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Abstract 

Carbon fiber laminates and sandwich structures are widely used due to their extraordinary 

mechanical performance (high specific strength, specific modulus, resistance to corrosion and 

resistance to fatigue), in the case of sandwiches, the high performance of the carbon laminates 

can be increased by the low density of the core. Besides that, carbon fiber is a conductive 

material, beyond its mechanical advantages, it has the potential to be used as a self-sensing 

material. 

This work aimed to analyze the use of sandwich composite structures in aircraft, to 

manufacture, and to study the mechanical and electrical properties of a sandwich composed 

of two carbon fiber faces and a structural foam core. 

The experimental work started with a study on the foam core, to access the impact of the 

adhesive curing temperature in the foam’s mechanical behavior. There was an increase on the 

ductility of the foam, but the flexural strength did not suffer significant changes. 

Posteriorly, three-point bending tests were carried out on carbon fiber laminates, with two 

different geometries, so compressive and tensile failures could be studied. The specimens that 

failed to compression showed a flexural strength of 1066.21±4.7% MPa, while the ones that 

failed under a flexural stress of 1238.49±7% MPa. 

The sandwich specimens with different adhesive bonds and geometries were tested and the 

short samples with reinforced bond failed to compression under a flexural stress of 100 MPa ± 

5%, while the long samples showed several failure modes under a flexural stress of 86 MPa ± 

7%. 

An electromechanical analysis was conducted to study the piezoresistive response of the 

sandwich skins. From this analysis was possible to show that there is indeed a relation between 

the electrical resistance and the applied strain. 

  

 

Key-words: Sandwiches, Mechanical behavior; Electromecanical behavior, 

Multifunctional materials; Self-sensing material. 
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Resumo 

Os laminados de fibra de carbono e as estruturas em sanduíche são amplamente utilizadas 

devido ao seu elevado desempenho mecânico (elevada resistência específica, módulo 

específico, resistência à corrosão e resistência à fadiga), que no caso das sanduíches, é 

acrescido da baixa densidade do núcleo. Além disso, a fibra de carbono é um material condutor, 

portanto para além das vantagens mecânicas, este material tem o potencial de ser utilizado 

como um material capaz de detetar dano e deformação sem que a necessidade de sensores. 

Neste trabalho pretendeu-se analisar o uso de estruturas compósitas em sanduíches em 

aeronaves, fabricar e estudar as propriedades mecânicas e elétricas de uma sanduíche 

composta por duas faces de fibra de carbono e um núcleo de espuma estrutural.  

Na primeira fase do trabalho experimental, foi feito um estudo sobre o núcleo de espuma, com 

o objetivo de averiguar qual o impacto da temperatura de cura do adesivo. Houve um aumento 

da ductilidade do material, mas sem impactos significativos ao nível da tensão de cedência.  

Posteriormente, foram testados à flexão laminados de fibra de carbono, com duas geometrias 

de forma a serem obtidos modos de falha à compressão e à tração. Verificou-se que os 

laminados apresentaram um modo de dano nas fibras à compressão, para uma tensão na ordem 

dos 1066 MPa ± 5%, enquanto que os laminados cuja ruína ocorreu na face à tração a uma tensão 

na ordem dos 1238 MPa ± 7%. 

As amostras de sanduíches com diferentes composições adesivas e geometrias foram testadas 

e as de menor dimensão com reforço adesivo cederam à compressão com uma tensão máxima 

na ordem de 100 MPa ± 5%, enquanto que as de maior dimensão apresentaram diversos modos 

de falha a uma tensão na ordem dos 86 MPa ± 7%. 

Recorrendo a uma análise eletromecânica, foi estudada a resposta piezoresistiva dos laminados 

constituintes das faces das sanduíches. Desta análise foi possível demonstrar que existe 

efetivamente uma relação entre a resistência elétrica e a deformação do material. 

 

Palavras chave: CFRP; Sanduiches, Comportamento mecânico; Comportamento 

eletromecânico, Materiais multifuncionais; Material self-sensing. 
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1.  Introduction 

The goal of this chapter is to provide general information necessary to understand the relevance 

and timeliness of this work contextualized by an aeronautical engineering perspective.  

In the first subchapter, “Historical background”, is presented a brief history of materials’ 

evolution from prehistory until the modern times. Along this presentation, is given special 

attention to composite’s importance in modern aviation. 

The second subchapter, “Motivation”, it’s given an introduction on multifunctional materials 

and their advantages in modern aviation.   

Along the third subchapter (Objectives), are defined the objectives for this Master dissertation. 

Finally, in the fourth subchapter, is presented the structural layout of this work, as well as 

brief resumes of each chapter. 

 

1.1 Historical background 

Materials are essential for the modern society and are widely spread in our daily routine, 

transportation, housing, clothes, communication and sports are concrete examples. 

Theoretically, they influence almost every single activity developed by the human beings in the 

current century, if we had not developed the ability to transform and manipulate raw materials 

as we did, our society would not be as we know. 

Historically, the evolution of the human species is deeply tied to the development of materials, 

it was so relevant that some periods of the human civilization were named after the discoveries 

in this area: stone age, bronze age and iron age [1]. The earliest humans had access to only a 

very limited number of materials, those that occurred naturally: like stone, wood, clay, leather, 

etc. Despite the evolution has been remarkable over the millennia since the stone age, it was 

not until relatively recent times that scientists came to understand the relationships between 

the structural elements of materials and their properties. This knowledge was acquired 

approximately 100 years ago, it has led the materials science to a whole new level. The 

discoveries during this period were fundamental, later allowed the technological revolution and 

were the propeller of the modern society.  

Materials have been grouped into three basic configurations: metals, ceramics, and polymers. 

These groups were made based on chemical makeup and atomic structure, most of materials 



2 

fall into one distinct group or another, although there are some exceptions. In addition, there 

are composites, they are defined as a combination of two or more chemically different 

materials with a distinct interface between them [2], which together present better proprieties 

than those materials alone. One of these materials forms a continuous phase and is called the 

matrix. The other major constituent is reinforcement, in form of fibers or particles, they are 

in general, added to the matrix to improve or alter the matrix properties. Composites can be 

classified based on reinforcement nature (Figure 1.1): 

 

Figure 1.1- Classification scheme of composites based on reinforcement (adapted from [1]) 

Composites are present in aviation since the first airplane was built by the Wright brothers in 

1903, at this time in the form of wood. This was the material with the highest specific strength 

known back then, neverless it still has some major roles in the structure of some small aircraft 

today. As it turns out, even in 1903, the weight of structures was already an important criterion 

when deciding the structural material for an airplane, although the technology has evolved a 

lot, this principle has not changed. In the aeronautical and space industry, the need for lowest 

possible structural weight led to the development of high performance composites using carbon 

fibers and epoxy resins. The advantages of composite materials as compared to metal, become 

obvious when comparing specific strength and stiffness of high-performance fibers with 

conventional aircraft materials like aluminum, titanium, and steel [3]. Composites have been 

in the aviation industry for almost 80 years, in Figure 1.2 is a timeline indicating the 

approximated year when these materials were introduced in aviation structures.  
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Figure 1.2- Historical timeline indicating the approximate year when the main types of materials were 
first used in aviation (adapted from[4]) 

Although in 1940 glass fiber started to be implemented in aviation, these applications were 

used as tertiary components like interior parts, sidewalls, bag racks, and galleys. The 

implementation of composites occurred gradually over time due to the aviation high safety 

standards. It was not until the late 1960s that airworthiness authorities gave permission to 

manufactures to introduce composites into secondary aircraft structures, like spoilers, rudders, 

ailerons and flaps. The most critical implementation of composite materials was with primary 

structures like stabilizers, wings and fuselage barrels, it has occurred gradually since the 1980s 

[3]. The development of these structures was fundamental to the aviation industry, airplanes 

became much more efficient than they were in the last century and the economic benefits 

were enormous. Composites provide a substantial weight reduction, allow a significant parts 

reduction, such as the substitutions of rivets joints for adhesive bonds and don’t suffer galvanic 

corrosion. So, the use of these structures can extend the periods between checks and decreases 

significantly the parts substitution due to ambient exposure. These facts led the manufactures 

into a race of composites implementation, this evolution can be seen in Figure 1.3. 

 

Figure 1.3- Amount of composite material used in aircraft (adapted from [4]) 
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The growth of composite application in aviation has increased from around 5% of the total 

structural weight of the aircraft, in 1985, to the astonishing 53% of the total structural weight 

of the recently commercialized Airbus A350. This represents not only an enormous increase in 

aircraft efficiently, but it is an huge economic advantage for the companies. Boeing 787 is 

another notable example of efficient composite application in aviation (Figure 1.4), it received 

the type certificate by the European Aviation Safety Agency (EASA) in September 2011 [5]. 

 

Figure 1.4- Illustration of the composites solutions applied on Boeing 787 (adapted from [3]) 

One interesting type of composites that was invented much before the composites concept was 

accepted are the sandwich structures. These structures have been implemented in many areas 

such as aeronautical, aerospace, nautical, automobiles, wind energy systems, bridge 

construction and much more. The many advantages of sandwich constructions, the 

development of newer materials, and the need for high performance, low-weight structures 

ensure that sandwich construction will continue to be on demand [6].  

 

1.2 Motivation 

During the last two decades, a new class of material has emerged, which is characterized by 

performing two or more functions. Traditionally this doesn’t happen, materials are either 

chosen for their mechanical proprieties, conducting proprieties, others for their chemical or 

physical proprieties and so on, but it is not unusual for a material to have more than one role 

in its application. This class of materials is called by different terms in the scientific community. 

“Smart materials” might be the most known term to designate this class, but it is a term quite 

lose and can induce some miss understandings. Following the nomenclature adopted by Ferreira 
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et al.[7], throughout this work this class of materials will be called multifunctional material 

systems (MFMS), where multifunctional materials (MFM), multifunctional composites (MFC) and 

multifunctional structures (MFS) are integrated. MFMS have the potential to decrease 

drastically the number of parts, which reduce the need for joining operations, consequently 

allows a mass and volume reduction. Moreover, some types of MFMS have self-

healing/sensing/regulating capabilities, this increases the autonomy, thus decreases the need 

for human control, therefore maintenance costs will decrease with the development of this 

technology. The scientific community is aware of this matter, in the last decades the number 

of publications about MFM, MFC and MFS has been growing and gaining relevance (Figure 1.5). 

 

Figure 1.5- Literature survey on MFM, MFS, MFC and Smart Materials from 1995 to 2017 (data collected 
from Scopus, August 2018) 

Real-time monitoring systems have the potential to reduce nondestructive evaluations that are 

integrated in periodic inspections. This periodic inspections significantly increase the operating 

expense and vehicle processing time, the need to disassemble and reassemble structural 

components can lead to damage or degradation of the structure or auxiliary systems [8].  

This work has the ambition to produce a reliable MFC, more specifically in a sandwich structure 

with sensing capabilities, with carbon fiber reinforced polymer (CFRP) skins and a foam core. 

This system should be capable of measuring deformation throughout the variation of electrical 

resistance of the CFRP skins. As it was explained previously, aviation industry is one of the 

major investors in MFM and during this work, will be developed, constructed and tested a self-

sensing sandwich structure with possible applications in the aviation. 
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1.3 Objectives 

The present work has the following objectives: 

1. Project and manufacture unidirectional carbon fiber sandwich with foam core 

2. Characterize the mechanical proprieties of the sandwich material 

3. Characterize the electromechanical proprieties of the material 

4. Study the self-sensing capabilities of the sandwich structure through the two-probe 

method 

5. Manufacture an effective multifunctional carbon fiber sandwich with possible 

applications in the aeronautical industry  

 

1.4 Layout  

This work is divided into five chapters. 

In the present chapter, the study is contextualized in order to provide to the reader with 

general information needed to understand the relevance and timeliness of this work 

contextualized by an aeronautical engineering perspective. The objectives are defined along 

this chapter too.  

In the second chapter is presented some of the work that has been developed in the area of 

sandwich composite structures and multifunctional materials. In this chapter the different 

constituents of sandwich structures are presented, it’s given special relevance no failure modes 

in sandwich structures.  

The third chapter is dedicated to the experimental setup. Along this chapter, every 

experimental procedure is explained as well as the manufacturing process and the materials 

used in this work. 

In the fourth chapter the results are presented, as well as the respective analysis and 

discussion. The results are chronologically organized while the discussion is subdivided by the 

different tested materials. 

In the fifth chapter is given an overview of the conclusions taken along this study and suggestion 

for future work. The suggestions are based on some results that aroused new possibilities of 

work. 
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2. State of the Art 

The present chapter has the objective to make a detailed review of the literature in the area 

of sandwich composite structure (e.g. description, classification, historical application, 

materials and failure analysis) and multifunctional materials. 

The first section, “2.1 Sandwich composite structures”, starts with a brief introduction on this 

matter, followed by a section dedicated to the history of sandwich composite structures (2.1.1). 

After this section comes the section dedicated to the skins of the sandwich structures (2.1.2) 

followed by the section dedicated to the core of this material (2.1.3). The fourth section (2.1.4) 

is dedicated to adhesive bonding. 

The second sub-chapter, “2.2 Failure in Composite Structures”, is dedicated to the failure 

modes of sandwich materials and the different structures that coare integrated in a sandwich 

structure.  

The third sub-chapter, “2.3 Multifunctional materials” is entirely dedicated to showing the 

evolution of this kind of structures and the importance it has to the aviation industry. 

 

2.1 Sandwich composite structures 

A sandwich structure results from the assembly, by bonding or welding, of two thin facings or 

skins on a lighter core that is used to keep the two skins separated [9]. The skins are the 

external thin facings material which is characterized by its high stiffness, while the core is a 

lighter but thicker material, less stiff and it separates the two facing skins. The assembly of 

the facings with the core is mostly done by adhesive bonding, despite in some cases it can be 

done by welding. The quality of the bound is fundamental for the performance and life duration 

of the piece [9]. A typical sandwich structure has a mechanical behavior similar to an I-beam, 

where the skins carry the “lion” share of bending and in-plane loads, while the core sustains 

transverse shear, redistributes concentrated normal forces to the skins and maintains the 

integrity of the structure [10], while maintaining low a density and high specific strength. The 

constituents previously described are represented in Figure 2.1: 



8 

 

Figure 2.1-Constituents of a sandwich structure (adapted from [11]) 

Sandwich materials are usually classified by its core nature and geometry: 

• Homogeneous core materials: 

 

Figure 2.2- Homogeneous core materials (adapted from [6]) 

 

• Structured core materials: 

 

Figure 2.3- Structured core materials (adapted from [6]) 

The use of sandwich structures continues to increase rapidly for applications ranging from 

satellites, aircraft, ships, automobiles, rail cars, wind energy systems, bridge construction, etc. 

This kind of materials are being developed to satisfy the increasing demand for high 

performance, low-weight structures and have become essential for a wide range of engineering 

fields. 

Sandwich composite structures are nowadays one of the major structural constituents of the 

recently commercialized airplanes. Airbus started to implement composite sandwich structures 

Skin 
Adhesive 

Core 

Adhesive 

 

Skin 

Wood cores Foam cores 

Honeycomb cores Corrugated cores Textile cores 
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in the A310, in 1983, with the construction of the rudder in a composite honeycomb sandwich 

[6]. Since this first implementation, sandwich composite structures have extended its 

applications to an extended range of components, from primary structures like leading and 

trailing edge panels on the wings, to tertiary components like floor panels in the passenger 

compartment. Airbus A380, commercialized in 2005, is an example of composite sandwich 

structures applications in recent aviation (Figure 2.4):  

 

Figure 2.4- A380 composite sandwich structures applications (adapted from [6]) 

Composite sandwich structures cover an extensive range of application in aviation, external 

structures must stand a wide range of temperatures, sometimes are the first line of thermal 

isolation of an airplane, they must face simultaneously high aerodynamic loads, must be able 

to absolve possible impacts during flight and dissipate its energy without cracking. External 

structures must be prepared to protect the airplane against lighting strikes and at the same 

time ensure the electromagnetic transmissibility for the avionics systems. On the other hand, 

floor panels aren’t exposed to the adverse conditions of the external components, but must 

handle with transverse, discrete loads, such as high heels loads, must resist to a wide range of 

corrosive fluids, which can be spilled by the passenger, and can act as the barrier between 

pressurized and the unpressurized areas of the aircraft. 

 

2.1.1 History 

The concept of sandwich structure goes back to 1849 when Fairbairn projected a sandwich 

structure composed by iron compression sheets riveted to both sides of a wood core, for the 
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Britannia Tubular Bridge in North Wales [6]. E. Bishop [6] was the first to implement sandwich 

principle to powered aircraft, he implemented sandwich concept in the fuselage of the Comet 

racer, the Albatross and to the wing and fuselage of the Mosquito. This was the first successful 

airplane with sandwich materials applied to primary structures such as the hull and the wings. 

It used a balsawood core with facings made of birch plywood, this sandwich concept had some 

drawbacks due to the use of those bio-degradable materials and their susceptibility to fungi 

degradation [6]. 

