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PAPER

Genome-wide association study for residual concentrate intake using
different approaches in Italian Brown Swiss

E. Mancaa, A. Cesarania , L. Falchia, A. S. Atzoria , G. Gaspab , A. Rossonic, N. P. P. Macciottaa and
C. Dimauroa

aDipartimento di Agraria, University of Sassari, Sassari, Italy; bDipartimento di Scienze Agrarie, Forestali e Alimentari, University of
Torino, Grugliasco, Italy; cAssociazione Nazionale degli Allevatori di Razza Bruna (ANARB), Verona, Italy

ABSTRACT
Residual feed intake (RFI) is the most used measure of feed efficiency. However, considering the
importance of concentrates in the ration, a new index, the residual concentrate intake (RCI), was
here defined. RCI aims to measure the individual efficiency in converting the concentrate into
animal products. Brown Swiss young bulls (N¼ 736) were genotyped at 41,183 loci. Animals
were housed in pens equipped with an automatic feeding system able to recognise the animal
and record the concentrate intake. The diet consisted of concentrate and hay (ad libitum). The
new RCI index was calculated as the residuals of the linear regression of concentrate intake on
metabolic live weight and average daily gain. Animals were ranked according to their corrected
RCI and divided into low (LRCI) and high phenotypes (HRCI). A low heritability (0.06± 0.03) was
estimated using only genomics for this new index. Results from multivariate (M-GWAS) and
Bayesian (B-GWAS) approaches were combined to identify SNP associated with RCI. The M-
GWAS selected 698 SNPs potentially associated, whereas no significant markers were obtained
in B-GWAS. Markers in the last approach were ranked according to their posterior inclusion
probability and the first 698 were retained. Only SNPs in common between sorted B-GWAS and
M-GWAS (N¼ 11) were considered associated with RCI. A total of 48 candidate genes were
retrieved near these SNPs. Most of them were previously reported to be associated with feed
efficiency and RFI. The combined use of multivariate and Bayesian techniques allow to identify
SNPs associated with the investigated trait.

HIGHLIGHTS

� RCI could be promising to select animals
� 48 candidate genes were found associated with RCI
� Multivariate technique allowed to identify significant SNPs
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Introduction

Feed costs contribute to up to 60% of production
costs in the dairy cattle industry (Connor 2015).
Production costs strongly depend on animal efficiency:
feed consumption decrease when animals can effi-
ciently convert feed into milk or body gain (Negussie
et al. 2019; Pulina et al. 2020). Among different
indexes suggested to evaluate feed efficiency in cattle,
the most popular is probably the residual feed intake
(RFI) (Van Arendonket al. 1991; Manafiazar et al. 2013;
Berry and Crowley 2013). It is obtained by subtracting
the actual from the expected individual intake
required by the animal for its maintenance and pro-
duction. Being RFI by definition independent from

production and body weight, animals with low RFI can
consume less feed without reducing the production
level. RFI has been investigated in beef, dairy, and
dual-purpose cattle (Cantalapiedra-Hijar et al. 2018;
Kenny et al. 2018; Romanzin et al. 2021).

In ruminants, feed intake can be roughly separated
into forage and concentrate based on grains and feed-
stuffs rich in energy and protein. According to Purcell
et al. (2016), the amount of concentrates offered to
dairy cattle has increased in the past decades to solve
two main problems: to reduce the extent of negative
energy balance (NEB) experienced in early lactation,
and to allow cows to achieve their potential milk yield.
Concentrates and forages can be offered at the same
time in a total mixed ratio or separately (Purcell et al.
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2016). In the latter situation, the concentrate is sup-
plied using individual concentrate feeders on the barn
or in robot milking systems, while forages are offered
ad libitum.

Considering the growing importance of concen-
trates in the ration composition of ruminants (Purcell
et al. 2016), a new index to evaluate feed efficiency,
the residual concentrate intake (RCI), is defined in the
present research. RCI, similarly to RFI, aims to measure
individual efficiency in converting the concentrate into
animal products (milk or body gain). Being RCI part of
RFI, it should assume the same characteristics of inde-
pendence from animal-related variables and trait herit-
ability. At present, several countries include RFI in
their breeding programs (Pryce et al. 2012; Bolormaa
et al. 2013; Connor 2015). However, the cost of meas-
uring RFI (or RCI) represents a strong limitation to
population-wide selection programs. Genome-wide
association study (GWAS) is a useful tool to under-
stand the genetic basis of a trait and, in consequence,
also of RCI. This approach is aimed to identify gen-
omic regions associated with genetic variation in a
trait and to select genes that could be associated with
it. In the present research, a GWAS for RCI in Italian
Brown Swiss cattle was developed by using the multi-
variate approach (M-GWAS) proposed by Manca et
al. (2020).

