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We discuss the impact of the recent O(α3
s ) calculations of the semileptonic width of the b quark and of 

the relation between pole and kinetic heavy quark masses by Fael et al. on the inclusive determination of 
|V cb|. The most notable effect is a reduction of the uncertainty. Our final result is |V cb| = 42.16(51) 10−3.
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(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The purpose of this note is to study the implications of the re-
cent O(α3

s ) calculations by Fael, Schönwald and Steinhauser [1–3]
on the determination of the Cabibbo-Kobayashi-Maskawa matrix 
element |V cb| from inclusive semileptonic B decays, see Refs. [4,5]
for the most recent results. As is well-known, the values of |V cb|
determined from inclusive semileptonic B decays and from B̄ →
D∗�ν̄ have differed for a long time and, despite significant experi-
mental and theoretical efforts, the situation remains quite confus-
ing. Recent accounts of the V cb puzzle can be found in Refs. [6–9]. 
The latest lattice calculations [10–13], which for the first time 
explore the B̄ → D∗�ν̄ form factors at non-zero recoil, have not 
clarified the issue and a preliminary comparison of these results 
shows a few discrepancies [14].

The third order perturbative correction to the b → c�ν̄ decay 
width computed in Ref. [1] and partially checked in Ref. [15] repre-
sents a fundamental step to improve the precision in the extraction 
of |V cb| from inclusive B decays. Indeed, perturbative corrections 
are sizeable – they reduce the semileptonic rate by over 10% – and 
provide the dominant theoretical uncertainty. In the following we 
will study the impact of the O(α3

s ) corrections on the central value 
and uncertainty of |V cb|.

The other relevant three-loop calculation in our analysis is that 
of Refs. [2,3], which concerns the relation between the pole (or 
MS) and the kinetic masses of a heavy quark. This calculation al-
lows us to convert recent high-precision determinations of the b
quark MS mass [16,17] into the kinetic scheme [18] with an un-
certainty of about 15 MeV, or 50% less than the previous two-loop 
conversion [19,20]. We will investigate the effect of such high-
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precision input in the global fit to the semileptonic moments and 
in the extraction of |V cb|. We should add that Ref. [3] also com-
puted the charm mass effects at O(α2

s , α3
s ) in the kinetic scheme 

relations. We will also include O(αsρ
3
D/m3

b) effects from Ref. [21]
in the semileptonic width and slightly update the global fit to the 
semileptonic moments.

2. The total semileptonic width

Our starting point is the Operator Product Expansion (OPE) for 
the total semileptonic width (see Ref. [22] for a complete list of 
references):
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(1)

where �0 = Aew |V cb|2G2
F mkin

b (μ)5/192π3, f (ρ) = 1 − 8ρ + 8ρ3 −
ρ4 − 12ρ2 lnρ , as = α

(4)
s (μb)/π is the strong coupling in the MS

scheme with 4 active quark flavours, ρ = (mc(μc)/mkin
b (μ))2 is 

the squared ratio of the MS charm mass at the scale μc , mc(μc), 
and of the b quark kinetic mass with a cutoff μ ∼ 1 GeV, mkin

b (μ). 
Aew � 1.014 is the leading electroweak correction. The parameters 
μ2

π , ρ3
D , etc. are nonperturbative expectation values of local opera-

tors in the B meson defined in the kinetic scheme with cutoff μ. 
They are generally extracted from a fit to central moments of the 
lepton energy and of the hadronic invariant mass distributions in 
semileptonic B decays [4,5], for which the same contributions as in 
Eq. (1) are included, with the exception of the O(α3

s ) corrections 
which are available only for the width.

The coefficients in Eq. (1) depend on three unphysical scales: 
the scale of the MS strong coupling constant μb , that of the MS
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Scale dependence of �sl at fixed values of the inputs and μkin = 1 GeV. Dashed (solid) lines represent the two (three) loop calculation. In the left plot (μb-dependence) 
the blue (red) curves are at μc = 3(2) GeV; in the right plot (μc -dependence) the blue (red) curves μb = mkin