It wasn’t until the World War II that inorganic sandwich composite structures had a substantial 

role in aeronautical industries, with the construction of the Vultee BT-15 fuselage, using 

fiberglass-reinforced polyester as the face material using both a glass-fiber honeycomb and 

balsa core [6]. 

In 1944, sandwich structures started to develop the interest of the scientific community with 

the first publication by Marguerre [12], in Germany, dealing with sandwich panels subjected to 

in-plate compressive loads. In 1948, Libove and Batdorf [13] published a small deflection theory 

for sandwich plates, and in 1949, Flugge [14] published on sandwich structures optimization. 

All these works were especially important since these were the first publications on sandwich 

materials. During this decade, one of the most important companies for sandwich structures 

development was born, Hexcel Corporation, founded by two World War II veterans. Hexcel is 

one of todays major producer of honeycomb core materials, with over 50% of market share 

[15]. In 1951, Bijlaard [16] made important developments in sandwich optimization of a given 

core depth and face thickness. During the 50s, U.S Forest Products Laboratory (USFPL), which 

was attached to the University of Wisconsin, made numerous publications of methods of analysis 

of wood sandwich structures, some of those are still valuable today. In 1956, Gerard [17] wrote 

one chapter of his book, “Minimum Weight Analysis of Compression Structures”, about sandwich 

structures optimization. During the next year, 1957, Kaechele [18,19] published two USFPL 

reports on the minimum weight design of sandwich panels and on design procedures and data 

for sandwich panel tests. In 1966, Plantema [20], from Netherlands, published the first book 

totally focused on sandwich structures. Three years later, in 1969, H.G. Allen [21] in England, 

launched another book on sandwich structures, these two books remained as the “bibles” of 

sandwich structures until the mid-1990s. 

The aerospace industry was aware of the potential of sandwich structures and applied this 

technology to the heat shield of the Apollo capsule. It was a successful project and in 1969 this 

capsule was able to sustain the stress and heat of the acceleration during the launch and re-

entry phase. 

During the 70s, a tremendous activity began in Sweden regarding the use of composite sandwich 

construction for naval ship hulls. Karl-Axel Olsson, from the Royal Institute of Technology, in 

Stockholm, was a pioneer in the development of sandwich structures. He led the effort among 
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the Swedish Royal Navy and the Swedish shipbuilders to switch from the usual steel hulls to 

fiberglass composite sandwich structures. Olsson made analysis, small and full-scale tests to 

prove the effectiveness of composite sandwich hulls and in the end, he was able to show that 

properly designed composite sandwich hull could be structurally identical or better than steel 

hulls. As a result, since the 80s, all Royal Navy ship hulls have been made by sandwich 

constructions [22]. 

Later in 1996, Noor, Burton and Bert [23], provided an extensive review on sandwich composite 

structures and computational models applied back then, discussing over than 800 references 

and provided another 559 references as a supplemental bibliography. 

In 1986 the Beech Starship was introduced, the first all sandwich aircraft, its entire structure 

used Nomex honeycomb with graphite and Kevlar. Although it wasn’t a successful aircraft for 

various reasons, the starship was a pioneer in the use of sandwich composite structures. 

Since 1989 to date, have been twelve International Conferences on Sandwich Constructions. 

The first was hosted by Karl-Axel Olsson, in Stockholm and since then eleven more took place 

in different continents proving the importance of this type of composites. The last one took 

place in Lausanne, Switzerland, from 19 to 22 August 2018. 

In 1990 Bitzer, from Hexcel Corporation, stated that every two, or more, jet engine aircraft in 

the western world utilized some honeycomb core sandwich. He stated that the Boeing 707, 

commercialized since 1957, had only 8% of wetted area made by sandwich structure while the 

newer Boeing 757/767 (released in 1982) had 46% of wetted area made by honeycomb sandwich 

material [24]. 

 

2.1.2 Skins 

The skins of the sandwich structure are the external faces which are built of stiff and strong 

materials and are much thinner than the light and relatively compliant core. The choice of the 

sandwich materials depends on the structural application, lifetime loading, availability and 

cost. Graphite-epoxy and carbon-epoxy multilayered skins are typically used in aerospace 

applications, while glass-epoxy or glass-vinyl ester are used in the facings of civil and marine 

structures [10]. The material chosen for the skins of the sandwich structure developed in this 

work was a carbon fiber reinforced polymer (CFRP). Thus, these materials are introduced and 

described in detail along the following sub-sections.  
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2.1.2.1 Carbon Fibers and CFRPs 

Fibers occupy the largest volume fraction in a fiber reinforced polymer (FRP) and share the 

major portion of the load acting on this composite structure. So, proper selection of the fiber 

type, fiber volume fraction, fiber length, and fiber orientation must be done carefully, since 

the final proprieties of the composite are dependent from these factors [2]. 

Based on diameter and character, fibers are grouped into three different classifications: 

whiskers, fibers, and wires[1]. Whiskers are very thin single crystals that have extremely large 

length-to-diameter ratios, this type of fibers have a high degree of crystalline perfection and 

are virtually flaw free. Although whiskers possess these exceptional proprieties, they aren’t 

used as much as expected because this kind of fibers are extremely expensive, besides that, 

they are difficult to incorporate uniformly into a matrix. On the other hand, fibers are either 

polycrystalline or amorphous and have diameters much smaller than their length. This kind of 

materials are the most commonly used as reinforcement, they are either polymers or ceramics 

and offer great mechanical proprieties. These fibrous materials are cheaper than whiskers and 

their implementation in the matrix is easier. Wires, or fine wires, have diameters relatively 

larger than fibers and are usually made by metallic materials [1]. 

Carbon fibers are commercially available with a large variety of tensile modulus and tensile 

strengths, generally, low-modulus fibers have a lower density, lower cost, higher tensile and 

compressive strengths, and higher tensile strains-to-failure than high modulus fibers (Figure 

2.5). 

 

Figure 2.5- Tensile modulus versus tensile strength for commercially available pitch and PAN based 
carbon fibers [25] 



13 

 

Carbon fibers are manufactured from two types of precursors (starting materials), namely, 

textile precursors and pitch precursors. The most common textile precursor is polyacrylonitrile 

(PAN), while Pitch, is a product of petroleum refining or coal coking, it has a higher production 

cost than PAN [26]. The manufacturing process for each type of precursor is represented in 

Figure 2.6. It shows the major steps of the two types of carbon fiber production, the 

carbonization and graphitization processes are identical for both types of precursors. Pitch 

carbon demands a primary heat treatment, followed by a melt spinning to produce pitch 

filaments, this is succeeded by a stabilization process. These processes are not needed to 

transform polyacrylonitrile (PAN) in polyacrylonitrile filaments, this precursor just needs a 

spinning and stretching process followed by a heat stabilization to produce filaments [27]. 

 

Figure 2.6- Diagram of PAN and Pitch carbon production processes (adapted from [27]) 

PAN filaments are produced from a treatment that consists in a wet spinning and stretching of 

polyacrylonitrile, followed by a heat stabilization in an oxygenated environment (room 

concentrations), at a temperature between 200°C and 300°C for 2h. After this cycle, the PAN 

filaments are ready for the carbonization process.  

Pitch carbon needs two different processes to be ready for carbonization: first, it suffers a heat 

treatment between 300°C and 500°C, which refines and reforms pitch from an isotropic to 

anisotropic material, it is called mesophase pitch. After this, the mesophase pitch suffers a 

melt-spinning and extraction process followed by a heat stabilization at temperatures between 

200°C and 300°C. 

To produce carbon fibers, the filaments must suffer a carbonization treatment: the filaments 

are heated and stretched in an inert atmosphere, at temperatures that can go from 1000°C to 

2000°C, depending on the modulus and strength it must have, for approximately 30 min.  

To produce high strength and high modulus carbon fibers, after carbonization the carbon fibers 

are exposed to a graphitization treatment, which is a thermal treatment above 2000°C with 

stretching to improve strength. 
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CFRPs are composites with polymeric matrix and reinforced by carbon fibers. Carbon fibers are 

known by their low density and high modulus and stiffness, normally the goal of this composites 

is to maximize strength and/or stiffness on a weight basis. These characteristics are expressed 

in terms of specific strength (strength-weight ratio), and specific modulus (modulus-weight 

ratio). These ratios are obtained by dividing the absolute values with the specific weight1 of 

the respective material.  

Many structural composites, especially for aerospace and aeronautical applications, have 

laminated structures consisting of multiple layers of long continuous fibers embedded in a 

matrix. Fiber type, fiber orientation, and fiber architecture may be varied from layer to layer. 

Each layer, called a lamina or a ply, is typically 0.125 mm thick [2]. These layers can either be 

cut from prepreg, which is a long sheet of continuous fibers pre-impregnated with a polymer 

matrix (see section 2.1.2.2), or cut from a carbon sheet and then mixed with the matrix. They 

are then stacked in the desired fashion and consolidated at elevated temperatures and 

pressures. A prepreg or a carbon sheet may contain either unidirectional or bidirectional fibers 

in either a thermoset or a thermoplastic resin. In the unidirectional laminate, the fiber 

orientation is the same in all plies, for example […0º/0º/0º…]. In this case, the laminate will 

be anisotropic, i.e. the mechanical characteristics depend on the direction the load is applied 

and will present the best mechanical response when the load is applied in the same direction 

of the fibers orientation. The fiber orientation angle can be different in various laminae of a 

laminated composite. The order in which the laminae with different fiber orientations are 

stacked is called the stacking sequence, it is engineered to obtain the desired stiffness and/or 

strength for the laminate. Different stacking sequences produce various kinds of laminates, 

such as angle-ply laminates […-θ/+θ/-θ/+θ…], cross-ply laminates […0/90/0/90…], symmetric 

laminates and quasi-isotropic laminates. 

                                                 

1 Specific weight is defined as weight per unit volume and is obtained by multiplying density 
with the acceleration due to gravity [2]. 



15 

 

 

Figure 2.7- Laminate construction in a [0/90/θ/-θ] symmetric laminate.[2] 

In Figure 2.7, is a presented a symmetric laminate, where the fiber orientation is symmetrical 

about the midplane of laminate. For example, [0/+45/-45/-45/+45/0] is a symmetric laminate 

and can be written as [0/±45]s. Symmetric laminates do not exhibit extension-bending coupling, 

which means that a plane force on the laminate does not produce a bending or twisting 

curvature, and a bending or twisting moment does not produce any in-plane extension or shear 

at the midplane of the laminate. Quasi-isotropic laminates are made of three or more laminae, 

with specific fiber orientation angles to produce an isotropic elastic modulus, Poisson's ratio, 

and shear modulus in the plane of the laminate. Fiber orientation such as [0/+60/-60], [0/+45/-

45/90] and [0/+45/-45/90]s are examples of widely used symmetric quasi-isotropic laminates. 

As an example of quasi-isotropic behavior, consider a unidirectional laminate and a quasi-

isotropic laminate, both containing T-300 carbon fibers in an epoxy matrix. For the 

unidirectional laminate, the elastic modulus in the longitudinal and transverse direction are 

132.4 and 10.8 GPa, respectively. On the other hand, for the quasi-isotropic laminate, the 

modulus is 52.3 GPa irrespective of the direction of the measurement.[2] 

 

Figure 2.8- Amount of composite used per passenger to manufacture aircraft from 1974 to 2015 
(adapted from [28]) 
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The possibility of combining different fiber orientation in different layers make this kind of 

materials extremely versatile and offer an enormous design flexibility. By manipulating fiber 

orientation in different layers, the mechanical, thermal and electrical characteristics can be 

tailored and suited to the design requirements of the structure under consideration. This 

versatility is one of the principal reasons these laminated structures are slowly replacing most 

commonly used metal alloys in aeronautical and automotive industries (Figure 2.8) [28]. 

2.1.2.2 Matrix 

Despite existing many types of matrix, such as ceramic, carbon or metal matrix, in this 

introduction will be given special relevance to thermoset polymeric matrix, specifically, epoxy 

matrix.  

A polymer is defined as a long-chain molecule containing one or more repeating units of atoms, 

joined together by strong covalent bonds. A polymeric material (commonly called as plastic) is 

a collection of many polymer molecules of similar chemical structure. In the solid state, usually 

at room temperature, these molecules are frozen in space, either in random orientation as 

amorphous polymers, or in a mixture of random orientations and orderly oriented as 

semicrystalline polymers. Polymers are divided into two categories: thermoplastics and 

thermosets [2,27].  

In thermoplastic polymers, individual molecules are not chemically joined together, they are 

either bonded by intermolecular forces or secondary bonds, such as Van der Waals bonds and 

hydrogen bonds. With the application of heat, these secondary bonds can be temporarily 

broken, which allows molecules to move freely relative to each other or, if pressure is applied, 

they can flow to a new configuration. When the polymer cools down, it freezes, and secondary 

bonds are restored, which results in a thermoplastic polymer with a different form.  

On the other hand, thermoset resins, once cured, cannot be remelted or reformed. This kind 

of polymers form three-dimensional molecular chains, is called cross-linking. Due to these 

bonds, the molecules are not flexible and cannot be remelted and reshaped as in thermoplastic 

polymers. The higher the number of cross-linking bonds, the more rigid and thermally stable 

the material will be. 

When projecting a high-performance composite, the most desirable proprieties of a matrix are 

[27]: 

1. High tensile modulus, which influences the compressive strength of the composite 

2. High tensile strength, which controls the interplay cracking in a composite laminate 

3. High fracture toughness, which controls ply delamination and cracks growth  
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In Table 2.1 are categorized some thermoset and thermoplastic resins and some physical 

proprieties. 

Table 2.1- Thermoset and thermoplastic resins mechanical and physical proprieties [9] 

Matrix 
Tensile Modulus, 

[GPa] 

Tensile Strength, 

[MPa] 

Density, 

[g/cm3] 

Thermoset 

Epoxy 2.5-5 50-110 1.2-1.4 

Phenolic 2.7-4,1 35-60 1.2-1.4 

Polyester 1.6-4.1 35-95 1.1-1.4 

Polycarbonate 2.4 60 1.2 

Silicone 2.2 35 1.1 

Urethane 0.7-7 30 1.1 

Polyimide 4-19 70 1.4 

Thermoplastic 

Nylon 1.3-3.5 55-90 1.1 

Polyether ether ketone 

(PEEK) 
3.5-4.4 100 1.3-1.35 

Polyphenylene sulfite 

(PPS) 
3.4 80 1.3-1.4 

Polyester 2.1-2.8 55-60 1.3-1.4 

Polycarbonate 2.1-3.5 55-70 1.2 

Acetal 3,5 70 1,4 

Polyethylene 0.7-1.4 20-35 0.9-1.0 

 

Depending on the application field, other considerations should be taken, such as a good 

dimensional stability at elevated temperatures, resistance to moister or solvents, resistance to 

UV radiation, conducting proprieties, etc. Looking at the desirable proprieties for a matrix, 

thermoplastic polymers offer better mechanical proprieties than thermoset polymers. 

Thermoplastic polymers have higher impact strength, strain-to-failure and fracture resistance, 

which offer excellent damage tolerance to the composite. Despite thermoplastic distinct 

advantages, they have not been used as much as thermoset polymers in composites, mainly 

because of their lower thermal stability and lower creep resistance. 

Epoxy matrix has been the most used polymer in high performance composites, mainly because 

of their versatility: epoxy resins have many starting materials, curing agents and modifiers. 

During the cure, this polymer does not release volatile matter, exhibits low shrinkage (during 

the cure) and offers excellent resistance to chemicals and solvents. 
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Starting materials for epoxy matrix are low-molecular weight organic liquid resins, containing 

a number of epoxide groups, which are three-member rings of one oxygen atom and two carbon 

atoms (Figure 2.9) [27]: 

 

Figure 2.9- Chemical representation of one epoxide group (three member rings of one oxygen 

atom and two carbon atoms) [27] 

A common starting material is diglycidyl ether of bisphenol A (DGE BA), which both contain two 

epoxide groups. It’s usual to add diluents to the starting liquid to reduce the viscosity, in some 

types cases flexibilizers are added to improve the impact strength of the cured matrix [27][2]. 

By changing the formulation, properties of epoxies can be changed, the cure rate can be 

modified, the processing temperature requirement can be changed, the cycle time can be 

modified, the drape and tack can be varied, the toughness can be changed, the temperature 

resistance can be improved, etc. To start the polymerization (curing) reaction, which is the 

solidification reaction, small amounts of a curing agent, such as amines, anhydrides, phenols, 

carboxylic acids and alcohols, are added just before incorporating fibers into the liquid mix [2]. 

Cure rates can be controlled through proper selection of hardeners and/or catalysts, each 

hardener provides different cure characteristics and different properties to the final product. 

The higher the cure rate, the lower the process cycle time and thus higher production volume 

rates. Epoxy-based composites provide good performance at room and elevated temperatures. 

Epoxies can operate well up to temperatures of 90 to 120°C, and epoxies based on novolac and 

cycloaliphatics can perform well up to 250°C [27]. For high-temperature and high-performance 

epoxies, the cost increases, but they offer good chemical and corrosion resistance. 

