor the names of its
19 # contributors may be used to endorse or promote products derived
20 # from this software without specific prior written permission.
21 #
22 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 # POSSIBILITY OF SUCH DAMAGE.
34 #
35 # Author: Acorn Pooley, Mike Lautman
36

37

38 ## To use the Python MoveIt! interfaces, we will import the
`moveit_commander`_ namespace.↪→

107

39 ## This namespace provides us with a `MoveGroupCommander`_ class, a
`PlanningSceneInterface`_ class,↪→

40 ## and a `RobotCommander`_ class. (More on these below)
41 ##
42 ## We also import `rospy`_ and some messages that we will use:
43 ##
44

45 import sys
46 import copy
47 import rospy
48 import moveit_commander
49 import moveit_msgs.msg
50 import geometry_msgs.msg
51 from math import pi, atan2, cos, sin, sqrt, asin
52 from std_msgs.msg import String, Int64, Float32, Int8, UInt8, Bool
53 from moveit_commander.conversions import pose_to_list
54 import numpy as np
55 from sensor_msgs.msg import PointCloud2
56 #from moveit_python import PlanningSceneInterface
57

58 def euler_to_quaternion(roll, pitch, yaw):
59

60 qx = np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) - np.cos(roll/2)
* np.sin(pitch/2) * np.sin(yaw/2)↪→

61 qy = np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2) + np.sin(roll/2)
* np.cos(pitch/2) * np.sin(yaw/2)↪→

62 qz = np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2) - np.sin(roll/2)
* np.sin(pitch/2) * np.cos(yaw/2)↪→

63 qw = np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) + np.sin(roll/2)
* np.sin(pitch/2) * np.sin(yaw/2)↪→

64

65 return [qx, qy, qz, qw]
66

67 def normalize(vec):
68 length = 0.0
69 for i in range(len(vec)):
70 length = length + vec[i]*vec[i]
71 length = sqrt(length)
72 for i in range(len(vec)):
73 vec[i] = vec[i]/length
74 return vec
75

76 def vec_length(vec):
77 length = 0.0
78 for i in range(len(vec)):
79 length = length + vec[i]*vec[i]

108

80 length = sqrt(length)
81 return length
82

83 class GraspingPointCandidate:
84 def __init__(self, theta, dirvec, u_init, P_com, P_eef):
85

86 # Rodrigues' rotation formula
87 w = np.cross(u_init,dirvec)
88

89 x1 = cos(theta)
90 x2 = sin(theta)
91

92 u_rot = x1*u_init + x2*w
93

94 u_rot = normalize(u_rot)
95

96 self.d = vec_length([P_eef[0]-(P_com[0]+u_rot[0]),
P_eef[1]-(P_com[1]+u_rot[1]), P_eef[2]-(P_com[2]+u_rot[2])])↪→

97 self.u = u_rot
98

99 def all_close(goal, actual, tolerance):
100 """
101 Convenience method for testing if a list of values are within a tolerance of

their counterparts in another list↪→

102 @param: goal A list of floats, a Pose or a PoseStamped
103 @param: actual A list of floats, a Pose or a PoseStamped
104 @param: tolerance A float
105 @returns: bool
106 """
107 all_equal = True
108 if type(goal) is list:
109 for index in range(len(goal)):
110 if abs(actual[index] - goal[index]) > tolerance:
111 return False
112

113 elif type(goal) is geometry_msgs.msg.PoseStamped:
114 return all_close(goal.pose, actual.pose, tolerance)
115

116 elif type(goal) is geometry_msgs.msg.Pose:
117 return all_close(pose_to_list(goal), pose_to_list(actual), tolerance)
118

119 return True
120

121 class MoveGroupPickAndPlace(object):
122 """MoveGroupPickAndPlace"""
123 def __init__(self):

109

124 super(MoveGroupPickAndPlace, self).__init__()
125

126 # First initialize `moveit_commander`_ and a `rospy`_ node:
127 moveit_commander.roscpp_initialize(sys.argv)
128

129 # Instantiate a `RobotCommander`_ object. This object is the outer-level
interface to↪→

130 # the robot:
131 robot = moveit_commander.RobotCommander()
132

133 # Instantiate a `PlanningSceneInterface`_ object. This object is an
interface↪→