b (mkin
b /2).
charm mass μc , and the Wilsonian cutoff μ employed in the ki-
netic scheme definition of the b mass and of the OPE matrix el-
ements. We choose the MS scheme for the charm mass because 
all high-precision determinations of this mass are expressed in 
this scheme and we prefer to escape uncertainties related to the 
scheme conversion; in the following we choose 1.6 GeV � μc �
3 GeV, avoiding scales which are either too low or too high to 
provide a good convergence of the perturbative series. The kinetic 
scheme [3,18,19] provides a short-distance, renormalon-free defi-
nition of mb and of the OPE parameters by introducing a hard cut-
off μ to factor out the infrared contributions from the perturbative 
calculation. The cutoff μ should ideally satisfy �QCD � μ � mb; 
in the following we will vary it in the range 0.7–1.3 GeV. Finally, 
the scale of the strong coupling constant will be varied in the 
range 2–8 GeV. Table I of Ref. [4] shows the size of the various 
coefficients in Eq. (1) for a couple of typical scale-settings. The 
third order coefficient a3 is new and stems from the calculation 
of Ref. [1]. We reproduce the numerical results of Ref. [1] for the 
coefficients ai .

As a first step in our analysis, we employ the results of the de-
fault fit of Ref. [4] with μb = mkin

b , μc = 3 GeV, and μ = 1 GeV, 
to extract |V cb| from Eq. (1). To this end, we employ the to-
tal semileptonic branching fraction obtained in the same fit and 
τB = 1.579(5) ps [23]. Notice that the 2014 default fit included 
a constraint on mc(3 GeV), but not on mkin

b . Small shifts have 
to be applied to the values of mkin

b , μ2
π and ρ3

D extracted from 
the fit in order to account for missing two-loop charm mass ef-
fects in the kinetic scheme definition adopted in the 2014 fit. 
These effects have now been computed in Ref. [3], where it was 
found that they reduce to decoupling effects and that they can 
be taken into account by expressing the kinetic scheme defini-
tions in terms of α(3)

s . For μb = mkin
b the shifts amount to +4 MeV, 

−0.003 GeV2, −0.002 GeV3, respectively. We adopt the PDG value 
for α(5)

s (M Z ) = 0.1179(10), from which we get α(4)
s (4.557 GeV) =

0.2182(36). We employ RunDec [24] to compute the running of 
all relevant scale-dependent quantities. We eventually find |V cb | =
42.49(44)th(33)exp 10−3, where the uncertainty refers to the inputs 
only and is split into an experimental and a theoretical component. 
If we neglect the new three-loop result we recover the same |V cb|
central value as in [4]. The three loop correction therefore shifts 
|V cb| by +0.6%, well within the theoretical uncertainty of 1.3% es-
timated in [4]. The perturbative series is

�sl = �0 f (ρ)
[

0.9255 − 0.1162αs − 0.0350α2
s
− 0.0097α3

s

]

= 0.5401�0, (2)
2

where the first term differs from 1 because of the power correc-
tions. We can also repeat the same exercise evolving the value 
of mc(3 GeV) = 0.987(13) GeV from the fit to μc = 2 GeV, which 
gives mc(2 GeV) = 1.091(14) GeV and extract again |V cb| using 
μc = 2 GeV in Eq. (1). We get |V cb| = 42.59(44)th(33)exp 10−3 and

�sl = �0 f (ρ)
[

0.9258 − 0.0878αs − 0.0179α2
s
− 0.0005α3

s

]
= 0.5374�0. (3)

As noted in Ref. [1], the better convergence of the perturbative 
expansion with μc = 2 GeV, already observed in Ref. [25], carries 
on at the three loop level, but the cancellations appear some-
what accidental. Since the physical scale of the decay is actually 
lower than mb , we believe a more appropriate choice for the 
scale of α

(4)
s is μb = mkin

b /2, which with μc = 2 GeV leads to 
|V cb| = 42.59(44)th(33)exp 10−3 and

�sl = �0 f (ρ)
[

0.9255 − 0.1140αs − 0.0011α2
s
+ 0.0103α3

s

]
= 0.5381�0. (4)

We see from Eqs. (2)-(4) that the typical size of the three-loop 
corrections is 1% and that the perturbative series converge well 
at different values of the scales. A conservative estimate of the 
residual perturbative uncertainty on �sl is therefore 0.5%, but it 
is worth studying the scale dependence of the width in more de-
tail. In Fig. 1 we show the μb and μc dependence of Eq. (1) at two 
and three loops, using the inputs of the 2014 default fit. The scale 
dependence is reduced by the inclusion of the three loop contri-
bution by over a factor 2, and the red curves appear to be flatter 
than the blue ones. The region of minimal scale dependence is the 
one around μb ∼ μc ≈ 2 − 3 GeV. We also studied the dependence 
of the width on the kinetic scale in the range 0.7 < μ < 1.3 GeV
for different values of μb,c , finding similar results. Defining 
μb,c

the maximum percentage deviation of the red solid lines in Fig. 1
and 
μ accordingly, with μb = mkin

b /2 and μc = 2 GeV, we get


μb = 0.44% , 
μc = 0.44% , 
μ = 0.67% . (5)