A lot of composites with epoxy matrix are commercialized in a semi-solid state, as pre-

impregnated (Prepreg) fibers, this is accomplished by slowing the cure reaction, i.e. lowering 

the reaction temperature before all the molecules are cross-linked, this resin stage is called 

the B-stage form. The b-staged resin can be transformed into a hard, insoluble mass by 

completing the cure, for this reason normally prepreg rollers must be stored at low 

temperatures and have a limited shelf life. This material provides consistent properties as well 

as consistent fiber/resin mix and complete wet-out, they also eliminate the need for weighing 

and mixing resin and catalyst. 
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2.1.3 Core 

The core of a sandwich beam is the material placed between the two faces of the structure 

(Figure 2.10). The core is composed of a lightweight material, less stiff than the faces but 

stiffer enough to resist the structure deformation. This structure separates the two faces and 

by this mean guarantee a parallel position between them, avoids slipping, supports shear and 

bending stresses, transfers applied forces from one face to the opposite face and can act as a 

thermal and acoustic isolator depending on the material. 

 

Figure 2.10- Sandwich beam (adapted from [27]) 

Actually, the most effective method of reducing the weight of a beam or a panel without 

sacrificing its bending stiffness is to use a sandwich construction (Figure 2.10). The bending 

stiffness of a sandwich beam is given by equation 1 [6]: 

 𝐾 = 𝐸𝑠

𝑏𝑡3

6
+ 2𝑏𝐸𝑠𝑡 (

𝑐 + 𝑡

2
)

2

+ 𝐸𝑐

𝑏𝑑3

12
 (1) 

Where: 

 𝐸𝑠 is the modulus of the skin material 

 𝐸𝑐 is the modulus of the core material 

 𝑏 is the beam with 

 𝑡 is the skin thickness 

 𝑐 is the core thickness 

Equation 1 shows that the bending stiffness of a sandwich beam can be increased significantly 

by increasing the value of 𝑐, that is, by using a thicker core, since core materials have low 

density, this increase will not add much weight. This is one of the great advantages of using 

sandwich constructions, but it should be noted that the core material also has a low shear 

modulus. Thus, unless the ratio of span to skin thickness of the sandwich beam is high, its 

deflection will be increased owing to the transverse shear effect [27]. 

c 
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Core geometry can either be homogeneous (i.e. wood or foam cores) or structured cores (i.e. 

honeycomb or corrugated cores). There is a wide variety of foam core available on the market, 

based on different chemistry and processing technics with different proposes: either structural 

or isolating, besides many isolating foams can act as a structural reinforcement, since every 

material that carries a load can be claimed to be a structural core material [29]. One successful 

material applied to this type of structure is polyvinyl chloride (PVC) foam (Figure 2.11-a) since 

it has impressive mechanical performance to a very low weight. PVC foam has almost become 

a trade name even though it is a combination of almost equal parts of polyurea and PVC. Balsa 

is another popular material inserted in the family of homogeneous cores, comes from balsa 

wood and its produced by cutting it in thin laminas from timber and glue them together with 

the balsa cells oriented in the same direction. A concern with balsa is the risk of moisture 

uptake as with all wood materials, which makes it susceptible to rot if not properly installed or 

maintained [29]. 

 

Figure 2.11- a- AIREX® C70 foam core [30], b- Aramid (Nomex®) honeycomb cores [31] 

Honeycomb material is a core geometry, normally it comes in hexagonal shape and the most 

popular materials are aluminum, aramid (Nomex®), polycarbonate and polypropylene [32]. 

These type of materials provide predictable crash behavior and are used for the design of crash-

resistant parts [32], namely aircraft fairings and floor panels in the passenger compartment 

[6]. Honeycomb materials have been applicated to communication rooms because of their 

radiations shielding characteristics, the repetitive cellular structure acts as a myriad of 

waveguides, attenuating signals across a wide frequency range [33]. 

Recently, new geometries and concept cores have been developed (Figure 2.12), namely truss-

cores which takes the excellent mechanical proprieties of carbon fiber nanotubes to the cores 

of sandwich structures and innovative cell designs capable of better performances than 

honeycomb cells.  

(a) (b) 
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Figure 2.12- Schematics of (a)- three sandwich panels with truss core configuration [34] and (b)-five 
different cell designs [35] 

A series of truss core configurations (Figure 2.12- (b)) under different range of temperature 

was investigated by Yuan et.al. [34] as well as a comparative study was performed by Ingrole 

et.al. [35], where they demonstrate the advantages of a hybrid structure combining regular 

honeycomb and auxetic-strut (Figure 2.12- (b)) structure over honeycomb cells. Many others 

innovative studies are reviewed by Birman and Kardomateas in [10].  

 

2.1.4 Adhesive bonding 

Adhesive bonding is a joining process, between two materials, in which an adhesive is placed 

between the adherent surfaces, solidifies to produce an adhesive bound [36]. This kind of 

process offers a great alternative to the conventional used mechanical fasteners such as rivets 

and screws. Adhesive bounding offers lower structural weight, lower fabrication cost, improved 

damage tolerance and offer much more versatility and design flexibility when compared to the 

common fastener methods. Adhesive bonding is especially useful when applied to fiber 

reinforced composites since it avoids the fiber discontinuities imposed by the fastener methods. 

The bound is continuous and homogeneous throughout the bounding surfaces so no stress 

concentrations are created and the structural integrity is increased [36]. 

(a) 

(b) 
Pyramidal configuration 

Tetrahedral configuration 

X-type configuration 
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The first adhesive bonding with structural applications comes back to 1941, where De Bruyne 

and Newall developed an adhesive based on phenol–formaldehyde which was marketed under 

the trade name Redux®, this adhesive was developed for the aviation industry to aid 

construction of propeller blades. Redux® bonds proved to be so successful that were used in 

the iconic British civil aircraft Comet (Figure 2.13) and later in the Nimrod [37]. 

 

Figure 2.13- Comet aircraft [38] 

Since the first applications adhesives have been extensively investigated and developed with 

the objective of replacing the fastener methods. Adhesives used in structural applications have 

grown to an extensive family of different chemical products, with different characteristics for 

different applications. So, before an adhesive can be specified for a specific application, a 

study in the market should be directed to determine the best adhesives for the application, 

then tests should be conducted to determine and evaluate the different adhesion parameters. 

M D Banea and L F M da Silva [36] give a summary of the different types of adhesives that exist 

in the market and some of their characteristics : 

• Epoxy- High strength and temperature resistance, relatively low cure temperatures, 

easy to use, low cost 

• Cyanoacrylates- Fast bonding capability to plastic and rubber but poor resistance to 

moisture and high temperature 

• Anaerobics- Designed for fastening and sealing applications in which a tight seal must 

be formed without light, heat or oxygen, suitable for bonding cylindrical shapes 

• Acrylics- Versatile adhesives with capabilities of fast curing and tolerate dirtier and less 

prepared surfaces 

• Polyurethanes- Good flexibility at low temperatures and resistant to fatigue, offers 

good impact resistance, and durability 

• Silicones- Excellent sealant for low stress applications, high degree of flexibility and 

very high temperature resistance, capability to seal or bond materials of various 

natures, long cure times, and low strength 
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• Phenolics- Good strength retention for short periods of time, limited resistance to 

thermal shocks 

• Polyimides- Good thermal stability, dependent on a number of factors, difficult 

processability 

Typical adhesives tensile modulus are listed in Table 2.2 

Table 2.2- Typical adhesives mechanical proprieties values  

Adhesive Type Tensile Modulus  

E [GPa] 

EA451 U150 [39] Epoxy film (unsupported) 6.2±2% 

Redux 326 film [40] Modified bismaleimide (sup- ported) 6.06 

Hysol EA 9359.3 [40] Two-part, modified epoxy paste 2.15 

Supreme 10HT [40] One-part, modified epoxy paste 3.45 
 

The quality of an adhesive bond is dependent on many factors, such as the external and 

environmental factors like solvents exposition, humidity, UV radiation, exposition to big 

temperature amplitudes, etc., those can influence the durability of the bond if the adhesive is 

not correctly chosen, threated or isolated [41]. Another fundamental factor is the fabrication 

quality, the curing methods must be strictly followed as described by the manufacturer, the 

manufacturing environment should be as clean as possible to avoid contamination, exposition 

to deteriorating agents, the adherent surfaces must be cleaned and pretreated. In fact, surface 

pretreatment and preparation is, perhaps, the most important process step governing the 

quality of an adhesive bond [42]. To improve bond strength and durability, surface preparation 

is a necessary pretreatment prior to adhesive bonding. Structural adhesives form chemical 

bonds between the adherent surfaces atoms and the adhesive compounds, it creates mainly 

covalent bounds but, in some cases, ionic and static attractive bounds may also be present 

[43]. Surface pretreatments increase the bond efficiently mainly by increasing the surface 

tension, increasing the surface roughness and by changing the surface chemistry. The most used 

surface pretreatments are abrasion/solvent cleaning, grit blasting, peel-ply, tear-ply, acid 

etching, corona discharge treatment, plasma treatment, and laser treatment, often more than 

one of these treatments are used on the same surface [36], in Table 2.3 is shown the different 

operating modes of the various pretreatments listed before.  
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Table 2.3- Effects of various surface pretreatments methods on the surface tension, surface roughness, 
surface chemistry and bond strengths of the polymer composite [44] 

Treatment 
type 

Material 
Nature of 
treatment 

Surface 
tension 

Surface 
roughness 

Surface 
chemistry 

Bound 
strength 

Ref. 

Abrasion 
and solvent 
wipe  

Thermoset 
and 

thermoplastic 

Remove 
mold 

release 
 ✓  

Increased 
for 

thermosets 
[37,38]  

Grit blasting 
Thermoset 

and 
thermoplastic 

Remove 
mold 

release 
 ✓  

Increased 
for 

thermosets 
[39,40,46] 

Acid etch 
Thermoset 

and 
thermoplastic 

Etch* ✓  ✓ 
Slight 

Increase 
[41,42,46] 

Pill ply Thermoset 
Remove 

mold 
release 

 ✓  Increase [46] 

Tear ply Thermoset 
Remove 

mold 
release 

 ✓  Increase [51] 

Corona 
discharge 

Thermoplastic Oxidising ✓  ✓ Double [48] 

Plasma 
treatment 

Thermoplastic 
Ablation 
and/or 

oxidation* 
✓ ✓ ✓ Increase [42-45]  

Flame 
treatment 

Thermoplastic Oxidising* ✓   Increase [38,45]  

Laser 
treatment 

Thermoset 
and 

thermoplastic 

Abolation 
and/or 

oxidation 
 ✓ ✓ Increase [46] 

*Depends on polymer matrix material 

In the case of bonding CFRP to an epoxy adhesive, it is recommended to use a peel-ply, on the 

adherent surface, to increase the surface roughness and to isolate from the humidity and other 

detrimental agents, that will weaken the bond between the polymeric matrix and the adhesive. 

When the peel ply is released from the CFRP, its fundamental to abrade the surface until the 

first layers of resin is removed but with precaution to do not expose the fiber, since the epoxy 

adhesive will bond much better to epoxy matrix rather than the fiber [36]. In fact, most 

adhesive bound failures can be attributed to poor processes during fabrication, with lack of 

quality surface treatment being the most significant deficiency [53]. 
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2.2 Failure in composite structures 

The present subchapter explains the different failure mechanisms of sandwich structures.  

It is divided into three subsections: Failure in CFRP and fiber/matrix interface, failure in 

adhesive interface and failure in sandwich structures. 

 

2.2.1 Failure in FRP 

In practice, fibers can exhibit some limitations as to how these layers should be stacked and 

what fibers orientations are desirable. For example, unless a symmetric laminate is selected 

there will be curvatures caused by in-plane loads such as uniaxial tension and pure shear. There 

are other limitations due to the development of interlaminar stresses, which can cause 

delamination or separation between the layers. Interlaminar stresses are due to the mismatch 

of Poisson’s ratio and shear extension coupling between adjacent layers, that’s the reason why 

the proper selection of fiber orientation in adjacent layers is fundamental to prevent 

delamination and prevent da failure of the composite. 

Since composites are a set of two or more materials, the damage occurs from different 

mechanisms of the simple materials like metal alloys, damage either occurs from matrix 

cracking, delamination, fiber breakage, and fiber waviness [2]. According to P.K. Mallick [2], 

damage in laminated structures can be classified into two categories: process-induced damage 

and service induced damage. Process-induced damage is a consequence of defects originated 

by problems during the fabrication process, porosity, fiber waviness, surface scratches, 

delamination/dents and debonding are examples of process-induced damages. On the other 

hand, service-induced damage, is a consequence of the mechanical and chemical conditions 

the composite is subjected during its service period. Abrasion, surface oxidation and swelling 

are examples of service-induced damage which is caused by the aggressive environments the 

material is exposed during its in-service phase. Matrix cracking/delamination, fiber breakage, 

penetration, hole elongation, sublaminate buckling and lamina crushing are examples of 

service-induced damage originated by mechanical overloads during the in-service period [2]. 
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Figure 2.14- Representation of failure mechanism in a CFRP composite (adapted from [2]) 

In Figure 2.14, is represented a set of failure modes.  

Matrix cracking is one of the most common forms of damage that occurs in CFRPs, since this 

type of failure is hard to be diagnosed, the current design approach is to eliminate or reduce 

the frequency of matrix cracking by focusing research on the ability to predict and model the 

initiation and growth of matrix cracks [2].In 1985, A. Wang [54] proved that laminates internal 

and external geometries, like ply fiber orientation, ply thickness and ply stacking sequence 

have a strong influence in the formation of matrix cracks. Thus, it is fundamental to understand 

the mechanisms which provoke this kind of failure and to focus the research on the prediction 

and prevention. Despite the research on the development of numerical algorithms to predict 

the formation of matrix cracks, today still is very hard to develop an accurate and 

computationally efficient numerical procedure to predict damage since its extremely difficult 

to relate the material microstructural changes to the response of the material [55]. 

Fiber/matrix interfacial debonding is a consequence of cracks propagation, it induces shear 

stress at the fiber/matrix interface which can result in interfacial deboning. The debonding will 

occur in the zone ahead of the crack tip if the interfacial shear strength (τ) isn’t high enough, 

on the other hand if τ is too high, matrix and fibers will fracture without significant interfacial 

debonding, resulting in low toughness and catastrophic failure. 

Delamination is the separation of different plies stacked together due to applied in-plane loads. 

This type of failure tends to initiate at the free edges, like a free edge of a plate, the free edge 

of a boundary, like a hole… Due to different Poisson’s ratios between plies, each lamina will 

experience different deformations when acting independently, but when bonded together they 

must have the same deformation. This simultaneous deformation is achieved through the 

Matrix cracking 

Fiber fracture 

Fiber/matrix 

debonding 

Fiber  

Matrix  
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interlaminar stresses, which have been reviewed by Pagano and Soni [56] and Herakovich [57]. 

Delamination is usually difficult to detect by visual inspection and sometimes are invisible, this 

can cause low reliability for primary structures [58]. This is one of the most known failure 

modes, the physics of delamination is to a certain degree understood [55]. Akira Todoroki et 

al.[58] have studied the effects of delamination on the electric resistance of CFRPs. 

 

2.2.2 Failure in adhesive joints 

Failure modes adhesives bonds are determined by the quality of the bond at each interface, 

specimen geometry, and loading type [36]. According to ASTM D5573 “Standard Practice for 

Classifying Failure Modes in Fiber-Reinforced-Plastic (FRP) Joints” [59], there are seven typical 

characterized modes of failure in FRP adhesive joints (Figure 2.15):  

 

Figure 2.15- Typical modes of failure in FRP adhesive joints [59] 

(1)- Adhesive failure corresponds to a rupture of the adhesively bonded joint, such that the 

separation appears to be at the adhesive-adherend interface. 

(2)-Cohesive failure is the rupture of an adhesively bonded joint, such that the separation is 

within the adhesive. 

(3)-Thin layer cohesive failure is similar to cohesive failure, except that the failure is very close 

to the adhesive-substrate interface, characterized by a light dusting of adhesive on one 

substrate surface and a thick layer of adhesive left on the other. 

(4)- Fiber-tear failure occurs exclusively within the FRP matrix, characterized by the 

appearance of reinforcing fibers on both ruptured surfaces. 

(1) (2) (3) 

(4) (5) (6) 

(7) 

Adhesive Failure Cohesive Failure Thin-layer Cohesive Failure 

Fiber-tear Failure Light-fiber-tear Failure Stock-break Failure 
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(5)- Light-fiber-tear failure occurring within the FRP substrate, near the surface, characterized 

by a thin layer of the FRP resin matrix visible on the adhesive, with few or no fibers transferred 

from the substrate to the adhesive. 

(6)-Stock-break failure corresponds to the break of the FRP substrate outside the adhesively 

bonded-joint region, often occurring near it. 

(7)-Mixed failure is any combination of two or more of the six classes of failure mode defined 

in (1),(2),(3),(4),(5) and (6). 

Each failure mode classification is based solely on a visual observation of the failure surface 

without the aid of a microscope or other means to magnify the surface [59]. Despite many 

studies for failure predictions for composites bonded joints were performed during the last 

decades, failure prediction of these joints is still difficult because the failure strength and 

modes are different according to various bonding methods and parameters [36]. 

