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Abstract 

Along with the ongoing climate change, drought events are predicted to become 

more severe. In this context, the Spray Induced Gene Silencing (SIGS) technique 

could represent a useful strategy to improve crop stress resilience. A previous study 

demonstrated that the Arabidopsis mutants for a glutathione S-transferase (GST) gene 

had increased abscisic acid (ABA) levels and a more activated anti-oxidant system, 

both features that improved drought resilience.  

Here, we used SIGS to target a putative grape GST gene (VvGST40). Then, 

ecophysiological, biochemical and molecular responses of ‘Chardonnay’ cuttings 

were analysed during a drought and recovery time-course. Gas exchange, ABA and t-

resveratrol concentration as well as expression of stress-related genes were monitored 

in not treated controls, dsRNA-VvGST40- and dsRNA-GFP- (negative control of the 

technique) treated plants, either submitted or not to drought.  

VvGST40-treated plants revealed increased resilience to severe drought as attested by 

the ecophysiological data. Analysis of target metabolites and antioxidant- and ABA-

related transcripts confirmed that VvGST40-treated plants were in a priming status 

compared with controls.SIGS targeting an endogenous gene was successfully applied 

in grapevine, confirming the ability of this technique to be exploited not only for 

plant protection issues but also for functional genomic studies. 
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Summary statement 

Here, we used the innovative SIGS technique to functionally characterize a glutathione-

S-transferase (VvGST40) gene in grapevine which indeed showed an improved resilience 

when submitted to severe water stress treatment. 

1. Introduction 

 Climate future projections give a collective picture of a substantial drying and 

warming of the Mediterranean region, exposing crops to increasingly frequent drought 

events. Adaptation of agriculture to climate change relies on a complex network of 

biological mechanisms, especially for those perennial species that can produce for 

decades (Lionello et al., 2006). 

Today, it is increasingly impellent to find new sustainable systems able to cope stressful 

conditions (e.g. drought) and preserve the limited resources using, for example, New 

Plant Breeding Techniques or RNA interference technologies (Giudice et al., 2021). The 

latter technology relies on the RNA interference (RNAi) process, naturally occurring in 

eukaryotic cells, to regulate gene expression in response to the presence of double 

stranded RNAs (dsRNAs) (Hannon, 2002). In plant cells, the RNAi pathway is triggered 

by dsRNAs that are recognized and converted into fragments of 20-24 nt long RNA 

duplexes (short interfering RNAs, siRNAs) by DICER-LIKE endonucleases (Kusaba, 

2004). These siRNAs are then loaded into ARGONAUTE proteins forming the RNA-

induced silencing complexes (RISCs) thus leading to post-transcriptional gene silencing 

(PTGS) (Kim, 2008). In nature, RNAi mediates resistance to pathogen attacks involving 

the introduction of foreign nucleic acids (e.g. viral infections). It is also a process that 

regulates expression of endogenous protein encoding genes through the production of 

microRNAs (miRNAs) (Reinhart et al., 2002). Only recently, artificial introduction of 

exogenous dsRNAs or small RNAs (sRNAs) in plant tissues has been adopted as an 

alternative tool for disease management against pathogen or insect attacks and, although 

to a lesser extent, to regulate plant gene expression in a sequence-specific manner 

(Dalakouras et al., 2020; Nerva et al., 2020). Only a few studies and one patent dealing 

with the down-regulation of plant genes after exogenous application of dsRNA 

molecules are currently available in literature (Lau et al., 2015; Li et al., 2015; Warnock 

et al., 2016; Kiselev et al., 2021a,b; Marcianò et al., 2021). RDR6-mediated systemic 
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silencing leads to transient amplification of siRNAs in plant tissues once the 

concentration of 22-nt siRNAs exceeds a threshold value able to trigger this pathway 

(Kalantidis et al., 2008). Transitivity processes are yet unclear, however recent evidence 

suggested that intronless genes are mostly subjected to RDR6 activity, thus more 

frequently undergoing transitivity and systemic silencing phenomena in respect to intron-

containing genes, for which the onset of RNAi commonly occurs locally in the treated 

tissues (Dalakouras et al., 2020). One of the most recent application methods of 

exogenous dsRNAs in plants is the so-called Spray Induced Gene Silencing (SIGS). This 

technique consists in high or low pressure spraying of dsRNAs on plant leaves to activate 

the plant RNAi machinery leading to siRNA accumulation. Foliar dsRNA application is 

affected by different variables that can influence dsRNA effectiveness and persistence in 

planta (e.g. environmental conditions, UV, microbe-derived degradation, etc.). To date, 

several strategies for improving dsRNA delivery and stability are under scrutiny. For 

example, surfactants or nanotechnology-based delivery systems have been used to 

successfully maintain the stability of the applied nucleic acids (e.g. Numata et al., 2014; 

Mitter et al., 2017). In this line, recent studies defined the best conditions (e.g. plant age, 

timing of application, soil moisture) to efficiently apply dsRNAs on leaf surfaces 

(Kiselev et al., 2021b,a). 

Drought is one of the major abiotic stressful factors affecting agriculture. Water plays a 

crucial role in plant growth, development, metabolism and biochemistry, being the most 

important resource, and contemporarily the most limiting one. Drought impairs plant 

metabolism and productivity by altering the physiological status and triggering dynamic 

responses to alleviate its negative effects. Grapevine cultivation in the Mediterranean 

area does not generally involve the use of irrigation, being this traditionally considered a 

rainfed crop (Lovisolo et al., 2016). Grapevine has been used as a model woody plant to 

study ecophysiological responses to water stress since the seventies (Lovisolo et al., 

2010; Belfiore et al., 2021). Furthermore, in recent years transcriptomic and functional 

genomics studies, supported by the availability of a reliable sequenced genome, allowed 

researchers to achieve a better understanding of grapevine molecular and physiological 

responses to drought. Among the plant responses mounted by plants to cope with 

drought, the modulation of several molecular pathways, hormonal imbalance (e.g. ABA 

and strigolactones), antioxidant machinery and reactive oxygen species (ROS) 
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scavenging mechanisms were reported (Mishra et al., 2017; Belfiore et al., 2021; 

Seleiman et al., 2021). 