Materials and methods

Data used in this study were obtained from pre-exist-
ing databases and therefore the animal care approval
was not needed.

Data

A sample of 1,092 Brown Swiss young bulls was con-
sidered in the study. Animals arrived at 5–6months of
age at the ANARB (Italian Association of Brown Swiss,
Verona, Italy) genetic centre from different commercial
herds. Bulls were housed in a quarantine pen for
about one month and they were distributed among
pens (no more than six bulls/pen). Each pen was
equipped with an automatic feeding system able to
recognise the animal and to record the concentrate
intake. The diet consisted of concentrate and hay. The
concentrate was a commercial pelleted mix formulated
using grain meals and agro-industrial byproducts (raw
chemical composition: 18.0% of CP, 3.2% of fat, 10.1%
of crude fibre, 7.6% of ash, and 0.4% of sodium). Hay
was administered ad libitum. Animals remained in
pens for three months and the body weight (BW) was

recorded monthly. After this period, bulls were moved
into single pens for the mount training. From the ini-
tial 1,092 young bulls, only 736 animals with at least
three BW records were considered for further statis-
tical analysis. The RCI phenotypes were calculated as
the residuals of a linear regression model of concen-
trate intake on metabolic live weight and average
daily gain (ADG) (Arthur et al. 2005). These residuals
were then adjusted according to the following linear
model:

RCIijk ¼ l þMi þ Yj þ eijk

where M was the fixed effect of the ith birth month
(12), Y was the fixed effect of the jth birth year (from
2002 to 2013), and e was the random residual (for
more details see Macciotta et al. 2015). Animals were
ranked according to their corrected RCI and divided
into low (LRCI) and high phenotypes (HRCI). The two
groups contained an equal number of individuals, 368
bulls each (Manca et al. 2020).

All animals were genotyped by using the Illumina
BovineSNP50 BeadChip (Illumina Inc., San Diego, CA,
USA). SNP with call rate lower than 99% or minor
allele frequency lower than 5% were removed. The
remaining missing genotypes were replaced with the
most frequent allele at that specific locus. At the end
of data editing, 41,183 SNP located on 29 autosomes
(mapped on the ARS-UCD1.2 bovine map release)
were available for analysis.

Heritability estimation

Heritability was estimated using the following mixed
linear model:

y ¼ l þ Zuþ e

where y is a vector of RCI (i.e. the values adjusted for
month and year of birth, see the above equation), l is
the overall mean, Z is an incidence matrix relating
phenotypes in y to additive genetic effects in u that is
a vector of additive animal effects, and e is a vector of
random residuals. Since pedigree was not available,
the genetic (co)variances structure for u was u �
Nð0,Gr2

aÞ where r2
a is the additive genetic variance

and G is the genomic relationship matrix (GRM) built
according to VanRaden (2008):

G ¼ MM0
P

2pjð1� pjÞ
where M is the matrix of genotypes centred by twice

1958 E. MANCA ET AL.



the current allele frequencies (p) estimated for the
j-th SNP.

Variance components and heritability (h2) were esti-
mated using GIBBS3F90 software (Misztal et al. 2014)
using a total of 100,000 iterations with the first 10,000
discarded as burn-in and saving 1 sample every 10.
Post means and standard deviations were calculated
using POSTGIBBSF90 software (Misztal et al. 2014).

The multivariate and Bayesian GWAS

The method proposed by Manca et al. (2020) was
used to develop a multivariate GWAS. In this
approach, associated markers were detected by com-
bining the results of two different techniques. In the
first, called multivariate GWAS (M-GWAS), data were
arranged in a multivariate manner, with animals on
the rows and genotypes (coded as 0, 1, and 2) on the
columns. This data was submitted to three multivari-
ate techniques: the canonical discriminant analysis
(CDA), the discriminant analysis (DA), and the stepwise
discriminant analysis (SDA). The algorithm started
applying the CDA separately by chromosome. Then
the mean and the standard deviation of the absolute
value of canonical coefficients (CC) in the 29 canonical
functions (CAN, one for each chromosome) were cal-
culated. For each CAN, only markers whose CC’s abso-
lute value was greater than the mean plus one
standard deviation were retained. The obtained SNPs
were then joined, and the SDA was applied to obtain
the maximum number of linearly independent
markers. The selected SNPs were used as variables to
develop a new CDA where both the Mahalanobis’ dis-
tance between HRCI and LRCI and the Hotelling’s t-
test were evaluated. Then the DA was applied to
ascertain if animals were correctly assigned to the
group of origin.