 

2.2.3 Failure in sandwich structures 

When a sandwich structure is exposed to any type of stress, its behavior depends on mechanical 

proprieties of the constituents (facings, adhesive), core, geometric dimensions and type of 

loading [60]-63]. Sandwich beams under general bending, shear and in-plane loading can display 

several types of failure, many times more than one at the same time. It is not easy to predict 

sandwich failure modes because of the nonlinear and inelastic behavior of the several parts and 

the complex interaction between different failure modes [62]. As it was explained earlier, the 

construction quality of the beam is one of the most important factors for the sandwich 

performance under high stress levels. Possible failure modes include compressive and tensile 

failure of the faces, core shear failure, face wrinkling failure due to compression, debonding in 

the core-facing interface, local indentation and global buckling [61].  

Facing compressive failure (Figure 2.16-a) occurs when the axial compressive stress on the face 

exceeds the compressive strength of the facing material [62]. It is highly unprobeable to a 

structure fail due to core compressive failure because of its low stiffness and high ultimate 

strain, nevertheless, it could happen when combined with other failure modes that can gather 

the conditions for this kind of failure. Face wrinkling failure due to compression (Figure 2.16-

b) occurs when small wrinkles appear in the compressed due to stress concentrations, these 
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wrinkles are local elasto-plastic deformations, this failure mode can be called local buckling2 

too [63]. 

 

Figure 2.16- Sandwich compressive failures, a-Face compressive failure, b- Face wrinkling failure or 
local buckling (adapted from [64]) 

Tensile failure occurs in the tensile face, when the deformation induces flexural stress higher 

than the flexural strength of the tensile face. In a three-point bending test, this failure starts 

on the tensile side of the tensile face, directly above the point of load application, where the 

tensile stress is maximum and propagates in direction of the structure compressed face. 

Core shear failure (Figure 2.17) is induced by the shear stress in the core. The shearing force is 

taken mainly by the core, resulting in high core strains due to the low shear modulus of the 

core. Along the elastic region, the core is under nearly uniform shear stress, but when the 

material enters in the plastic region, the core begins to yield, and the shear strain becomes 

highly nonuniform peaking at the center[62]. If any shear stress peak exceeds the material 

shear strength, a core shear failure is eminent at that point. 

 

Figure 2.17- Core shear failure, a-Real core shear failure, b-Graphic representation of core shear failure 
and forces that contribute to this failure (adapted from [29])  

Debonding in the core-facing interface (Figure 2.18)Figure 3.10, is a failure induced by shear 

stress between the core and the faces. Contrarily to the core shear failure, where the core fails 

to sustain the shear forces, in this case, is the adhesive that fails to stand the shear loads. 

                                                 

2 Deformable state where the straight configuration of the beam becomes unstable.  

(a) 
(b) 

(a) 
(b) 
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Adhesive failure, cohesive failure and thin layer cohesive failure are the adhesive failures that 

are associated with the debonding of the core-facing interface. 

 

Figure 2.18- Debonding of the core facing interface 

Indentation failure (Figure 2.19- a) is a predominant failure mode in cases where the applied 

load is distributed over a small area [65]. Indentation failure occurs when the core yields to the 

significant local deformation of the loaded facing, which causes high local stress 

concentrations, when this interfacial stress reaches the yield strength of the sandwich core, 

indentation failure occurs [63, 66]. 

 

Figure 2.19- a- Indentation failure and b- face compression failure in the same specimen 

Global buckling of a sandwich beam is a geometric instability where the structure under 

compressive stress reaches a buckling state, when the response of the material to the 

compressive stress becomes unstable[63]. Normally a structure does not fail to buckle but can 

fail due to buckle, since when a structure reaches this unstable state can deform much easier 

than in normal conditions and other types of failures may occur. 

It is important to notice that it is common to have several failure modes together, the 

interaction of failure modes may occur, the first failure will weak the structure which can lead 

to another failure mode. Figure 2.20 is an example of the interaction between failures. 

 

Figure 2.20- Several failure modes in the same specimen, a-Core shear failure, b-Debonding of the 
compression face core interface, c- Facing compression failure, d- Indentation failure, e-Partial 

debonding on the tensile face core interface 

a 

b 

a b c 

d e 
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Taking Figure 2.20 as an example, the first failures modes were in both tips of the specimen, a 

partial debonding of the tensile face core interface (e), followed by core shear failure (a). After 

the specimen continued to deform and showing signs of larger strain on the compressed face 

this led to the debonding of the compression facing-core interface, as the specimens continued 

to deform the core started to show indentation signs (d), a consequence of the lack of support 

of the shear forces that led to high stress concentrations directly below the load application 

point, finally the top face failed to compression (c) in the point of load application.  

 

2.3 Multifunctional materials 

A challenging issue presented in the aircraft community is how to maximize the performance 

of materials and structures, as to strengthen their integrity and reliability, and meantime lower 

production, operation and maintenance cost. As a response to these demands, the level of 

interest in multifunctional materials has increased during the last two decades. 

A multifunctional material is by definition a composite [66], it is characterized for performing 

more than one function in its application. The attributes of a MFS may include the abilities of 

self-diagnose, repair, recover, report and learn [67]. In the process of designing and building 

this type of structures, in most cases is necessary to embed sensors, processors and actuators 

to get the multifunctionality desired. According to Ferreira et al. [7], multifunctional material 

systems are divided into three types:  

1. Multifunctional structure (MFS)- which is composed of distinct materials, each with 

different functions, mounted, coated or laminated onto another. 

2. Multifunctional composite (MFC)- is a material composed of distinct materials, 

embedded onto another, simultaneously taking more than one function. 

3. Multifunctional material (MFM)- which is a single material that combines different 

functions at a molecular level. Hybrid multifunctional materials are integrated into this 

category. 

During this work will be given special relevance to stimulus responsive materials for structural 

health monitoring (SHM).  

The G-11 SHM committee for Structural Health Monitoring and Management, Aerospace Industry 

Steering Committee [68], defined SHM as “the process of acquiring and analyzing data from 

onboard sensors to evaluate the health of a structure”. SHM facilitates the detection and 

characterization of damage to a structure or component that may result in its ability to fully 

and safely perform its function. The ultimate goal of this technology is to identify damage at 
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the earliest stages, so corrective actions can be performed to minimize downtime, operational 

costs, maintenance costs, and at the same time reduce the risk of catastrophic failure, injury 

and loss of life. This technology has experienced some great progress during the last twenty 

years, mostly due to the increasing development of MFM and MFS. Applications have expanded 

from aerospace, civil and mechanical structures, to essentially all other types of critical 

structures, including those in the nuclear, marine and wind turbine industries [69]. SHM when 

fully developed, should be able to decrease drastically the need for nondestructive inspections 

(NDI) and nondestructive evaluation (NDE), such as visual inspections, ultrasonic inspections, 

eddy current, acoustic emissions, X-ray inspections, radiography inspections and thermography 

inspections. These methods often require partial disassembly or removal of aircraft 

components, which demands down-time depending on the type of check (A, B, C, and D), 

downtime can go from eight hours interval (A checks) to two months (D checks) [70]. These 

checks are either scheduled or taken if some structural degradation is suspected, which limits 

the inspections to schedule intervals and leaves a time gap where small failures can occur 

without notice. These inspections are always taken for prevention, so they are scheduled with 

a large margin of safety which represents heavy expenses for the companies. SHM technologies 

have the potential to reduce these NDI and allow the continual examination, even while the 

vehicle is in service.  

Sensing and actuation are two closely related non-structural functions, and in many cases, the 

same material or device can perform both functions. These materials respond to a specific 

stimulus by altering some of their physical and/or chemical proprieties. In this work, it will be 

given special relevance to structural CFRPs with mechano-responsive capabilities. There is a 

wide range of stimulus witch materials can be sensitive [7]: 

• Mechano-responsive- responds to stress changes either by producing a voltage when the 

material is stressed (piezoelectric) or by sensing the differences in the materials’ 

electrical resistance when stressed (piezoresistive). 

• Thermo-responsive- responds to temperature variation of the material, either by 

changing color (thermochromic), converting temperature changes in differences into a 

voltage (thermoelectric) and even shape memory alloys, polymers and ceramics are 

integrated into this category. 

• Electro-responsive- responds to electrical current or voltage, either by changing color 

(electrochromic), by producing strains under the influence of an external electric field 

(dielectric elastomers), by exhibiting changes in shape when an electric stimulus is 

applied (electro-active polymers), piezoelectric, piezoresistive and thermos electric 

materials are included in this category too. 

• Magneto-responsive- responds to magnetic stimulus, either by changing shape when a 

magnetic charge is applied (Magnetorheological fluids), or by changing the materials’ 
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magnetization under stress or changing shape if subjected to a magnetic field 

(magnetostrictive) 

• Chemo-responsive- responds to pH changes, smart gels are examples of a polymer which 

can react to this kind of stimulus. 

• Photo-responsive- responds to light changes, either by changing color (photochromic) 

or changing shape under light exposure (photomechanical). 

Most damage detection approaches require the use of multiple sensors located near the 

damaged locations, so it is fundamental to predict the possible places where the structure may 

fail. It is always important to take practical considerations, such as cost, weight, and limit the 

implementation of these sensors to the specific locations where structural damage is more 

likely to occur.  

Many solutions for damage detection have been investigated, as an example, implementing 

fiber optic sensors can be accomplished by implementing fiber Bragg gratings and use variations 

in the refractive index of the fiber to determine changes in strain or temperature at each Bragg 

rating location [8]. Piezoelectric sensors have been widely investigated and offer an easy 

implementation and reliable results [57].  

One of the many particularities of CFRP composites is their electrical conductivity, since their 

main constituent is carbon, when fiber networks are stretched, compressed or break within the 

structure, its electrical resistance is expected to change, this propriety is called 

piezoresistivity, a strain gage is a known example of the use of piezoresistivity as a strain sensor 

[71]. This conductivity makes CFRP a self-sensing material and this method does not cause a 

reduction on static strength or fatigue strength [58], so using this principle is possible to 

monitor and measure applied strain without the implementation of additional sensors which 

offers excellent economic advantages, when compared to expensive sensors sometimes with 

difficult implementation. Carbon fiber was first used as strain sensor in 1969, by P. C. Conor 

and C. N. Owston [72] by stretching different fibers at a controlled rate and simultaneously 

measuring the variation in electrical conductivity. Although this principle has many advantages, 

it was not until recent years that electrical conductivity caught the attention of the scientific 

community, because when CFRP is plied in multidirectional orientations has very high 

anisotropic electrical resistance, which for many years was a barrier to the development of this 

technology [71]. In unidirectional carbon fibers the electrical conductance in the longitudinal 

direction (𝜎0) is easily calculated by multiplying the fiber volume fraction (𝑉𝑓) by the electrical 

conductance of the fiber (σf), equation 2. If the matrix volume fraction and matrix conductance 

(𝜎𝑚) are not considered since the matrix acts as an isolator and its conductance is redundant, 

equation 3 [58]: 

https://www.nature.com/articles/2231146b0#auth-1
https://www.nature.com/articles/2231146b0#auth-2
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 𝜎0 = 𝜎𝑓𝑉𝑓 + 𝜎𝑚(1 − 𝑉𝑓) (2) 

   

 𝜎0 = 𝜎𝑓𝑉𝑓 (3) 

 

The volume fraction of the fibers can be estimated by taking images from the cross-section of 

the laminate, then the volume fraction can be calculated by dividing the number of fibers by 

the volume of the cross section photographed. Depending on the degree of compaction of the 

fibers, the composite produces non-zero electrical conductance in the transverse direction. 

This propriety is accentuated in prepreg CFRPs because during production the laminates are 

pressed with rollers against each other augmenting the degree of compaction and consequently 

the contact between fibers from different plies. In multidirectional fibers, this conductance 

can be hard to estimate [71]. Depending on the stacking sequence, the material must be 

electrically characterized in every direction in order to achieve a good estimation of this 

propriety. After this initial characterization, it is possible to detect future damage, such as 

delamination or matrix cracks: delamination decreases the contact between piles while a 

matrix crack growth breaks the fiber-contact-network between plies, which can lead to 

delamination, so in both phenomena the composite will experience a decrease in electrical 

conductance which can be detected if this propriety is monitored.  
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3. Experimental procedure 

In this third subchapter is presented all the information and procedures used to prepare the 

experimental work and guarantee valid results. 

In the first subchapter, “3.1 Materials and fabrication prosses”, are presented the materials 

used in the experimental processes, and is explained in detail all the processes used to produce 

the different specimens. 

The second subchapter, “3.2 Experimental setup”, is shown every equipment used to test and 

collect the necessary data for this study. Moreover, are explained the principles and 

calculations used to define the test parameters for the different specimens and tests that took 

part in this work.  

 

3.1 Materials and fabrication processes 

With the objective of characterizing mechanically and electrically the sandwich beams, a set 

of specimens was projected. The beams were composed of two facing skins of unidirectional 

CFRP, made of twelve layers of prepreg HS 160 RM [73], supplied by CIT- Composite Materials 

Italy, and an AIREX® C70 [74]foam core. The adhesive film used to stick the facing skins to the 

foam core was a structural epoxy adhesive film, EA451 U150 [39], designed for co-cure and 

secondary bonding of composite substrates, also for bonding honeycomb and foam core 

sandwich panels. 

First, two unidirectional carbon fiber laminates were fabricated from the HS 160 RM prepreg 

roll. This roll was stored at -18°C, to minimize the curing reactions of the epoxy matrix pre-

impregnated in the carbon fiber reinforcement, the mechanical proprieties gave by the 

manufacturer are listed in Table 3.1. 
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Table 3.1- - Mechanical proprieties of the cured HS 160 RM prepreg [73] 

 

Value Actual 

54% F.V. 

Value Normalized 

60% F.V. 

Standard 

Tensile modulus, GPa 123 136 

ASTM D3030-00 Tensile strength, MPa 2294 2549 

Poisson’s ratio 0.34 - 

Flexural modulus, GPa 134 149 
ASTM D790-03 

Flexural strength, MPa 1857 2063 

Interlaminar shear strength, MPa 81.5 - 
ASTM D5528-01 

Interlaminar fracture toughness, J/m2 800 - 

 

The pre-impregnated resin was an epoxy matrix [75], it can be cured under a wide range of 

temperatures, but the manufacturer recommends a curing process under 125°C for 60 minutes. 

This temperature corresponds to the temperature from which the viscosity of the resin grows 

exponentially, therefore, under these conditions the impregnation of the resin into the 

reinforcement is maximized [39]. 

The curing prosses was made under the conditions recommended by the manufacturer. An 

autoclave with a maximum working area of 30x30 cm was programmed to perform cycles of 60 

minutes, with a temperature of 125°C, pressure of 5bar and the samples were isolated by a 

high temperature nylon Stretchlon 700 bag to remove the air bubbles that could be infiltrated 

between layers. 

The first step was to cut twelve squares of CFRP measuring 30cm x 30cm from the roll, the 

instruments used to perform this process was a box cutter and a ruler to guarantee a straight 

cut, Figure 3.1.  

 

Figure 3.1- Prepreg transverse cutting 
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The carbon fiber is a very rigid material and offers great resistance when the cutting force is 

applied perpendicular to the direction of the fibers, so it is important to say that the box cutter 

must be propriety sharp to perform a smooth and efficient cut. Contrarily to the transverse 

cut, the longitudinal cut (direction of the fibers) was easier, when cutting in this direction, the 

blade just had to separate parallel fibers and penetrate the pre-impregnated resin. 

The next step was to glue the twelve laminas previously cut, so a heat gun was used to improve 

and uniformize the sticking process between the laminas (Figure 3.2- (a)) and then pressed for 

two minutes to promote the elimination of air bubbles that might have formed during this 

process. The first layer, placed between the metal mold and the CFRP plate, is a Teflon Release 

234 TFP which minimizes the adhesion between the prepreg resin and the mold. The next layer, 

the white tissue under the laminas in Figure 3.2, is a pill ply, which is a removable layer that 

has the propose of protecting the surface of the CFRP board after its cure. 

 

Figure 3.2- Heating (a) and setting (b) the first CFRP layer 

The twelve layers were stacked following the procedure described above. When the laminas 

were all stacked, they were placed into a high temperature nylon Stretchlon 700 bag, along 

with an absorbent fabric (nylon, wltraweave) then it was placed in the autoclave for sixty 

minutes (Figure 3.3). 

 

Figure 3.3- Vacuum bag with CFRP 12-layer unidirectional board before the curing prosses 

(a) (b) 
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The process previously described was used to produce all the CFRP used in this work. 

Two of the CFRP boards were cut in a water jet machine (Pronum, WaterJet 3015) following 

the sketch represented in Figure 3.4- CFRP cutting   

 

Figure 3.4- CFRP cutting sketch 

From the initial 300mm x 300mm CFRP plates, a total of twenty-three CFRP samples were cut 

from each board: twenty samples measuring 15mm x 70mm, another three samples measuring 

15mmx60mm and a square board measuring 200mm x 200mm destined for the production of 

longer samples. 