Upon drought conditions the impairment of photosynthetic activity leads to the leakage 

of electrons and oxygen, that can eventually act as electron acceptors, in turn generating 

the superoxide radical O2
-
 in chloroplasts (Fischer et al., 2013). Further pathways can 

lead to O2 reduction to hydrogen peroxide (H2O2), which is considered a signaling 

molecule in presence of different types of abiotic stresses, specifically in grapevine 

(Ferrandino & Lovisolo, 2014). ROS are able to react with proteins, cellular components, 

lipids and nucleic acids, leading to oxidative damage if not properly scavenged either 

through enzymes like catalases, peroxidases, dismutases or through non-enzymatic 

antioxidants like glutathione (GSH) and ascorbate (Asc) (Wang et al., 2019). GSH in 

plants, besides a role in preventing oxidation damage, also functions as a substrate for 

glutathione-S-transferases (GST), which belong to a large heterogeneous family of 

proteins divided in fourteen different classes (Labudda & Safiul Azam, 2014). Plant 

GSTs, due to their catalytic domain conformation, hold certain heterogeneity of functions 

and ligand promiscuity. For these reasons, different biotechnological approaches are 

reported in literature aiming to study the modulation of GSTs and their potentiality in 

abiotic stress resilience. Despite the widely assumed involvement of GSH in stress 

signaling in plants, to the best of our knowledge only one example of drought and salt 

stress tolerance mediated by GSH have been reported up to date. Remarkably, Chen et al. 

(2012) demonstrated that the knock-out of AtGSTU17 increased drought and salt stress 

tolerance in Arabidopsis as a result of the combined GSH and ABA positive effects 

linked to overaccumulation of these two molecules in knock-out mutants. More in detail, 

GSTs are involved in the detoxification of xenobiotics and/or the conjugation with other 

substrates for signaling transduction pathways using GSH (Foyer & Noctor, 2005, 2009). 

The knock-out atgstu17 mutants are unable to exploit the GSH pool for these cellular 

processes, leading to a significant intracellular overaccumulation of GSH (Chen et al., 

2012). As previously stated, GSH works as an important cellular signaling compound 

that influences many fundamental cellular processes in turn impacting on many 

physiological responses. During drought, an increased burst of reactive oxygen species, 

as a consequence of oxidative stress, is observed, and hence the overaccumulation of 

GSH in atgstu17 plants is the probable cause of the observed tolerant phenotype (Chen et 

al., 2012). 
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Based on the above, we addressed our study to test the effectiveness of SIGS as a rapid 

and reliable tool to improve drought stress resilience in a woody plant species typically 

recalcitrant to traditional functional genomics approaches (Giudice et al., 2021). In 

particular, we outlined the effects of SIGS by means of high-pressure foliar application 

of dsRNAs targeting the grape homologue of AtGSTU17 (named as VvGST40), in rooted 

cuttings of Vitis vinifera cv Chardonnay subjected to drought. To this aim, leaves were 

treated prior to stress imposition, then responses of plants were monitored during drought 

and recovery time-courses by using molecular, biochemical and ecophysiological 

approaches. 

2. Materials and Methods 

2.1 Gene identification and cloning  

The GST sequence used in this study was the homologue of the Arabidopsis functional 

GST characterized by Chen et al. (2012). The sequence of the closest corresponding 

protein in V.vinifera resulted to be VIT_01s0026g01340 which was selected by 

performing a BLAST nucleotide research against the Chardonnay genome available at 

http://169.237.73.197/Chardonnay04/ (Zhou et al., 2019). The first step was the primer 

design for the putative Vitis GST gene (following referred to as VvGST40) to obtain an 

amplification product around the size of 700bp (Fig. 1a). The sequence of the amplicon 

has been used to perform a target specificity analysis using the si-Fi software (Lück et 

al., 2019) and to avoid possible off-target effects on other genes. Primer pairs were 

designed using the online tool Primer3 (https://primer3.ut.ee/), on the non-conserved 

region of the gene (For: 5’-AACTCGGTTGCTCTGCTTGA-3’; Rev: 5’-

ACCCCAAGAAGCAACCCAAA-3’). The obtained intron-less amplicon was then 

cloned within the expression vector L4440 by performing an enzymatic digestion with 

the restriction enzyme PstI following the manufacturer’s instruction (Thermo Fisher 

Scientific, MA, USA). 

2.2 dsRNAs synthesis and application method  

dsRNAs were synthetized in vitro as previously reported by Ahn et al. (2019), the 

protocol includes a transformation step of the cloned fragments in dH5α E.coli cells to 

produce large amounts of plasmid prior to RNA production following the manufacturer’s 
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instruction of the MAXIscript™ T7 Transcription Kit (Thermo Fisher Scientific, MA, 

USA). In detail, two different types of dsRNAs were produced: one targeting GFP 

(Nerva et al., 2020) and one targeting the putative VvGST40 gene (Supplementary Fig. 

1).  

Application of the synthetized dsRNAs was performed through SIGS approach (Nerva et 

al., 2020) using the high pressure (10 bar) spraying technique with an airbrush on the 

abaxial side of the leaves. The dsRNA application was performed twice for both 

VvGST40 and GFP genes (used as negative control of the technique): 7 and 4 days before 

the drought stress imposition, using 50 µg (Dubrovina et al., 2019; Nerva et al., 2020) 

per plant in each treatment (Supplementary Fig. 2). 

2.3 Plant material and experimental design 

One-year-old potted Vitis vinifera cv Chardonnay woody cuttings were kept in open air 

conditions at the experimental station of CREA-VE (45.852782N,12.255926E). The 

chosen substrate was a not sterilized mixture of vineyard soil/sphagnum peat (8:2, v:v) to 

better simulate the field conditions. The substrate composition was a sandy-loam soil (pH 

7.8; available P 10.4 mg kg
-1

, organic matter 6,07%; cation exchange capacity 20.11 

mew 100 g
-1

). 

The experimental setup consisted of two conditions (well-watered (NS) and water stress 

(WS)) for each of the three treatments: i) dsRNAs targeting the VvGST40; ii) dsRNAs 

targeting the GFP and iii) not treated control treatments (CTRL) (four plants for each 

treatment and condition, 24 plants in total). Once treated and the stress imposed, each 

plant was monitored by means of leaf gas exchange for the whole duration of the time 

course (18 days; Supplementary Fig. 2). When net photosynthesis or stomatal 

conductance was around zero (defining the severe WS point as reported by Lovisolo et 

al., 2010 and Belfiore et al., 2021), WS plants were rehydrated and recovery was 

monitored. For each treatment and condition, leaf samples were collected prior to stress 

imposition, at the severe stress point and at full recovery (i.e. T0, T2, T4, T6 for all 

treatments and T18 for VvGST40 plants only) (Supplementary Fig. 2). Weather 

conditions were monitored over time using the CREA-VE weather station coupled to a 

Watch Dog 1400 datalogger instrumentation (Spectrum Technologies, Bridgend, UK) 

(Supplementary Fig. 3). At each sampling point, three biological replicates were 
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collected for molecular and target metabolite analysis: each biological replicate was 

formed by pooling one leaf from each plant from the same condition and treatment (i.e. 4 

leaves in total). Thus, samples were immediately frozen in liquid nitrogen and stored at -

80 °C until use. 

