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“Remember to look up at the stars and not down at your feet. Try to make 
sense of what you see and wonder about what makes the universe exist. Be 

curious. And however difficult life may seem, there is always something you 
can do and succeed at. 

It matters that you do not just give up.”  
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Resumo 

 

As proteínas tirosina fosfatases (PTPs) são fatores reguladores nas vias de sinalização 

inflamatórias. O sistema nervoso central tem como células imunes residentes as células 

microgliais, as quais participam no início e na propagação da resposta inflamatória. A proteína 

fosfatase de resíduos de tirosina enriquecida no estriado (STEP), é uma fosfatase específica do 

sistema nervoso central codificada pelo gene PTPN5. O mRNA STEP origina por splicing 

alternativo a STEP61, isoforma associada à membrana e a STEP46, isoforma citosólica. A 

desregulação da STEP está implícita na base molecular de vários distúrbios neuropsiquiátricos. 

Os estudos publicados sobre a STEP centram-se na expressão e papel a nível neuronal. Tanto 

quanto é do nosso conhecimento não existem dados publicados sobre a expressão da STEP pela 

microglia ou sobre a regulação da reatividade microglial por esta fosfatase.  

Os nossos dados da análise de PCR mostraram a expressão do RNAm da STEP em culturas 

primárias da microglia obtidas a partir de cérebro de rato. A presença da proteína STEP foi 

também verificada por análise imunocitoquímica e Western blot. Por outro lado, os níveis de 

expressão da STEP parecem ser regulados por exposição a estímulos inflamatórios. Culturas de 

microglia expostas ao agente pró-inflamatório lipopolissacarídeo (LPS) apresentaram níveis 

aumentados de STEP61 e STEP46. Como forma de avaliar o papel da STEP no controlo da 

reatividade da microglia induzida por LPS, recorremos ao inibidor específico da STEP (TC-2153). 

O tratamento com este inibidor reduziu significativamente o número de células microgliais que 

expressam a sintase do óxido nítrico induzida (iNOS) e também o número de células fagocitícas 

quantificadas após a exposição ao LPS. Contudo, a inibição da STEP não afetou 

significativamente a libertação de óxido nitríco nem a expressão da interleucina-1beta (Il-1β) 

ou do fator de necrose tumoral alfa (TNFα). Em suma, nossos resultados mostram que a STEP é 

expressa por células que não pertencem à linhagem neuronal, e sugerem que a STEP participa 

em algumas das vias envolvidas na reatividade da microglial.  
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Abstract 

 

Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling 

pathways. The central nervous system has as resident immune cells the microglial cells, which 

participate in the initiation and propagation of the inflammatory response. STriatal-Enriched 

Protein Tyrosine Phosphatase (STEP) is a central nervous system specific phosphatase encoded 

by the PTPN5 gene. STEP mRNA is alternatively spliced into the membrane-associated STEP61 

and the cytosolic STEP46. Accumulating evidence implicates STEP dysregulation in the molecular 

basis of several neuropsychiatric disorders. Published data about STEP, focus on expression and 

role at the neuronal level. To our knowledge, there are no published data on the expression of 

STEP by microglial cells or on the regulation of microglial reactivity by this phosphatase.  

Our results from PCR analysis show the expression of STEP mRNA in primary cultures of 

microglia obtained from rat brain. STEP expression was further confirmed by the 

immunocytochemical analysis and Western blot. On the other hand, STEP expression levels 

appear to be regulated by exposure to inflammatory stimuli. Microglia cultures exposed to the 

pro-inflammatory agent lipopolysaccharide (LPS) showed increased levels of STEP61 and STEP46. 

To examine the role of STEP in the control of microglia reactivity induced by LPS, we used a 

specific pharmacological inhibitor of STEP (TC-2153). STEP inhibition significantly reduced the 

number of microglial cells expressing inducible nitric oxide synthase (iNOS) and the number of 

phagocytic cells quantified after LPS stimulation.  On the other hand, inhibition of STEP did not 

significantly affect the nitric oxide (NO) release and the expression of Interleukin 1 beta (IL-

1β) or tumor necrosis factor alpha (TNFα). Taken together, our results show that STEP is 

expressed by cells that do not belong to the neuronal lineage and suggest that STEP participates 

in some of the pathways involved in microglia reactivity 
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Resumo alargado  

 

As proteínas tirosinas fosfatases (PTPs) são fatores reguladores chave nas vias de sinalização 

inflamatória.  A proteína fosfatase de resíduos de tirosina enriquecida no estriado (STEP), é 

uma fosfatase específica do sistema nervoso central codificada pelo gene PTPN5.  O mRNA de 

STEP origina por splicing alternativo quatro isoformas baseadas na mobilidade eletroforética, 

as isoformas mais abundantes são a STEP61, isoforma membranar e a STEP46, isoforma citosólica, 

e duas isoformas menos comuns que incluem a STEP38 e a STEP20, sendo estas últimas inativas 

cataliticamente.  A outra isoforma conhecida, STEP33, é obtida através da clivagem da calpaína. 

Em condições fisiológicas, as células microgliais apresentam uma estrutura ramificada e são 

as principais intervenientes na resposta inflamatória inata, participando na primeira linha de 

defesa em resposta a vários estímulos. Num contexto de lesão as células microgliais tornam-se 

reativas e adquirem uma morfologia ameboide responsável pelos processos de migração em 

direção ao local de lesão e ativação de mecanismos de fagocitose para remoção de dendritos 

celulares. A ativação microglial em resposta a um estímulo neurotóxico está geralmente 

associada a um aumento da libertação de fatores pró-inflamatórios e vários mediadores 

neurotóxicos, tais como fator de necrose tumoral-α (TNF-α), interleucina-1β (IL-1β), óxido 

nítrico (NO), espécies reactivas de oxigênio (ROS) e proteases, capazes de provocar 

degeneração neuronal (microglia M1). Por outro lado, dependendo da natureza e da intensidade 

do estímulo, as células da microglia podem libertar citocinas anti-inflamatórias e factores 

neurotróficos envolvidos em mecanismos celulares de protecção e reparação neuronal 

(microglia M2).  

As PTPs podem ser o alvo para a modulação da ativação microglial e ser uma boa estratégia 

para desenvolver terapias em doenças neurodegenerativas e neuroinflamatórias. Actualmente 

não existem dados publicados sobre a expressão da STEP pelas células da microglia ou sobre a 

regulação da reatividade microglial por esta fosfatase. Com este trabalho pretendemos 

determinar se STEP exerce algum papel no controlo da neuroinflamação.  Os nossos dados da 

análise de PCR mostraram a expressão do RNAm da STEP em culturas primárias da microglia 

obtidas a partir de cérebro de rato. A presença da proteína STEP foi também verificada por 

análise imunocitoquímica e Western blot. Por outro lado, os níveis de expressão da STEP 

parecem ser regulados por exposição a estímulos inflamatórios. Culturas de microglia expostas 

ao agente pró-inflamatório lipopolissacarídeo (LPS) apresentaram níveis aumentados de STEP61 

e STEP46.  

Para examinar o papel da STEP no controle da reatividade da microglia, utilizamos como 

ferramenta um inibidor farmacológico específico da STEP (TC-2153) e analisamos sua influência 

na reatividade da microglia que pode ser induzida por uma resposta pró-inflamatória, como a 

exposição ao LPS. A inibição da STEP reduziu significativamente o número de células microgliais 

que após a exposição ao LPS expressam óxido nítrico sintase induzida (iNOS, em cerca de 60%), 
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e que têm atividade fagocitíca (em cerca de 65%). A inibição da STEP não afetou 

significativamente nem a libetração de óxido nitríco nem a expressão da interleucina-1beta (Il-

1β) ou do fator de necrose tumoral alfa (TNFα).  

 

Os nossos resultados sugerem que a reatividade microglial está associada a um aumento nos 

níveis de STEP e que a atividade STEP contribui ainda mais para o processo neuroinflamatório 

É sabido que a neuroinflamação é um dos principais desencadeadores da neurodegeneração, 

uma vez que a reatividade da microglia pode iniciar ou amplificar o dano neuronal, ou ser uma 

consequência disso. Portanto, a inibição da hiperativação microglial pode ser uma boa 

estratégia para desenvolver terapias para doenças neurodegenerativas.  

Os resultados obtidos no presente trabalho sugerem que a inibição STEP pode ser uma 

estratégia terapeutica em processos neuroinflamatórios e, em consequência, ter potencial 

terapêutico em processos neurodegenerativos. 
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1 Introduction 

 
The protein tyrosine phosphatase (PTP) superfamily of enzymes functions in a coordinated 

manner with protein tyrosine kinases to control signalling pathways that underlie a broad 

spectrum of fundamental physiological processes including gene regulation, cell growth, 

differentiation, migration, and synaptic plasticity (Lee et al. 2015; Lombroso et al. 2016; Tonks 

2006). Unlike the protein kinases, which are derived from a common ancestor, the protein 

phosphatases have evolved in separate families that are structurally and mechanistically 

distinct (Tonks 2006). In the human genome, 107 genes encode the four families of protein 

tyrosine phosphatases (Figure 1). Specifically, PTPs are either tyrosine-specific or dual-

specificity phosphatases, and the tyrosine-specific PTPs are further subdivided into receptor-

like or intracellular PTPs.  Receptor-like PTP’s have an extracellular receptor domain, 

transmembrane domain and usually two catalytic domains. In contrast, the nonreceptor 

cytoplasmatic PTP’s contain a single catalytic domain (Goebel-Goody et al. 2012; Johnson and 

Hunter 2005; Zhang 2002). Dysregulation in tyrosine phosphorylation play a role in the 

pathogenesis of numerous inherited or acquired human diseases from cancer to 

neuropsychiatric diseases. Consequently, PTPs are prime targets for drug discover (Cohen and 

Alessi 2013; He et al. 2014). One PTP of particular promise for the treatment of 

neuropsychiatric disorders is striatal-enriched protein tyrosine phosphatase (STEP) (Goebel-

Goody et al. 2012). 

 

 

Figure 1. The class of PTPs. PTPs are either tyrosine-specific or dual-specificity phosphatases, and the 
tyrosine-specific PTPs are further subdivided into receptor-like or intracellular PTPs.  Receptor-like PTP’s 
have an extracellular receptor domain, transmembrane domain and usually two catalytic domains. In 
contrast, the nonreceptor cytoplasmatic PTP’s contain a single catalytic domain. STEP is a member of the 
family of intracellular tyrosine-specific phosphatases. From (Tonks 2006). 
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1.1 STriatal-Enriched Protein tyrosine phosphatase 

The STriatal-Enriched Protein Tyrosine Phosphatase, designated as STEP, is a central nervous 

system (CNS) specific phosphatase encoded by the Ptpn5 gene(Boulanger et al. 1995; Goebel-

Goody et al. 2012; Lombroso et al. 1991) and first described by Paul Lombroso (Lombroso et al. 

1991). The human STEP locus maps to chromosome 11p15.2-p15.1, the rat STEP gene to 

chromosome 1q22 and the murine STEP gene to chromosome 7B3-B5 (Figure 2) (Li et al. 1995). 

 

 

 

 
Figure 2.  STEP localization. The human STEP locus maps to chromosome 11p15.2-p15.1, the rat STEP 
gene to chromosome 1q22 and the murine STEP gene to chromosome 7B3-B5. From (human: 
https://www.ncbi.nlm.nih.gov/gene/84867;mus:https://www.ncbi.nlm.nih.gov/gene/19259;  
rat: https://www.ncbi.nlm.nih.gov/gene/29644). 
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1.1.1 STEP structure  

STEP mRNA is alternatively spliced into four variants (Figure 3) based on their 

electrophoretic mobility (Boulanger et al. 1995; Goebel-Goody et al. 2012; Sharma et al. 1995). 

The most abundant isoforms are STEP61 and STEP46 (Bult et al. 1996; Goebel-Goody et al. 

2012; Li et al. 1995; Lombroso et al. 1993, 2016) and these two STEP isoforms are differentially 

expressed in brain regions (Boulanger et al. 1995; Lorber et al. 2004) and during development 

(Okamura et al. 1997; Raghunathan et al. 1996). Both isoforms are expressed in the striatum, 

central nucleus of the amygdala and the optic nerve, whereas other brain areas such as 

hippocampus, neocortex, spinal cord and lateral amygdala only express the STEP61 isoform 

(Boulanger et al. 1995; Goebel-Goody et al. 2012; Lorber et al. 2004; Xu, Kurup, Nairn, et al. 

2012).To date  studies on STEP focuses only the expression of STEP by neuronal cells (Kamceva 

et al. 2016) and to date, there are no data on the expression of STEP by glial cells.  

Regarding the stages of development in rat STEP61 is abundantly expressed at birth and its 

expression continues throughout adulthood, while STEP46 is expressed from the sixth day after 

birth and progressively increases its expression until the twenty-fourth day post-birth, at which 

it reaches a maximum levels, remaining then constant throughout adult life (Goebel-Goody et 

al. 2012; Okamura et al. 1997; Raghunathan et al. 1996; Xu, Kurup, Nairn, et al. 2012).  