134 # to the world surrounding the robot:
135 scene = moveit_commander.PlanningSceneInterface()
136

137 # Instantiate a `MoveGroupCommander`_ object. This object is an
interface↪→

138 # to one group of joints.
139 # This interface can be used to plan and execute motions on the robot:
140 group_name = "p26_lefty_tcp"
141 group =

moveit_commander.MoveGroupCommander(group_name)#,robot_description='/p26_lefty/robot_description',
ns='/p26_lefty')

↪→

↪→

142

143 ## We create a `DisplayTrajectory`_ publisher which is used later to
publish↪→

144 ## trajectories for RViz to visualize:
145 display_trajectory_publisher =

rospy.Publisher('p26_lefty/move_group/display_planned_path',↪→

146

moveit_msgs.msg.DisplayTrajectory,↪→

147 queue_size=20)
148

149 # Getting Basic Information
150 # ^^^^^^^^^^^^^^^^^^^^^^^^^
151 # We can get the name of the reference frame for this robot:
152 planning_frame = group.get_planning_frame()
153 print "============ Reference frame: %s" % planning_frame
154

155 # We can also print the name of the end-effector link for this group:
156 eef_link = group.get_end_effector_link()
157 print "============ End effector: %s" % eef_link
158

159 # We can get a list of all the groups in the robot:
160 group_names = robot.get_group_names()
161 print "============ Robot Groups:", robot.get_group_names()

110

162

163 # Sometimes for debugging it is useful to print the entire state of the
164 # robot:
165 #print "============ Printing robot state"
166 #print robot.get_current_state()
167 #print ""
168

169 # Misc variables
170 self.box_name = ''
171 self.robot = robot
172 self.scene = scene
173 self.group = group
174 self.display_trajectory_publisher = display_trajectory_publisher
175 self.planning_frame = planning_frame
176 self.eef_link = eef_link
177 self.group_names = group_names
178

179 # Allow replanning to increase the odds of a solution
180 group.allow_replanning(True)
181 # Allow some leeway in position (meters) and orientation (radians)
182 group.set_goal_position_tolerance(0.01)
183 group.set_goal_orientation_tolerance(0.05)
184

185 def go_to_joint_state(self):
186 group = self.group
187

188 ## Planning to a Joint Goal
189 ## ^^^^^^^^^^^^^^^^^^^^^^^^
190 joint_goal = group.get_current_joint_values()
191 print "moving from "
192 print joint_goal
193 joint_goal[0] = 0
194 joint_goal[1] = 0
195 joint_goal[2] = 0
196 joint_goal[3] = 0
197 joint_goal[4] = 0
198 joint_goal[5] = 0
199 joint_goal[6] = 0
200 print "moving to "
201 print joint_goal
202

203 # The go command can be called with joint values, poses, or without any
204 # parameters if you have already set the pose or joint target for the

group↪→

205 group.go(joint_goal, wait=True)
206

111

207 # Calling ``stop()`` ensures that there is no residual movement
208 group.stop()
209

210 current_joints = self.group.get_current_joint_values()
211 return all_close(joint_goal, current_joints, 0.01)
212

213 def go_to_pose_goal(self, x, y, z, xd, yd, zd, distance):
214 group = self.group
215

216 ## Planning to a Pose Goal
217 ## ^^^^^^^^^^^^^^^^^^^^^^^
218 ## We can plan a motion for this group to a desired pose for the
219 ## end-effector:
220

221 eef_pose = group.get_current_pose().pose
222 P_eef = [eef_pose.position.x, eef_pose.position.y, eef_pose.position.z]
223 P_com = [x,y,z]
224

225 D = [xd, yd, zd]
226

227 v0 = [0,0,1]
228 if zd > 0.9:
229 v0 = [1,0,0]
230

231 u = np.cross(D, v0)
232 u = normalize(u)
233

234 a = np.array([])
235 for i in range(360):
236 a = np.append(a, GraspingPointCandidate(i*(2*np.pi)/360, D, u, P_com,

P_eef))↪→

237

238 smallest_distance = 1000000
239 for i in range(360):
240 if a[i].d < smallest_distance:
241 smallest_distance = a[i].d
242 a_saved = a[i]
243