2.4 Leaf gas exchange measurements 

Net photosynthesis (Pn), stomatal conductance (gs) and intercellular CO2 concentration 

(Ci) were measured on all plants between 10:00 and 13:00 h on each experimental day. 

For each plant, one fully developed non-senescing leaf growing between the 5
th

 and the 

8
th
 shoot from the base was measured at ambient photosynthetic photon flux density 

(PPFD) using a Ciras 2 portable system (PP SYSTEMS Europe, Herts, UK). 

2.5 RNA isolation and gene expression analysis 

Collected samples were processed to isolate total RNA starting from 50 mg of 

lyophilized leaves and using the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich, 

USA), following manufacturer’s instructions except for the substitution of 2-

mercaptoethanol with sodium metabisulfite for RNA preservation. RNA concentration of 

the extracted samples was quantified at the NanoDrop
TM

 (Thermo Fisher Scientific, MA, 

USA), RNA quality was further checked at the Bioanalyzer (2100 Bioanalyzer, Agilent 

Technologies), and only samples showing RIN (RNA integrity number) > 8 were used 

for real-time PCR analyses. RNA samples were treated with DNase I (Thermo Fisher 

Scientific, MA, USA) following manufacturer’s instruction. The absence of genomic 

DNA was checked before cDNA synthesis by quantitative real time PCR (qPCR) using 

VvCOX specific primer of grapevine (Supplementary table 1). After DNase treatment, 

samples were subjected to cDNA synthesis using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Thermo Fisher Scientific, MA, USA) starting 

from 1 µg of total RNA. 

qPCR reactions were carried out in a final volume of 10 µL using the SYBR
®

 Green 

protocol (Bio-Rad Laboratories Inc., USA) and 1:5 diluted cDNA as template (Chitarra 

et al., 2018). Reactions were run in a Bio-Rad CFX96 instrument (Bio-Rad Laboratories 

Inc., USA) using the following conditions: an initial denaturation phase at 95°C for 3 

min, followed by 40 cycles at 95°C for 10 s and 60°C for 30 s. Each amplification was 

followed by melting curve analysis (65-95°C) with a heating rate of 0.5°C every 5 s. All 
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reactions were performed with at least two technical replicates. Relative expression level 

was carried out using a comparative threshold cycle approach (∆∆Ct method), 

normalizing the expression to the housekeeping genes cytochrome-C-oxidase (VvCOX) 

and actin (VvACT). Gene expression data were calculated as expression ratio (Relative 

Quantity) to CTRL NS at T0. Oligonucleotide sequences are listed in Supplementary 

Table 1. The primer pair for VvGST40 was designed outside from the region targeted by 

the dsRNAs in order to avoid over-quantification of the endogenous transcripts.  

2.6 Analysis of target metabolites  

About 100 mg of the lyophilized leaves used for total RNA isolation were processed for 

the HPLC-DAD analysis. Briefly, the extraction buffer was aliquoted in each sample: 

750 L of 80% methanol-H2O (8:2 v/v) with 0,1% of acetic acid. The mixture was then 

subjected to sonication in an ultrasonic bath for 1h at maximum intensity. After the 

sonication step, samples were centrifuged at maximum speed for 10’ at 4°C. Before 

quantification, the samples were filtrated using a 0.20 m PTFE membrane filter 

(Chromafil


 Xtra PTFE-20/13, Macherey-Nagel, Germany). 

A Thermo Finnigan Spectra SYSTEM instrument (Thermo Finnigan, San Jose, CA) 

equipped with AS3000 autosampler, column temperature controller, diode array detector 

(DAD, UV6000LP), P4000 quaternary pump and SCM1000 online degasser was adopted 

for HPLC analyses. A C18 column (4.6 mm × 150 mm, 5 μm, XTerra


RP18) was used 

for the chromatographic separations. The analytical method and the flow rate were 

maintained as previously reported (Irankhah et al., 2020a; Pagliarani et al., 2020; 

Belfiore et al., 2021). Briefly, the analysis was carried out in reverse phase with an 

elution gradient method. Eluent A was 0.1% formic acid in water and eluent B was 

acetonitrile; flow rate was fixed at 500 L min
-1

: from 10% to 35% of B in 20 min, from 

35% to 100% of B in 5 min, 100% of B for 5 min, from 100% to 10% in 1 min, 

conditioning for 10 min. Twenty microliters were injected for each sample and three 

biological replicates were run for each analysis. Detection wavelengths were set at 265 

nm (ABA) and 307 nm (t-resveratrol). Original standards of t-resveratrol (purity ≥ 99%) 

and abscisic acid (ABA, purity ≥ 98.5%) purchased from Merck KGaA (Darmstad, 

Germany) were used to prepare the calibration curves. 
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2.7 Data analysis 

Data were analyzed by one-way analysis of variance (ANOVA) using time as the main 

factor. Analysis was performed by SPSS statistical software package v. 23.0 (SPSS Inc., 

Cary, NC, USA). The Tukey’s HSD post hoc test was used when ANOVA showed 

significant differences at a probability level of P ≤ 0.05. 

3. Results  

3.1 Target gene silencing and evaluation of exogenous dsRNA persistence on leaves 

We first addressed our survey to assess the effectiveness of the SIGS technique in 

silencing target endogenous plant genes. VvGST40 was the gene chosen for the 

application of the SIGS technology in this study, and its relative expression level was 

analyzed during the whole experimental time course for each treatment and condition 

(Fig. 1).  

In CTRL WS, the VvGST40 expression almost halved from T0 to T2 when the severe 

stress took place (see below, Fig. 1b). GFP WS showed a similar trend, attesting a down-

regulation of this gene upon water stress conditions. On the contrary, in VvGST40 plants, 

the treatment induced a silencing effect even when the vines were not subjected to water 

limitation. In fact, in these plants at T0, VvGST40 showed a significantly lower 

expression both in NS and WS conditions in comparison with the other treatments. 