STEP46 is primarily a cytosolic protein, whereas STEP61 is targeted to membrane 

compartments (Bult et al. 1996; Goebel-Goody et al. 2012; Lombroso et al. 1993, 2016). The 

STEP61 isoform contain an additional sequence of 172 aminoacids at its N-terminus which 

include two polyproline (PP) rich regions, two hydrophobic transmembrane domains (TM) and 

two proline-glutamic acid-serine-threonin (PEST) sequences. The function of the PP regions is 

to confer substrate specificity for the STEP isoforms. The Fyn affinity (STEP substrate) to 

associate with STEP61 is ten times greater than with STEP46, since this shorter isoform does not 

contain the PP regions. PEST sequences act as a signal peptides for proteolytic degradation 

(Boulanger et al. 1995; Bult et al. 1996; Goebel-Goody et al. 2012; Lombroso et al. 2016). Both 

STEP61 and STEP46 contains a highly conserved domain at their C-terminus, the consensus 

sequence of PTP ([I/V] HCxAGxxR [S/T] G)1 which is required for the catalytic function, sharing 

an active site pattern consisting of a cysteine and an arginine which are essential for catalysis 

enzymatic activity. The presence of cysteine in the active site is responsible for the common 

characteristic of the protein phosphatases of tyrosine residues, which is to be inhibited by 

pervanadate, p-chloromercuribenzoate, and other oxidizing agents. Upstream of the catalytic 

domain is a kinase-interacting motif (KIM) required to associate STEP with its substrates and 

which plays an essential role in many important biological processes such as the stress response, 

                                                 
1  I-isoleucine, V-valine, H-histidine, C-cysteine, A-alanine, G-glycine, R-arginine, S-serine, T-threonine and X- any 

amino acid 
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cell proliferation, apoptosis and tumorigenesis (Bult et al. 1996; Goebel-Goody et al. 2012; 

Lombroso et al. 2016; Nguyen et al. 2002; Paul et al. 2003; Xu, Kurup, Nairn, et al. 2012).  

Two minor alternatively spliced variants of STEP include STEP38 and STEP20. Both are 

truncated isoforms which do not contain PTP consensus domain and are therefore catalytically 

inactive. The functions of these isoforms are not yet completely clarified, although it was 

suggested they may compete with the catalytically active isoforms for binding to the substrates 

thus preventing tyrosine dephosphorylation (Goebel-Goody et al. 2012; Lombroso et al. 2016; 

Sharma et al. 1995). 

STEP33 is the only isoform resulting from post-tranlational processing mediated by calpains 

(Braithwaite et al. 2008; Goebel-Goody et al. 2012; Gurd et al. 1999; Lombroso et al. 2016).  

 

Figure 3. STEP structure. There are four alternatively spliced variants of STEP (STEP61, STEP46, STEP38, 
and STEP20), and one calpain cleavage product (STEP33). Adapted from (Goebel-Goody et al. 2012). 
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1.1.2  STEP substrates 

The discovery of STEP substrates (Figure 4) was a major advance in understanding the 

possible role of STEP in the regulation of signaling pathways. STEP dephosphorylates and 

inactivates proteins that include the mitogen-activated protein kinase family, glutamate 

receptors, Fyn kinase tyrosine and proline-rich tyrosine kinase 2 (Pyk2)(Goebel-Goody et al. 

2012; He et al. 2014; Lombroso et al. 2016). 

 

 

 

 

 

 

Figure 4. STEP substrates. STEP dephosphorylates ERK1/2, p38, Fyn, Pyk2, and glutamate receptors 
leading to their inactivation. From (Goebel-Goody et al. 2012).  

 

A. Mitogen-activated protein kinase family 

Extracellular Signal-regulated Kinase 1 and 2 (ERK1/2) and Stress-activated Protein Kinase 

p38 (p38) are two members of the mitogen-activated protein kinase family (MAPK). ERK1/2 and 

p38 have opposing actions: ERK1/2 promotes synaptic strengthening (Goebel-Goody et al. 2012; 

He et al. 2014; Paul et al. 2003; Sweatt 2004) and is an essential component in signaling 

pathways that regulate behavioral memory formation whereas p38 activates cell death 

pathways (Borders et al. 2008; Cuenda and Rousseau 2007; Goebel-Goody et al. 2012; He et al. 

2014).  

STEP dephosphorylates regulatory tyrosine residues in the activation loop of ERK1/2 (Tyr204 

in ERK1 and Tyr187 in ERK2) and p38 (Tyr182), leading to inactivation of these proteins (Goebel-

Goody et al. 2012; Robinson and Cobb 1997). Activation of ERK1/2 is achieved by the 

phosphorylation of Thr202 and Tyr204 in ERK1 and Thr185 and Tyr187 in ERK2 through double-

specificity kinases. One function of ERK1/2 is to initiate transcription through activation of the 

transcription factors cAMP response element-binding protein (CREB) and ETS domain-containing 

protein (Elk-1) in the nucleus.  Inactivation of ERK requires the dephosphorylation of 

Tyrosine204/187 by STEP, thus limiting its activity (Goebel-Goody et al. 2012; Paul et al. 2007; 

Robinson and Cobb 1997; Sweatt 2004). The protein p38 is responsible for cellular responses 

under conditions of stress and inflammation and similarly to ERK, its activation is achieved by 
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the phosphorylation of Threonine180 and Tyrosine182. p38 initiates cascades of cell death 

signaling by B-cell lymphoma 2 (Bcl-2) phosphorylation and by the regulation of pro-apoptotic 

proteins and transcription factors. STEP dephosphorylates Tyrosine182 and consequently 

inactivates p38 (Cuadrado and Nebreda 2010; Goebel-Goody et al. 2012; Muñoz et al. 2003; Xu 

et al. 2009). 

The ability of STEP to regulate two opposing mitogen activated protein kinases (MAPKs), 

ERK1/2 and p38 depends on whether synaptic or extrasynaptic N-methyl-D-aspartate 

receptors  (NMDARs) are activated (Xu et al. 2009). Prolonged glutamate stimulation results in 

activation of extrasynaptic NMDARs and cleavage of STEP61 by calpains, resulting in a 

nonfunctional isoform, STEP33. STEP33 lacks an intact KIM domain and does not interact with its 

substrates, including p38. This leads to the sustained activation of p38 and favors p38-mediated 

cell death pathways. In contrast, synaptic NMDAR stimulation leads to ubiquitination and 

degradation of STEP61 and subsequent ERK1/2 activation, favoring the development of synaptic 

plasticity and neuronal survival. Both promote the reduction of STEP61 levels. The synaptic 

stimulation leads to phosphorylation of ERK1/2, whereas extrasynaptic stimulation leads to 

phosphorylation of p38. These events seem mechanistically distinct because extrasynaptic 

NMDAR-mediated cleavage and inhibition of STEP61 fail to activate ERK1/2. Perhaps the answer 

to this conundrum lies in the subcellular localization of p38 and ERK1/2. Specifically, p38 is 

more concentrated in extrasynaptic membranes compared with synaptic membranes, so 

extrasynaptic stimulation could lead to the selective cleavage of the extracellular pool of STEP 

(Goebel-Goody et al. 2012; Xu et al. 2009). Alternatively, it is possible that extrasynaptic 

NMDAR stimulation promotes dominant ERK-inactivating signals that supersede STEP cleavage 

(Hardingham and Bading 2010). Nonetheless, STEP role in regulating ERK1/2 and p38 after 

synaptic and extrasynaptic NMDAR activation, respectively, probably explains why 

extrasynaptic stimulation promotes cell death, whereas synaptic stimulation promotes cell 

survival (Goebel-Goody et al. 2012; Xu et al. 2009).  

 

 

 

 

 

 

Figure 5. Ability of STEP to regulate two opposing MAPKs. The synaptic stimulation promotes synaptic 
strengthening, while extrasynaptic stimulation promotes cell death pathway. From (Goebel-Goody et al. 
2012). 
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B. Glutamate Receptors 

STEP regulates the phosphorylation and surface expression of two glutamate receptor 

subtypes, N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) (Braithwaite et al. 2008; Goebel-Goody et al. 2012). 

The NMDA receptor is a glutamate receptor and ion channel protein found in nerve cells 

(Schorge and Colquhoun 2003). NMDARs are heteromeric ligand gated ion channels assembled 

from two subunit families: NR1, which consists of eight recognized isoforms that are generated 

from alternative splicing of a single gene, and NR2, composed of NR2A, NR2B, NR2C and NR2D, 

encoded by four distinct genes. The NR1 subunit is essential for functional NMDAR channels, 

whereas the four NR2 subunits modulate channel activity and functional properties of the 

receptors (Jiang et al. 2011). STEP61 regulates the phosphorylation of NR2B by two parallel 

mechanisms: by direct dephosphorylation of NR2B Tyr1472 (Snyder et al. 2005; Xu et al. 2010) 

and indirectly via dephosphorylation and inactivation of the SFK Fyn(Nguyen et al. 2002). 

Phosphorylation of Tyr1472 tightly and dynamically regulates the surface expression of NR2B 

(Roche et al. 2001). Tyr1472 resides within a conserved tyrosine-dependent endocytic motif. 

When dephosphorylated, the tyrosine residue in this motif binds to clathrin and adapter protein 

2 via strong hydrophobic interactions and promotes endocytosis. Corroborating this hypothesis, 

the surface expression of NR1/NR2B receptor complexes is elevated in STEP knockout (KO) mice 

(Venkitaramani et al. 2011; Zhang et al. 2010). 

The AMPA receptor is an ionotropic transmembrane receptor for glutamate that mediates 

fast synaptic transmission in the central nervous system. AMPARs are ligand-gated ion channels 

composed of four types of subunits, designated as GluR1, GluR2, GluR3, and GluR4 (Mayer and 

Armstrong 2004). Although the molecular mechanisms underlying tyrosine-dependent 

internalization of AMPARs remains incompletely understood, STEP61 seems to promote the 

endocytosis of AMPARs in a manner similar to that in which it promotes NMDARs, by 

dephosphorylating a key tyrosine residue in the GluR2 subunit (Gladding et al. 2009; Moult et 

al. 2006) (Chen et al. 2013; Zhang et al. 2008). Whether internalized NMDAR and AMPAR 

complexes are recycled or degraded is not yet known (Lombroso et al. 2016). S-3,5-

dihydroxyphenylglycine (DHPG, a potent agonist of group I metabotropic glutamate receptors 

[mGluR]) leads to internalization of GluR1/GluR2. DHPG stimulation of mGluRs increases the 

local translation of STEP, resulting in the subsequent dephosphorylation and endocytosis of 

GluR1/GluR2. Moreover, neuronal cultures from STEP knockout mice display increased surface 

expression of AMPARs and do not undergo DHPG-mediated AMPAR endocytosis; however, 

internalization of AMPARs can be restored with the re-introduction of STEP into the knockout 

mouse culture (Zhang et al. 2008). 
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C. Tyrosines Kinases  

Two other STEP substrates are Fyn kinase tyrosine and proline-rich tyrosine kinase 2 (Pyk2). 

Dephosphorylation of the regulatory tyrosines in their activation loops inactivates these kinases 

(Nguyen et al. 2002; Xu, Xu et al. 2012). STEP61 has two polyproline-rich regions that, in addition 

to the KIM domain, are involved in substrate binding and contribute to substrate specificity; 

the first polyproline domain facilitates binding to Fyn (Nguyen et al. 2002), while the second 

polyproline domain is necessary for binding to Pyk (Xu et al. 2012). Of note, Fyn phosphorylates 

NR2B at Tyr1472, the same site that is dephosphorylated by STEP. Thus, STEP dephosphorylates 

NR2B directly and at the same time dephosphorylates and inactivates the kinase that 

phosphorylates NR2B (Nakazawa et al. 2001; Nguyen et al. 2002; Snyder et al. 2005). 

Current studies suggest that PTPα, an activator of Fyn kinase, is a new STEP substrate 

dephosphorylated by STEP at Tyr789 (Xu et al. 2015). In contrast to STEP, which 

dephosphorylates the activation loop and thereby inactivates Fyn, PTPα dephosphorylates a 

distinct inhibitory pTyr residue in Fyn (Engen et al. 2008; Ingley 2008).  Notably, inactivation 

of STEP contributes to the increased tyrosine phosphorylation of PTPα and subsequent 

translocation into lipid raft fractions, leading to the activation of Fyn (Xu et al. 2015). Thus, 

STEP has a two modes of inactivating Fyn: it directly inactivates Fyn and concomitantly prevents 

activation of Fyn by PTPα by blocking its translocation to the membrane (Lombroso et al. 2016). 
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1.1.3 STEP regulation  

Expression and ability of STEP to bind to and dephosphorylate its substrates is regulated by 

several known mechanisms: phosphorylation, proteolytic cleavage, dimerization and 

ubiquitination. Some of these mechanisms are disrupted in animal models with neuropsychiatric 

disorders leading to changes in STEP activity(Goebel-Goody et al. 2012).  