The adhesive used to bound the carbon fiber facings to the foam core was an epoxy adhesive 

film, EA451 U150 [76], supplied by Composites Materials Italy, this adhesive has a wide range 

of curing temperatures, going from 90°C to 180°C, see Table 3.2. 

Table 3.2- Curing cycles for adhesive film [76] 

Temperature 

[Cº] 

Time 

[h] 

90 7 

100 4 

125 1 

135 2 

180 2 
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The curing temperature of the adhesive used in this work was 90°C, since the foam 

manufacturer recommends a maximum operating temperature of 80°C. The implications of this 

temperature exposition were tested and analyzed. 

Two types of bonding were selected to be tested, simple adhesive bonding with two layers of 

adhesive on each side of the foam core, and a reinforced bounding with two layers of adhesive 

reinforced with a glass fiber veil. Ten samples were produced, five reinforced and five 

unreinforced. The autoclave used as a hoven, so it was set at atmospheric pressure. Since it is 

difficult to see the reinforcement after the curing process, the samples were previously marked 

and categorized. 

Longer samples were also produced from the square measuring 200mm x 200mm in Figure 3.4 

right lower corner. First, a sandwich panel was produced with the exact measures of this 

square, with a bounding reinforced by glass fiber veil. After the adhesive curing process, the 

samples were cut with a grinding wheel because the water jet machine does not perform 

precise cutting in soft materials such as the foam core. Eight samples were projected from the 

sandwich board measuring 190mm x 21mm ±1mm (Figure 3.5). 

 

Figure 3.5- Sandwich long samples cutting sketch 

 

In Figure 3.6 is presented the final aspect of the smaller specimens (a) and the final look of the 

bigger samples (b).  
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Figure 3.6- (a)- Sandwich short specimen 15mm x 70mm (b)-Sandwich long specimen 21mmx190mm 

It’s notable the darker foam core in the specimen (b) due to the different cutting method. 

Sample (b) was cut directly from a sandwich board by a grinding wheel, the foam sides were 

exposed to carbon dust produced by this cutting method. The foam core was not affected by 

the temperature of the grinding weal. 

Finally, sandwich and CFRP samples were prepared for the electrical characterization and 

testing (Figure 3.7).  

 

Figure 3.7- Sandwich specimens with wire integration 

To prepare the specimens for the electrical characterization and the mechanical testing with 

simultaneous electrical measures, two copper cables were glued to one of the specimen’s 

facings. An EM-Tec C39 conductive carbon paste [77] was used to attach the copper wire to the 

facings tips. This method is called the two probe method [71], it has the objective to maximize 

the contact area between the facing fibers and the wire, by this mean guarantee that the 

electrons will be uniformly distributed by the fibers and the electrical resistance minimized. 

Since carbon fiber is a good electrical conductor and the fibers are all oriented in the 

longitudinal direction, it is expected that the facings will offer high conductance between the 

two tips of the facing. 

  

(a) (b) 
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3.2 Experimental setup 

 

3.2.1 Archimedes’ principle 

Archimedes’ principle, or physical law of buoyancy, states that any body completely or partially 

submerged in a fluid at rest is acted upon by an upward force, the magnitude of which is equal 

to the weight of the fluid displaced by the body. The specific mass is given by equation 4: 

 𝜇 = 𝑚/𝑉 (4) 

 

Where, 

𝜇 is the specific mass, kg/m3 

𝑚 is the mass, kg 

𝑉 is the volume, m3 

Following the standard ASTM C20-00 [78], it’s possible to determine the density and the 

apparent porosity (open porous) of the specimens.  

The density of the CFRP and the foam core was determined separately. 

So, following the procedure described in the standard, the carbon and the foam specimens 

were dried in the oven for two hours and the dry weight (𝐷𝑤) was measured in the Oertling 

VA204 (Figure 3.8-a). After this first step, the specimens were submersed in distilled water for 

24 hours, which is called the saturation process. The saturated weight (𝑊) was measured in 

the same balance configuration. Finally, the suspended weight (𝑆) was measured as it is 

described in the standard (Figure 3.8- b). Since the foam is lighter than water an alternative 

method was adopted to measure the suspended weight. First, a metal weight was weighed (𝑝𝑝)  

under the same conditions totally submerged. Then, the foam specimens were weighed with 

metal weight above them (𝑆), so the two materials were at rest totally submerged and the 

suspended weight of the foam (𝑆𝑓) is given by equation 5: 

 𝑆𝑓 = 𝑆 − 𝑝𝑝 (5) 

 

https://www.britannica.com/science/fluid-physics
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Figure 3.8- a- Oertling VA204 configuration for dry weight and saturated weight measure, b- Oertling 
VA204 configuration for suspended weight measures 

To calculate the density of the materials its necessary to calculate the exterior volume (𝑉𝑒), in 

cm^3, which is achieved by subtracting the suspended weight (𝑆) from the saturated weight 

(𝑊), equation 6. It is assumed that the density of the water is 1g/cm3. 

 𝑉𝑒 = 𝑊 − 𝑆 (6) 

 

The density (𝜌, g/cm3), is calculated by dividing the dry weight (𝐷) by the respective exterior 

volume (𝑉𝑒) of the material, equation 7: 

 𝜌 = 𝐷𝑤/𝑉𝑒 (7) 

 

From this data is possible to calculate the apparent porosity (𝑝, %), equation 8: 

 𝑝 =
𝑊 − 𝐷𝑤

𝑉
∗ 100 (8) 

 

This method allows to achieve precise values of the density of the CFRP laminates and 

especially for the foam core, which has elevated porosity and the bulk density would not be a 

correct approximation. 

(a) (b) 
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3.2.2 Definition of test parameters and mechanical tests 

Based on similar works, developed by Morada et al. [79], Crupi et al. [80] and Linul et al. [81], 

the sandwich three-point bending tests were conducted in the universal testing machine 

Shimadzu AGS-X, with a 10 kN loading cell (Figure 3.9). The software used to acquire the 

bending tests data was Trapezium X Version 1.4.0. The sandwich flexural tests followed the 

ASTM C393 standard test method for flexural properties of sandwich constructions [82].  

 

Figure 3.9- Flexural tests experimental setup 

The carbon skins were also tested in the same machine, following the ASTM D790 standard test 

methods for flexural proprieties of unreinforced and reinforced plastics and electrical isolating 

materials [83]. 

The foam core flexural proprieties were measured to understand the impact of the curing 

process in this material. 

 

3.2.2.1 Structural considerations 

The mechanical properties of materials are ascertained by performing careful designed 

laboratory experiments that replicate as nearly as possible the service conditions. It is 

imperative that there is some consistency in the way tests are conducted, this consistency is 
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accomplished by using standardized testing techniques developed by organizations such as 

American Society for Testing Materials (ASTM) or International organization for Standardization 

(ISO). There is a wide range of mechanical tests designed to measure different mechanical 

proprieties.  

Flexural proprieties, such as flexural strength and modulus, are determined by ASTM test 

method D790 [83]. In this test, a composite beam specimen of rectangular cross section is 

loaded in either a three-point bending mode (Figure 3.10- a) or a four-point bending mode 

(Figure 3.10- b). 

 

Figure 3.10- Flexural test arrangements in a three-point bending and b- four-point bending modes 

Where: 

 P is the load applied to the beam, [N] 

 L is the support span, [mm] 

 b is the width of beam tested, [mm] 

 d is the thickness of beam tested, [mm] 

The output of such flexural test is recorded (using an excel file) as load or force (P) versus 

midspan deflection (D). To eliminate the geometrical factors, load (P) and deflection (D) are 

normalized to the respective parameters of stress (σ), equation 9, and strain (ε), equation 10. 

 𝜎 =
3𝑃𝐿

2𝑏𝑑2
 (9) 

 

Where σ is the stress in the outer fibers at the midpoint, [MPa] 

 𝜀 =
6𝐷𝑑

𝐿2
 (10) 

 

Where ε is the strain in the outer surface [mm/mm]. 

(a) (b) 

L L 

L/2 L/2 

P P/2 P/2 

b d d 
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Strain is usually expressed as a percentage which is the strain value multiplied by 100. In Figure 

3.11 is an example of a strain versus stress test of a fiber, a matrix and the composite made by 

these two materials. Typically, FRP experimental stress versus strain graphics have a similar 

appearance as shown in Figure 3.11 by the continuous green line:  

 

Figure 3.11- Example of a strain versus stress of a fiber, matrix and a composite made by these two 
materials [1] 

In Figure 3.11, Stage I and Stage II represent the elastic and plastic deformation, respectively, 

of the composite tested. Flexural strength of the composite (𝜎𝑐𝑙
∗  ) corresponds to the maximum 

stress that can be sustained by a structure. In the strain axis, 𝜀𝑦𝑚 and 𝜀𝑓
∗, are the maximum 

elastic strain and the maximum strain supported by this composite, respectively.  

Most materials, when elastically deformed, stress and strain are proportional to each other 

throughout equation 11 (Hooke’s law): 

 𝜎 = 𝐸 × 𝜀 (11) 

 

In the Hooke’s law, the constant of proportionality E (GPa) is the modulus of elasticity, Young’s 

modulus or simply modulus. The greater the modulus, the stiffer the material, or the smaller 

the elastic strain that results from the application of a given stress. In most polymers, this 

elastic portion of the stress-strain curve is not linear. So, in these cases, it is not possible to 

determine a modulus of elasticity as described above. For this nonlinear behavior, either 

tangent or secant modulus is used (Figure 3.12). 
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Figure 3.12- Schematic stress-strain diagram showing non-linear elastic behavior and how secant and 
tangent moduli are determined [1] 

In order to the engineer make the proper selection of the material, he has to anticipate, plan 

for possible failure and, in the event that failure does occur, to accesses its cause and then 

take the necessary measures against future incidents. So, it is fundamental for an engineer to 

understand the mechanisms of failure of the material and take the necessary measures to 

guarantee that, if failure indeed does occur, it does not occur in a catastrophic way and no 

lives are put at risk. 

Mechanical failure occurs from fracture, which is the separation of a body into two or more 

pieces in response to an imposed stress that is constant or slowly changing with time, and at 

temperatures that are low relative to the melting temperature of the material. In engineering, 

there are two modes of possible fracture: ductile and brittle [1]. In a ductile fracture, there is 

plastic deformation before the fracture, in this type of failure, the material absorbs part of the 

energy while is permanently deformed. While in a brittle fracture, no apparent plastic 

deformation takes place before fracture typically involves little energy absorption and occurs 

at high speeds. 

Ductility is a measure of the degree of plastic deformation that has been sustained at fracture 

[1]. Ductility is expressed as a percentage of plastic strain at fracture which is obtained by 

multiplying the maximum strain before fracture by 100. 

These two types of fracture differ in the ability of the material to experience plastic 

deformation, or in other words, the ability to absorb energy in form of permanent deformation 

before the fracture. So, ductile materials exhibit substantial plastic deformation or high energy 

absorption before failure, while brittle materials exhibit none or almost no plastic deformation 

and are not able to dissipate energy in form of permanent deformation before fracture [1]. In 

Figure 3.13 it is possible to see that the brittle material has almost none plastic deformation, 
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in the other hand, the ductile material shows not only elastic deformation but a big region of 

plastic deformation before failure. 

 

Figure 3.13- Illustration of stress-strain behavior for brittle and ductile materials [1] 

Every fracture process involves two steps, the crack formation and the crack propagation. In 

response an imposed stress, the crack propagation mechanism is what characterizes the type 

of fracture. Ductile fractures are characterized by extensive plastic deformation in the vicinity 

of an advancing crack, contrarily, brittle fracture cracks may spread extremely rapidly with 

almost no plastic deformation in the surroundings of the crack.  

Sandwich structures have a unique behavior regarding failure since it normally fails not from 

the facing martial itself but from adhesion failure or core failure because the faces are much 

stiffer than the core. 

 

3.2.2.2 Sandwich 

According to ASTM C393 Standard Test Method for Flexural Properties of Sandwich Constructions 

[82], the test specimens shall follow the description: “The test specimen shall be rectangular 

in cross-section. The depth of the specimen shall be equal to the thickness of the sandwich 

construction (d), and the width (b) shall be not less than twice the total thickness, not less 

than three times the dimension of a core cell (c), nor greater than one half the span length (L). 

The specimen length (l) shall be equal to the span length plus 50 mm or plus one half the 

sandwich thickness whichever is the greater” [82], see Figure 3.14 and Figure 3.15.  
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Figure 3.14- Representation of a sandwich specimen 

Figure 3.14 is represented a sandwich specimen and the different letters correspond to each 

measure according to ASTM C393 [82] and ASTM D790 [83]. Where: 

 l is the length of the specimen, [mm] 

 L is the support span length, [mm] 

 c is the core thickness, [mm] 

 t is the faces thickness, [mm] 

 d is the total thickness of the beam, [mm] 

 b is the specimen width, [mm] 

Analytically, the restrictions imposed by the standard are:   

 𝑙 ≫ 𝑏 (12) 

 𝑐 + 2𝑡 = 𝑑 (13) 

 𝑏 ≥ 2𝑑 (14) 

 𝑏 ≥ 3𝑐 (15) 

 𝑏 ≤ 𝑙/2 (16) 

 𝑙 = 𝐿 + 50 ∪  𝑙 = 𝐿 + 𝑑/2 (17) 

 

According to the measures of the set of specimens, using the core thickness as 𝑐 = 6 𝑚𝑚 and 

the faces thickness as 𝑡 = 2.2 𝑚𝑚 the sandwich total thickness is 𝑑 = 10.4 𝑚𝑚. The restriction 

imposed by the standard is: 𝑏 ≥ 20.8 𝑚𝑚.  

  

d 

l 

b 

c t 

L 



49 

 

The support span for the sandwich short specimens was defined as 𝐿 = 60𝑚𝑚 with a total length 

of 𝑙 = 70𝑚𝑚. 

 

Figure 3.15- Sandwich short specimens’ measures 

ASTM C393 just imposed restrictions regarding the width of the specimen, so ASTM D790 

Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and 

Electrical Insulation Materials [83] was followed as well to project sandwich long specimens. 

This standard imposes the following geometric restrictions: 

 𝑙 ≥ 16𝑑 (18) 

 𝑏 ≤ 𝑙/4 (19) 

 

Based on both standards and in the CFRP three-point bending tests results the final measures 

of the sandwich long specimens’ measures are represented in Figure 3.16: 

 

Figure 3.16- Sandwich long specimens’ measures 
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The rate of the crosshead motion is defined in ASTM D790 by equation 20: 

 𝑟 = 𝑍𝐿2/6𝑑 (20) 

 

Where:  

𝑟 is the rate of crosshead motion, [mm/min] 

𝑍 is the rate of straining of the outer fiber, [mm/mm/min]. 𝑍 shall be equal to 0.01. 

Thus, the rate of crosshead motion is: 

 𝑟 =
0.01 ∗ 1702

6 ∗ 10.4
= 4.63 ≈ 4.5 𝑚𝑚/𝑚𝑖𝑛 (21) 

 

The cross-head motion was set to 4.5 mm/min. 

The tests provide the data necessary to calculate the core shear stress (equation 22) and the 

facing bending stress (equation 23): 

 𝜏 =
𝑃

(𝑑 + 𝑐)𝑏
 (22) 

 

Where 𝜏 is the core shear stress in [MPa]. 

 𝜎 =
𝑃𝐿

2𝑡(𝑑 + 𝑐)𝑏
 (23) 

 

Where 𝜎 is the facing bending stress in [MPa]. 

The flexural strain 𝜀, which is the nominal fractional change in the length of an element of the 

outer surface of the test specimen at midspan [83], may be calculated for any deflection using 

equation24: 

 𝜀 = 6𝐷𝑑/𝐿2 (24) 

Where: 

𝜀 is the flexural strain [mm/mm] 

𝐷 is the deflection of the center of the beam, [mm] 
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The modulus of elasticity in de bending, 𝐸, is the ratio, within the elastic limit, of stress to 

corresponding strain. The modulus was calculated by the chord method [83], where two 

discrete points are chosen at the stress strain curve on the elastic section and the slope is 

calculated by equation 25: 

 𝐸 = (𝜎2 − 𝜎1)/(𝜀2 − 𝜀1) (25) 

 

Where 𝜎1.and 𝜎2 are the flexural stresses, calculated from equation 23 and measured at the 

predefined points on the stress strain curve. 𝜀1 and 𝜀2 are the flexural strain values, calculated 

from equation 24 and measured at the predetermined points on the stress strain curve. 

The standard deviation, 𝑆𝐷, is the measure that is used to quantify the dispersion of a set of 

values is calculated by equation 26: 

 𝑆𝐷 = (√(Ʃ𝑋 − 𝑛�̅�)2/(𝑛 − 1) ) /�̅� (26) 

Where: 

 𝑋 is the value of single observation  

 𝑛 is the number of observations 

 �̅� is the arithmetic mean of the set of observations 

The procedure described above allowed to project specimens that guarantee valid results. The 

equations allowed to process the data collected by the Shimadzu AGS-X, to obtain the graphics 

required to understand the behavior of the sandwich structure when exposed to flexural stress, 

and to analyze those graphics to draw sustained conclusions about the mechanical behavior of 

this structure.  