Furthermore, VvGST40 WS vines took two days more than the others to reach the same 

level of severe stress (T4, see below). Concomitantly, at T4 the VvGST40 expression 

dropped below 0.4 in these plants, reaching the lowest expression level among all 

samples and treatments. Only at T2 the VvGST40 expression trend was not clearly 

different among the samples, likely due to unknown environmental conditions that 

influenced the plant performances (Fig. 1b).  

It is worth noting that, in this study, a specific and off-target free sequence of VvGST40 

has been selected, but other similar approaches on large gene families could lead to 

down-regulation of off-targets with unpredictable physiological, molecular, and 

phenotypic responses. For this reason, the selection of a target-specific sequence as well 

as the in-silico prediction of potential off-targets (Lück et al., 2019) have to be addressed 

prior to SIGS application.  
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Finally, a qPCR analysis was performed on GFP-treated plants to evaluate the 

persistence of the exogenous dsRNAs on the leaf surface. Since the objective here was to 

determine how long the dsRNA molecules could persist within the plant, this experiment 

did not include any nuclease treatment to distinguish between the GFP dsRNAs present 

on the leaf surface from those potentially unloaded into the mesophyll. However, the 

collected results indicated that GFP was still detectable in leaves until 10 days after the 

last SIGS application (ie. T6; Fig. 1c).  

3.2 Analysis of leaf ecophysiology reveals resilience to drought in VvGST40-primed 

plants  

Leaf gas exchanges were daily monitored from the water stress imposition day (T0) till 

the end of the experiment (T18) (Figs. 2 and S2). Gs and Pn trends were followed to 

define the severe stress point for each treatment (ranging around zero for both 

parameters). It is worth noting that, although not significant, at T0 VvGST40-primed 

plants displayed lower gs values than CTRL and GFP ones, suggesting a certain degree 

of stomata limitation already in NS conditions (Fig. 2a). This was likely due to the 

increased levels of endogenous ABA, which were significantly higher in VvGST40-

primed plants than others (see ABA results, Fig. 3a). Conversely, independently of stress 

imposition, gs rates were similar both in GFP and CTRL plants. In detail, CTRL and 

GFP plants experienced a dramatic drop in gs values already two days after WS 

imposition (at T2), reaching a complete stomatal closure. After re-watering, both CTRL 

and GFP vines fully recovered gs rates within four days (Fig. 2a). The physiological 

response to drought and recovery was different in VvGST40 plants, which not only 

showed a delay in stomatal closure (reached at T4) during the water stress time course, 

but they also had significantly slower recovery dynamics (ie. fourteen days were needed 

to complete recovery, as attested by both gs and Pn measurements) with respect to CTRL 

WS and GFP WS plants (Fig. 2a,b).  

Based on the threshold defined to establish a photosynthesis regulation model, regardless 

of the cultivar (Flexas et al., 2002; Medrano et al., 2002), stomatal closure is strictly 

linked to photosynthesis (Pn). Accordingly, Pn measurements well correlated here with 

the delay in stomatal closure (Fig. 2b), as the trend of Pn values in VvGST40 WS plants 

resembled that observed for gs. More in detail, VvGST40 WS plants delayed the 

photosynthetic failure (up to T4) and did not reach assimilation values as lower as those 
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recorded for CTRL WS and GFP WS plants at T2. Furthermore, as observed for the gs 

recovery trend, VvGST40 WS plants recovered Pn more slowly than CTRL NS and GFP 

NS grapevines (ie. fourteen days after re-watering, T18, Fig. 2b). Conversely, in NS 

plants the Pn trend was similar among treatments.  

Ci rates were also monitored in all plants over the treatment duration, and as expected 

they were found significantly higher at the severe WS point than in NS condition for both 

CTRL and GFP plants (T2) and for VvGST40 plants (T4), in which they remained high 

till the day of full recovery at T18 (Fig. 2c). This trend further confirmed the 

photosynthetic inhibition induced by drought stress that leads to the accumulation of 

intercellular CO2 into the substomatal chamber, as a consequence of the metabolic-

mediated stomatal limitation (Belfiore et al., 2021). 

3.3 ABA metabolism and related signaling pathways are enhanced in VvGST40-

primed plants under drought  

In search for evidence supporting the peculiar physiological dynamics observed in 

VvGST40-primed plants, we quantified ABA concentrations in leaves taken from all 

experimental conditions over the whole time-course duration. At T0 leaf ABA level was 

significantly higher only in VvGST40 samples (Fig. 3a), while at T2 it increased in all the 

analyzed WS samples, although the hormone quantity was slightly higher following 

SIGS application in comparison with CTRL and GFP WS samples (Fig. 3a). This finding 

could support the lower values recorded for Pn and gs in VvGST40-primed plants prior to 

stress imposition and also at T2 with respect to T0 (Figs. 2 and 3a). During the time-

course, ABA concentration progressively raised in VvGST40-primed plants showing a 

peak of accumulation at the moment of maximum stress (T4). After the re-watering 

treatment, no significant differences were observed in ABA levels when NS and WS 

samples were compared, including the VvGST40 ones. This result was most likely due to 

the transient silencing of the endogenous gene induced by SIGS application (Dalakouras 

et al., 2020).  

Additionally, to gain a more comprehensive overview of the specific biochemical 

responses of VvGST40-primed plants, the expression profiles of key genes involved in 

ABA biosynthesis and degradation were analyzed in the same samples. 
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The expression of the ABA biosynthetic gene VvNCED3 was significantly higher at T2 

in all WS samples compared with the related NS controls (Fig. 3b), following what 

observed for ABA accumulation patterns. In VvGST40 WS plants the transcriptional 

profiles of VvNCED3 started to increase at T2 and then underwent a sharp up-regulation 

(up to 30-fold than controls) at T4 (Fig. 3b). Unlike NCED3, the expression of VvBG1, a 

β-glucosidase-encoding gene that hydrolyses ABA-glucose ester in grapevine (Sun et al., 

2015), was significantly higher only when VvGST40 plants perceived the maximum 

stress (T4; Fig. 3c), confirming the urgency to convert ABA in the active form under 

severe drought.  

Looking at genes involved in ABA degradation pathways, the ABA-UDPG glycosyl 

transferase-encoding gene (VvGT1; Sun et al., 2015) was downregulated in all treatments 

without showing significant differences (Fig. 3d). Conversely, VvHYD1, homologue to 

an ABA 8’-hydroxylase that in Arabidopsis is typically induced by drought (Kushiro et 

al., 2004), had an almost stable expression among the treatments, displaying a slightly 

higher peak at T2 in both CTRL WS and GFP WS plants compared with NS controls 

(Fig. 3e). Interestingly, at T4 VvHYD1 was significantly up regulated already in 

VvGST40 NS samples, further suggesting that the higher basal content of ABA in 

VvGST40 samples encountered a different fate in homeostasis regulation under WS or 

NS conditions (Fig. 3e).  