A. Phosphorylation 

Phosphorylation is an important form of posttranslational modification that regulates various 

intracellular signaling pathways. STEP61 and STEP46 contain a kinase interacting motif, which 

regulates the interactions of STEP with its substrates. Both STEP61 and STEP46 isoforms are 

phosphorylated by cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA), 

(Goebel-Goody et al. 2012; Paul et al. 2000). PKA-mediated STEP phosphorylation is promoted 

by activation of the dopamine receptor D1 (D1R). D1R activation stimulates cAMP synthesis and 

activates PKA, which in turn leads to phosphorylation of both STEP61 and STEP46 at a conserved 

serine residue (designated Ser221 in STEP61 and Ser49 in STEP46) (Valjent et al. 2005). The 

phosphorylation of the serine residues prevents STEP from interacting with its substrates. 

Activation of PKA stimulates dopamine- and cAMP-regulated phosphoprotein of 32 kDa 

(DARPP-32) phosphorylation at Thr34 and thereby converts DARPP-32 into a potent inhibitor of 

protein phosphatase-1 (PP1), the phosphatase that dephosphorylates STEP Ser221 thus promoting 

the interaction of STEP61 with its substrates. Conversely, neuronal stimulation triggers calcium 

influx and activation of calcineurin to dephosphorylate and inactivate DARPP-32, thereby 

reducing DARPP-32-mediated inhibition of PP1 and increasing STEP61 activity by reducing 

phosphorylation of Ser221 (Goebel-Goody et al. 2012; Svenningsson et al. 2004; Valjent et al. 

2005).  

 

 

 

 

 

 

Figure 6. Regulation of STEP phosphorylation.  D1R activation stimulates cAMP synthesis and activates 
PKA, which phosphorylates STEP61 at Ser221. Phosphorylation inhibits the binding of STEP to its substrates. 
PKA also leads to phosphorylation and activation of DARPP-32. When phosphorylated, DARPP-32 inhibits 
PP1 activity, which is the phosphatase that dephosphorylates STEP and promotes the interaction with its 
substrates. Conversely, NMDAR stimulation initiates calcium influx and activation of calcineurin/PP2B to 
dephosphorylate and inactivate DARPP-32, thereby reducing DARPP-32-mediated inhibition of PP1 and 
increasing STEP activity by reducing phosphorylation of Ser221. From (Goebel-Goody et al. 2012). 
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B. Proteolytic cleavage 

STEP61 is proteolytically cleaved by a calcium-dependent mechanism involving calpains. This 

cleavage occurs between residues Ser224 and Leu225 in the KIM domain, resulting in a 

nonfunctional isoform, STEP33. STEP33 can not associate with or dephosphorylate its substrates 

(Xu et al. 2009). This cleavage frequently occurs after strong glutamatergic stimulation such as 

during excitotoxic or ischemic insult. A peptide that spans the STEP61 cleavage site blocks the 

proteolysis of STEP61 and is neuroprotective against glutamate excitotoxicity and oxygen-

glucose deprivation (Xu et al. 2009). These findings denote that treatments preventing the 

cleavage of STEP61 may be useful in stroke/ischemia (Braithwaite et al. 2008; Goebel-Goody et 

al. 2012; Gurd et al. 1999; Xu et al. 2009). 

 

 

 

 

 

 

Figure 7. Proteolysis of STEP61.Extrasynaptic NMDAR stimulation invokes calpain-mediated proteolysis of 
STEP61 producing the truncated cleavage product STEP33. The p38 is preferentially activated by 
extrasynaptic NMDAR stimulation, and the cell death pathways are subsequently initiated. From (Goebel-
Goody et al. 2012). 

 

C. Dimerization  

Dimerization of STEP61 occurs within the hydrophobic region of the amino terminus of STEP61 

and involves intermolecular disulfide bond formation between two cysteine residues (Cys65 and 

Cys76). Only dimerization of STEP61 occurs, not STEP46, leading to decreased of phosphatase 

activity.  Under conditions of oxidative stress, induced by hydrogen peroxide, STEP61 dimers 

are formed leading to further decrease in phosphatase activity.  Although STEP46 does not 

undergo basal dimerization, the exposure to oxidative stress may induce the formation of STEP46 

oligomers and moderate loss of activity (Deb et al. 2011). Since oxidation of the cysteine 

residue at the catalytic site also leads to inhibition of tyrosine phosphatase activity, these 

studies may suggest a class of noncompetitive STEP inhibitors(Goebel-Goody et al. 2012). 
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D. Ubiquitination  

The ubiquitination of target proteins involves the covalent attachment of ubiquitin to the 

substrate and often leads to proteasomal degradation of the protein.  Data from the literature 

associates impairement of the ubiquitin proteasome system (UPS) to cancer and 

neurodegeneratives diseases (Hegde 2010). STEP61 is a target for ubiquitin-mediated 

proteasomal degradation. STEP ubiquitination is differentially regulated by synaptic and 

extrasynaptic NMDARs. When synaptic NMDARs are stimulated, STEP61 is ubiquitinated and 

rapidly degraded from synaptic sites by the UPS pathway presumably to diminish STEP activity 

and permit enhanced signaling of STEP substrates that promote synaptic plasticity (Goebel-

Goody et al. 2012; Xu et al. 2009). STEP degradation is required for sustained ERK activation. 

Activated ERK phosphorylates several synaptic and cytoplasmic proteins, and is translocated to 

the nucleus where it phosphorylates and activates transcription factors such as CREB and Elk-1 

(Thiels and Klann 2001; Xu et al. 2012). These events can have lasting effects on the formation 

and stabilization of dendritic spines and therefore contribute to long-term information 

storage(Xu et al. 2012). 

Although the molecular mechanisms underlying ubiquitination of STEP61 are still 

misunderstood, the amino-terminal region of STEP61 contains two PEST sequences (Bult et al. 

1996) and these are often found in proteins degraded by the UPS. Current investigations are 

aimed at addressing whether phosphorylation of residues adjacent to the PEST sequences 

and/or other mechanisms are responsible for initiating STEP61 ubiquitination(Goebel-Goody et 

al. 2012). Kurup et al, demostrate that parkin is an E3 ubiquitin ligase that regulates STEP61 

levels through the ubiquitin proteasome system. In cellular models, parkin ubiquitinates STEP61, 

whereas clinically relevant parkin mutants fail to do so. In Parkinson’s disease, in which parkin 

function is compromised, STEP61 accumulates and the increase in STEP61 is associated with a 

decrease in the phosphorylation of its substrate ERK1/2 and the downstream target of ERK1/2, 

pCREB, due to down-regulation of synaptic proteins required for neuronal plasticity.These 

studies suggest that STEP61 is a substrate of parkin (Kurup et al. 2015). 

 

 

 

 

 

 

Figure 8. STEP ubiquitination. Synaptic NMDAR stimulation results in the degradation of STEP61 by 
ubiquitin proteasome system, leads to an increase in ERK1/2 activation and promotes neuronal survival. 
From (Goebel-Goody et al. 2012).  
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1.1.4 STEP inhibition 

Neuropsychiatric disorders might benefit from the development of STEP inhibitors. Xu et al, 

identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine 

hydrochloride (known as TC-2153) as a novel inhibitor of STEP activity with an IC50 of 24.6nM 

(Figure9). TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide 

pharmacophore. The mechanism by which TC-2153 inhibits STEP activity involves the formation 

of a covalent bond with a cysteine residue within the catalytic domain of STEP (Xu et al. 2014). 

The oxidative attack and addition of a sulfur to the cysteine promotes the loss of STEP catalytic 

activity and increased tyrosine phosphorylation of STEP substrates in neuronal cultures and WT 

mice. Mass spectrometry confirmed the modifications of cysteine  in the active site, suggesting 

that a sulfur from the benzopentathiepin ring is retained (Boivin et al. 2010; Hertog et al. 

2008).  Current studies showing that oxidative regulation of PTPs is an important regulatory 

mechanism occurring in cells link tyrosine phosphorylation signaling and redox status (Boivin et 

al. 2010; Hertog et al. 2008).  

 

 

 

 

 

Figure 9. STEP inhibitor. The benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-
amine hydrochloride (known as TC-2153) inhibits STEP activity by the formation of a covalent bond with 
a cysteine residue within the catalytic domain of STEP. 
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1.1.5 STEP and neurodegenerative diseases 

Many studies focused on understanding how STEP dysregulation contributes to the 

pathophysiology of neuropsychiatric disorders. In cases, such as in Alzheimer’s disease (AD), 

Schizophrenia (SZ) and Fragile X Syndrome (FXS), epileptogenesis, and alcohol-induced memory 

loss, STEP protein level and activity are up-regulated. In others, such as Huntington’s disease 

(HD), drug abuse, stroke/ischemia, and inflammatory pain STEP protein and/or activity is down-

regulated (Goebel-Goody et al. 2012).
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Table 1. Neuropsychiatric disorders associated with changes in STEP. From (Goebel-Goody et al. 2012). 
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A. Disorders associated with up-regulation of STEP protein levels or 

activity 

- Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder associated with 

memory impairments. It is characterized by hyperphosphorylation of tau protein, accumulation 

of β-amyloid peptide (Aβ) and the formation of amyloid plaques, all of which have been 

implicated in synaptic loss and cognitive decline (Paul et al. 2007; Xu et al. 2012). 

In AD, Aβ peptide through α7nAChRs binding and synaptic NMDAR stimulation leads to Ca2+ 

influx into neurons and evokes activation of PP2B/calcineurin and PP1 to dephosphorylate 

STEP61 at Ser221, thereby increasing the affinity of STEP61 for its substrates (Snyder et al. 2005). 

Aβ modulates STEP through another parallel pathway. Aβ peptide inhibits the ubiquitin 

proteasome system and prevents degradation of STEP61. The result is an accumulation of 

unphosphorylated and active STEP61 protein in AD, which leads to inappropriate 

dephosphorylation of NR2B Tyr1472 and internalization of NR2B-containing NMDARs (Goebel-

Goody et al. 2012; Xu et al. 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. STEP in Alzheimer´s disease. Aβ modulates STEP via two parallel pathways: Aβ peptide 
binding to α7nAChRs and synaptic NMDAR stimulation leading to a Ca2+ influx into neurons and invoke 
activation of PP2B/calcineurin and PP1 to dephosphorylate STEP61, thereby increasing the affinity of 
STEP61 for its substrates. The other pathway, Aβ peptide inhibits the ubiquitin proteasome system and 
prevents degradation of STEP61. The result is an accumulation of unphosphorylated and active STEP61 
protein levels in AD, which leads to inappropriate dephosphorylation of NR2B Tyr1472 and internalization 
of NR2B-containing NMDARs. From (Goebel-Goody et al. 2012). 

 

-Schizophrenia (SZ) has a complex etiology, in which genetics, the environment, and 

neuronal dysfunction are all contributing factors. SZ is a mental disorder with behavioral and 

cognitive deficits, in part due to the disruption of glutamatergic signaling (Owen et al. 2016). 

Patients with schizophrenia present higher STEP expression in the anterior cingulated cortex 

and dorsolateral prefrontal cortex (Barksdale et al. 2014; Carty et al. 2012). Similar effects 

were observed in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP) 

(Carty et al. 2012). In contrast, STEP knockout mice are less sensitive to acute and chronic PCP 

administration in terms of their locomotor and cognitive effects.  Furthermore, several typical 

and atypical antipsychotic medications, which are D2R antagonists, for schizophrenia treatment 
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can act through STEP. Treatment of mice with antipsychotics induces protein kinase A-mediated 

STEP61 phosphorylation and inactivation and increases NR1/NR2B receptor surface 

expression(Carty et al. 2012; He et al. 2014). This suggests that the beneficial effects of 

neuroleptics are mediated, at least in part, through restoration of NMDAR levels at synaptic 

sites. It has been suggested that proteasome degradation of STEP is blocked in both AD and 

schizophrenia, leading to STEP accumulation and glutamate receptor internalization, which 

further contribute to AD and schizophrenia pathogenesis. (Carty et al. 2012; Zhang et al. 2010). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. STEP in Schizophrenia´s disease. Deficits in glutamatergic neurotransmission are believed to 
underlie the pathophysiology of SZ. Administration of typical and atypical antipsychotics, which are D2R 
antagonists, increase PKA-mediated phosphorylation of STEP. Inactivation of STEP results in increased 
trafficking of NMDARs to synaptosomal surface membranes. From (Fitzpatrick and Lombroso 2011). 

 

B. Disorders associated with down-regulation of STEP protein levels or 

activity 

 

- STEP is highly expressed in striatal projection neurons, the neuronal population most 

affected in Huntington's disease(Saavedra et al. 2011).  

HD is a progressive, fatal, neurodegenerative disorder characterized by poor muscle 

coordination, mood alterations, and dementia (Ross and Tabrizi 2011).  The cause of HD is an 

abnormal CAG expansion in exon-1 of the huntingtin (htt) gene (MacDonald et al. 1993) in 

striatal projection neurons, which constitute the vast majority of striatal neurons (Reiner et al. 