CDA and DA were successively applied in an itera-
tive procedure. At each run, the number of involved
markers was reduced by deleting those with lower
CC’s absolute value but still keeping the minimum
number of SNPs able to separate groups. The proced-
ure stopped when Hotelling’s test was still highly sig-
nificant (p-value < .001) and, at the same time, the
DA correctly assigned all animals to HRCI and LRCI.
The obtained SNPs were the most discriminant
markers and, in consequence, they were considered
associated with RCI.

In the second technique, called Bayesian GWAS (B-
GWAS), the BayesR software (Moser et al. 2015) was
used. B-GWAS was carried out using a chain length of
50,000 samples, with the first 20,000 ones being

discarded as burn-in and saving every 10th sample. In
this approach, the effect of each marker is selected
from one out of four possible distributions: Nð0, 0r2

aÞ,
Nð0, 0:0001r2

aÞ, Nð0, 0:001r2
aÞ, Nð0, 0:01r2

aÞ, where r2
a

is the additive genetic variance. The posterior inclu-
sion probability (PIP) for each SNP was calculated as
the sum of probability to be included in one of the
three non-zero distributions (i.e. 0.0001, 0.001, and
0.01). One SNP was declared significant if its PIP was
>0.30 (Pasam et al. 2017). Then SNPs were sorted
according to their descending PIP value and the first
x-SNPs were selected, where x was the minimum num-
ber of markers selected by the M-GWAS. Finally, SNPs
simultaneously detected in the M-GWAS and the
sorted list from B-GWAS was considered associated
markers and submitted to gene discovery.

Gene ontology and enrichment

Different databases (Ensembl, https://www.ensembl.
org; NCBI, https://www.ncbi.nlm.nih.gov/genome/;
genome-browser https://genome.ucsc.edu) were used
to retrieve genes mapped in the ARS-UCD1.2 release.
All genes with at least one significant marker inside or
in the 250k upstream and downstream from their
boundaries were annotated (Cesarani et al. 2019a;
Manca et al. 2020). Moreover, protein–protein interac-
tions (PPI) were carried out using STRING (https://
string-db.org).

Results and discussion

Table 1 reports some basic statistics about the bulls
investigated in this study. During the trial, which aver-
age length was 181.76 ± 35.47 days, each bull was
weighted 7 ± 1 times. The average weights at the
beginning and at the end of the trial were
230.4 ± 40.47 and 402.33 ± 51.09 kg, respectively. Thus,
the average weight increase was 171.91 ± 45.97 kg.
Average ADG and RFI were 0.94 ± 0.16 and
�0.02 ± 0.30, respectively. Recently, Romanzin et al.
(2021) analysed RFI in young Simmental bulls selected

Table 1. Basic statistics about the number of records, starting
and ending weights, and age for the investigated bulls.

Mean SD Min Max

Records 7 1 4 12
Starting weight, kg 230.41 40.47 139 427
Ending weight, kg 402.33 51.09 252 561
Starting age, day 197.74 27.14 137 339
Ending age, day 379.50 26.42 275 496
Weight increase, kg 171.91 45.97 50 350
Length trial, day 181.76 35.47 52 328
Average daily gain, kg 0.94 0.16 0.47 1.44
Residual feed intake �0.02 0.30 �2.80 1.50
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for high growth capacity. These authors reported ADG
and RFI values ranging from 0.86 to 2.23 kg and from
�2.55 to þ1.86 kg DM/day, respectively.