To strengthen these findings, we also analyzed the main genes involved in ABA sensing 

(i.e. VvabaR and VvPP2C4) and signaling (i.e. VvABF1). VvabaR encodes a PYR-

related-8 (PYL8) protein of Vitis vinifera, which is widely considered as an ABA 

receptor. PYL8 is part of a wider protein family commonly referred to as 

PYR/PYL/RCAR, which is responsible for ABA binding and interaction with 2C protein 

phosphatases (PP2C) (Sah et al., 2016). VvabaR transcripts were up-regulated only in 

VvGST40 WS samples at T2, showing a peak of expression at T4 (Fig. 3f). Similarly, 

VvPP2C4 expression was significantly higher in all WS samples at T2 and reached the 

maximum expression level in VvGST40 WS plants at T4 compared with the related NS 

controls (Fig. 3g). The activation of the ABA responsive factor ABF is consequent to 

ABA signal perception by PYR/PYL/RCAR and PP2C4 proteins (Sah et al., 2016). 

Accordingly, VvABF1 transcripts were significantly up regulated at T2 in all WS 

samples, particularly in the VvGST40 WS ones (Fig. 3h). During recovery, independently 



 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
of SIGS application, the VvABF1 expression profiles did not significantly change 

between WS and NS plants (Fig. 3h). These findings further confirmed the effectiveness 

of the SIGS treatment-mediated priming effect, attesting that during drought stress 

VvGST40 plants perceive the ABA signal before reaching severe water deficit limitations 

(T4).  

Finally, based on the notion that strigolactone (SL) synthesis and signaling can regulate 

stomatal closure (Tardieu, 2016; Visentin et al., 2016; Visentin et al., 2020) and that this 

effect could depend, at least in part, on the cross-talk with ABA metabolic and signaling 

pathway (Van Ha et al., 2014), we quantified the transcriptional profiles of the SL 

biosynthetic genes VvCCD7 and VvCCD8. Interestingly, in our study both VvCCD7 and 

VvCCD8 were significantly up-regulated in all WS samples at the severe stress points 

(T2 and T4), with higher levels in VvGST40 WS (at T4) than related NS controls (Fig. 

4a,b). Such expression patterns mirrored those observed for VvNCED3 transcription and 

ABA accumulation, thereby providing further evidence for the delay in stomatal closure 

and photosynthesis inhibition observed in VvGST40 plants. 

3.4 Analysis of Ascorbate-Glutathione cycle (Asc-GSH)-related genes and patterns 

of resveratrol accumulation  

The main target genes involved in Asc-GSH cycle were also analyzed to look for 

differences among treatments in stress perception and efficiency of ROS detoxification 

(Fig. 5).  

At T2, transcripts of ascorbate peroxide (VvAPX) showed a significant increase, of about 

1.5 folds, in all WS samples with respect to NS controls (Fig. 5a). Interestingly, in 

VvGST40 WS leaves the VvAPX upregulation preceded the severe stress point (T4), 

suggesting an early activation of the detoxification pathway (Fig. 5a). Another key 

enzyme responsible for regulating stress signaling and the GSH:GSSG ratio is the 

glutathione reductase (GR). Notably, VvGR expression peaked at T2 in GFP WS and at 

T4 in VvGST40 WS plants, in concomitance with the respective severe stress points (Fig. 

5b). Additionally, during the experimental time course, dehydroascorbate reductase 

(VvDHAR) and monodehydroascorbate reductase (VvMDHAR) displayed a higher 

transcriptional activation in GFP WS rather than VvGST40 WS samples (Fig. 5c,d).  
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To go deeply into the understanding of this varied landscape of biochemical signals, we 

also analyzed the accumulation patterns of t-resveratrol.  

As expected, t-resveratrol concentration was significantly higher in both GFP and 

VvGST40 leaves with respect to the related CTRLs at T0. Particularly, in the case of GFP 

samples, the metabolite levels were already high at T2, likely due to the induction of 

pattern-triggered immunity (PTI) responses due to the dsRNA application. At T4, t-

resveratrol strongly increased in VvGST40 WS plants, reaching values of about 7 µg g
-1

 

DM that highlighted a SIGS mediated-priming effect particularly marked upon severe 

drought. This data was further corroborated by the analysis of the stilbene synthase 1 

(VvSTS1) gene, whose expression profiles resembled the metabolite accumulation (Fig. 

6a,b).  

4. Discussion 

4.1 SIGS is a successful strategy for silencing endogenous genes in grapevine 

The first objective of this study was to assess the application of SIGS technology as a 

reliable and time-saving approach for performing functional genomics study in 

grapevine, a woody species typically recalcitrant to traditional transformation protocols 

(Gambino & Gribaudo, 2012). Therefore, we tested the effectiveness of the SIGS 

technique in silencing the endogenous grapevine gene VvGST40, which is the homologue 

of the Arabidopsis AtGSTU17 commonly reported as repressed upon drought conditions 

in several plants, including grapevine (Perrone et al., 2012; Corso et al., 2015). 

Accordingly, we showed that severe water limitation negatively affected the expression 

of the target gene in absence of SIGS treatment. Interestingly, in SIGS-treated plants 

VvGST40 was already down-regulated under well-watered conditions, and this 

transcriptional repression steadily increased with the progression of drought spell. These 

data could thus suggest a synergy between the effect of drought and SIGS application 

that prompted us to investigate more in depth the physiological and molecular responses 

of these plants to stress occurrence.  

In parallel, we proved that, despite they were applied free of delivery vectors, dsRNAs 

were still present on treated leaves 10 days post foliar application, indicating a longer 

persistence of these molecules in the environment than previous reports. This is an 
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important outcome as research studies describing the endurance of exogenous-applied 

naked dsRNAs on leaves are still limited and only some minor information is available 

about the different timing of their persistence on the plant tissue surface (Giudice et al., 

2021). Mitter et al. (2017a and 2017b) showed that the northern blot analysis was able to 

reveal the presence of naked dsRNAs (applied through spraying) up to 5 days post-

application on Nicotiana tabacum leaves. The authors attributed the shortness of the 

protective effects to the dsRNA degradation in leaves, which was estimated to occur 

within 5-7 days after their application. Similarly, Dubrovina et al. (2019) reported that 

transgene-encoding dsRNAs targeting the nptII and EGFP genes were stable and 

detectable in Arabidopsis leaves for at least 7 days post foliar application through soft 

brushes. The reasons that allowed us to detect dsRNAs for a longer timespan than other 

studies could rely on the fact that we applied the dsRNAs on the abaxial leaf surface, 

thus probably providing a more protected environment for them (eg. reduced exposition 

to UV radiation and washout effects). Remarkably, it was recently reported that dsRNAs 

sprayed on A. thaliana leaves are able to enter and spread into leaf tissues and cells, 

although the uptake mechanisms remain still unknown (Kiselev et al., 2021b). 