1988). R6/1 mice expressing mutant huntingtin (mhtt), displayed reduced STEP protein levels 

in the striatum and cortex whereas its phosphorylation was increased in the striatum, cortex 

and hippocampus, which correlated with enhanced PKA activity and reduced calcineurin 

activity and futher contributes to an enhancement of STEP phosphorylation and inactivation 

(Saavedra et al. 2011). In accordance with decreased STEP expression and activity, the 

phosphorylation of both ERK1/2 and p38, two targets of STEP, are elevated in R6/1 mice 

striatum later in life (20–30 weeks). Decreased STEP protein levels and hyperphosphorylation 

of STEP are also observed in several other mouse models of HD such as R6/2, Tet/HD94, and 

HdhQ7/Q111, confirming the results from R6/1 mice (Saavedra et al. 2011). 
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1.1.6 Protein tyrosine phosphatases and neuroinflammation  

Protein tyrosine phosphatases (PTPs) are key regulators in inflammatory signaling pathways 

and microglial cells are resident immune cells in the central nervous system that participate in 

the initiation and propagation of an inflammatory response. Therefore, PTPs can be the target  

for modulation of microglial activation and to develop therapeutics for neurodegenerative and 

neuroinflammation diseases (Perry and Holmes 2014; Song et al. 2016). Yet, little is known 

about their role in neuroinflammation and, to our knowledge, there are no data on the 

expression of STEP by microglial cells or on the regulation of microglial reactivity by this 

phosphatase. The expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP2, and 

RPTPβ) was correlated with glial activation and neuroinflammation(Song, Jung, et al. 2016; 

Song, Kim, et al. 2016). 

Song et al. demonstrated that all PTPs described are expressed in the brain and glia (Song, 

Kim, et al. 2016) and expression of PTP1B, SHP2 and LYP are increasead in the inflamed brain. 

The expression of PTP1B, TC-PTP and LYP increases in microglial cells exposed to the pro-

inflammatory agent, lipopolysaccharide (LPS). Specific pharmacological inhibitors of PTPs were 

used to assess the role of PTPs in microglial activation and neuroinflammation. Inhibition of 

PTP1B, TC-PTP, SHP2, LYP and RPTPβ suppressed the production of nitric oxide, a microglial 

reactivity parameter, in LPS-treated microglial cells in a dose-dependent manner. In addition, 

intracerebroventricular injection of inhibitors of PTP1B, PTP-TC, SHP2 and RPTPβ decreased 

microglial activation in a model of LPS-induced neuroinflammation (Song, Kim, et al. 2016). 

These results suggest that multiple PTPs, with different expression patterns and specific 

functions, are involved in the regulation of microglial activation and neuroinflammation (Song, 

Kim, et al. 2016).  
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1.2 Microglia   

Microglial cells were discovered in 1919 by Pio del RioHortega, while using a silver carbonate 

staining method (Wang and Wei 2012).  Microglia represent the endogenous brain defence and 

immune system, responsible for CNS protection against various types of pathogenic factor (Kim 

and de Vellis 2005). The origin of microglia relates to the early colonization of the CNS by 

mesodermal progenitors (Kaur et al. 2001) that arise from the yolk sac (Figure 12) (Alliot et al. 

1999; Ginhoux et al. 2010).  

It is now recognized that monocytes and tissue macrophages are not, as had been previously 

proposed (Furth and Cohn 1976), microglia progenitors in either health or disease (Kierdorf et 

al. 2013; Neumann and Wekerle 2013) and that, in adulthood, microglia are an independent 

self-renewing population(Askew et al. 2017; Bruttger et al. 2015; Tay et al. 2017). Human 

microglia turn over at a yearly median rate of 28% and live, on average, for 4.2 years. It is 

described that most of the microglial population is renewed several times over the course of a 

lifetime (Réu et al. 2017). In support of the importance of microglial self-renewal, a recent 

study demonstrated that the repopulated microglia that rapidly replenish the adult brain 

microglial population after microglial depletion are solely derived from the proliferation of 

residual microglia and not from newly generated progenitors (Huang et al. 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The origin of microglia. Microglia arise early during development from progenitors in the 
embryonic yolk sac. Adapted from (Butovsky and Weiner 2018) 
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1.2.1 Morphological states of microglia 

Microglia exist in resting or activated states depending on the milieu, which differs in the 

healthy CNS and in various disease states. In physiologic conditions, the immune responses are 

fine-regulated in order to maintain tissue homeostasis. In the pathological condition, however, 

the immune responses are uncontrolled to either extreme of the immune balance, which is 

highly related with cell loss or cell dysfunction occurring during the inflammatory processes 

(Bolós et al. 2017; Tang and Le 2016). Under physiological conditions microglia has a resting 

morphology. When the microglial cells detect an insult the cells alter their ramified resting 

morphology and become ameboid (Figure 13)(Bolós et al. 2017). This process is generally called 

"microglial activation" and proceeds through several steps. The M1 (neurotoxicity)/M2 

(neuroprotection) paradigm (Figure 14) is a simplified model to decipher the two polars of the 

inflammatory responses (Colton 2009; Colton and Wilcock 2010; Franco and Fernández-Suárez 

2015). Classical activation originally respond to the injury and infection, and generally act in 

the first line to protect the tissue and promote the destruction of invading pathogens.  

However, they also induce neurotoxicity due to the release of pro-inflammatory factors and 

various neurotoxic mediators such as such as tumor necrosis factor-α (TNF-α), interleukin-1β 

(IL-1β), nitric oxide (NO), reactive oxygen species (ROS), and proteases, and often setup a 

vicious cycle between dying neurons and acute inflammation. Microglia in this state is termed 

“M1 microglia" (Block et al. 2007; Le et al. 2001; Li et al. 2004). After the onset of classical 

activation, an anti-inflammatory and repair phase is rapidly initiated and leads to wound 

healing and brings back tissue homeostasis promoted by “M2 microglia”. Alternative activation 

is limited to the activation state triggered by anti-inflammatory cytokines IL-4 or IL-13 and is 

closely associated with M2 genes that promote anti-inflammation, tissue repair, and 

extracellular matrix (ECM) reconstruction (Colton 2009; Ponomarev et al. 2007). While acquired 

deactivation is another state to alleviate acute inflammation and is induced primarily by uptake 

of apoptotic cells or exposure to anti-inflammatory cytokines such as IL-10 and transforming 

growth factor-β (TGF-β). During the progression of neurodegenerative diseases, there is an 

imbalance of M1/M2 populations with the M1 phenotype being more predominant at late stages 

(Colton and Wilcock 2010; Sawada et al. 1999). 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Morphologies of microglia. Under physiological conditions the microglia in the central nervous 
system has a resting morphology and when detect an insult in the brain microglial cells become ameboid.  
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Figure 14. M1/M2 microglia. Microglia possess states of “classical activation,” “alternative activation,” 
and “acquired deactivation,” depending on the milieu in which they become activated and the factors 
they are stimulated. M1 microglia is neurotoxicity and induce iNOS and NF-κB pathways and produce 
various pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, as well as superoxide, ROS and NO. M2 
microglia is neuroprotective and include the states of both alternative activation and acquired 
deactivation, which are induced by IL-4/IL-13 and IL-10/TGF-β, respectively. M2 microglia facilitate 
phagocytosis of cell debris and misfolded proteins, promote ECM reconstruction and tissue repair, and 
support neuron survival by neurotrophic factors. From (Tang and Le 2016). 
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1.2.2 Microglial markers 

Microglia express macrophage markers, including adhesion G protein coupled receptor E1 

(ADGRE; also known as cell surface glycoprotein F4/80), crystallizable fragment (Fc) receptors, 

αM integrin (ITGAM; also known as CD11b) (Akiyama and McGeer 1990; Perry et al. 1985) and 

the calcium binding protein allograft inflammatory factor 1 (AIF1; also known as IBA1) (Ginhoux 

and Prinz 2015). It is described that Iba1 will stain both ramified and ameboid microglia, 

although expression levels will increase with increased reactivity. Microglia phenotypes can 

also be distinguished by cluster of differentiation 68 (CD68), since this protein express in only 

expressed at high levels in macrophages and activated microglia (Hendrickx et al. 2017). 

However, several proteins have been proposed as specific markers to differentiate between M1 

and M2 states (according to Table 2) (Bolós et al. 2017; Franco and Fernández-Suárez 2015). 

 

Table 2. Specific markers to differentiate microglia M1/M2. Arg1, arginase1; CCL7, chemokine (C-C 
motif) ligand 7; CD, cluster of differentiation; FIZZ1, found in inflammatory zone 1; Iba1, ionized calcium-
binding adapter molecule 1; IFN-γ, interferon γ; IGF-1, insulin growth factor 1; IL, interleukin; iNOS, 
inducible nitric oxide synthase; LPS, lipopolysaccharide; MHC II, major histocompatibility complex II; TGF-
β, transforming growth factor β; TNF-α, tumor necrosis factor α; YM1, chitinase-like 3. Adapted from 
(Bolós et al. 2017). 
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1.2.3 Functions of microglia 

In the normal brain the main function of microglia is ‘surveillance’ (Figure 15)(Chen and 

Trapp 2016). However, microglia exhibits widely differing functions at different stages in life 

and in physiological or pathological situations such as capability for migration and motility, 

phagocytosis and antigen presentation (figure 16 and Table 3) (Tang and Le 2016). In the pre-

natal CNS, microglia regulates the outgrowth of dopaminergic axons in the forebrain and shape 

the fasciculation of axonal tracts in the corpus callosum by providing trophic support to neurite 

formation (Pont-Lezica et al. 2014; Squarzoni et al. 2014). Microglial cells exhibit two types of 

movement activity: in the ramified form they actively move their processes without 

translocation of the cell body. Whereas In the amoeboid form microglial cells move their 

processes, but in addition the whole cell migrate through the brain tissue. Microglial migration 

occurs also during development, when invading monocytes spread through the brain. Another 

type of migration is triggered by a pathological insult when the branched microglia undergoes 

activation, transforms into the amoeboid form and migrates to the lesion site (Kettenmann and 

Verkhratsky 2011). Besides, microglia is also important for regulating the migration and 

positioning of new neurons to ensure that the laminar structure of the cortex is correctly shaped 

(Squarzoni et al. 2014). 

Microglial cells are the innate phagocytes of the CNS tissue. This function is important for 

the normal brain, during brain development, and in pathology and regeneration (Kettenmann 

and Verkhratsky 2011). During fetal neurogenesis, more neurons are produced than are required 

for the development of cerebral cortex. To maintain homeostasis, microglia limit the over-

production of neurons by phagocytizing neural precursor cells (Cunningham et al. 2013).  During 

CNS development microglial phagocytosis is instrumental in removing apoptotic cells and may 

be involved in synapse removal during development and also in pruning synapses in the 

postnatal brain. In response to a lesion, microglial cells accumulate at the damaged site and 

remove cellular debris or even parts of damaged cells. Through phagocytosis microglial cells 

can also remove pathological factors such as beta-amyloid in Alzheimer’s disease or myelin 

fragments in demyelinateing disease (Kettenmann and Verkhratsky 2011). 

Microglia are the dominant antigen presenting cells in the central nervous system. Under 

resting conditions, the expression of the molecular complex for presenting antigen, the major 

histocompatibility complex II (MHCII) and co-stimulatory molecules such as CD80, CD86 and 

CD40 are below detection. Upon injury, microglial cells scavenge cellular debris as part of 

wound healing and tissue repair (Chen and Trapp 2016) and and as a consequence of microglial 

activation the expression of MHCII and co-stimulatory molecules increase. This has been 

described in Multiple Sclerosis witch microglial cells phagocytose myelin, degrade it and present 

peptides of the myelin proteins as antigens. By releasing cytokines such as CCl2 microglial cells 

promote the recruitment of leucocytes to the CNS. Microglia interact with infiltrating T 

lymphocytes and mediate the immune response in the brain by stimulating the proliferation of 

both TH1- and TH2-CD4 positive T cells. (Kettenmann and Verkhratsky 2011).  
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Figure 15. Functions of microglia in physiological conditions. Microglia maintain tissue homeostasis 
during brain development by pruning synapses or phagocytizing redundant neurons. They also participate 
in the proper formation of CNS structures, including cortical lamina formation and axon bundle 
fasciculation. Adapted from(Chen and Trapp 2016) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 16. M1/M2 functions. M1 Microglia promote a pro-inflammatory state, while an anti-inflammatory 
and repair phase mediated by M2 microglia leads to wound healing and brings back tissue homeostasis. 
Adapted from (Tang and Le 2016).
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Table 3. Functions of microglia. From (Boche et al.2013).
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1.2.4 Neuroinflammation  

Neuroinflammation is self-defense reaction of the living brain against a wide range of stimuli 

(CNS trauma, ischemia, infection, toxic insult and autoimmunity) that disrupt physiological 

homeostasis (Gao and Hong 2008). Neuroinflammation is a complex set of processes in brain 

that may begin with microglial activation and may yield both beneficial (anti-inflammatory) or 

a detrimental (pro-inflammatory) effects (Cai et al. 2014). For long time the brain was 

considered a privilaged local because of its limited inflammatory response and lack of lymphatic 

infiltration (Hurley and Tizabi 2013). When a trauma or brain injury occurs, an inflammatory 

response is activated, which may be acute, or may become chronic, in which the activation of 

microglia amplifies its destructive effects, further aggravating the disease. Acute 

neuroinflammation refers mainly to activation of microglia that result in a phagocytic 

phenotype and the release of inflammatory mediators such as cytokines and chemokine. Acute 

neuroinflammatory response executes reparative actions to the benefit of the organism, as it 

tends to engulf dead cells and debris to minimize injury. In contrast, chronic neuroinflammation 

is a long-standing and self-perpetuating neuroinflammatory response that persists long after 

the initial injury or insult.  Chronic neuroinflammation is detrimental to nervous tissue and may 

contribute significantly to the progression of neurodegenerative diseases (Cai et al. 2014; 

Hurley and Tizabi 2013; Kraft and Harry 2011; Streit et al. 2004).  