Based on all this, we conservatively estimate a residual pertur-
bative uncertainty of 0.7% in �sl and consequently of 0.35% in 
|V cb| for our new default scenario, corresponding to μ = 1 GeV, 
μc = 2 GeV and μb = mkin

b /2 � 2.3 GeV.
Beside the purely perturbative contributions, there are various 

other sources of uncertainty in the calculation of the semileptonic 
width [26], but the work done in the last few years has been 
fruitful. After the O(αs/m2) corrections [27,28], the O(αsρ

3 /m3)
b D b
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Table 1
Results of the updated fit in our default scenario (μc = 2 GeV, μb = mkin

b /2). All parameters 
are in GeV at the appropriate power and all, except mc , in the kinetic scheme at μ = 1 GeV. 
The first and second rows give central values and uncertainties, the correlation matrix fol-
lows.

mkin
b mc(2 GeV) μ2

π ρ3
D μ2

G (mb) ρ3
L S BRc�ν 103|V cb |

4.573 1.092 0.477 0.185 0.306 −0.130 10.66 42.16
0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

1 0.307 −0.141 0.047 0.612 −0.196 −0.064 −0.420
1 0.018 −0.010 −0.162 0.048 0.028 0.061

1 0.735 −0.054 0.067 0.172 0.429
1 −0.157 −0.149 0.091 0.299

1 0.001 0.013 −0.225
1 −0.033 −0.005

1 0.684
1

corrections to �sl have been recently computed in Ref. [21] (the 
O(αsρ

3
L S) corrections to �sl follow from the O(αsμ

2
G/m2

b) and are 
tiny). They are expressed in terms of mb in the on-shell scheme 
and of mc(mb). After converting their result to the kinetic scheme 
and changing the scale of mc , we find that this new correction, 
together with all the terms of the same order generated by the 
change of scheme, enhances the coefficient of ρ3

D by 8 to 18%, de-
pending on the various scales. However, after the conversion to the 
kinetic scheme the O(αsρ

3
D) terms generate new O(μ3α2

s ) and 
O(μ3α3

s ) contributions that tend to compensate their effect. The 
resulting final shift on |V cb| is +0.05% with μc = 3 GeV, μb = mkin

b
and +0.1% for μc = 2 GeV, μb = mkin

b /2, and we choose to neglect 
it in the following.

After the calculation of the O(αsρ
3
D) contribution, the main 

residual uncertainty in �sl is related to higher power corrections. 
The Wilson coefficients of the O(1/m4

b , 1/m5) contributions have 
been computed at the tree level [29] — here the O(1/m5) ef-
fects include O(1/m3

bm2
c ), sometimes referred to as Intrinsic Charm 

— but little is known about the corresponding 27 matrix ele-
ments. The Lowest Lying State Approximation (LLSA) [29] has been 
employed to estimate them and to guide the extension [5] of 
Ref. [4] to O(1/m4

b, 1/m5). In the LLSA, the O(1/m4
b, 1/m5) con-

tributions increase the width by about 1%, but there is an impor-
tant interplay with the semileptonic fit: as shown in Ref. [5], the 
O(1/m4

b, 1/m5) corrections to the moments and their uncertain-
ties modify the results of the fit in a subtle way and the final 
change in �sl is about +0.5%, a result stable under changes of 
the LLSA assumptions [5]. We therefore expect the O(1/m4

b, 1/m5)

corrections to decrease |V cb| by 0.25% with respect to the default 
fit. Although the uncertainty attached to this value is mostly in-
cluded in the theoretical uncertainty of the 2014 fit results, we 
may consider an additional 0.3% uncertainty for the width. Further 
uncertainties stem from unknown O(α2

s /m2
b), and O(α2

s ρ
3
D/m3

b)

corrections, but they are all likely to be at or below the 0.1% 
level. The so-called Intrinsic Charm contributions, related to soft 
charm, lead to the O(1/m3

bm2
c ) corrections mentioned above, but 

also to terms of O(αs/m3
bmc) which may contribute up to 0.5% to 

the width [30]. Finally, one expects quark-hadron duality to break 
down at some point. Combining all the discussed sources of un-
certainty, we estimate the total remaining uncertainty in �sl to be 
1.2%.