4.2 A boost in ABA metabolism and signaling underlies the improved resilience of 

VvGST40-primed plants to drought  

The analysis of leaf gas exchanges attested that the adopted SIGS treatment targeting the 

VvGST40 gene did not apparently influence the plant physiological performances under 

irrigation, but it rather exerted its priming effect when the treated vines experienced 

drought stress. Indeed, in comparison with untreated WS plants, the VvGST40 WS vines 

perceived the stress later and also needed more time to recover gas exchange rates to the 

pre-stress levels. We therefore reasoned that the SIGS-induced downregulation of 

VvGST40, observed in these plants already upon irrigation, could have triggered 

molecular and biochemical signals pivotal for the establishment of stress resilience 

mechanisms. Indeed, as described in Arabidopsis by Chen et al. (2012), the delayed 

stomatal closure observed in VvGST40 WS plants could rely on a SIGS-mediated 

priming effect most likely influencing the regulation of the stress-responsive signaling 

cascades involving ABA and antioxidant cycle pathways. This hypothesis is further 

corroborated both by the significantly higher ABA concentrations that we measured in 

VvGST40-primed plants under NS conditions and by the fact that, in comparison with 
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untreated plants, ABA accumulation in VvGST40 samples followed a much stronger 

increase during the drought spell. 

Drought stress is strictly connected with de novo ABA synthesis (in both leaves and 

roots) leading to a complex network of ABA-mediated responses and signaling cascades 

largely studied so far (e.g. Xiong & Zhu, 2003; Nambara & Marion-Poll, 2005; McAdam 

et al., 2016; Sah et al., 2016; McAdam & Brodribb, 2018). Under drought, ABA levels 

are regulated by two main mechanisms: i) the de novo biosynthesis, mainly dependent on 

the 9-cis-epoxy carotenoid dioxygenase (NCED) activity, and ii) the de-glycosylation of 

the ABA inactive form (ABA-GE). At transcriptional level, NCED is one of the main 

genes responsible for the de novo ABA biosynthesis and is commonly used as a marker 

of stress in many crops. The fact that VvNCED3 expression was already upregulated at 

T2 in VvGST40 WS samples supports the SIGS-mediated priming effect emerging from 

the measurement of physiological parameters. Moreover, as well as ABA accumulation 

trends, VvNCED3 expression profiles showed a negative correlation with gs rates in WS 

samples (at T2 and T4), as previously reported for Vitis vinifera cv. Shiraz by Soar et al. 

(2004). 

As cited before, ABA quantity and activity not only depend on the de novo biosynthesis 

of the hormone, but they also rely on the mobilization of the inactive ABA form (ABA-

glucosyl ester, ABA-GE) via hydrolyzation, which represents an alternative reservoir of 

the hormone. ABA-GE is mainly hydrolyzed by the activity of beta-glucosidases (BG), 

which are located at the endoplasmic reticulum level. Here we showed that at the 

transcriptional level both the de novo ABA biosynthesis promoted by VvNCED3 (already 

at T2) and the de-glycosylation of ABA-GE promoted by the activity of VvBG1 were 

strongly active at T4 in VvGST40 WS plants. Accordingly, Lee et al. (2006) 

demonstrated the AtBG1-mediated increase of the active ABA form from ABA-GE in 

Arabidopsis plants subjected to water stress. This represents a time and energy-saving 

way for the plant to mobilize active ABA, a strategy that is particularly useful during 

abiotic stress exposure (Long et al., 2019). Collectively, these findings suggested that 

VvGST40-primed plants were able to better adapt to drought stress effects as they were 

prompter than the others to produce the active ABA form by finely tuning both pathways 

regulating ABA biosynthesis. However, stomata closure is actively regulated by 

hydraulic and chemical signals, and ABA signaling could have more than one role in the 
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control of abiotic stress response. To deepen this subject, the key ABA catabolism-

related genes were also evaluated in response to the diverse treatments applied. The 

expression of the ABA-Glucosyltransferase (VvGT), responsible for ABA degradation 

through conjugation with a glycosyl group (Xu et al., 2013), did not change during the 

experimental time course regardless of SIGS application, suggesting that this catabolic 

pathway was not relevant for the plant, at least in our experimental conditions. 

Conversely, VvHYD1 was up-regulated already under irrigation and particularly in 

VvGST40 plants, further supporting the observation that under WS the primed plants 

react earlier and faster than the others in terms of ABA concentration and biosynthesis, 

triggering responses that are commonly activated during the late stages of prolonged 

drought (Perrone et al., 2012; Belfiore et al., 2021). Additionally, in VvGST40 plants 

subjected to WS, the β-glucosidase-encoding gene VvBG1 was expressed more than two 

orders of magnitude than VvHYD1, revealing a likely relevant contribution of the de-

conjugation reaction to free ABA levels.  

The different timing in the reprogramming of ABA metabolic and signaling related genes 

observed in VvGST40 plants was further evidenced by the analysis of transcripts 

involved in ABA sensing (i.e. VvabaR and VvPP2C4) and signaling (i.e. VvABF1). All 

those transcripts, and particularly PP2C4, were activated in VvGST40 vines before the 

occurrence of severe water stress. Accordingly, in Boneh et al. (2012), VvPP2C4 was 

defined as one of the major interacting partners for grape ABA receptors and its 

increased expression in VvGST40 WS samples at T2 and T4 was consistent with the 

observed ABA concentration trend. The same authors also analyzed the expression 

profiles of VvABF1 and VvPP2C4 in plants subjected to different abiotic stresses, 

including drought, and reported a marked up-regulation of VvPP2C4 in contrast to 

VvABF1 (Boneh et al. 2012a,b).  

Additionally, the RT-qPCR data indicated that, although at lesser extent, ABA was also 

perceived in CTRL and GFP plants upon severe water stress (T2), thus suggesting that 

the quick failure in gs and Pn rates observed in these plants was mainly hydraulic-

mediated, as previously reported (Belfiore et al., 2021).  