1.2.5 Lipopolysaccharide-induced Microglial Activation 

Lipopolysaccharide (LPS) has been used to promote the direct activation of glia, in particular 

microglia. LPS is a macromolecular complex consisting of lipid A (consisting of a unique 

diglucosamine backbone to which six fatty acid chains are attached) and a polysaccharide (O-

antigen with multiple repeating units of monosaccharides and a polysaccharide core with an 

unusual sugar (2- keto-3-deoxyoctonate)), linked by a covalent bond. It is found in the outer 

membrane of Gram-negative bacteria and is a potent inducer of inflammation, strongly 

activating microglial cells (Dutta et al. 2008). This endotoxin binds to specific receptors in order 

to induce the release of cytokines and other inflammatory mediators. Toll-like receptor-4 

(TLR4) is up-regulated upon brain inflammation and, together with CD14, is considered the 

major LPS receptor mediating LPS-induced neuroinflammation (Leulier and Lemaitre 2008; Lu 

et al. 2008). LPS associates with soluble LPS binding protein (LBP) and CD14 which is anchored 

outside of the plasma membrane of the microglia. Signal transduction occurs through the 

interaction of the LPS-CD14 complex with the extracellular accessory protein MD-2 and the 

transmembrane TLR4 (Figure 17; Dutta et al. 2008; Liu and Bing 2011; Lu et al. 2008). This 

association trigger the activation of kinases of various intracellular signaling pathways and a 

positive regulation of gene transcription for proinflammatory factors and free radical-

generating enzymes. Thus, when microglia is activated by LPS, the release of cytokines such as 
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IL-1β and TNFα and of prostaglandins is increased,  iNOS expression is induced, with consequent 

increase of NO, and ROS production is also increased (Banati et al. 1998; Block and Hong 2005; 

Gibbons and Dragunow 2006; Kim and Joh 2006; Rubio-Perez and Morillas-Ruiz 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Lipopolysaccharide-induced microglia activation. LPS binding protein (LBP) works as a 
chaperon that enhances the binding of LPS to its intermediate receptor CD14. Association of the LPS-CD14 
complex with Toll like receptor-4 (TLR-4), together with the accessory adaptor protein MD2, initiates 
downstream signaling events that involve mitogen activated protein kinases (MAPK) and transcription 
factors such as nuclear factor-kappa B (NF-κB). Upregulation of gene transcription leads to the production 
and release of cytokines such as TNFα and IL-1β. Induction of COX-2 and iNOS expression results in the 
biosynthesis and release of prostaglandins (PGs) and nitric oxide (NO). Activation of the multi-subunit 
phagocyte oxidase complex (PHOX), also called NADPH oxidase generates superoxide anion that combines 
with NO from iNOS form the more damaging peroxynitrite free radical (ONOO-). Adapted from (Dutta et 
al. 2008; Kiernan et al. 2016). 
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2 Objectives 

 
 

The STEP protein is a central nervous system specific phosphatase. Accumulating evidence 

implicates STEP dysregulation in the molecular basis of several neuropsychiatric disorders. 

Almost all the data concerning STEP focuses on its expression and effects on neurons, with a 

documented role in the postsynaptic modulation of synaptic strength. To our knowledge there 

are no data on the expression of STEP by microglial cells or on the regulation of microglial 

reactivity by this phosphatase. However, it is known that PTPs are key regulatory factors in 

inflammatory signaling pathways and the microglial cells are involved in neuroinflammation.  

This project aims to investigate the contribution of STEP to the regulation of microglial 

reactivity. Different specific objectives were defined for this work: 

 

1. To characterize the expression of different STEP isoforms by primary cultures of 

microglia. 

 

2. To determine if STEP expression is altered by neuroinflammation. 

 

3. To determine the ability of STEP to regulate microglia reactivity. 

 

  

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

 35 

3 Materials and Methods 

 

3.1 Primary cultures of microglia 

All experiments with animals were performed in accordance with the national ethical 

requirements for animal research (Decreto-Lei n.º 113/2013) and with the European Convention 

for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes 

(Directive 2010/63/EU). 

Postnatal Wistar rat pups with 2 to 5 days were sacrificed in order to obtain primary cultures 

of microglia from rat brain (Figure 18). Initially, wistar rat pups were placed on ice until they 

remain in the state of hypothermia. After decapitated, the brain was removed and transferred 

to phosphate buffer saline (PBS)2. The meninges were carefully removed and the resulting tissue 

was mechanically dissociated using sequentially pipette tips of smaller diameter. After 

centrifugation at 405 g for 3 minutes at 37°C (3K18C BioblockScientific; Sigma Laboratory 

Centrifugues), the supernatant was removed and the cells were resuspended in M10C-G3. Viable 

cells were assessed by the trypan blue exclusion method using a neubauer chamber. This 

method is based on the principle that viable cells have intact membranes, which prevent entry 

of the dye, while compromised membranes allow the incorporation of the dye into the cells. 

For cell counting a 1:1 dilution of the cell suspension with trypan blue was performed. Then, 

the cells were plated at a density of 0.352x106 cells/3.60 cm2 in multiwells (Orange scientific), 

coated with poly-D-lysine (P1024-100MG Sigma) which simulates the extracellular matrix, and 

maintained at 37ºC in a 5% CO2 and 95% air atmosphere. After 7 days of culture, the microglia 

was obtained by removal of astrocytes with a trypsin solution4 diluted in a ratio of 1:4 in MEM 

for 30 minutes. Microglia was then mantained in M10C-G at 37ºC in a 5% CO2 and 95% air 

atmosphere, for 5 to 7 days, to alow the cells to acquire a resting state. 

 

 

 

 

 

 

 

 

 
Figure 18. Rat brain of postnatal Wistar rat pups (postnatal day 3). 

                                                 
2 PBS: 1.4M, KCl 27mM, KH2PO4 15mM e Na2HPO4 81mM, pH 7.2 
3 M10C-G consisting of Minimum Essential Medium Eagle (MEM; M0268-1L Sigma) supplemented with 2.2g/l sodium 

bicarbonate (NaHCO3), 0.75% glucose 45%, 0.12% antibiotic (penicillin and streptomycin, Sigma), 0.02% insulin (I5500-
50MG Sigma) and 10% fetal bovine serum (FBS; S0615 Biochrom AG). 
4 Trypsin solution: 0.5g/l Trypsin (Sigma, T7409-10G) and 0.2g/l EDTA.4Na dissolved in PBS 
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3.2 Microglia stimulation 

Before starting cell treatments, the culture medium of microglial cells was renewed with 

M10C-G. The specific pharmacological inhibitor of STEP (TC-2153, 1μM) was added 1 hour before 

adding the pro-inflammatory agent, lipopolysaccharide (LPS 2μg/ml, L4391-1MG Sigma). The 

culture was then maintained at 37ºC in a 5% CO2 and 95% air atmosphere for further 24 hours. 

A scheme of the experimental procedure is represented in figure 2. Supernatants were 

collected for measurement of NO, while the cells were used to evaluate the phagocytic activity 

and the expression of STEP, iNOS, IL-1β and TNFα. 

 

 

 

 
Figure 19. Schematic representation of the experimental procedures used to study the role of STEP 
in neuroinflammation.  
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3.3 Measurement of nitric oxide 

Twenty-four hours after stimulation with LPS, the supernatants were collected and the 

amount of NO was determined by quantification of the accumulated nitrite (NO2
-). Nitrite is a 

primary NO product which upon reaction with sulfanilamide and N-1-naphthylethylenediamine 

(NED) results in a colored azo compound under acidic conditions. This is a diazotization reaction 

originally described by Griess in 1879 (Figure 20). To perform this assay, 50μl of each sample 

were placed in a 96-well plate and then the same amount of the sulfanilamide solution (1% 

sulfanilamide and 5% phosphoric acid diluted in water) was added. The mixture was incubated 

for 8 minutes at room temperature before adding 50μl of a solution containing NED (0.1% N-1-

naphthylethylenediamine diluted in water). After an 8 minutes incubation the absorbance was 

spectrophotometrically quantified at 550 nm (xMarkTMBIO-RAD) (Figure 21). The concentration 

of nitrite was then determined through the standard curve of sodium nitrite (NaNO2). 

 

 
Figure 20. Chemical reactions involved in the measurement of NO2

– with the Griess Reagent System. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21. Multiwell format for the Nitrite Standard reference curve which is spectrophotometrically 
quantified at 550 nm (xMarkTMBIO-RAD). 
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3.4 Evaluation of phagocytic activity 

Cell cultures were incubated at 37ºC for 20 minutes with 500μl /1.9cm2 of a solution 

containing fluorescent microspheres (L1030-1L Sigma) diluted in M10C-G (0.5 μl fluorescent 

microspheres in 25ml M10C-G). After two washes with MEM, to remove the non-engulfed 

microspheres, the cells were fixed with 4% paraformaldehyde (PFA) for 20 minutes. 

Subsequently, the cells were permeabilized by incubation with 1% Triton X-100 in PBS for 5 

minutes. To prevent non-specific binding of the antibodies, PBS containing 0.1% Tween-20 (PBS-

T) and 20% FBS was added and allowed to incubate for 1 hour at room temperature. After the 

blocking period the cells were washed with PBS-T and incubated for 1 hour at room temperature 

with the primary antibody, anti-Iba1 (1:2000; 019-19741WAKO) diluted in PBS-T 1% FBS. At the 

end of this incubation the coverslips were washed 6x during 15 minutes with PBS-T, and then 

incubated with the secondary antibody, anti-rabbit conjugated to Alexa 546 (1:1000; 

Invitrogen) diluted in PBS-T with 1% FBS, during 1 hour at room temperature.  Lastly the cells 

were incubated with 2μM Hoechst 33342 (H1399 Invitrogen), a nuclear marker, prepared in PBS-

T, for 10 minutes. After three washes with PBS-T, the coverslips were mounted on microscope 

slides with DAKO mounting medium (Glostrup, Denmark). The quantification of the phagocytic 

cells was performed by analyzing 25 fields on each coverslip, acquired with a fluorescence 

microscope Axiobserver Z1 (Zeiss), with a 63x objective. In each independent experiment 2 

coverslips/experimental condition were analyzed. 
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3.5 Immunocytochemistry 

STEP and iNOS expression were determined by immunocytochemistry. 

After removal of the culture medium, cells were washed with MEM, fixed with 4% PFA for 

10 minutes and then permeabilized by incubation with 1% Triton X-100 in PBS, for 5 minutes. 

To prevent non-specific binding of the antibodies, PBS-T with 20% FBS and 0.3% albumin was 

added and allowed to incubate for 1 hour (iNOS) or 2 hours (STEP) at room temperature. After 

the blocking period the cells were washed with PBS-T and incubated for one or three nights, 

depending on the antibody, at 4ºC, with the primary antibody diluted in PBS-T 1% FBS. 

Antibodies were used according to Table 1. After incubation with the primary antibody the 

coverslips were washed 6x during 15 minutes with PBS-T, and then were incubated with the 

corresponding secondary antibodies conjugated to Alexa 488 or Alexa 546 fluorophores diluted 

in PBS-T with 1% FBS during 1 hour at room temperature or overnight at 4ºC. After incubation 

with the secondary antibodies, cells were washed again 6x with PBS-T for 15 minutes and then 

incubated for 10 minutes with 2μM Hoechst 33342 (H1399 Invitrogen) prepared in PBS-T. After 

3 further washes, the coverlips were assembled on microscope slides using DAKO mounting 

medium (Glostrup, Denmark). Fluorescent images were acquired on a fluorescence microscope 

(Axiobserver Z1, Zeiss) with a 63x magnification. In each experiment 20 fields per coverlip and 

3 coverlips per experimental condition were analyzed. 

 

Table 4. Primary and secondary antibodies used in the immunocytochemistry assay. 

Protein 
Primary 
Antibody 
source 

Dilution 
Incubation 

time 
Reference/ 
Company 

Secondary 
Antibody 

Dilution 
Incubation 

time 
Company 

STEP mouse 1:1000 60h 
23E5 

Cell SIgnaling 
Technology 

goat anti-
mouse IgG 
conjugated 
to  Alexa 

488 

1:1000 14h Invitrogen 

Iba1 rabbit 1:2000 60h 
019-19741 

WAKO 

goat anti-
rabbit IgG 
conjugated 
to  Alexa 

546 

1:1000 14h Invitrogen 

iNOS mouse 1:500 14h 
610431 

BD Bioscience 

goat anti-
mouse IgG 
conjugated 
to  Alexa 

488 

1:1000 1h Invitrogen 
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3.6 Western Blot 

STEP protein levels were determined by western blotting of cell extracts. 

Protein extracts obtained after cell disruption with 30μl of lysis buffer5 were collected and 

the total protein present in the samples was quantified by the Bradford method using Bovine 

Serum Albumine (BSA) as protein standard. This method is based on the change in absorbance 

of the Coomassie bright blue dye which under acidic conditions binds to the positive residues 

of the proteins acquiring its anionic form. Absorbance was determined at 595nm. 