Heritability estimation

The estimated h2 was 0.06 ± 0.03, a value that is lower
than the estimates reported in the literature for the
RFI. Heritability of 0.16 ± 0.03 for RFI was reported by
Lu et al. (2015) in dairy cattle using pedigree informa-
tion. Recently, also Freetly et al. (2020) estimated
larger values for RFI in heifers (0.25 ± 0.11) and cows
(0.16 ± 0.10) of crossbreed animals using the REML
approach (i.e. with pedigree information). Li et al.
(2020) reported estimates of 0.14 with either a pedi-
gree or genomic model applied to Holstein dairy
cows. Anyway, it must be pointed out that the range
of heritabilities for RFI is very large: from 0.07 to 0.62
(Berry and Crowley 2013). In our study, pedigree was
not available and h2 was estimated using only the G
matrix. Heritability estimated using genomics are often
lower than those estimated using pedigree (Aldridge
et al. 2020; Hidalgo et al. 2020; Cesarani et al. 2021).
Moreover, since this study involved Brown Swiss, a
selected dairy breed, and selective genotyping strat-
egy (i.e. the genotyped animals were only top bulls)
variance components and h2 estimated using only
genomic information are likely to be biased (Cesarani
et al. 2019b). This is because the heritability of a trait
strongly relies on the covariance among relatives and
when only genotypes of the best animals are used to
estimate variance components these covariances do
not reflect the relationships among animals in the
whole population.

Genome-wide association studies

No significant SNPs (i.e. SNP with a PIP higher than
0.30) were found using the B-GWAS. On the contrary,
using the M-GWAS, 698 SNPs were selected as the
minimum number of markers able to separate the two
considered groups (LRCI and HRCI). Thus, SNPs in B-
GWAS were decreasingly sorted according to their PIP
and the first 698 markers were considered. A total of
11 SNPs was found in common between the two lists
of markers (i.e. sorted B-GWAS and M-GWAS), which
have not necessarily the best PIP. Only these markers
were considered significantly associated with RCI
(Table 2). BTAs 1 and 6 harboured two SNPs, everyone,
whereas the remaining seven markers were found in
BTAs 7, 12, 17, 22, 23, 24, and 27, respectively.

Gene–by–gene description

Candidate genes nearby the associated SNPs are
shown in Table 2. A total of 21 and 25 genes were
identified using limits of 100 and 205 kb up and
downstream the significant SNP position, respectively.
Two markers, ARS-BFGL-NGS-104436 on BTA1 and
Hapmap42981-BTA-57599 on BTA24, were found
inside genes KCNAB1 and MAPRE2, respectively.

The Potassium Voltage-Gated Channel Subfamily A
Member Regulatory Beta Subunit 1 (KCNAB1) is involved
in the regulation of potassium ion transmembrane
transport (Majumder et al. 1995). This gene, located
on BTA1, was listed among the candidate genes asso-
ciated with inbreeding in two cattle populations
(Brahman and Tropical Composite) by Reverter et al.
(2017), who studied the genomic inbreeding depres-
sion for climatic adaptation of tropical beef cattle. The
same gene was reported to be associated with con-
genital deafness in Australian Stumpy Tail Cattle dogs
(Xu et al. 2021).

The Microtubule-associated protein RP/EB family
member 2 (MAPRE2) gene, mapped on BTA24, was
found to be associated with the first calving interval in
buffaloes (de Araujo Neto et al. 2020). It was also
reported among 238 genes differentially expressed in
a meta-analysis about molecular signatures of muscle
growth and composition retrieved from public tran-
scriptomics data (Bazile et al. 2020), and it has been
also associated with carcase and growth traits in
chicken (Zhang H et al. 2020).

A cluster of seven genes located on BTA27 (ADRB3,
BRF2, PROSC, ERLIN2, GOT1L1, RAB11FIP1, ZNF703) and
detected in the present study, was found to be associ-
ated with ADG in Nellore cattle (Olivieri et al. 2016). In
that study, the genomic region harbouring these
genes explained 1.56% of the additive genetic vari-
ance of ADG. Hardie et al. (2017) found six genes of
this cluster associated with RFI in Holsteins. In the
same study, ADGRA2 (BTA6) was associated with RFI,
whereas MTHFD2L (BTA27) was related to metabolic
body weight, a trait used for RFI calculation (Hardie et
al. 2017). The MTHFD2L gene was reported to be asso-
ciated also with other economically important traits,
such as carcase conformation in Charolaise and
Limousine (Purfield et al. 2019), subclinical ketosis in
Holstein dairy cows (Nayeri et al. 2019), and resistance
to clinical mastitis in Nordic Holstein cattle (Cai et
al. 2018).