In the end, using the inputs of the 2014 default fit and setting 
μc = 2 GeV, μb = mkin

b /2 for the central value, we obtain

|V cb|2014 = 42.49(44)th(33)exp(25)� 10−3 = 42.48(60)10−3 (6)

where the uncertainty due to �sl has been reduced by a factor 2 
with respect to Ref. [4].
3

3. Updating the semileptonic fit

Despite ongoing analyses of the q2 and M X -moments at Belle 
and Belle II [31,32], no new experimental result on the semilep-
tonic moments has been published since the 2014 fit [4]. On the 
other hand, new lattice determinations of mb and mc have been 
presented, improving their precision by roughly a factor 2. We use 
the FLAG 2019 averages [17] with N f = 2 + 1 + 1 for mb and mc ,

mc(3 GeV) = 0.988(7)GeV,

mb(mb) = 4.198(12)GeV, (7)

which correspond to mc(2 GeV) = 1.093(8) and mkin
b (1 GeV) =

4.565(19) GeV, where for the latter we have used option B of [3]
for the definition of mkin

b . We now repeat the 2014 default fit with 
both these constraints, slightly updating the theoretical uncertainty 
estimates. In view of the small impact of the O(1/m4

b , 1/m5) and 
O(αsρ

3
D) corrections discussed in the previous section, we reduce 

the theoretical uncertainties used in the fit to the moments with 
respect to Ref. [4]. In particular, we consider a 20%, instead of a 
30%, shift in ρ3

D and ρ3
L S , and reduce to 4 MeV the safety shift in 

mc,b . For all of the other settings and for the selection of experi-
mental data we follow Ref. [4].

While the central values of the fit are close to those of 2014, 
the uncertainty on mkin

b (mc(3 GeV)) decreases from 20(12) to 
12(7) MeV, and we get |V cb| = 42.39(32)th(32)exp(25)� 10−3 with 
χ2

min/dof = 0.46. The very same fit performed with μc = 2 GeV 
and μb = mkin

b /2 gives

|V cb| = 42.16(30)th(32)exp(25)� 10−3 (8)

with χ2
min/dof = 0.47 and we neglect the very small shift due to 

the O(αsρ
3
D) correction to �sl . This is our new reference value and 

in Table 1 we display the complete results of this fit.
Let us now comment on the interplay between the fit to the 

moments and the use of Eq. (1). First, we observe that the fit to 
the moments is based on an O(α2

s ) calculation [20,33–36] without 
O(αsρ

3
D) contributions, and that the lower precision in the calcu-

lation of the moments with respect to the width inevitably affects 
the determination of |V cb|. This is clearly visible in Eq. (6), where 
the theoretical component of the error is larger than the residual 
theory error associated with the width. However, only a small part 
of that uncertainty is related to the purely perturbative corrections, 
which are relatively suppressed in some semileptonic moments but 
sizeable in �sl , as we have seen above. In other words, an O(α3

s )

calculation of the moments is unlikely to improve the precision of 
the fit significantly, and the inclusion of O(α3

s ) corrections only in 
�sl is perfectly justified. On the other hand, an O(αs/m3

b) calcula-
tion of the moments can have an important impact on the |V cb |



M. Bordone, B. Capdevila and P. Gambino Physics Letters B 822 (2021) 136679
determination. This is because the semileptonic moments, and the 
hadronic central moments in particular, are highly sensitive to the 
OPE parameters. Since the power correction related to ρ3

D amounts 
to about 3% percent in Eq. (1), an O(αs) shift on ρ3

D induced by 
perturbative corrections to the moments can have a significant im-
pact in the determination of |V cb|. Our estimates of the theoretical 
uncertainties take this into account. We also note that a fit with-
out theoretical errors is a very poor fit (χ2/dof ∼ 2) with |V cb|
decreased by slightly less than 1 σ .

An important problem of the semileptonic fit is the sensitiv-
ity to the ansatz employed for the correlation among the theo-
retical uncertainties associated with the various observables [25]. 
We have studied the dependence of the result of Eq. (8) on the 
modelling of the theoretical correlations following Ref. [25] closely. 
Since the results shown above have been obtained using scenario
D from Ref. [25] with 
 = 0.25 GeV, we have repeated the fit with 
option B, with option C using various values of ξ , and with option
D for 
 in the range 0.15 − 0.30 GeV. The central values for |V cb|
vary between 42.05 10−3 and 42.28 10−3. These results are very 
much in line with Fig. 1 and Table 3 of Ref. [25] and therefore we 
do not add any uncertainty related to the theoretical correlations 
in Eq. (8).