The sample volume corresponding to 30μg of denatured protein was added to a denaturing 

solution6 and heated at 100°C for 5 minutes. The reducing agent  β-mercaptoethanol was added 

to prevent oxidation of the cysteines and to break the disulfide bridges. Bromophenol blue 

allows visualization of the sample in the well and allows following the migration front during 

the sample run through the gel; glycerol, as it is denser than water, allows the samples to 

deposit at the bottom of the well, preventing them from rising and mixing with the 

electrophoresis buffer. SDS is ionic detergent that binds to proteins in the samples giving them 

a global negative charge. This inherent loading on all proteins after binding to SDS allows them 

to have the same charge/mass ratio. In these conditions the mobility of proteins depends 

exclusively on their molecular weight.  

After denaturation of samples they were added to the stacking gel7, a gel with a high pore 

size. Polymerization of acrylamide was initiated by a peroxide chemical method, in which PSA 

was the initiating peroxide as a source of free radicals and the TEMED quaternary amine was 

the polymerization catalyst for the stabilization of these free radicals. Proteins in the sample 

were separated according to their molecular weight on the resolving gel8 under a voltage of 

130V, for approximately 1 hour at room temperature (BIO-RAD system). Before assembling the 

sandwich for the electrotransfer, the polyvinylidene difluoride (PVDF, GE Healthcare, 

Amersham, UK) membranes were activated by dipping the membranes for 5 seconds in 

methanol 100%, followed by immersion for 5 minutes in water and then 10 minutes in 

electroblotting buffer9 PVDF membranes have a strong affinity for proteins. After the 

electrophoresis was finished, the stacking gel was removed.  In order to make the proteins 

accessible to antibody detection they were transfered from the resolving gel onto a PVDF 

membranes by an electrotransference carried out at 25V for 45 minutes. 

In order to avoid non-specific antibody bindings, the membranes were blocked with 5% milk 

powder diluted in TBS-T10 for 1 hour at room temperature. After 1 hour in blocking solution, 

                                                 
5 Lysis buffer: 1% Triton X-100, TrisHCl 25mM, EGTA 2.5mM, EDTA 2.5mM, protease inhibitor cocktail (04693132001 

ROCHE, Sigma) and phosphatase inhibitor (Na3VO4,2mM)  
6 Denaturing solution : 62.5 mM Tris-HCl pH6.8, 2% sodium dodecy lsulfate (SDS), 10% glycerol, 140 mM β-

mercaptoethanol and 0.1% bromophenol blue 
7 Stacking gel: containing 4% acrylamide,  0.5M Tris-HCl pH6.8, 10% SDS, 0.05% ammonium persulfate (PSA) and 0.1% 

tetramethylethylenediamine (TEMED) 
8 Resolving gel: consisting of 12% acrylamide in 1.5M Tris-HCl pH8.8, 10% SDS, 0.05% PSA and 0.05% TEMED 
9 Electroblotting buffer: 10mM Ciclohexilamin Acid propanosulphonic (CAPS) and 10% metanol pH11  
10 TBS-T: 0.1% Tween-20 in 20mM Tris, 137mM NaCl and 0.38% 1M HCl 
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the membranes were incubated with the primary antibodies diluted in TBS-T (according to 

Table 2) overnight at 4ºC. The next day, after washed three times in TBS-T, for 10 minutes 

each, the membranes were incubated overnight at 4ºC with the horseradish peroxidase-

conjugated (HRP) secondary antibody (according to Table 2) diluted in TBS-T.  

The proteins were detected by chemiluminescence by exposure of Luminata Crescendo 

Western HRP Substrate (Milipore) during 5 minutes at room temperature. Detection of the bands 

was performed on a ChemiDocTM MP Imaging System (Bio-Rad). The fluorescence intensity of 

bands is directly proportional to the amount of protein present in the sample. The image is 

viewed using Image Lab™ software (Bio-Rad). In order to normalize the results obtained, the 

membranes were incubated for 1 hour with antibody directed against a housekeeping protein, 

mouse anti-GAPDH antibody (1:5000, Millipore) diluted in TBS-T. Subsequently, the membrane 

was incubated with the corresponding secondary antibody (anti-mouse HRP - Santa Cruz 

Biotechnology, 1:20000), during 1 hour. Unbound antibody was removed by 3 washes, for 10 

each, minutes with TBS-T. Subsequently, the membranes were again revealed by 

chemiluminescence by exposure of HRP Substrate during 1 minute at room temperature. 

 

Table 5.  Primary and secondary antibodies used in Western Blot. 

Protein 
 

Source 
 

Dilution Incubation 
Reference
/Company 

Secondary 
Antibody 

Dilution Incubation Company 

STEP Mouse 1:1000 14h 

23E5/ 
Cell 

Signalling 
Technolog

y 

Anti-mouse 
IgG 

conjugated 
to HRP  

1:20000 14h 
Santa 
Cruz 

Biotech 

GAPDH Mouse 1:5000 1h 
MAB374/ 
Milipore  

Anti-mouse 
IgG 

conjugated 
to HRP 

1:20000 1h 
Santa 
Cruz 

Biotech 
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3.7 mRNA expression analysis 

Total RNA was extracted from microglial cells using Trizol (TRI, 2302700 5prime) consisting 

of a monophasic solution of phenol and guanidinium isothiocyanate which during extraction 

breaks the cells and maintains RNA integrity. Trizol (600 μl) was added and incubated for 5 

minutes at room temperature. Then, 120 μl of chloroform was added per 600 μl of Trizol used 

for RNA extraction, then samples were homogenized by vigorous inversion and incubated for 10 

minutes at room temperature. Subsequently, samples were centrifuged at 12,000 g for 15 

minutes at 4°C (Mikro 200R, HettichZentrifugen) in order to separate the mixture into three 

phases: a red lower organic phase containing the proteins, the whitish interface containing DNA 

and a colorless upper aqueous phase where the RNA of interest is present. In order to recover 

total RNA by precipitation the aqueous phase was transferred to a new centrifuge tube in which 

were 300μl of isopropanol was added per 600μl of Trizol used. After a 10 minutes incubation, 

at room temperature, the sample was centrifuged at 12,000g for 10 minutes at 4°C (Mikro 200R, 

HettichZentrifugen), the supernatant was removed, and the RNA pellet was washed through 

the addition of ethanol 75% in water treated with 0.01% diethylpyrocarbonate (DEPC) at -20°C 

to remove any impurities (300 μl per 600 μl of Trizol used). After a final centrifugation at 7500 

g for 5 minutes at 4°C (Mikro 200R, HettichZentrifugen), the supernatant was rejected again 

and ethanol in excess was removed. The sediment containing the RNA was resuspended and 

rehydrated in 20 μl of DEPC water. 

The concentration of total RNA (μg/μl) were quantified using the UV/Vis NanoPhotometer™ 

spectrophotometer (Implen). To determine integrity and purity of RNA, the ratio should be 

between 1.8 and 2.1, with a value lower than 1.8 indicating contamination with proteins or 

with phenol and greater than 2.1 indicating contamination with DNA. 

RNA integrity was analyzed in a 1% agarose gel with 0.05% Green Safe, a nucleic acid 

intercalator. Samples were prepared with 2µl of sample, 8µl of sterile water and 1µl of loading 

buffer 10x. The gel was visualized on an UVITEC transilluminator (UVitec Cambridge, United 

Kingdom). The integrity of the RNA was confirmed by the existence of two distinct RNA bands, 

18S and 28S, in which the last band should present twice the intensity of the first. All RNA 

samples were stored at -80ºC. 
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3.8 cDNA synthesis 

Complementary deoxyribonucleic acid (cDNA) was synthesized from 1 μg total RNA by the 

action of the enzyme reverse transcriptase. The mixtures were prepared with reagent volumes 

for n+1 reactions. Thus, for each 20 μl final volume cDNA synthesis reaction, the appropriate 

volume was added to 1 μg of RNA, 1 μl of Random Primers (50 ng/μl, MB12901 Nzytech), 1 μL 

of deoxynucleotidostriphosphate-dNTPs (10 mM, R0181 Thermo Scientific) to make up a volume 

of 17μl with sterile water free of nucleases. This mixture was incubated in the thermal cycler 

(T100™ ThermalcCycler, Biorad) for 5 minutes at 65°C. Subsequently, another mixture was 

added with the following reagents: 2 μl 10x Buffer (Nzytech) and 1 μl Moloney Murine Leukemia 

Virus reverse transcriptase (20000U M-MLV RT Nzytech). Tgis was followed by an incubation at 

37°C for 50 minutes and finally at 70°C for 15minutes to inactivate the enzyme. 

All cDNA samples were stored at -20 ° C.  

 

3.9 Conventional PCR  

Through conventional polymerase chain reaction (PCR) it was possible to confirm the 

expression of the STEP gene in primary cultures of microglia and to optimize the annealing 

temperature of primers used in RT-PCR. In this procedure Taq DNAPolymerase was used to 

amplify DNA fragments. To each sample tested a MIX11 was prepared. The primers were chosen 

through PrimerBLAST-NCBI-NIH program and were commissioned by STAB VIDA (according to 

Table 3). For each reaction, with the exception of negative control, 1 µl of cDNA was added. 

To proceed to gene amplification the MultiGeneTM OptiMax Thermal Cycler (Labnet 

International) was used. Samples were heated at 95ºC for 3 minutes, followed by 40 cycles of 

95ºC for 30 seconds, then 45 seconds at optimal annealing temperature for each primer, 1 

minute at 72ºC and, at finally, 5 minutes at 72ºC. PCR products were run out on a 2% agarose 

gel in the presence of 0.05% GreenSafe. For this, 9µl of each PCR product and 1µl of loading 

buffer 10x were deposited in the agarose gel. In the first well was added 5µl of NZYDNA Ladder 

VI (MB08901, Nzytech). The gel was visualized on an UVITEC transilluminator (UVitec 

Cambridge, United Kingdom). By comparison with NZYDNA Ladder VI the size of fragments 

obtained were confirmed. 

 

 

 

 

 

 

                                                 
11 MIX: 2.5µl 10x Buffer which includes 20 mM MgCl2 and 0.625µl Taq DNAPolymerase (EP0702, Nzytech), 0.5µl dNTPS 

(10mM, R0181 Thermo Scientific), 0.75µl Forward primer (10mM) and 0.75 µL Reverse primer (10mM), and completed 
with sterile water to a volume of 24µl 
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Table 6. Primers used in PCR.  

Gene Primers (5’- 3’) 
Fragment 
size (bp) 

Annealing 
Temperature 

STEP61 
FW 5’TCACCAGACCCTGAAGATCC3’ 
RV 5’ATCTCTACGCCATCGTGGAC3’ 

245 62°C 

IL-1β 
Fw 5′AGGCTGACAGACCCCAAAAG3′ 
RV 5′CTCCACGGGCAAGACATAGG3′ 

178 60°C 

TNFα 
FW 5′GATCGGTCCCAACAAGGAGG3′ 
RV 5′TTTGCTACGACGTGGGCTAC3′ 

129 62°C 

Cyclophilin A 
CyPA 

FW 5’CAAGACTGAGTGGCTGGATGG3’ 
RV 5’GCCCGCAAGTCAAAGAAATTAGAG3’ 

163 
60ºC (IL-1β) 

62ºC (STEP61 and TNFα) 
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3.10 Real time RT-PCR 

Real-time RT-PCR allowed the evaluation of the relative expression of the STEP gene. The 

relative expression of IL-1βα and TNFα was also evaluated. 

First, the procedure was optimized by assessing primer efficiency for all genes with 4 

different cDNA dilutions (1: 1, 1: 5, 1: 25 and 1: 125) in which the concentration of primers to 

be used was adjusted. The more cDNA in the sample, the earlier it amplifies. The primers are 

efficient if the slope is comprised between of -3.93 to -2.92. For each assay, cDNA (1 µl) was 

mixed in 20 µl of a solution containing 10µl Luminaris HiGreen Fluorescein qPCR Master Mix 

(Thermo Fisher Scientific), 0.2 µM (L-1β and TNFα) or 0.3 µM (STEP) of each primer and sterile 

water.  Real time PCR reactions were settled according to table 8 in a thermocycler CFX 

ConnectTM (Bio-Rad). To normalize the levels of gene expression the cyclophilin A (CyPA) gene 

was used as control (housekeeping gene). 

mRNA expression was determined using the cycle time (CT) values normalized to those of 

cyclophilin A. The results are expressed as 2-∆∆CT relative to control in experiments with cell 

cultures based on the Pfaffl method. 

 

Table 7.  Primers used in Real-time RT-PCR.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 Table 8.  Real-time RT-PCR protocol. 