 

3.2.2.3 CFRP laminates 

The CFRP sandwich skins were tested and mechanically characterized following ASTM D790 

standard [83]. The specimens were cut from a plate using the Pronum, WaterJet cutting 

machine which followed a sketch made in CATIA® software. The standard states that the support 

span shall be at least 16 (tolerance ±1) times the depth of the beam. Specimens with 3.2 mm 

or less in depth shall be 12.7 mm in width. The specimen shall be long enough to allow for 

overhang on each end of at least 10 % of the support span but in no case less than 6.4 mm on 

each end. 
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CFRP short specimens were also produced by the same method described, but with dimensions 

equal to the sandwich short specimens’ facings, 15mm depth and 70 mm length. 

In Figure 3.17 is represented a CFRP laminate specimen and the different letters correspondent 

to each specimens measure according to ASTM D790 [83]: 

 

Figure 3.17- Representation of a CFRP laminate sample 

For this structure the specimens must comply the following parameters: 

 𝐿 = 16𝑑 ± 1 (27) 

 𝑏 = 12.7 (28) 

 𝑙 ≥ 𝐿 + 2 × 0.1𝐿 (29) 

 

The rate of crosshead motion is calculated by equation 20. 

Five specimens with geometries respecting these parameters were tested and all of those 5 

failed to compression in the upper face. In section 7.5 from ASTM D790 [83] states that for high-

strength reinforced composites, including highly orthotropic laminates an increase in the span-

to-depth ratio up to 60:1 is recommended to eliminate shear effects when modulus data is 

required. Specimens with a span to depth ratio of 32:1 and 40:1 were tested and both failed to 

compression, thus, a span to depth ratio of 60:1 was adopted for the CFRP long specimens. The 

final measure of the CFRP specimens are listed in Figure 3.18: 

l 

L 

b 

d 
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Figure 3.18- CFRP long specimen and three-point bending test measures  

ASTM D790 [83] states that the maximum radius support should be is 1.6 times the specimen 

depth, thus the radius should be at most 3.52mm instead of 5mm. Unfortunately, the Shimadzu 

AGS-X only had those supports for three-point bending tests for such a wide span. Since the 

objective of the CFRP flexural tests was to study the skins of the sandwich beam, increase the 

depth of the beams by adding more layers of CFRP wasn’t an option. The tests proceeded with 

these supports, despite the stress concentration on the supports is smaller, it is expected that 

the specimens would have the same behavior with smaller supports. 

For this specimen geometry the rate of crosshead motion is: 

 𝑟 =
0.01 ∗ 1322

6 ∗ 2.2
= 13.2 ≈ 13 𝑚𝑚/𝑚𝑖𝑛 (30) 

 

The flexural stress, 𝜎, of a simple beam supported at two points and loaded at the midpoint is 

maximum at the midpoint of the lower face. Since the test had a large support span (≥ 16𝑑), 

used such that deflection exceeds 10 % of the support span, the stress in the outer surface of 

for a simple beam can be reasonably approximated by equation 31. 

 𝜎 = (
3𝑃𝐿

2𝑏𝑑2
) [1 + (

𝐷

𝐿
)

2

− 4 (
𝑑

𝐿
) (

𝐷

𝐿
)] (31) 

 

Where: 

𝜎 is the stress in the outer fibers at midpoint, [MPa]  

𝐷 is the deflection at the middle of the support span, [mm] 
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The flexural strain 𝜀, the modulus of elasticity 𝐸, and the standard deviation 𝐷𝑆, were 

calculated by means of equations, 24, 25 and 26 respectively. 

The procedure described above allowed to project specimens that guarantee valid results for 

the mechanical characterization of the CFRP skins. The equations allowed to process the data 

collected by the Shimadzu AGS-X, to obtain the graphics required to understand the behavior 

of the CFRP skins when exposed to flexural stress, and to analyze those graphics to draw 

sustained conclusions about the structural role that this structure plays in the sandwich 

structure.  

 

3.2.2.4 Foam  

Before any sandwich beam was produced the foam was tested to understand the implications 

of the high temperature exposition. The foam manufacturer recommends a maximum operating 

temperature of 80°C, so to understand the consequences of a curing process at 90°C for 7 hours 

a set of 9 samples were exposed to different conditions: Foam sample 1 was exposed to the 

first cycle of temperature of 90°C during 24h and then was exposed to a temperature of 95°C 

during another 24h. Foam sample 2 and foam sample 3 were exposed to a temperature cycle 

of 95°C during 24h. Foam sample 4, 5 and 6 were exposed to a temperature cycle equal to the 

adhesive curing process, a temperature of 80°C for 7h. Finally, foam sample 7,8 and 9 are 

control samples and they were not exposed to any type of thermal treatment. Figure 3.19 shows 

the foam samples after the heat treatment. 

 

Figure 3.19- Foam samples subjected to different heat treatments, a-sample 1,2 and 3, b-sample 4, 5 and 
6, c- sample 7, 8 and 9 

It is obvious the difference in color of samples subjected to the heat treatment, sample 1,2 

and 3 have a darker color which is a consequence of the long period of time exposed to high 

temperature and dry environment of the oven. The samples did not show any variations in mass 

or density. 

1 2 3 4 5 6 7 8 9 

(a) (b) (c) 
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Since there is no standard to guide three-point bending tests on foams and the objective of this 

mechanical tests was not to characterize the foam flexural proprieties, but to compare and 

understand the impact of the high temperature exposition on the foams behavior to flexural 

stress. Thus, three-point bending tests were performed on the 9 foam samples to understand if 

there was any change in the flexural proprieties of the specimens as a consequence of the 

thermal exposition. The sample’s measures are presented in Figure 3.20: 

 

Figure 3.20- Foam specimen for flexural three-point bending test 

The letters corresponding to the measures are shown in Figure 3.17. 

The rate of crosshead motion was set to 𝑟 = 2 𝑚𝑚/𝑚𝑖𝑛. 

All the specimens broke due to flexion at the lower face, so it is secure to calculate the flexural 

stress as expressed in ASTM D790 [83] equation for the measures shown in Figure 3.20. The 

flexural stress, 𝜎, was calculated by means of equation 9: 

The flexural strain 𝜀, the modulus of elasticity 𝐸, and the standard deviation 𝑠, were calculated 

by means of equations, 24, 25 and 26 respectively. 

The process described above allowed to study the mechanical consequences of exposing the 

AIREX® C70 foam to the adhesive curing temperature of 90°C. 

 

3.2.3 Piezoresistivity 

Piezoresistivity is a phenomenon that occurs when the volume electrical resistivity of material 

changes with the strain in the material [7,71,84,85]. This phenomenon allows the use of the 

material as a strain sensor, as the variation in resistance relates to the strain.  

The electrical resistance of a material is calculated throughout the relation between the 

applied voltage and the current passing through the material, this relation was first discovered 

by Georg Ohm in 1827 and was named after the physicist. Ohm’s law states that the potential 



56 

difference, 𝑉 (voltage), across a conductive material is proportional to the current, 𝐼, where 

the resistance, 𝑅, is the constant of proportionality: 

 𝑉 = 𝐼 × 𝑅 ↔ 𝑅 =
𝑉

𝐼
 (32) 

Where: 

 𝑉 is the potential difference, [V] 

 𝐼 is the current, [A] 

 𝑅 is the resistance, [Ω] 

If the input voltage is controlled and the current is measured, it is possible to know the values 

of 𝑅. When a multimeter is set to make measures of resistance, it uses this principle to measure 

the materials resistance. 

The accuracy of a piezoresistive material can be quantified for its gauge factor (GF), which is 

defined as the fractional variation of the resistance per unit of strain [84]. This parameter can 

be calculated as shown in equation 33 [86]:  

 𝐺𝐹 =
𝛥𝑅/𝑅0

𝜀
 (33) 

 

Where:  

𝛥𝑅 is the resistance variation induced by the applied strain 

𝑅0 is the material’s resistance prior to the deformation 

𝜀 is the applied strain 

When an elastic material is subjected to a force along its axis, it will also deform along the 

orthogonal axes. In other words, a tensile strain along the length will result in compressive 

strains in the orthogonal directions. Typically, the axial and transverse strains will defer and 

the ratios between the two is known as Poisson’s ratio, 𝜈. The strains along the length, width, 

and thickness are denoted by 𝜀𝑙, 𝜀𝑏, and 𝜀𝑑, respectively. 

When the bulk resistivity (𝜌𝑟) is known it is possible to calculate the volume resistance of a 

beam (equation 34): 

 𝑅 =
𝜌𝑟 × 𝑙

𝐴
 (34) 
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Where: 

 𝜌𝑟 is the bulk resistivity, [Ω ∗ 𝑚𝑚] 

 𝑙 is the length of the specimen, [𝑚𝑚], 

 𝐴 is the cross-section area, [𝑚𝑚2] (which is the product of the width, 𝑏, and the 

thickness 𝑑) 

Hence, 

 𝑅 =
𝜌𝑟 × 𝑙

𝑏 × 𝑑
 (35) 

 

Differentiating the equation 36 for resistance gives: 

 d𝑅 =
𝑙

𝑏 × 𝑑
d𝜌𝑟 +

𝜌𝑟

𝑏 × 𝑑
d𝑙 −

𝜌𝑟𝑙

𝑏2 × 𝑑
d𝑏 −

𝜌𝑟𝑙

𝑏 × 𝑑2
d𝑑 (36) 

 

From equation 37: 

 
d𝑅

𝑅
=

d𝜌𝑟

𝜌𝑟

+
d𝑙

𝑙
−

d𝑏

𝑏
−

d𝑑

𝑑
 (37) 

By definition, 𝜀 =
d𝑙

𝑙
, the following equations apply on the assumption that these equations are 

dealing with small changes, hence d𝑙 = 𝛥𝑙, d𝑏 = 𝛥𝑏, and d𝑑 = 𝛥𝑑: 

 
d𝑏

𝑏
= 𝜀𝑏 = −𝜈𝜀𝑙 and 

d𝑑

𝑑
= 𝜀𝑑 = −𝜈𝜀𝑙 (38) 

 

Where 𝜈 is the Poisson’s ratio. It is worth noticing that the minus signs indicate that the width 

and the thickness are experiencing compression, thereby they shrink, and the above example 

illustrates a positive Poisson’s ratio3. 

  

                                                 

3 Materials with negative Poisson’s ratio as they are stretched their width and the thickness 
increase, such materials include special foams and polymers such as polytetrafluoroethylene 
(PTFE) [86] 
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Therefore, from equation 38, equation 39 can be written as: 

 
d𝑅

𝑅
=

d𝜌𝑟

𝜌𝑟

+ 𝜀𝑙 + 𝜈𝜀𝑙 + 𝜈𝜀𝑙 (39) 

 

From equation 33 the gauge factor is therefore: 

 𝐺𝐹 =
𝛥𝑅/𝑅0

𝜀𝑙

=

d𝜌𝑟
𝜌𝑟

⁄

𝜀𝑙

+ (1 + 2𝜈) (40) 

Equation 40 shows that there are two distinct effects that contribute to the gauge factor. The 

first term is the piezoresistive effect, and the second in the geometric effect, as the Poisson’s 

ratio is usually between 0.2 and 0.3, the contribution to the gauge factor from the geometric 

is therefore between 1.4 and 1.6. Table 3.3shows the gauge factor of different materials. 

Table 3.3- Gauge factor of different materials 

Material Gauge Factor 

Metal foil strain gauge 2-5 

Thin film metal 2 

Single crystal silicon -125 to 200 

Polysilicon ±30 

Thick film resistor 10 

 

Piezoresistive materials can either show positive piezoresistivity (p-type) or negative 

piezoresistivity (n-type). In p-type materials, the resistance will increase with the applied 

strain, while in n-type the resistance decreases with the applied strain. In semiconductors, the 

piezoresistive effect is highly dependent on the orientation of the conductive substrate, if the 

geometric effect is neglected, then the fractional change in resistivity is given by: 

  
d𝜌𝑟

𝜌𝑟

= π𝑙𝜎𝑙 + π𝑡𝜎𝑡 (41) 

Where: 

 π𝑙 and π𝑡 are the longitudinal and transverse piezoresistive coefficients,  

 𝜎𝑙  and 𝜎𝑡 are the longitudinal and transverse stresses 

The longitudinal direction is defined as the parallel to the current flow, while the transverse is 

the oronal to it. The two coefficients are dependent on the crystal orientation and doping (if 

the material show positive or negative piezoresistivity) and concentration. 
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So, to measure the resistance variation in the carbon skin while being flexed, a typical two-

probe method [71] was set to the specimens, as it is shown in Figure 3.7 where the copper 

wires were glued with a conductive carbon paste to the specimen’s tips. The two cables were 

connected to the multimeter terminals set to measure the resistance between the terminals, 

with a period of 0.5s (the smallest period it can measure).  

• Shimadzu AGS-X 

• Flexural tests data 

acquisition system 

• Electrical data 

acquisition system 

• Fluke 45 Dual Display 

Multimeter 

 

 

Figure 3.21- Experimental setup for the electromechanical bending tests 

The electromechanical tests were performed at University of Beira Interior, Figure 3.21 shows 

the experimental setup assembled for this tests The electrical data acquisition system was set 

to acquire the electrical data from a Fluke 45 Dual Display Multimeter [87], at a rate of two 

measurements per second while the mechanical data was collected at the same rate but in a 

different computer. The electrical and mechanical data were then cross linked and treated in 

an excel worksheet. 
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4. Results and discussion 

In the first subchapter, all the results are presented graphically and resumed in tables. The 

results are chronologically organized, to be more understandable the reasons that led to 

performing this variety of tests and specimens.  

On the other hand, the discussion is subdivided into four different sections: Foam core, CFRP 

faces, Sandwich and Electromechanical response. A deep analysis of results is taken along this 

subchapter.   

 

4.1 Results  

To understand the impact of the adhesive curing temperature in the foam mechanical behavior, 

a set of nine samples were prepared and exposed to different thermal conditions . The first 

three samples were exposed to temperatures higher than eighty degrees Celsius, the adhesive 

curing temperature, for more than seven hours. The second set of three samples were exposed 

to exactly the same thermal conditions as the curing process. Finally, the last set of three 

specimens were control samples and they were not exposed to any type of thermal treatment.  

 

 

Figure 4.1-Foam samples flexural tests, a-Load versus displacement and b- stress versus strain 

experimental curves of the foam samples 

From Figure 4.1, the increase of the plastic region between the three sets of samples is clear. 

The flexural proprieties calculated from the bending tests data are summed up in Table 4.1. 

Although the temperature shows a clear influence in the plastic region of the foam, the flexural 

strength and flexural modulus did not show relevant variations between sets of samples. So, 

from the tests performed the exposure to such high temperature only made the foam more 
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ductile, this ductility isn’t expected to affect the sandwich performance since the carbon faces 

are much more brittle than the foam. 

Table 4.1- Flexural proprieties of the tested foam samples 

 

Temperature 

[Cº] 

Time 

[h] 

Flexural 
strength 

[MPa] 

Maximum 
strain 

[%] 

Flexural 
Modulus 

[MPa] 

F_S_1 80-90-95 1-24-24 2.70 19.14 45.68 

F_S_2 80-90 1-24 2.66 17.86 49.55 

F_S_3 90 24 2.69 19.18 48.45 

Arithmetic 

mean 

  
2.68 18.73 47.90 

Standard 

deviation  

  
0.79% 0.61% 4.16% 

F_S_4 90 7 2.79 12.99 51.91 

F_S_5 90 7 2.81 13.99 50.65 

F_S_6 90 7 3.05 13.01 57.58 

Arithmetic 

mean 

  
2.88 13.33 52.44 

Standard 

deviation 

  
5.02% 0.468% 4.03% 

F_S_7 - - 2.62 8.94 53.97 

F_S_8 - - 2.58 10.05 52.04 

F_S_9 - - 2.62 10.19 55.63 

Arithmetic 

mean 

  
2.61 9.72 53.88 

Standard 

deviation 

  
0.98% 0.561% 3.33% 
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In Figure 4.2 are the load versus strain and stress versus strain curves of CFRP small samples.  

 

Figure 4.2- CFRP short laminates experimental curves, a Load versus Displacement and b Stress versus 
Strain curves 

The charts show a linear-elastic behavior, followed by a little plastic deformation which leads 

to the rupture of the fibers. Carbon skins typically present a very small plastic regime when 

compared to the elastic one. Table 4.2 is a summary of the data collected from the flexural 

tests of this specimens. CFRP short laminates showed a consistent pattern between samples 

with little data spreading. 

Table 4.2- Flexural proprieties of the CFRP small samples 

 
Flexural strength 

[MPa] 

Maximum strain 

[%] 

Flexural Modulus 

[GPa] 

CFRP_S_1 1093.02 1.55 77.75 

CFRP_S_2 990.44 1.45 72.46 

CFRP_S_3 1082.00 1.53 74.04 

CFRP_S_4 1120.58 1.57 76.64 

CFRP_S_5 1045.02 1.54 72.14 

Arithmetic mean 1066.21 1.53 74.60 

Standard deviation 4.7% 3.0% 3.4% 

 

The short sandwich samples, wich the skins have the same size as the CFRP_S samples, were 

divided into two series, R (reinforced) and U (unreinforced). As it was explained in section 3.1 

the reinforcement was a glass fiber veil embedded between two layers of adhesive, which has 

the function of supporting and stabilizing the adhesive by avoiding its heterogeneous 

distribution over the surface. 