244 U = a_saved.u
245

246 W0 = [-U[1], U[0], 0]
247 U0 = np.cross(W0, U)
248 angle_H=atan2(U[1],U[0])
249 angle_P=asin(U[2])
250 angle_B = atan2(np.dot(W0,D) / vec_length(W0), np.dot(U0,D) /

vec_length(U0))↪→

112

251

252 q = euler_to_quaternion(-angle_B+np.pi/4, angle_P, np.pi+angle_H)
253 q = normalize(q)
254

255 #q = euler_to_quaternion(0, np.pi/2, np.pi) # Straight down
256 #q = euler_to_quaternion(0, np.pi, np.pi) # Straight backwards and upside

down↪→

257 #q = euler_to_quaternion(0, 0, np.pi) # Straight forwards
258 #q = euler_to_quaternion(0, 0, 0) # Straight backwards
259

260 pose_goal = geometry_msgs.msg.Pose()
261 pose_goal.orientation.x = q[0]
262 pose_goal.orientation.y = q[1]
263 pose_goal.orientation.z = q[2]
264 pose_goal.orientation.w = q[3]
265

266 pose_goal.position.x = x+distance*U[0]
267 pose_goal.position.y = y+distance*U[1]
268 pose_goal.position.z = z+distance*U[2]
269 state = self.robot.get_current_state()
270 group.set_start_state(state)
271 group.set_pose_target(pose_goal)
272

273 ## Now, we call the planner to compute the plan and execute it.
274 plan = group.go(wait=True)
275 # plan = move_group.plan()
276 # if plan.joint_trajectory.points: # True if trajectory contains points
277 # move_success = move_group.execute(plan)
278 # else:
279 # rospy.logerr("Trajectory is empty. Planning was unsuccessful.")
280

281 # Calling `stop()` ensures that there is no residual movement
282 group.stop()
283 # It is always good to clear your targets after planning with poses.
284 # Note: there is no equivalent function for clear_joint_value_targets()
285 group.clear_pose_targets()
286

287 # For testing:
288 current_pose = self.group.get_current_pose().pose
289 print "moving to:"
290 print pose_goal
291 return all_close(pose_goal, current_pose, 0.01)
292

293 cylinder_com = geometry_msgs.msg.Point()
294 cylinder_dirvec = geometry_msgs.msg.Point()
295 cylinder = moveit_msgs.msg.CollisionObject()

113

296

297 def callback_com(data):
298 global cylinder_com
299 cylinder_com = data
300 rospy.loginfo("Received cylinder center of mass: %f , %f , %f",

cylinder_com.x, cylinder_com.y, cylinder_com.z)↪→

301

302 def callback_dirvec(data):
303 global cylinder_dirvec
304 cylinder_dirvec = data
305 rospy.loginfo("Received cylinder direction vector: %f , %f , %f",

cylinder_dirvec.x, cylinder_dirvec.y, cylinder_dirvec.z)↪→

306

307 def callback_CollisionObject(CollisionObject):
308 global cylinder
309 cylinder = CollisionObject
310

311 gripper_position = 0
312

313 def gripper_pos(data):
314 global gripper_position
315 gripper_position = data.data
316 rospy.loginfo("Received gripper position: %i", gripper_position)
317

318 def wait_for_gripper():
319 rospy.wait_for_message("gripper/position", UInt8, timeout=None)
320

321 def main():
322 try:
323 # The anonymous=True flag means that rospy will choose a unique
324 # name for our 'listener' node so that multiple listeners can
325 # run simultaneously.
326 rospy.init_node('pick_and_place', anonymous=True)
327

328 pub = rospy.Publisher('gripper/actuation', UInt8, queue_size=10)
329 pub_find_cylinder = rospy.Publisher('find_cylinder', Bool, queue_size=10)
330 pub_create_octomap = rospy.Publisher('create_octomap', Bool,

queue_size=10)↪→

331 # rospy.Subscriber("octomap_created", String, gripper_pos)
332 rospy.Subscriber("gripper/position", UInt8, gripper_pos)
333 rospy.Subscriber("cylinder_com", geometry_msgs.msg.Point, callback_com)
334 rospy.Subscriber("cylinder_dirvec", geometry_msgs.msg.Point,

callback_dirvec)↪→

335

336 # Wait for the cylinder segmentation to complete.