 

 

 

 

 

 

 

 

 

 

 

Gene Primers (5’- 3’) 

STEP61 
FW 5’TCACCAGACCCTGAAGATCC3’ 
RV 5’ATCTCTACGCCATCGTGGAC3’ 

IL-1β 
Fw 5′AGGCTGACAGACCCCAAAAG3′ 
RV 5′CTCCACGGGCAAGACATAGG3′ 

TNFα 
FW 5′GATCGGTCCCAACAAGGAGG3′ 
RV 5′TTTGCTACGACGTGGGCTAC3′ 

CyPA 
FW 5’CAAGACTGAGTGGCTGGATGG3’ 

RV 5’GCCCGCAAGTCAAAGAAATTAGAG3’ 

Gene 
Initial 

denaturation 
Denaturation Annealing  Extension Cycles  

STEP61/ 
CyPA 

95ºC 
3 min 

95ºc 
10 s 

62°C 
45 s 

72ºC 
10 s 

40x 

IL-1β/ 
CyPA 

95ºC 
3 min 

95ºc 
10 s 

60°C 
45 s 

72ºC 
10 s 

40x 

TNFα/ 
CyPA 

95ºC 
3 min 

95ºc 
10 s 

62°C 
45 s 

72ºC 
10 s 

40x 
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3.11 Statistical Analysis 

Data are expressed as percentages of values obtained in control conditions, as percentage 

induced by LPS or as percentage of the total number of cells (according to the text and legend 

of the figures), and are presented as mean ± S.E.M.  of the number of independent experiments 

indicated in the legends of the figures. Comparisons of means between two groups was 

performed using Student’s t test, and between three or more groups by one-way ANOVA 

followed by Bonferroni’s Multiple Comparison Test. Results were considered statistical 

significant when p <0.05. All statistical analysis were performed using GraphPad Prism 5 

(GraphPad Sotware Inc., San Diego, CA). 
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4 Results 

 

4.1 Characterization of microglial culture 

Primary cultures of microglia from total brain were obtained from a glial cell culture from 

which astrocytes were removed by trypsinization. Microglial culture was characterized by 

immunocytochemistry. For evaluation of culture purity, microglial cells were labeled for Iba-1, 

a calcium-binding protein specifically expressed in macrophage/microglia, and with Hoechst to 

stain the nuclei of all cells (Fig 22A). About 92% of the cells present in the culture expressed 

the microglial marker Iba1 (Figure 22B.). 

  

A.                                                B. 
                                   

                   
H
oe

ch
st

Ib
a1

0

25

50

75

100

125

N
u

m
b

e
r 

o
f 

c
e
ll

s
/

fi
e
ld

 
 
Figure 22. Characterization of purity of the microglia primary culture of the total brain. (A) 
Representative images show the immunocytochemistry performed against Iba1 (red) with nuclei were 
stained with Hoechst 33342(blue). The white arrow indicates Iba+ cells and the red arrow indicates Iba- 
cells (B) Quantification of the percentage of cells labeled for Iba1. Each bar represents the mean ± SEM 
of three independent experiments, performed in triplicate. 
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4.1.1 Promoting microglia reactivity trough LPS exposure  

 

Previous results from our group showed treatment with LPS 0.1 μg/ml for 24h induced the 

activation of ventral midbrain microglial cells. In order to ascertain whether the concentration 

used with midbrain cultures was also effective in promoting activation of the microglia from 

total brain microglial cells were stimulated with the pro-inflammatory agent LPS 0.1 μg/ml and 

2μg/ml for 12h, 18h and 24h. Our results indicate that exposure to LPS 2μg/ml for 24h induces 

a strong increase in the release of nitric oxide, a well established marker of microglia 

reactivity(Bolós et al. 2017). In subsequent studies those were the stimulation conditions used 

to induce microglia reativity (Figure 23).   
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Figure 23. Adjustment of experimental conditions required to induce microglial reactivity.  Primary 
cultures of microglia were exposed to different concentrations of LPS (0.1 μg/ml, 0.5 μg/ml and 2 μg/ml) 
and during different periods (12h,18h and 24h). Data represent the mean ± SEM of one experiment.  
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4.2 Does microglia express STEP?  

 

Taking into account that PTPs are key regulators of inflammatory signaling pathways and 

microglial cells are main players in the neuroinflammatory process with this project we aimed 

to unveil the role of STEP in the control of microglia reactivity. To our knowledge there are no 

published data on the expression of STEP by microglial cells or on the regulation of microglial 

reactivity by this phosphatase.  

To disclose if STEP is present in primary cultures of microglia we analyzed the STEP mRNA 

by conventional PCR.  PCR results confirm STEP61 mRNA expression in microglia, through specific 

amplification of the nucleotides sequences of STEP gene. The amplified products were run out 

in a 2% agarose gel stained with GreenSafe, and by comparison with NZYDNA Ladder VI it was 

confirmed that the size of fragments obtained (245bp) corresponded to the STEP gene. 

Different temperatures were tested to establish the optimal annealing temperature of STEP 

primers (62ºC, Figure 24).   The presence of the protein and its cellular location was further 

confirmed by the immunocytochemical analysis and Western blot. The levels of STEP were 

analyzed through immunocytochemistry using an anti-STEP (Fig 25A., green) and anti-Iba1 (Fig 

25A., red) antibody. Western blot analysis showed that both isoforms of STEP, STEP61 and 

STEP46, are expressed by microglia, with the band correspondent to the STEP61 isoform being 

much stronger (Figure 25B.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 24. Expression of STEP mRNA in primary cultures of microglia. Representative product of PCR 
with specific band of 245bp for STEP mRNA.  From left to right is represented the molecular weight ladder, 
the negative control and the fragment obtained at 62ºC. 
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Figure 25. Expression of STEP in primary cultures of microglia. (A) Representative images of 
immunocytochemical analysis performed against the STEP protein (green) and Iba1 protein (red) followed 
by nuclei staining with Hoechst 33342 (blue). (B)Representative Western blot probed for STEP (MW: 61kDa 
and MW:43kDa) protein and GAPDH protein (37 kDa).  
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4.2.1 Influence of microglia reactivity in STEP expression 

 

After verifying the expression of STEP in primary cultures of microglia, we evaluate STEP 

expression in microglia exposed to an inflammatory stimulus. Microglial cells were treated with 

LPS for 24h. STEP61 mRNA expression in response to LPS was evaluated by Real-time RT-PCR. 

LPS treatment induced a significant increase in gene expression to 197% of control levels (Figure 

26). After verifying the increase of PTPN5 transcription, STEP expression by microglia was 

evaluated by immunocytochemistry against STEP and Iba1and Western blot. Quantification of 

fluorescence intensity corresponding to STEP under control conditions and after by exposure to 

the LPS revealed a small, not statistically significant, increase of STEP expression after 

exposure with LPS (Figure 27). Throught Western blot it was verified that both STEP isoforms 

were increase by LPS stimulation (Figure 28). 
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Figure 26. STEP expression was increased in microglia stimulated with LPS. STEP61 mRNA levels were 
measured by real-time PCR in primary microglial cells after incubation with LPS  2µg/ml for 24 hours. 
Data represent the mean ± SEM of four independent experiments performed in triplicate and expressed 
as fold change of STEP mRNA levels relative to control (CTR). Statistical analysis was performed using t-
Student Test (***p<0.001 compared to CTR). 
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Figure 27. STEP expression by LPS stimulated microglia. (A.) Representative images of 
immunocytochemical analysis that performed against STEP protein (green) and Iba1 protein(red) under 
control conditions and after exposure to LPS. The image was acquired on a fluorescence microscope with 
a magnification of 63x. (B.) Comparison of STEP protein levels through measurement of mean STEP 
fluorescence intensity under control conditions and after exposure to LPS.  Data represent the mean ± 
SEM of four independent experiments performed in duplicate and expressed in percentage of control. 
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Figure 28. Both STEP isoforms levels were increased in microglia stimulated with LPS. Western blotting 
analysis in primary microglial cells after incubation with LPS 2µg/ml for 24 hours in the presence of TC-
2153 (1μM).  Representative image of a Western blot probed for STEP (MW: 61kDa or MW: 46kDa) and 
GAPDH (MW: 37kDa) proteins. Results from the optical densitometry analysis revealed an increase in STEP 
levels after exposure to LPS, as compared to the control.  Data represent the mean ± SEM of one 
experiment performed in triplicate and results were expressed as STEP/GAPDH ratio. 
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4.3 Evaluate the ability of STEP to regulate microglia 

reactivity 

The thirth part of these chapter focuses on clarifying the involvement of STEP in the control 

of microglia reactivity. To explore this, we used as a tool a specific pharmacological inhibitor 

of STEP, TC-2153, and analysed its influence on microglial reactivity. The parameters of 

microglia reactivity analysed were the release of NO, phagocytic activity and expression of 

iNOS, IL-1β and TNFα. 

4.3.1 Phagocytic activity 

To determine the role of STEP in the control of microglia reactivity evoked by LPS cells were 

treated with TC-2153 1μM 1 h before starting the stimulation with LPS 2μg/ml. Cells were 

incubated with both compounds for further 24h and at the end of this period were exposed to 

fluorescent microspheres. Cells that incorporated these microspheres were considered 

phagocytic. To confirm that the cells incorporating microspheres were microglial cells, in 

parallel cells were immunolabeled for the microglial marker Iba1 (Figure 29A.). Cells 

incorporating microspheres were quantified for each condition. Our results demonstrate that 

in the presence of LPS the percentage of phagocytic cells increased by 85%, as compared to 

control. TC-2153, per se, did not affect the number of phagocytic cells, whereas LPS-induced 

phagocytosis was reduced by TC-2153 pre-treatment by 65%, as compared with LPS (Figure 

29B.). 
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Figure 29. STEP inhibitor reduces LPS-induced phagocytic activity. Microglial cells were exposed to 
LPS (2 μg/ml) for twenty-four hours in the presence of TC-2153(1μM). Cells were incubated with 
fluorescent microspheres to evaluate phagocytic activity. (A) Representative photomicrographs (63x 
magnification) of microglia culture exposed to fluorescent microspheres (green) and iba-1 (red). Nuclei 
were stained with Hoescht (blue). (B) Quantification of microglial cells that incorporated microspheres 
(phagocytic cells). Data represent the mean ± SEM of four independent experiments performed in 
duplicate and expressed in percentage of CTR. Statistical analysis was performed using one-way ANOVA 
followed by Bonferroni's Multiple Comparison Test (*** p <0.001 compared to CTR and ###p <0.001 
compared to LPS).  

4.3.2 iNOS expression 

Inducible nitric oxide synthase (iNOS) is one of three enzymes generating NO from the amino 

acid L-arginine.  Assessement of iNOS expression by immunocytochemistry showed that control 

microglia does not express detectable levels of iNOS, whereas upon stimulation with LPS 

(2μg/ml) there was a strong increase in the number of cells immunopositive for iNOS (Figure 

30A). Moreover, inhibition of STEP with TC-2153 (1μM) reduces the the number of microglia 

expressing inducible nitric oxide synthase (iNOS) after LPS stimulation by 60% (Figure 30B). 
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Figure 30. STEP inhibition reduces LPS-induced iNOS expression. Microglial cells were exposed to LPS 
(2μg/ml) for 24h in the presence of TC-2153(1μM). iNOS expression was evaluated by 
immunocytochemistry. (A) Representative photomicrographs (63x magnification) of the immunostaining 
for iNOS (green), in which nuclei were stained with Hoescht (blue). (B) Quantification of iNOS-
immunopositive cells for each experimental condition. Data represent the mean ± SEM of three 
independent experiments performed in triplicate and expressed in percentage induced by LPS. Statistical 
analysis was performed using using one-way ANOVA followed by Bonferroni’s Multiple Comparison Test (*** 

p <0.001 compared to LPS). 
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4.3.3 Release of nitric oxide 

Nitric oxide (NO) is a small, highly diffusible, gaseous and reactive molecule with a short 

half life that is synthesized by nitric oxide synthase (NOS) via enzymatic conversion of L-arginine 

to L-citrulline. Under normal physiological conditions, NO is an important secondary messenger, 

playing a crucial role in intracellular communication and intracellular signaling in the nervous 

system.  iNOS is produced mainly by microglia in response to microorganisms and tissue damage 

and is a main step towards successful arrest of the invading offender by the innate immune 

system. In addition, reactive microglia express iNOS resulting in the biosynthesis of relatively 

high quantities of NO. Anomalous overproduction of NO leads to neurotoxicity. Our results 

showed that the low levels of NO released in control conditions were significantly increased by 

exposure to LPS (2μg/ml) by about 92%, as compared to the control. Surprisingly, TC-2153 pre-

treatment did not affect significantly NO release evoked by LPS (Figure 31). 
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Figure 31. NO release by LPS-stimulated microglia is attenuated by STEP inibhitor. Microglial cells 
were exposed to LPS 2 μg/ml for 24h in the presence of TC-2153 (1μM). Culture supernatants were 
collected and NO levels released by microglial cells quantified by the Griess Method. Data represent the 
mean ± SEM of sixteen experiments performed in triplicate and expressed in percentage of CTR. Statistical 
analysis was performed using one-way ANOVA followed by Bonferroni’s Multiple Comparison Test (*** p 
<0.001 compared to CTR). 
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4.3.4 IL-1β and TNFα expression 

Interleukin 1 beta (IL-1β) and tumor necrosis factor (TNFα) are pro-inflammatory cytokines 

produced by reactive microglia in the M1 phenotype. To further analyse the possible 

contribution of STEP in the control of microglial reactivity the expression levels of IL-1β and 