The mechanical results of the sandwich short beams are illustrated in Figure 4.3. 
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Figure 4.3- Sandwich short beams face bending stress versus strain (a) and core shear stress versus strain 
(b) charts 

Along these charts, three different key features are clearly identified: the initial linear-elastic 

behavior, until proximally 2% in strain, followed by an elasto-plastic phase until the structure 

starts to collapse. Table 4.3 shows a summary of the data collected from the sandwich small 

samples’ three-point bending tests. 

Table 4.3- Flexural proprieties of the sandwich short samples 

 

Flexural strength 

[MPa] 

Maximum strain 

[%] 

Flexural Modulus 

[GPa] 

S_S_1_R 99.17 9.03 2.76 

S_S_2_U 97.87 10.70 2.25 

S_S_3_R 96.21 8.55 2.11 

S_S_4_U 99.44 8.56 2.59 

S_S_5_R 102.68 11.03 2.73 

S_S_6_U 101.64 10.16 2.67 

S_S_7_R 99.60 10.00 2.47 

S_S_8_U 97.90 10.67 2.63 

S_S_9_R 101.63 10.38 2.49 

S_S_10_U 94.19 9.20 2.60 

Arithmetic mean unreinforced 98.21 9.86 2.55 

Standard deviation unreinforced 2.8% 9.4% 8.1% 

Arithmetic mean reinforced 99.86 9.80 2.51 

Standard deviation reinforced 2.5% 10.3% 10.3% 
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Reinforced sandwich samples show slightly higher flexural strength yet slightly smaller modulus. 

The difference between maximum strains can’t be considered since the standard deviation e is 

higher than the differences between arithmetic means. 

All the sandwich and CFRP short laminates failed to compression, more specifically face sheet 

failure, mainly because of the small ratio between support spans and beam thickness. So, to 

explore other types of failure longer beams were projected as described in section 3.2.3. 

CFRP long beams load versus displacement and stress versus displacement charts are shown in 

Figure 4.4. 

 

Figure 4.4-CFRP long beams (a) load versus displacement and (b) stress versus displacement charts 

These laminates present a linear elastic behavior with no significant plastic deformation. 

Contrarily to the CFRP short samples, all the samples presented catastrophic failure with entire 

breakage of the beam. Table 4.4 shows the flexural proprieties of the CFRP long laminates. 

Table 4.4- Flexural proprieties of the CFRP long samples 

 

Flexural strength 

[MPa] 

Maximum strain 

[%] 

Flexural Modulus 

[GPa] 

CFRP_L_1 1343.01 1.65 91.52 

CFRP_L_2 1130.54 1.37 90.28 

CFRP_L_3 1241.93 1.55 86.71 

Arithmetic mean 1238.49 1.53 89.50 

Standard deviation 7.01% 0.32% 2.28% 

 

Based on the sandwich short laminates results and in Cardoso [88] study about the effect of the 

application of the glass fiber veil in composite joints, the sandwich long beams were all 
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reinforced with this veil to improve the joint quality. Sandwich long beams face bending stress 

versus strain and core shear stress versus strain charts are resented in Figure 4.5. 

 

 

Figure 4.5- Sandwich long beams experimental curves, a- face bending stress versus strain and (b) core 
shear stress versus strain curves 

Sandwich long beams have very short linear-elastic behavior presenting unstable distinct 

curves: Specimens S_L_1, S_L_4 and S_L_5 show initial failure due to core shear failure, while 

S_L_2 and S_L_3 although both did not fail prematurely, S_L_3 showed a significantly higher 

modulus than every other beam. Table 4.5 shows the sandwich long beams flexural proprieties 

measured from the three-point bending tests. Table 4.5 has two columns where is expressed 

the strain value of the first and second crack. A crack was considered only in load sudden 

decreases of at least 2.5% of the ultimate strength of the specimen  

Table 4.5- Flexural proprieties of the sandwich long beams 

 

Flexural 
strength 

[MPa] 

Core shear 
stress 1st 

crack 

[MPa] 

Core shear stress 
2nd crack 

[MPa] 

Maximum 
strain 

% 

Flexural 
Modulus 

GPa 

S_L_1_R 86.39 0.62 1.67 6.41 5.24 

S_L_2_U 90.23 - - 5.71 5.35 

S_L_3_R 85.41 - - 5.36 8.51 

S_L_4_U 92.91 0.88 - 6.06 6.11 

S_L_5_R 77.20 1.26 4.35 6.16 3.71 

Arithmetic 

mean 
86.43 - - 5.94 5.78 

Standard 

deviation 
6.91% - - 6.87% 30.31% 
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Sandwich long beams were exposed to a series of cyclic static loading to understand its 

behavior. Figure 4.6 shows two cyclic three-point bending tests, composed of five cycles each, 

with a loading rate of 13mm/s, maximum loading of 700N (~80% flexural strength). In test (a) 

without relaxation period and test (b) with 5 seconds interval between each loading cycle. 

 

Figure 4.6- Sandwich long beam 700N cyclic loading tests (a) with no relaxation time (b) with 5 seconds 
of relaxation time 

In both graphs of Figure 4.6, its clear a hysteresis phenomenon, where the material doesn’t 

instantly follow the forces applied, instead it reacts slowly and absorbs some of the applied 

energy due to internal frictional forces [89]. In graph (a) both the loading and unloading curves 

vary from cycle to cycle, which represents a variation in the energy absorbed by the material. 

This means either the material is suffering internal damage and losing capabilities of storing 

the applied energy, or it did not have enough time to dissipate the stored energy during the 

discharge phase. A relaxation period of 5 seconds between cycles was added, in Figure 4.6- (b) 

are the cycle curves of this test, the loading and discharge curves are coincident from cycle to 

cycle, which means that the beam is recovering completely from the applied load without 

internal damage. 

Finally, the electrochemical tests were set. First, a set of three CFRP long laminates was tested. 

Each test was composed of five cycles of 700N (~80% flexural strength) loading, with a 

relaxation period of five seconds between cycles and along the maximum load. The electrical 

resistance was measured and its variation during the tests is shown in the three graphs from 

Figure 4.7. 
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Figure 4.7- Electromechanical tests performed in CFRP laminates. 

In graphic (a) from Figure 4.7, is possible to see a negative resistance variation trend, where 

the resistance tends to decrease when the applied load increases. In graphic (b) this trend is 

visible during the entire test, contrary to test (a), this showed a negative restistance variation 

trend always coordinated with the applied load. In test (b) is possible to see a slight increase 

in the maximum resistance from cycle to cycle. Figure 4.8 shows electromechanical rupture 

tests performed in CFRP laminates, in this tests the specimens were tested to rupture, with a 

crosshead motion rate fo 2mm/min.   
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Figure 4.8- CFRP electromechanical rupture tests 

In both tests, the specimens show negative resistance variation trend until approximately 

600MPa of applied stress. After this, CFRP_EMU_1 presents a slight increase in resistance 

followed by a decrease until the structure starts to collapse. On the other hand, CFRP_EMU_2 

increases resistance from this point until the specimen collapses. 

  

Figure 4.9- Sandwich electromechanical tests 
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Figure 4.9 shows the sandwich electromechanical tests, where the electrical resistance of the 

tensile face was measured. In the graphic (a) is possible to see the negative resistance variation 

trend, while in graphic (b) is possible to see a slight positive resistance variation. It is important 

to notice the instability of the measurements, this instability and lack of coherence between 

the different electromechanical tests will be analyzed and discussed in the next subchapter. 

 

4.2 Discussion 

 

4.2.1 Foam core 

The nine foam core samples were exposed to different ranges of temperature through different 

periods of time. Table 4.6 resumes the temperatures and periods of exposition of the different 

specimens as well as the visual appearance of each set. These temperatures were chosen based 

on the curing process of the adhesive, despite the curing temperature is 90 Cº, the autoclave 

can have peaks of temperature reaching a maximum of 95 Cº for short periods of time. 

Table 4.6- Temperature exposition of the foam samples 

 

Temperature 

[Cº] 

Time 

[h] 

Visual appearance 

F_S_1 80-90-95 1-24-24 

 

F_S_2 80-90 1-24 

F_S_3 95 24 

F_S_4 90 7 

 

F_S_5 90 7 

F_S_6 90 7 

F_S_7 - - 

 

F_S_8 - - 

F_S_9 - - 

 

The first three samples had the propose of understanding the impact of temperatures higher 

than the maximum recommended from the supplier, as well as the influence of the exposition 

time. F_S_1 was placed in the oven for one hour at 80 Cº, followed by a period of twenty-four 

hours at 90 Cº and a final period of another twenty-four hours at 95 Cº. F_S_2 was exposed to 

80 Cº for one hour and after to a temperature of 90 Cº for twenty-four hours. F_S_3 was exposed 
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to just one heat cycle of 95 Cº. F_S_3, F_S_4 and F_S_5 were exposed to a temperature of 90Cº 

for seven hours, exactly the same conditions of the adhesive curing cycle. Finally, F_S_7, F_S_8 

and F_S_9 were control samples without any kind of high temperature exposition.  

At the end of their cycles of temperature the first three samples had a similar visual appearance 

where the green color of foam was replaced for light grey. F_S_3, F_S_4 and F_S_5 had a slightly 

darker color than the control samples but preserved the green tone. Thus, the alterations in 

color are majorly influenced by the exposure time rather than the temperature.  

Figure 4.1 and in Table 4.1. The strain reached before failure was consistent with the different 

sets of samples, Figure 4.10 shows this variation. 

 

Figure 4.10- Foams specimens’ maximum strain 

In Figure 4.10, which represents the maximum strain reached by each foam specimen compared 

side by side, shows each set of samples distributed by three distinct regions of the graph. The 

first three specimens are the ones with the highest levels of maximum strain, followed by the 

foam samples exposed to adhesive curing process and the lowest are control specimens. The 

maximum strain reached by specimens F_S_4, F_S_5 and F_S_6 is on average 3.61% higher than 

the control samples and 5.4% lower than specimens F_S_5, F_S_6 and F_S_7. These results show 

an increase in foams ductility proportional to the time the samples were exposed to high 

temperatures. Since neither the modulus or the flexural strength were altered during the curing 

process, the exposure to a temperature of 80ºC provided more flexibility to the foam, which 

can be considered an improvement of the core mechanical proprieties. 
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Figure 4.11- Foam three-point bending test (a)- crack view from below (b)- front crack view  

Figure 4.11 shows the failure of a foam specimen after a bending test. It was observed that 

failure starts in the form of crack initiation on the tensile side of the specimen as the 

displacement increases and it tends to grow towards the compression side. All the samples 

showed a similar failure mode like the one in Figure 4.11. Despite the rate of crosshead motion 

was 2mm/min, all samples had a fast crack propagation through the specimen’s depth. 

 

4.2.2 CFRP laminates  

In Figure 4.2, shows the CFRP short laminates behavior under flexural stress. All the specimens 

showed a consistent pattern under these conditions, a linear elastic zone followed by small 

ruptures and finally the total failure of the structure. These specimens did not match ASTM 

D790 standard, their geometry was chosen based on sandwich short samples’ design, so the 

failure mode was quite different from the tension failure predicted by the standard. CFRP_S 

samples failed to the compression force between the crosshead and the top face of the sample. 

In Figure 4.12-(a), shows the crack propagation in the transverse direction, while the side view 

of the crack is shown in Figure 4.12-(b), where the crack reached only half of the specimens 

depth.  

 

Figure 4.12- CFRP_S failure mode, (a)-top view, (b)- magnification of side view (x4) 

(a) (b) 

(a) (b) 

x4 
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From these figures, it is obvious that the crack only affected the top sheets of the specimen, 

so the failure was due to the local stress concentration in the top face, induced by the stress 

in the point of contact between the crosshead and the specimen, where the matrix was unable 

to disperse the load uniformly throughout all depth of the sample. This resulted in premature 

failure due to matrix cracking, followed by the fibers rupture due to the local compressive 

loads without matrix support. This test did not reflect CFRP behavior under flexural stress, 

instead, it showed the maximum compressive force under flexure that this specimen can 

handle. 

Figure 4.4 represents the curves obtained for the CFRP long laminates, they were projected 

with a span to depth ratio of 60:1 to avoid premature compression failure. These curves present 

a linear elastic phase coherent between each sample. Contrary to the CFRP short samples, 

these specimens had a rupture much more spontaneous with almost none plastic regime. Figure 

4.13 shows the three views of a CFRP_L sample after a three-point bending test. 

 

Figure 4.13- CFRP long samples failure mode, (a)-compression side view, (b)- side view, (c)- tensile side 
view 

In Figure 4.13, is shown that the crack propagated throughout all the specimen’s depth. From 

a close analysis, despite the fracture is the same, it shows a very distinct appearance between 

the compression and the tension side, Figure 4.13- (a) and (b) respectively. In this case, the 

samples failed to tension, the crack propagated from the tensile side in the direction of the 

compression side. The propagation of the crack is irregular and grew in width from the tensile 

to the compression side. This growth and irregularity are a consequence of the energy 

dissipated along the cracking process, the structure is progressively less capable of storing the 

energy absorbed during the deformation and it dissipates it mainly by cracking. The rate of 

dissipated of energy grows from the start to the end of the crack, that is why the compressed 

side has a rift wider than the tensile side. In Figure 4.13-(b) it is possible to see delamination 

close to the compression side, which is common in this failure modes, it’s another consequence 

of the energy abrupt dissipation. 

(a) (b) (c) 
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Y. Ma et. al. [90] investigated the flexural proprieties and failure behavior of two kinds of 

unidirectional CFRP laminates, using the same carbon fiber (T700SC 12K, Toray, Tokyo, Japan) 

but two different types of matrix systems. One matrix system was fabricated with Nylon 6 (MXD-

PA, Mitsubishi Gas Chemical, Tokyo, Japan) film while the second was fabricated with epoxy 

(MCP939, Maruhachi Corporation, Fukui, Japan) film. The results obtained by Y. Ma et. al. [90] 

are shown in Table 4.7 as well as the results obtained in the three-point bending tests of the 

CFRP_S AND CFRP_L laminates. 

Table 4.7- Experimental flexural proprieties CFRP_S AND CFRP_L and Y. Ma et. Al. [90] results 

 

Flexural strength 

[MPa] 

Flexural Modulus 

[GPa] 

CFRP_S 1066.21 ± 4.7% 74.60 ± 3.4% 

CFRP_L 1238.49 ± 7% 89.50 ± 2.3% 

CF/Nylon 6 [90] 1154.24 ± 6.4% 85.4 ± 4.1% 

CF/Epoxy [90] 1512.2 ± 10.7% 89.45 ± 8.9% 

 

CFRP_L laminates have a flexural strength and flexural modulus higher than CFRP_S, this can 

be justified by the different failure modes present in this two samples. CFRP_S failed to 

compression while CFRP_L failed to tension which is expected to occur at higher values of 

tension. The results confirm that CFRP_L failed in the tension face and CFRP_S to compression. 

Comparing to Y. Ma et. Al. [90] results, the flexural strength and modulus of CFRP_S are lower 

than the ones obtained by Y. Ma et. Al. [90] due to the premature failure mode. On the other 

hand, CFRP_L has a flexural strength higher than CF/Nylon 6 laminates and lower than 

CF/Epoxy, which can be justified by the different carbon fiber and matrix used by these 

authors. The modulus of CFRP_L is very similar to CF/Epoxy laminates, this means that these 

two types of laminates have a similar behavior when exposed to flexure. The CFRP laminates 

flexural results are by these means confirmed and sustained by the results obtained by Y. Ma 

et. Al. [90]. 
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4.2.3 Sandwich specimens 

Sandwich bending tests show a particular behavior under flexure, curves from Figure 4.3 and 

Figure 4.5 show three distinct areas: an initial linear elastic portion, followed by a slight 

deviation from linearity where the material enters in an elasto-plastic phase followed by 

failure. 

Despite sandwich short beams have different bondings, it was not reflected in the curves, both 

reinforced and unreinforced bonds have similar elastic, elasto-plastic and failure phases. The 

samples showed elastic behavior until a strain of approximately 1.1%, after that it shows a 

deviation from the initial linearity, which rapidly takes over an almost linear behavior with a 

less accentuated slope. In Figure 4.14 it is possible to distinguish clearly the elastic from the 

elasto-plastic zones of this specimens, when the mean line starts to divert from its tangent (red 

line in Figure 4.14) the specimen enters in the elasto-plastic region. 

 

Figure 4.14- Sandwich short samples Load versus Displacement mean curve with respective error and 
tangent of the elastic phase 

This deviation is due to a core adaptation to the applied compressive forces, from this point 

the material will not recover totally to the initial state. The decrease on the slope means that 

the material is deforming more with lower load rate. Carbon short samples just showed plastic 

deformation from a minimum load of ~750N (Figure 4.2), this means that the beginning plastic 

deformation of the sandwich short samples is due to yield of the core as the load is applied. 