114

337 rospy.wait_for_message("cylinder_dirvec", geometry_msgs.msg.Point,
timeout=None)↪→

338 rospy.sleep(1)
339 lefty_robot = MoveGroupPickAndPlace()
340

341 pub_create_octomap.publish(1)
342 rospy.wait_for_message("octomap_created", Bool, timeout=None)
343

344 print "============ Press `Enter` to start the pick-and-place
operation..."↪→

345 raw_input()
346

347 while not rospy.is_shutdown():
348

349 # Open gripper
350 actuation = 1;
351 pub.publish(actuation)
352 #wait_for_gripper()
353 while gripper_position != 1:
354 pub.publish(actuation)
355 rospy.sleep(1)
356 if gripper_position == actuation:
357 break
358

359 pub_create_octomap.publish(1)
360 rospy.wait_for_message("octomap_created", Bool, timeout=None)
361 rospy.sleep(1)
362

363 lefty_robot.go_to_pose_goal(cylinder_com.x, cylinder_com.y,
cylinder_com.z, cylinder_dirvec.x, cylinder_dirvec.y,
cylinder_dirvec.z, 0.1925)

↪→

↪→

364

365 if gripper_position == 1:
366 # Move to gripping position
367 rospy.loginfo("Moving robot to target 3")
368 # lefty_robot.go_to_pose_goal(cylinder_com.x, cylinder_com.y,

cylinder_com.z, cylinder_dirvec.x, cylinder_dirvec.y, cylinder_dirvec.z,
0.14)

↪→

↪→

369

370 #Close gripper
371 actuation = 2
372 pub.publish(actuation)
373

374 else:
375 # Gripper malfunction
376 rospy.loginfo("Gripper malfunction")

115

377

378 # Waiting for completion from gripper
379 wait_for_gripper()
380

381 if gripper_position == 2:
382 rospy.loginfo("Cylinder attatched")
383

384 lefty_robot.group.attach_object('cylinder')
385

386 #print "============ Press `Enter` when the cylinder is physically
attatched..."↪→

387 #raw_input()
388 pub_create_octomap.publish(1)
389 rospy.wait_for_message("octomap_created", Bool, timeout=None)
390 rospy.sleep(1)
391

392 lefty_robot.go_to_pose_goal(cylinder_com.x, cylinder_com.y,
cylinder_com.z+0.1, cylinder_dirvec.x, cylinder_dirvec.y,
cylinder_dirvec.z, 0.1925)

↪→

↪→

393

394 lefty_robot.go_to_pose_goal(5.42, 9.23-0.13, 0.86+0.05, 0, 0, 1, 0)
395

396 #print("============ Press `ENTER` to release cylinder")
397 #raw_input()
398

399 #Open gripper
400 actuation = 1
401 pub.publish(actuation)
402 wait_for_gripper()
403

404 lefty_robot.group.detach_object('cylinder')
405

406 print("============ Press `ENTER` when the cylinder is repositioned")
407 raw_input()
408

409 pub_find_cylinder.publish(1);
410

411 # Wait for the cylinder segmentation to complete.
412 rospy.wait_for_message("cylinder_dirvec", geometry_msgs.msg.Point,

timeout=None)↪→

413

414 # lefty_robot.go_to_joint_state()
415

416 print("============ Pick-and-place operation complete!")
417 except rospy.ROSInterruptException:
418 return

116

419 except KeyboardInterrupt:
420 return
421

422 if __name__ == '__main__':
423 main()

E.4 Gripper

The complete package can be found in Github here: https://github.com/sindreb/p26_gripper

E.4.1 > actuation.py

This source code can also be found at Github here: https://github.com/sindreb/p26_gripper/
blob/main/src/actuation.py

#!/usr/bin/env python3.7

import time
import sys
import numpy as np
import RPi.GPIO as GPIO
from pyfirmata import Arduino, util
import pigpio as io

Setup for communication with Arduino
board = Arduino('/dev/ttyACM0') # Define device connection
it = util.Iterator(board) # Receive data into iterator
it.start()
time.sleep(0.1) # Wait for iterator to start
current_sense = board.analog[0] # Define analog pin 0 as current sensor
arm_pos = board.analog[5] # Define analog pin 5 as potmeter