These results, together with the de novo ABA synthesis mediated by VvNCED3, could 

explain the increased stress resistance and the longer recovery phase of VvGST40 WS 

plants with respect to the CTRL WS and GFP WS ones. 
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4.3 Cross-talk between ABA and strigolactone pathways reinforces drought 

tolerance mechanisms in VvGST40-primed plants 

Among carotenoid-derived compounds, strigolactones (SLs) were recently designated as 

a new class of phytohormones exuded from the roots and involved in the early dialogue 

between roots and arbuscular mycorrhizal fungi (AMF) inducing the so-called pre-

symbiotic stage (Fernández et al., 2019). Furthermore, SLs were found to play pivotal 

roles in several plant developmental processes (e.g. shoot branching and root 

architecture) and positively regulate plant responses to drought stress in several crops, 

including grapevine (Mishra et al., 2017; Cochetel et al., 2018; Min et al., 2019). The SL 

biosynthesis derives from carotenoids through sequential cleavage steps mediated by 

CCD7 and CCD8 dioxygenases, whose encoding genes have also been functionally 

characterized in grapevine (VvCCD7 and VvCCD8, respectively) both in vitro and in vivo 

(Cochetel et al., 2018). In Arabidopsis, the CCD family includes several members 

annotated as NCEDs involved in the ABA biosynthesis (Auldridge et al., 2006) and 

leading to a strict correlations between SLs and ABA, especially in response to biotic and 

abiotic stressful conditions (Mishra et al., 2017).  

To provide further insights into the molecular signals putatively associated with the 

delayed stomatal closure and photosynthetic inhibition at the basis of VvGST40 plants 

drought tolerance, we analyzed expression changes of the SL biosynthetic genes 

VvCCD7 and VvCCD8. Although both genes were up-regulated following drought 

imposition independently of SIGS application, the highest transcriptional levels were 

observed in VvGST40 WS plants. Consistently, rooted cuttings of Cabernet Sauvignon 

subjected to water deficit displayed higher concentration of foliar ABA and SLs 

accompanied by the up-regulation of their biosynthetic genes (VvNCED, VvCCD7 and 

VvCCD8 respectively) (Min et al., 2019). The authors also observed an improved 

drought tolerance of the cuttings pre-treated with GR24, a synthesized strigolactone that 

primes the antioxidant system and ABA metabolism alleviating the drought adverse 

effects.  

These findings suggest that the improved physiological performances of VvGST40-

primed plants could rely on the ability of these plants to activate ABA metabolism and 

transcription of the SL biosynthetic genes involved in the ABA crosstalk before the 

occurrence of a severe drought condition. Notably, the potential increase in SL 
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accumulation can positively influence AMF recruiting in these plants, thereby promoting 

functional symbioses that are helpful to withstand stressful conditions (Chitarra et al., 

2016; Ruiz‐Lozano et al., 2016; Irankhah et al., 2020b). 

4.4 The SIGS treatment affects the modulation of Ascorbate-Glutathione cycle (Asc-

GSH)-related genes and patterns of resveratrol accumulation  

Ascorbate peroxidase (APX) is a thylakoid-bound and stromal soluble enzyme with a 

known role in H2O2 metabolism (Foyer & Noctor, 2011). In both herbaceous and woody 

species, APX is commonly up regulated in response to drought, both by transcriptional 

and post-transcriptional mechanisms (Laxa et al., 2019). Our data indicated that 

Nevertheless, Wang et al. (2019) did not report significant changes in VvAPX expression 

in water stressed Cabernet Sauvignon plants, likely due to different genotype-dependent 

responses and experimental conditions. Besides APX, also the transcriptional rates of the 

glutathione reductase encoding gene (GR) increased in VvGST40 plants along with the 

progression of drought stress. Accordingly, Laxa et al. (2019) investigated the 

modulation of several genes encoding enzymes involved in the Asc-GSH cycle and 

reported a strong activation of GR in both herbaceous and woody species upon prolonged 

drought stress conditions. It must be noticed, however, that the induction of GR 

transcription occurred earlier in GFP WS than GST40 plants showing a similar profile to 

that of VvDHAR and VvMDHAR, thereby leading to the hypothesis of a ROS scavenging 

cycle activation mainly in response to the application of dsRNAs targeting an exogenous 

gene (GFP). Accordingly, Niehl et al. (2016) demonstrated that treatment with 

exogenous dsRNA molecules (e.g. GFP) induced pattern-triggered immunity (PTI) 

responses in Arabidopsis, in turn triggering a burst of reactive oxygen species (ROS) that 

potentially requires the activation of the Asc-GSH cycle for ROS detoxification. 

 Besides Asc-GSH cycle, the protection against oxidative stress and ROS 

generation is also achieved in plants through the synthesis and accumulation of 

antioxidant secondary metabolites. Among these, resveratrol, a monomeric stilbene, is 

one of the major antioxidant compounds in grapevine, whose biosynthesis can be 

induced by many biotic and abiotic stresses, including drought (Chitarra et al., 2017; 

Dubrovina & Kiselev, 2017). For instance, the induction of osmotic stress in 

polyethylene glycol- and sucrose-treated Chardonnay leaves led to the accumulation of t-

resveratrol up to 3 µg g
-1

 DM and to the up-regulation of both ABA and stilbene 
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biosynthetic genes (Hatmi et al., 2014). In addition, Nicolas et al. (2014) suggested an 

active role of ABA in the regulation of resveratrol biosynthesis by reporting an increase 

of VvABF2 transcripts in grapevine cells coupled with strong stilbene concentrations. 

The same authors also demonstrated that the application of exogenous ABA is sufficient 

to increase t-resveratrol levels in non-transgenic grapevine cells (Nicolas et al., 2014). In 

this line, the high quantity of both ABA and t-resveratrol measured at T4 in VvGST40 

WS plants, consistently with the higher transcriptional rates of VvSTS1 gene, confirmed 

the strict correlation between ABA and stilbenoid accumulation pathways in grapevine.  

Collectively, in severely droughted VvGST40-primed plants the accumulation of the 

antioxidant compound resveratrol coupled with the activation of ABA, SL and ROS 

scavenging pathways provides further support for the observed delay in photosynthesis 

failure and stomata closure. Such a response could most likely underpin the increased 

stress tolerance of VvGST40-primed plants. More in detail, the downregulation of the 

specific VvGST40 isoform, homologue of AtGSTU17, provides new information on the 

biological function of GST in grapevine, highlighting molecular, biochemical and 

physiological responses that confirm what previously observed in Arabidopsis (Chen et 

al., 2012). 