We have also performed a fit including O(1/m4
b, 1/m5) cor-

rections, in analogy with Ref. [5], to check the consistency with 
our main result of Eq. (8). We assign an error to the LLSA pre-
dictions and assume Gaussian priors for all of the 27 dimen-
sion 7 and 8 matrix elements. The error is chosen as the maxi-
mum of either 60% of the parameters value in the LLSA or �n

LL/2
(n = 4, 5), with �LL = 0.55 GeV, see Ref. [5] for additional details. 
As already noticed in Ref. [5], higher power corrections tend to 
decrease the value of |V cb|. A fit performed with the same the-
ory errors of Ref. [5] and μc = 2 GeV and μb = mkin

b /2 leads to 
|V cb| = 42.00(32)th(32)exp(25)� 10−3 = 42.00(53) 10−3, which is 
consistent with Eq. (8). Following the discussion above, one could 
slightly reduce the theory uncertainties in this fit with the only 
consequence of a small reduction on the error of |V cb|.

Finally, repeating the reference fit of Table 1 without a con-
straint on mb we obtain an independent determination of mkin

b (1
GeV) = 4.579(16) GeV, which translates into mb(mb) = 4.210(22)

GeV. This determination, which still relies on the lattice determi-
nation of mc reported in (7), is compatible with the FLAG N f =
2 + 1 + 1 average for mb(mb) and competitive with other current 
determinations of mb .

4. Discussion

From a theoretical point of view, the reliability of the deter-
mination of |V cb| from inclusive semileptonic decays depends on 
our control of higher order effects. The new three-loop calculation 
of Ref. [1] shows that higher order perturbative effects are under 
control, and that they lie within the previously estimated uncer-
tainties. This progress, together with the work done on higher 
power corrections [5,29] and on perturbative corrections to the 
Wilson coefficients of power suppressed operators [21,27,28], led 
us to estimate a residual theoretical error on �sl of about 1.2%, and 
to slightly reduce the theoretical uncertainty in the fit to the mo-
ments.

Our final result is shown in Eq. (8). It is very close to previ-
ous determinations of |V cb| [4,5], but the total uncertainty is now 
1.2%, one third smaller than in [4]. This reduction of the uncer-
tainty reflects a better control of higher order effects, but it is 
also due to improved determinations of the heavy quark masses. 
The dominant single component of the uncertainty in Eq. (8) is 
now related to the experimental determination of the moments 
and of the semileptonic branching fraction, which are expected to 
be improved at Belle II. Future experimental analyses should also 
4

consider new observables beyond the traditional moments of the 
lepton energy and hadronic invariant mass distributions. For in-
stance, the forward-backward asymmetry [37] and the moments 
of the leptonic invariant mass (q2) distribution would enhance the 
sensitivity to the OPE matrix elements and reduce the uncertainty 
on |V cb|. Because of reparametrisation invariance, the q2-moments 
and �sl depend on a reduced number of OPE matrix elements [38], 
so that a fit to the q2-moments at O(1/m4

b) involves only 8 pa-
rameters. This nice property allows for an independent check of 
the treatment of higher power corrections adopted in [5], but it is 
unlikely to lead to a competitive determination of |V cb|. The q2-
moments will also constrain the soft charm effects considered in 
[30]. As far as the current experimental analyses are concerned, 
there are various aspects that require closer scrutiny. We refer in 
particular to the subtraction of QED corrections made with PHO-
TOS [39], to the impact of Coulomb interactions, to the contribu-
tion of D∗∗ states and to the correlations which play a crucial role 
in the fit.

Finally, turning to ways in which theory can improve the inclu-
sive determination of |V cb|, we have already argued that the most 
important missing higher order effects are probably the O(αs/m3

b)

corrections to the moments. Lattice QCD calculations provide pre-
cise constraints on the heavy quark masses, see Eq. (7), which are 
going to improve in the future, but we now have methods to com-
pute differential distributions and their moments directly on the 
lattice [40]. While it is still unclear whether a determination of �sl
competitive with Eq. (1) can be achieved at the physical b mass, 
these lattice calculations might be able to enhance the predictive 
power of the OPE by accessing quantities which are inaccurate or 
beyond the reach of current experiments and are highly sensitive 
to the non-perturbative parameters. The computation of meson 
masses at different quark mass values [16,41] can also provide use-
ful information when the data are analysed in the heavy quark 
expansion. At the moment, however, the reduction of the uncer-
tainty in Eq. (8) exacerbates the V cb puzzle, and calls for renewed 
efforts to solve an unwelcome anomaly, impervious to New Physics 
explanations [42,43].
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