Setup for GPIO on Raspberry
GPIO.setwarnings(False) # Disable warnings from GPIO
GPIO.setmode(GPIO.BOARD) # Use onboard GPIO on Raspberry
pi = io.pi()
pi.set_mode(22, io.OUTPUT)
pi.set_PWM_frequency(22, 20000) # Set pin 15 (BCM 22) as motor PWM output at 20kHz
GPIO.setup(11, GPIO.OUT) # Set pin 11 as output
GPIO.setup(13, GPIO.OUT) # Set pin 13 as output

max_opening_current = 0.55 # Maximum current value for motor at opening
max_closing_current = 2.4 # Maximum current value for motot at closing
max_opening_pos = 0.53 # Maximum opening position value
min_closing_pos_200 = 0.47 # Minimum closing position value for 200mm cylinder
min_closing_pos_260 = 0.485 # Minimum closing position value for 260mm cylinder

117

https://github.com/sindreb/p26_gripper
https://github.com/sindreb/p26_gripper/blob/main/src/actuation.py
https://github.com/sindreb/p26_gripper/blob/main/src/actuation.py

def CCW(speed):
GPIO.output(11, GPIO.HIGH)
GPIO.output(13, GPIO.LOW)
pi.set_PWM_dutycycle(22, speed/100 * 255)

def CW(speed):
GPIO.output(11, GPIO.LOW)
GPIO.output(13, GPIO.HIGH)
pi.set_PWM_dutycycle(22, speed/100 * 255)

def current_average(): # Finds and calculates average/filtered current
current_it = 0
measurement = 40
while current_sense.read() == None: # Passes through initial None value

pass
for current_count in np.arange(1, measurement, 1): # 40 measurements

current_it += current_sense.read()
time.sleep(0.1/measurement) # Time between each measurement

current_avg = np.round(5/0.13*current_it/measurement, 5) # Average of 40 measurement made to estimated ampere, rounded to 5 decimals
return current_avg

def hold(): # Holds torque at the motor by braking to ground
GPIO.output(11, GPIO.LOW)
GPIO.output(13, GPIO.LOW)
pi.set_PWM_dutycycle(22, 0)

def extend(): # Opening of the arms
print("Opening gripper...")
current_sense.enable_reporting() # Start reporting from current_sense and arm_pos
arm_pos.enable_reporting()
extended = 0
current_avg = 0
current_max_count = 0
arm_pos_max = 0

while current_sense.read() == None: # Passes through initial None values
pass

while arm_pos.read() == None:
pass

if arm_pos.read() >= max_opening_pos: # Checks if arms alrady in open position
hold()
extended = 1
print("Gripper already open")

118

while extended == 0: # Runs while arms are not in open position
CW(20)

while current_max_count < 3 and arm_pos_max < 2: # Runs while position and current is within threshold values
current_avg = current_average()
arm_position = arm_pos.read()

if current_avg > max_opening_current:
current_max_count += 1

if arm_position > max_opening_pos:
arm_pos_max += 1

print(current_avg, ", ", arm_position)
extended = 1

hold()
current_sense.disable_reporting() # Start reporting from current_sense
arm_pos.disable_reporting()

def retract(cylinder_size):
print("Closing gripper...")
current_sense.enable_reporting() # Start reporting from sensors
arm_pos.enable_reporting()
CCW(30)
current_avg = 0
current_max_count = 0
arm_pos_min_count = 0

if cylinder_size == 260:
arm_pos_min = min_closing_pos_260

elif cylinder_size == 200:
arm_pos_min = min_closing_pos_200

while current_sense.read() == None: # Passes through initial None value
pass

while arm_pos.read() == None:
pass

while current_max_count < 3 and arm_pos_min_count < 2:
if current_avg > max_closing_current:

current_max_count += 1

arm_position = arm_pos.read()
if arm_position < arm_pos_min:

119

arm_pos_min_count += 1
current_avg = current_average()
print(current_avg, ", ", arm_position)

CCW(9) # Hold motor still with sufficient strength
current_sense.disable_reporting() # Stop reporting from sensors
arm_pos.disable_reporting()