TNFα were assessed by Real-time RT-PCR. Our results demonstrate that there is a significant 

increase in gene expression after stimulation with LPS. IL-1β increased by 361% whereas TNFα 

was increased by 57%, as compared to the control. Inhibition of STEP did not significantly affect 

the expression of IL-1β or TNFα (Figure 32A.). Interestingly, basal expression of TNFα was 

decreased by TC-2153 treatment (Figure 32B.). 
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Figure 32. LPS-induced IL-1β and TNFα mRNA levels in microglia is not affected by STEP inhibition. 
(A) IL1β mRNA levels were measured by real-time PCR in primary microglial cells after incubation with 
LPS  2µg/ml for 24 hours in the presence of TC-2153 (1μM). Data represent the mean ± SEM of three 
independent experiments performed in triplicate and expressed as fold change of IL-1β mRNA levels 
relative to CTR. Statistical analysis was performed using t-Student Test (**p<0.01 compared to CTR). 
(B)TNFα mRNA levels were measured by real-time PCR in primary microglial cells after incubation with 
LPS  2µg/ml for 24 hours in the presence of TC-2153 (1μM). Data represent the mean ± SEM of three 
independent experiments performed in triplicate and expressed as fold change of TNFα mRNA levels 
relative to CTR. Statistical analysis was performed using t-Student Test (##p<0.01 and *p<0.05, compared 
to CTR). 
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5 Discussion 

 
Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling 

pathways and microglial cells are resident immune cells in the central nervous system that 

participate in the initiation and propagation of an inflammatory response. Several evidences 

demonstrate the ability of PTPs to regulate the potentially harmful effects of microglia (Song, 

Kim, et al. 2016). They can prevent an excessive activation of the microglial cells, reducing 

several parameters of microglial reactivity, namely NO production and phagocytic activity. On 

the other hand, Song and collaborators demonstrated that PTP1B is an important positive 

regulator of neuroinflammation and a promising therapeutic target for neuroinflammatory and 

neurodegenerative diseases. Therefore, PTPs can be the target to develop therapeutics for 

neurodegenerative and neuroinflammation diseases (Song, Jung, et al. 2016).  

With the present work we aimed to unveil the role of STEP in the control of the 

neuroinflammatory process. To date, STEP studies focus on STEP expression in neuronal cells 

(Kamceva et al., 2016), mainly associated with neurodegenerative diseases such as Alzheimer's 

disease (Snyder et al., 2005) and Huntington's disease (Saavedra et al., 2011), and to date there 

are no data on the expression of STEP in microglia. 

In the first part of this study, we characterized the microglial culture by 

immunocytochemistry where microglial cells were labeled for Iba-1, a calcium-binding protein 

specifically expressed in macrophage/microglia. About 92% of the cells present in the culture 

expressed the microglial marker Iba-1 and the remaining 8% were constituted mainly by 

astrocytes. In this culture exposure to LPS 2μg/ml for 24 hours induced a strong increase in the 

release of nitric oxide, indicative of a reactive state of microglia. 

In the second part of this study, we characterized the expression of different STEP isoforms 

in primary cultures of microglia from Wistar rat brain and demonstrated for the first time the 

expression of STEP by microglial cells. Studies in N9 microglial cell line (supplementary 

material) are concordant with this data. These results were further supported by data from 

PCR and Western blot analysis. PCR results confirm the expression of the STEP61 mRNA by 

microglia. Western blot results showed that both STEP61 and STEP46 isoforms are expressed with 

the band corresponding to the STEP61 isoform presenting a stronger intensity, suggestive of a 

higher expression. STEP expression in the presence of the inflammatory stimulus LPS was also 

assessed (Chhor et al. 2013).  Immunocytochemistry showed small changes, although not 

statistically significant, in STEP expression when the cultures were submitted to an LPS 

stimulus, suggesting an increase of STEP expression by reactive microglia. To confirm these 

results, a Real-time RT-PCR and Western blot analysis were performed. Western blot analysis 

showed an increase in the protein levels of both STEP isoforms after LPS stimulation. Data from 

RT-PCR indicate that the increase in STEP protein levels was coupled to an increase of PTPN5 

transcription. Taken together these data showed that microglia express STEP protein and that 

microglial reactivity is associated with an increase of STEP expression. Currently, there are few 
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examples of a direct association of PTPs with neuroinflammatory diseases, however there are 

several studies that evaluate the expression of PTPs after exposure to LPS and that are 

concordant with the results obtained (Song, Jung, et al. 2016; Song, Kim, et al. 2016; Vieira et 

al. 2017). 

In order to determine the ability of STEP to regulate microglial reactivity we used as a tool 

a specific pharmacological inhibitor of STEP (TC-2153) and analysed its influence on microglial 

reactivity induced by LPS. TC-2153 has been proposed as a therapeutic target in human diseases 

due to the improvement of cognitive function in several neurodegenerative disorders (Xu et al. 

2014) or as  potential psychotropic activities (Carty et al. 2012). The classical activation of 

microglia results in an ameboid morphology and are implicated in the pathogenesis of various 

neuroinflammatory diseases. These morphological changes, which occur during the transition 

from a typical resting state to an activated phenotype, are associated with increased 

production of pro-inflammatory mediators, namely, the release of NO, phagocytic activity and 

expression of iNOS, IL-1β and TNFα (Bolós et al. 2017). Our model replicated these 

characteristiscs. A significant increase in NO release, phagocytic activity and expression of 

iNOS, IL-1β and TNFα was observed in LPS stimulated microglia. Similar results were obtained 

with the N9 microglial cell line (supplementary material) in which a significant increase in iNOS 

expression, NO release and phagocytic activity in LPS-stimulated cultures were reported. These 

results are similar to other works showing an increase in these inflammatory markers, well-

established markers of microglia reactivity (Chhor et al. 2013; Song, Jung, et al. 2016; Song, 

Kim, et al. 2016; Vieira et al. 2017). The inhibition of the activity of STEP significantly reduced 

the number of microglial cells expressing iNOS and the number of phagocytic cells after LPS 

stimulation. However, there was no significant decrease in NO release, suggesting that there is 

another pathway for NO production, other than through iNOS, which is not regulated by STEP.  

Studies with the N9 microglial cell line are concordant with the data obtained with primary 

cultures of microglia. Inhibition of STEP activity with TC-2153 significantly reduced LPS-induced 

expression of iNOS and phagocytic cells without altering NO release. Regarding the expression 

of the citokines IL-1β and TNFα, inhibition of STEP did not significantly impact on its mRNA 

levels thus suggesting that STEP does not regulate the pathways that control the expression of 

these pro-inflammatory citokines. The results obtained suggest that STEP activity regulates 

pathways that control processes associated with the reactive status of microglia such as iNOS 

expression and phagocytosis but does not regulate the expression of proinflammatory cytokines 

or the release of NO.   Other works suggest that PTP inhibitors can be exploited for therapeutic 

modulation of microglial activation in neuroinflammatory diseases because suppressed 

expression of iNOS, IL-1β, and TNF-α in LPS-stimulated BV-2 microglial cells (Song, Jung, et al. 

2016; Song, Kim, et al. 2016). We know that p38 and NF-κB also play an important role in the 

transcriptional regulation of proinflammatory mediators and p38 is a STEP substrates. We may 

hypothesize that STEP inhibition increases p38 phosphorylation but may decrease LPS-induced 

NF-κB activity, which suppresses IL-1β and TNF-α. 
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Our results support that neuroinflammation is associated with an increase in STEP levels. 

Moreover, STEP activity promotes mechanisms associated with the microglia reactive status, 

further potentiating the inflammatory process.  

  There is a consensus that neuroinflammation is one of the main triggers in 

neurodegeneration, with microglial reactivity either initiating or amplifying neuronal damage, 

or being a consequence of it. When microglia is activated in response to an inflammatory 

stimulus, it produces several factors, which in excess can lead to neuronal death, such as ROS, 

NO and proinflammatory cytokines. On the other hand, neuronal damage is coupled to the 

release of several molecules such as α-synuclein and neuromelanin that potentiate microglia 

activation. This results in a cycle in which there is a repetition of neurotoxic activation of 

microglia in response to neuronal injury (Block and Hong 2005; Block et al. 2007).  Therefore, 

inhibition of microglial hyperactivation might be a good strategy to develop therapeutics for 

neurodegenerative diseases (Perry and Holmes 2014). Since microglial reactivity contributes to 

the neurodegenerative process, and that our results support that STEP inhibition reduces 

microglia reactivity, STEP inhibition can be a therapeutic strategy to control the 

neuroinflammatory processes and in consequence neurodegeneration. 
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6 Conclusions and Futures Perspetives 

 

Throughout this work we collected evidence of a significant correlation between STEP and 

neuroinflammation. Microglial cells express STEP46 and STEP61 and microglia reactivity is 

coupled to increased STEP levels. Moreover, Inhibition of STEP significantly reduces various 

parameters of microglial reactivity, namely phagocytic activity and iNOS expression. These 

results suggest that PTP inhibitors can be exploited for therapeutic modulation of microglial 

activation in neuroinflammatory diseases. 

The following experiments could help to further confirm the role of STEP in the control of 

neuroinflammation and to explore if its inhibition could represent a strategy to protect from 

the neurotoxicity induced by inflammatory conditions: 

- The comparison of microglial reactivity in STEP-KO and WT mice, both in control 

conditions and after exposure to an inflammatory stimulus, would be important to 

confirm the relevance of STEP in the control of neuroinflammation in vivo. 

- To clarify if STEP is involved in the release of IL-1β and TNFα it would be important to 

evaluate the release of these cytokines by ELISA. 

- In order to explore how the state of microglial reactivity is associated with increased 

STEP function, it would be important to evaluate the changes of its activity by 

determining the levels of phosphorylated (pSTEP, non-active) and non-phosphorylated 

forms (active). This could also be evaluated indirectly by determining the 

phosphorylated and nonphosphorylated forms of STEP substrates, such as ERK1/2, p38 

and the tyrosine kinase Fyn. 

- Finally, to confirm that inhibition of STEP activity could be a novel therapeutic strategy 

for neuroinflammatory and neurodegenerative diseases it would be important to 

evaluate in an in vivo model, for example mice exposed to LPS, how STEP inhibition 

impacts on the neuronal loss promoted by LPS. 
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Supplementary Material 

 Unpublished data on the role of STEP in neuroinflammation in N9 microglial cell line, were 

performed by Rita Videira and mentioned above in the discussion. 

 

A. STEP expression 

Through immunocytochemical analysis using an anti-STEP (Fig 34, green) antibody and 

Hoechst to nuclei stain (Fig 34, blue) she demonstrated that N9 microglial cell line express 

STEP. 

 

 

Figure 33. Expression of STEP in N9 microglial cell line. Representative images of immunocytochemical 
analysis that was performed against STEP protein (green) and was followed by nuclei staining with Hoechst 
(blue). The image was acquired on a fluorescence microscope (Axiobserver Z1, Zeiss) using the 63x 
objective. 

 

B. Ability of STEP to regulate the inflammatory state 

To determine the role of STEP in the control of microglia reactivity evoked by LPS cells 

were treated with 1μM specific pharmacological inhibitor of STEP (TC-2153) 1 h before starting 

the stimulation with pro-inflammatory agent LPS 0.1μg/ml. Cells were incubated with both 

compounds for further 24h and at the end of this period the parameters of microglia reactivity 

analysed were the phagocytic activity, expression of iNOS and release of NO. 

 

Hoechst                     STEP                          Merge 
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Figure 34. STEP inibhitor in N9 microglial cell line reduces LPS-induced phagocytic activity. Microglial 
cells was exposed to LPS (0.1 μg/ml) for twenty-four hours in the presence of TC-2153(1μM). Cells were 
incubated with fluorescent microspheres to evaluate phagocytic activity. Quantification of microglial cells 
that incorporated these microspheres (phagocytic cells). Data represent the mean ± SEM of three 
independent experiments performed in duplicate and expressed in percentage of CTR. Statistical analysis 
was performed using one-way ANOVA followed by Bonferroni's Multiple Comparison Test (**p <0.01 
compared to CTR and #p <0.05 compared to LPS).  
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Figure 35.  STEP inibhitor in N9 microglial cell line reduces LPS-induced iNOS expression. Microglial 
cells wer exposed to LPS (0.1 μg/ml) for 24h in the presence of TC-2153(1μM). iNOS expression was 
evaluated by immunocytochemistry. Quantification of iNOS-immunopositive cells for each condition. Data 
represent the mean ± SEM of three independent experiments performed in triplicate and expressed in 
percentage induced by LPS. Statistical analysis was performed using using one-way ANOVA followed by 
Bonferroni’s Multiple Comparison Test (*** p <0.001 compared to CTR and ## p <0.01 compared to LPS). 
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Figure 36. NO release by LPS-stimulated microglia. Microglial cells were exposed to LPS  0.1μg/ml for 
24h in the presence of TC-2153 (1μM). Culture supernatants were collected and NO levels released by 
microglial cells quantified by Griess Method. Data represent the mean ± SEM of nine experiments 
performed in triplicate and expressed in percentage of CTR. Statistical analysis was performed using one-
way ANOVA followed by Bonferroni’s Multiple Comparison Test (** p <0.01 compared to CTR). 

 