5. Conclusion  

Here, we used the innovative SIGS technique to functionally characterize a grapevine 

putative glutathione-S-transferase (VvGST40) gene, homologue to the Arabidopsis 

AtGSTU17 whose mutant lines showed improved drought and salt stress resistance. To 

the best of our knowledge, this is the first study in which the SIGS approach has 

successfully been applied to target an endogenous gene conferring abiotic stress 

resistance in a woody crop (i.e. grapevine) recalcitrant to traditional functional genetics 

protocols. 

Silencing of the target endogenous gene was successfully achieved triggering priming 

effects in VvGST40-treated plants, which indeed showed an improved resilience when 

submitted to severe water stress treatment. Notably, once re-watered, the VvGST40-

treated plants recovered very slowly with respect to the CTRL and GFP ones. Moreover, 

the VvGST40 WS plants did fully recover, showing a phenotype similar to non-stressed 

plants, without any evident damage due to the experienced drought conditions (Fig. 
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6c,d). To deepen the molecular responses mediated by the downregulation of VvGST40 

we analyzed the expression pattern of target genes involved in the ABA biosynthesis, 

catabolism and signaling. Indeed, VvGST40-treated plants slowed the kinetics of the 

metabolic, ABA-related control of stomatal closure and re-opening. This outcome, 

coupled with the analysis of target metabolites and antioxidant- and ABA-related 

transcripts, confirmed that VvGST40-treated plants were in a priming status compared 

with controls, indicating that glutathione S-transferase plays a pivotal role in controlling 

drought resilience in grapevines. These results offer new insights into the biological 

functions of GST in grapevine, adding information on the negative role that VvGST40 

plays during the drought stress response.  

Collectively, these findings further confirmed the potentiality of SIGS, evidencing the 

reliability of this technique not only for plant protection purposes but also for functional 

genomics approaches, such as the study of resilience mechanisms to drought here 

reported. 
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Figures 

Fig. 1 VvGST40 expression changes, and relative GFP dsRNA quantity and 

persistence during the experimental time course. (a) Schematic representation of the 

dsRNAs position used in the present study. On the left side, dsRNAs design on the 

VvGST40 gene covering 688 bp at 5’-end of the open reading frame. On the right side, 

dsRNAs design (376 bp) on the eGFP sequence amplified from the pCBCT plasmid as 

previously reported (Nerva et al., 2020); (b) VvGST40 expression level and (c) GFP 

dsRNA relative quantity. Relative VvGST40 transcript abundance in leaves of VvGST40 

dsRNA-treated plants (diamonds, red dotted lines), GFP dsRNA-treated plants (triangles, 

green dashed lines) and controls (CTRL, circles, black line) either submitted (WS, empty 

symbols) or not (NS, filled symbols) to water stress. All data are expressed as means  

SD (n = 3). For each experimental day, different letters denote significant differences 

according to the Tukey’s HSD test (P ≤ 0.05), while asterisks above bars mark 

significant differences according to the Student’s t-test (P ≤ 0.05). 
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Fig. 2 Leaf gas exchange over time. Measurements of (a) Stomatal conductance (gs); 

(b) net photosynthesis (Pn) and (c) intercellular CO2 (Ci) were performed on leaves of 

VvGST40 dsRNA-treated plants (diamonds, red dotted lines), GFP dsRNA-treated plants 

(triangles, green dashed lines) and controls (CTRL, circles, black line) either submitted 

(WS, empty symbols) or not (NS, filled symbols) to water stress. All data are expressed 

as means  SD (n = 4). For each experimental day, different letters denote significant 

differences according to the Tukey’s HSD test (P ≤ 0.05), while asterisks above bars 

mark significant differences according to the Student’s t-test (P ≤ 0.05). 
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Fig. 3 Leaf ABA concentration and expression changes of ABA-related genes over 

time. Endogenous leaf ABA concentration (a) and relative transcript abundance of (b) 

VvNCED3; (c) VvBG1; (d) VvGT; (e) VvHYD1; (f) VvabaR (PYR-8 like); (g) VvPP2C4 

and (h) VvABF1 in leaves of VvGST40 dsRNA-treated plants, GFP dsRNA-treated plants 

and controls (CTRL) either submitted (WS) or not (NS) to water stress. All data are 

expressed as means  SD (n = 3). For each experimental day, different letters denote 

significant differences according to the Tukey’s HSD test (P ≤ 0.05), while asterisks 

above bars mark significant differences according to the Student’s t-test (P ≤ 0.05). 

 



 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
Fig. 4 Expression changes of strigolactone biosynthetic-related genes over time. 

Relative transcript abundance of (a) VvCCD7 and (b) VvCCD8 in leaves of VvGST40 

dsRNA-treated plants, GFP dsRNA-treated plants and controls (CTRL) either submitted 

(WS) or not (NS) to water stress. For each experimental day, different letters denote 

significant differences according to the Tukey’s HSD test (P ≤ 0.05), while asterisks 

above bars mark significant differences according to the Student’s t-test (P ≤ 0.05). 
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Fig. 5 Expression changes of antioxidant-related genes over time. Relative transcript 

abundance of (a) VvAPX; (b) VvGR; (c) VvDHAR and (d) VvMDHAR in leaves of 

VvGST40 dsRNA-treated plants, GFP dsRNA-treated plants and controls (CTRL) either 

submitted (WS) or not (NS) to water stress. For each experimental day, different letters 

denote significant differences according to the Tukey’s HSD test (P ≤ 0.05), while 

asterisks above bars mark significant differences according to the Student’s t-test (P ≤ 

0.05). 
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Fig. 6 Resveratrol concentration in leaf and expression changes of a stilbene 

biosynthetic gene over time. Examples of phenotypic status in recovered plants. 

Relative transcript abundance of VvSTS1 in leaves of VvGST40 dsRNA-treated plants, 

GFP dsRNA-treated plants and controls (CTRL) either submitted (WS) or not (NS) to 

water stress. (a) trans-resveratrol concentration in leaves and (b) VvSTS1. For each 

experimental day, different letters denote significant differences according to the Tukey’s 

HSD test (P ≤ 0.05) while asterisks above bars mark significant differences according to 

the Student’s t-test (P ≤ 0.05). (c) and (d) examples of recovered CTRL WS and GFP 

WS plants phenotypes in comparison with VvGST40 WS recovered ones. 
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