E.4.2 > gripping.py

This source code can also be found at Github here: https://github.com/sindreb/p26_gripper/
blob/main/src/gripping.py

#!/usr/bin/env python3.7

import rospy
from std_msgs.msg import UInt8
import time
from actuation import extend, retract, hold

pub = rospy.Publisher('p26_lefty/gripper/position', UInt8, queue_size=100)

def grip_procedure(data): # Callback function that stores global actuation variable from topic
global actuation
actuation = data.data

rospy.init_node('gripper', anonymous=True)
rate = rospy.Rate(10)
rospy.Subscriber("p26_lefty/gripper/actuation", UInt8, grip_procedure)

def open_grip(): # Opening gripper and publish position
extend()
gripper_pos = 1 #1 open, 2 closed
rospy.loginfo("Gripper open")
pub.publish(gripper_pos)

def close_grip(cylinder_size): # Close gripper and publish position
retract(cylinder_size)
gripper_pos = 2 #1 open, 2 closed
rospy.loginfo("Gripper closed")
pub.publish(gripper_pos)

def main():

rospy.wait_for_message("p26_lefty/gripper/actuation", UInt8, timeout=None)

Actuation value describes what action to perform, 1 open, 2 and 3 closes to corresponding cylinder
if actuation == 1:

120

https://github.com/sindreb/p26_gripper/blob/main/src/gripping.py
https://github.com/sindreb/p26_gripper/blob/main/src/gripping.py

rospy.loginfo("Opening gripper...")
open_grip()

elif actuation == 2:
rospy.loginfo("Closing gripper for 260mm cylinder...")
close_grip(260)

elif actuation == 3:
rospy.loginfo("Closing gripper for 200mm cylinder...")
close_grip(200)

else:
rospy.loginfo("Malfunction")

try:
gripper_pos = 0
pub.publish(gripper_pos) #Publishes that Raspberry initialized and ready for input
while True:

main()

except: # Sets all pins low if error occurs, this stops motor
hold()
rospy.loginfo("An error occured, stopping motor")

121

	Acknowledgements
	Abstract
	Introduction
	Background
	Objective
	Project overview
	Report structure
	Project management

	State-of-the-art
	Perception
	Point cloud processing
	Environment mapping
	Segmentation and model fitting

	Autonomous pick-and-place

	Experimental setup
	Hardware setup
	Software setup
	Point Cloud Library
	Robot Operating System
	MoveIt

	Perception
	Mapping the environment
	Object detection and localization
	RANSAC
	Segmentation
	Extracting the object's pose
	Results
	Adding the cylinder to MoveIt
	Real world validation

	Obstacle mapping
	Denoising
	Results
	Creating an occupancy map with MoveIt

	Gripper development
	Mechanical design
	Concepts
	Soft robotics gripper
	Concept evaluation
	Gripper overall architecture
	Base
	Arms
	Synchronous gears
	Position sensor
	Complete assembly

	Hardware setup
	Controller
	Hardware components
	Installation and software setup

	Control setup
	Control architecture
	Sensor threshold values
	Motor control

	Complete prototype
	Mounting onto industrial robot
	Gripped target

	Autonomous pick-and-place
	Building the robot model
	Unified Robot Description Format
	Semantic Robot Description Format
	Base link and end-effector link
	Collision detection
	Inverse kinematics solver

	Navigation and locomotion of the robot
	Grasping
	Orientation
	Motion planning
	Moving the robot with MoveIt

	System integration
	Pick-and-place functional description
	ROS nodes and topics

	Results
	Gripper
	Pick-and-place

	Discussions
	Object detection and localization
	Obstacle mapping
	Gripper
	Motion Planning

	Conclusions
	Bibliography
	MoveIt Setup Assistant
	Self-collision checking

	ABB IRB4400 Datasheet
	DC Motor w/Gearing
	DC Motor Driver VNH2SP30
	Source code
	Object detection and localization
	main.h
	addCylinder.h
	addCylinder.cpp
	segment.h
	segment.cpp
	main.cpp

	Obstacle mapping
	sensor_kinect_pointcloud.yaml
	sensor_manager.launch
	main.h
	main.cpp

	Pick-and-place
	p26_move.py

	Gripper
	actuation.py
	gripping.py