Figure 4.14 shows that the elasto-plastic phase is not linear, in this phase, there is a progressive 

plastic deformation with progressive foam core yielding until the structure fails to compression 

due to facing compressive failure. For these specimens the facing bending strength was: 

𝜎 = 99.03 𝑀𝑃𝑎 ± 2.6% 
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Figure 4.15-Fracture surface of sandwich short samples, a- magnification of x2, b- magnification of 4x 

The ultimate strength is lower than expected because the shear loading component is 

significant and core failure precedes facing compressive failure. Core failure takes the form of 

core yielding, which results in reduced Young modulus, which reduces the core support of the 

facing and precipitates facing compressive failure at a lower stress. In Figure 4.15, it is possible 

to see the facing compressive failure crack, pointed out by the white rectangle in Figure 4.15-

a, as well as the adhesive failure directly below the crack, pointed out by the white rectangle 

in Figure 4.15-b. The adhesive failure occurs as a consequence of the core yield, finally the 

facing fails due to the lack of support from the core which allows an ununiform distribution of 

strain, peaking at the center. 

It is known that sandwich failure modes depend on material proprieties of the constituents, 

(facings, adhesive, core), geometric dimensions and type of loading [60]-62]. Sandwich long 

beams showed inconsistent behavior between samples, with a large dispersion of data, the 

flexural modulus presented an error of 30%. Figure 4.16 illustrates the four different failure 

modes obtained by sandwich specimens. 

  

x2 x4 

(a) (b) 
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Figure 4.16- Sandwich long samples failure modes 

In sandwich composites, the bending moment is taken mainly by the faces, this results in high 

normal stresses with low normal strains due to the high modulus of the facings. On the other 

hand, the shearing force is taken mainly by the core, resulting in high core strains due to the 

low shear modulus of the core. Thus, along the elastic region, the core is under nearly uniform 

shear stress, but when the material enters in the plastic region, the core begins to yield, and 

the shear strain becomes highly nonuniform peaking at the center [62]. In Figure 4.16- (a), the 

failure mode 1, was due to core shear failure in the center of the beam followed by face sheet 

failure. This specimen was the only one that failed as Gdoutos et al.[62] described, S_L_3 is 

the specimen with the highest flexural modulus and the one that tolerated the highest load 

before being plastically deformed. It is important to notice that this specimen was the one that 

showed the latest adhesive debonding and the only one where the partial debonding occurred 

from the center to the tip of the beam. 

In Figure 4.16- (a), failure mode 2 in S_L_2 was face sheet wrinkling failure. This specimen 

showed a partial debonding between the tensile face and the core deployed by the shear stress 

between core and face. This means that in this test there was no physical bonding to bear the 

shear stress between the two faces, for this lack of adhesion they could move almost freely 

between each other. This premature adhesive failure explains the lower flexural modulus and 

the higher flexural strength compared to S_L_3 since this failure was not induced by the core 

shear strength but by the CFRP face compression strength. 

Figure 4.16- (b) shows the specimens where the adhesive failure close to the tip is perfectly 

reflected in the load versus displacement graph. S_L_2, S_L_4 and S_L_5 failed almost 

simultaneously and coincided with their entrance into the plastic regime. Which suggests that 

the premature plasticity was induced by small failures triggered by the shear tensions in the 

core-facing interface, next to the tip, which led to partial debonding in this zone and the 

subsequent core breakage, which is shown in failure modes 3.1 and 3.2. In failure mode 4, is 

shown the catastrophic failure of this specimens, the core indentation is perfectly visible, 
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Gdoutos and Daniel [61] state that the yield of the core under the load occurs when the 

interfacial stress, reaches the yield strength of the foam core. The interfacial stress is 

proportional to the local deflection [61], in the case of this specimens, the local deflection in 

the center of the beam increased to levels beyond core yield strength. Because the top face 

was detached from the core, it did not transfer shear tensions to the rest of the structure, 

instead, it deformed almost independently, which led to a larger deflection of the top face 

compared to the rest of the structure. This caused a high concentration of tensions in the center 

of the beam that led to core yielding and a subsequent compression face sheet failure, 

consequence of the high concentration of tensions in this area. 

Sandwich long specimens with reinforcement showed a poor adhesive bounding, all had a 

premature failure due to lack of adhesion between core and face sheets. Figure 4.17 shows the 

visual appearance of an adhesive interface that failed completely (S_L_1, S_L_4, S_L_5): 

 

Figure 4.17- Visual appearance of an adhesive joint, a-Low magnification of the adhesive failed joint 
and (b)- High magnification of the adhesive failed joint 

In Figure 4.17 is possible to distinct clearly the glass fiber veil on the faces of the core and the 

carbon skin, the interfaces do not show remains either from the carbon skin nor the core foam, 

according to ASTM D5573 [59], this is called an adhesive cohesive failure This suggests that the 

glass fiber vail, that was expected to act as a reinforcement of the bond, was indeed what 

weakened it. 

  

(a) (b) 
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Table 4.8- Experimental flexural strength of different studies and the sandwich samples 

Face Core 

L 

[mm] 

t 

[mm] 

b 

[mm] 

d 

[mm] 

Flexural strength 

[MPa] 

Ref. 

W-CFRP Re-entrant honeycomb 60 2.3 10 21.3 3.76 [91] 

U-CFRP 
Conventional 

honeycomb 
60 1.5 10 20.5 8.39 [91] 

GFRP 

Polyurethane 

 ρ=40 kg/m3 

70 1.5 51.3 22 1.96 [92] 

GFRP 

Polyurethane 

 ρ=200 kg/m3 

70 2 33.2 15.6 40.18 [92] 

CFRP_S_U Airex C70 

ρ=92.33±0.57% kg/m3 

60 2.2 15 10.4 98.21±2.8%  

CFRP_S_R 60 2.2 15 10.4 99.86±2.5%  

CFRP_L 170 2.2 21.4 10.4 86.43±6.9%  

 

Sandwich structures widely different from each other, the skin and core materials can vary a 

lot as well as the core geometry, so it is difficult to compare mechanical proprieties of different 

sandwich structures. As an example, Table 4.8 shows different experimental values of flexural 

strength. The sandwich samples manufactured in this work have a substantially higher flexural 

strength due to the carbon faces thickness ally to the core compressive strength. In the work 

developed by Li et.al. [91] both honeycomb cores failed to sustain the applied load while in 

the work developed by Costa [92] the specimens failed to compression. Each sandwich structure 

will fail from its weakest point, sandwich long samples proved that the weakest point in this 

structure was the adhesive bond. 

The mechanical behavior of the sandwich and CFRP samples used in electromechanical tests 

are expressed in Figure 4.18. The sandwich and CFRP tests were conducted with loading cycles 

of a maximum load of 700N. None of the CFRP specimens showed any type of permanent 

damage, Figure 4.18-a shows straight lines along the charging portion of the cycles followed by 

typical unloading curves. On the other hand, S_EM_1 showed a premature core shear failure, 

like the failure mode shown in Figure 4.16- b- mode 3.1. 
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Figure 4.18-Cyclic mechanical tests. a- CFRP_EM face bending stress versus strain and b- S_EM stress 
versus strain 

Sandwich specimen S_EM_2 showed a consistent mechanical response between the five cycles 

and did not show any type of visible damage. In Figure 4.18-b, S_EM_2 loading and unloading 

portions of the lines are consistent between cycles, these means that there was no hysteresis, 

leading to the conclusion that no permanent damage was induced along this test. S_EM_1, 

showed significant deviation between cycles, this can be interpreted as a consequence of the 

dynamic behavior of the core shear failure. In the first two cycles, the crack tended to grow, 

after those two cycles, the crack stabilized, and the last three cycles showed a consistent 

behavior between them. 

 

4.2.4 Electromechanical tests 

Electromechanical tests were intended to make a proof of concept. With the available 

resources demonstrate that carbon laminates with unidirectional fibers can be used as self-

sensors.   

Despite gauge factor (equation 40) being the most used parameter to define a material 

piezoresistivity, in some cases it can lead to miss understood, a material with a negative gauge 

factor must show negative piezoresistivity, but a material with positive gauge factor can also 

show negative piezoresistivity, if the geometric factor exceeds the modulus of piezoresistive 

factor [93]. Since this work has the objective of studying this concepts viability and the 

possibility of application to realtime monitorization of structures, the results are expressed in 

terms of the piezoresistive effect, 
d𝜌𝑟

𝜌𝑟
/𝜀𝑙, so no miss understood is induced by a possible low 

(~0) negative piezoresistive factor. 
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Looking at Figure 4.19 the inconsistent pattern between tests is obvious, from the two CFRP 

samples, only CFRP_EM_2 (Figure 4.7-b) showed an electromechanical behavior consistent 

throughout the all test, but inconsistent with the other tested sample. Both sandwich specimens 

show an inconsistent behavior between each other too. The piezoresistive effect of each cycle4 

from the four tests is shown in Figure 4.19: 

 

Figure 4.19- Piezoresistive effect for each cycle of the CFRP samples (a) and sandwich samples (b) 

In Figure 4.19-b, CFRP_EM_1 has a notable piezoresistivity inversion, during the second cycle 

the piezoresistive effect passed from –6.98 to 0.86, showing positive piezoresistive effect along 

the third and fourth cycles. This test showed another inversion from the fourth to the fifth 

cycle. CFRP_EM_2 showed negative piezoresistive response along the entire test, the 

piezoresistive effect was allways lower during the unloading phase compared to the the loading 

phase.  

Figure 4.19-b shows the sandwich piezoresistive effect for each cycle, S_EM_1 starts the first 

cycle with positive factor followed by four negative ones. On the other hand, S_L_EM_2 shows 

positive piezoresistivity along almost the complete test. Along the third cycle, the 

piezoresistive effect of the loading and unloading portions differed significantly, during the 

unloading phase it reached a negative value of -0.081 while in the loading period it reached 

the piezoresistive effect of a magnitude of 0.32.  

Comparing the two graphs from Figure 4.19, the piezoresistive effect of the sandwich tensile 

faces is lower than the CFRP samples, this can be justified by the sandwiches higher strain 

magnitude which depends on the specimens’ thickness. Thus, the sandwich thickness is much 

higher than the CFRP thickness, which reaches higher values of strain in the outer surface, and 

                                                 

4 The piezoresistive effects of each cycle is devided in two points, the first of each cycle 
corresponds to for the loading phase and the second corresponds to the unloading phase. 
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if 𝛥𝑅
𝑅0

⁄  of the sandwich is not proportionally higher, the piezoresistive effect will be lower. 

That is what happen in sandwich samples, the resistance variations did not increase 

proportionally to the strain compared to the CFRP samples.  

 

Figure 4.20- CFRP electromechanical rupture tests and corresponding piezoresistive effects along the 
bending tests 

Figure 4.8 shows the resistance response of two CFRP samples that were flexed until rupture. 

Both showed negative piezoresistivity, until approximately a strain amplitude of 0.456%, then 

CFRP_EMU_1 showed a slight deviation from this trend but recovered the negative 

piezoresistive response after a strain amplitude of 0.71%. On the other hand, CFRP_EMU_2 did 

not recovered the negative piezoresistivity and showed a piezoresistive effect of 0.83 

throughout the rest of the test.  

Wang and Chung [85] have reported that the longitudinal piezoresistivity of a carbon fiber 

beam, under flexure, is negative along the compression surface and positive along the tensile 

surface. This is because of the decrease in the current penetration at the tension surface and 

the increase in the current penetration at the compression surface. The test setup did not allow 

to distinguish between the tensile and compressive piezoresistivity, instead, it gives the general 

longitudinal piezoresistivity of the beam. By these means, the specimens with positive 

piezoresistive effect can indicate a higher contribution of the tensile fibers, while the negative 

trends can represent a higher contribution of the compressed fibers to the material’s 

piezoresistivity. The results were not consistent between samples to take conclusions about 

this matter. This inconsistency can be explained by several factors: 
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Wang and Chung [93] claim that the two-probe method used to measure the resistance 

of the specimens is not the most accurate method. They defend that in this method, 

the measured resistance is the specimen resistance plus the contacts resistances, which 

sometimes can exceed the CFRP resistance. In the two-probe method, the measures of 

resistance depending on the quality of the electrical contacts, which represent a source 

of error.  

Angelidis et.al.[94] reported that, using the four-probe method, opposite 

piezoresistance values were obtained in the same specimen using carbon paste and 

silver paste. They reported that carbon paste can leave gaps in the interface contact, 

which leads to inhomogeneous current distribution.  

Along the tests conducted during this work, a wide range of resistances (𝑅0) were measured in 

identical specimens, this can be explained by the unreliable contact interface. Since the use 

of silver paste was not possible, it is impossible to know the impact of the carbon paste in the 

results.  

Further work on this matter must be conducted, to understand the discrepancies found along 

the electromechanical tests and to sustain the obtained results. The used Fluke 45 Dual Digital 

Multimeter must be updated for a more accurate one. Silver paste must be used to decrease 

the contact resistance, and by these means, understand if the results obtained by Angelidis 

et.al.[94], regarding the opposite piezoresistivity measured by silver paste and carbon paste 

contacts, are applicable to the two-probe method. Finally, the four-probe method must be 

implemented to minimize contact resistance and understand the impact of these two different 

methods (two and four-probe method). The collocation of the electrodes covering just the 

tensile or the compressed fibers should be tried to understand the contribution of each 

(compression and tension) to the material’s piezoresistivity. With these improvements, it is 

expected to achieve cleaner and more reliable results and to sustain or refute the results 

obtained in this work.
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5. Conclusion 

In this chapter is given an overview of the principal conclusions taken from the study developed 

along this work, as well as the suggestions for future work. 

 

5.1 Overview 

Along this work a sandwich structure was developed and constructed, its different components 

were exposed to different flexure tests, and the piezoresistivity of the facings was studied as 

well. 

This work allowed to contact with different materials and manufacture technics, as well as to 

develop skills and methodologies on three-point bending tests and electromechanical tests.  

Different foam core specimens were exposed to a temperature above the ones recommended 

by the supplier, for different periods of time, to understand the impact of these variables on 

the flexure proprieties of this material. The tests showed an increase in material ductility 

proportional to the time of exposition, but the flexural strength was not affected.  

Several CFRP laminates were bent to rupture to understand the different failure modes present 

in this material as well as the influence that the support span had in these failure modes. These 

tests led to the conclusion that the specimens had to have a ratio of at least 60:1 to offer solid 

conclusions about the CFRP flexural proprieties. 

Table 5.1- Experimental flexural proprieties of the tested specimens 

 
Flexural strength 

[MPa] 

Flexural Modulus 

[GPa] 

CFRP_S 1066.21 ± 4.7% 74.60 ± 3.35% 

CFRP_L 1238.49 ± 2.0% 89.50 ± 2.28% 

S_S_U 98.21 ± 2.8% 2.55 ± 8.13% 

S_S_R 99.86 ± 2.5% 2.51 ± 10.26% 

S_L 86.43 ± 6.91% 5.78 ± 30.31% 

 

Table 5.1 shows the experimental flexural strength and flexural modulus obtained to the 

different materials and specimens tested in this work. 
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Sandwich short samples failed to compression which led to the construction of longer ones to 

explore different failure modes of this structure. All the sandwich long specimens prematurely 

failed to weak bound between the core and facing. 

A new experimental setup for piezoresistive measurements was assembled with the available 

resources. The results obtained from the electromechanical tests allowed to confirm that there 

is a variation in the electrical resistance of the material dependent on its deformation. 

Successful measurements of the sandwich piezoresistive proprieties were taken. Although the 

results were accomplished, its reliability was not satisfactory, practical factors such as the 

contact resistance, the use of carbon paste and the adoption of the two-probe method can have 

induced errors that are impossible to confirm or refute with the available resources. 

 

5.2  Future work 

After an analysis on the state of the art, the experimental work and the results discussion, 

several suggestions of work with potential arise, and constitute a good complement for this 

study and generate new lines of research, namely: 

- A study on the adhesive interface between the core and the facings should be 

conducted to access the impact of the glass fiber vail in this interface; 

- The sandwich long specimens should be submitted to a significant number of cycles to 

study the fatigue response of this material. 

- A study on the core mechanical response when exposed to hostile fluids, or temperature 

cycles covering the entire range of aviation working temperatures, by these means 

understand the impact that possible applicable environments might have in the 

mechanical response of this material. 

In order to improve the electrical data acquisition method and obtain more reliable results: 

- Other contact interfaces shall be tested and the four-probe method shall be applied; 

- Different contacts just covering the tensile or the compressed fibers should be tried; 

- Other variables, such as different ranges of temperature exposition, or different 

loading cycles can be introduced to verify by what means these new variables can affect 

the piezoresistive response of the material.  

- The implementation of reinforcement conductive material such as graphite nano-tubes 

should be studied to access if this material increases the piezoresistive response and 

the mechanical proprieties simultaneously. 
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These work suggestions have the potential to improve the reliability of the electromechanical 

tests, improve the material’s mechanical proprieties and approach the tests conditions to 

situations this material can be exposed when applied to aircraft structures. 
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