The ERLIN2 gene was reported also among the can-
didate genes associated with RFI in beef cattle
through a gene interaction network (Karisa et al.
2013). Moreover, RAB11FIP1, GOT1L1 and ADRB3 genes
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were found to be related to fat yield in Canadian
Holsteins (Li et al. 2010). Hu et al. (2010), reported
that ADRB3 is involved in the mobilisation and utilisa-
tion of energy in cattle. In fact, this gene was associ-
ated with intramuscular fat content and fatty acid
composition in pigs (Xue et al. 2016) and with growth
traits (i.e. birth weight, growth rate until weaning, and
carcase composition) in Merino sheep (Forrest et
al. 2003).

Some other interesting genes already associated in
cattle with RFI were flagged as significant in this
study. The F13A1 gene, located on BTA23, was
reported to be associated with RFI by Zhang F et al.

(2020), who performed a GWAS on multiple beef cattle
breeds. This gene has been also associated with mas-
titis resistance in Nordic Holstein (Cai et al. 2018).
These authors analysed differentially expressed genes
in udders and reported that this gene is involved in
complement and coagulation cascades. de Lima et al.
(2016) carried out a GWAS on Nellore cattle and they
associated the TIPARP gene with RFI, suggesting its
possible role as a regulatory factor. This gene, located
on BTA1, was also reported as a candidate gene for
valeric acid in a GWAS for methane emission and
ruminal volatile fatty acids using Holstein cattle
sequence data (Sarghale et al. 2020). The PCDH8 gene

Table 2. List of top associated markers and of the candidate genes highlighted as potentially associated with residual concen-
trate intake in the present study.
BTA SNP name SNP position, bp Gene name Acronym Distancea

1 ARS-BFGL-NGS-104436 111,137,978 Voltage-gated potassium channel subunit beta-1 KCNAB1 in
Signal sequence receptor subunit 3 SSR3 <100 kb
TCDD inducible poly(ADP-Ribose) polymerase TIPARP <250 kb

ARS-BFGL-NGS-4700 142,286,534 Uromodulin like 1 UMODL1 <100 kb
C2 domain-containing protein 2 C2CD2 <100 kb
Zinc finger and BTB domain containing 21 ZBTB21 <100 kb
Receptor interacting serine/threonine kinase 4 RIPK4 <250 kb
PR/SET domain 15 PRDM15 <250 kb
ATP binding cassette subfamily G member 1 ABCG1 <250 kb

6 Hapmap43045-BTA-76998 88,980,880 C-X-C motif chemokine ligand 3 CXCL3 <100 kb
Chemokine (CXC motif) ligand 1 CXCL1 (GRO1) <100 kb
Methylenetetrahydrofolate dehydrogenase (NADPþ dependent) 2 like MTHFD2L <250 kb
C-X-C motif chemokine ligand 8 CXCL8 <250 kb
C-X-C motif chemokine ligand 5 CXCL5 <100 kb
C-X-C motif chemokine ligand 2 CXCL2 <100 kb

BTB-01306168 111,429,024 Prominin 1 PROM1 <250 kb
Transmembrane anterior posterior transformation 1 TAPT1 <100 kb

7 ARS-BFGL-NGS-29738 60,120,094 Adrenoceptor beta 2 ADRB2 <250 kb
5-hydroxytryptamine receptor 4 HTR4 <100 kb

12 ARS-BFGL-NGS-21526 10,851,132 Protocadherin 8 PCDH8 <100 kb
Chondromodulin CNMD <250 kb
Olfactomedin 4 OLFM4 <250 kb

17 Hapmap59406-rs29026470 34,902,455 Bardet-Biedl syndrome 12 BBS12 <100 kb
Centrin 4 CETN4 <100 kb
Interleukin 21 IL21 <250 kb
Spermatogenesis associated 5 SPATA5 <250 kb
Nudix hydrolase 6 NUDT6 <100 kb
Fibroblast growth factor 2 FGF2 <100 kb

22 Hapmap44225-BTA-28287 57,017,818 Rabenosyn, RAB effector RBSN <250 kb
Mitochondrial ribosomal protein S25 MRPS25 <250 kb
Nuclear receptor subfamily 2 group C member 2 NR2C2 <250 kb
Peroxisome proliferator activated receptor gamma PPARG <250 kb
Synapsin II SYN2 <100 kb
TIMP metallopeptidase inhibitor 4 TIMP4 <100 kb

23 ARS-BFGL-NGS-39327 48,634,859 Coagulation factor XIII A chain F13A1 <250 kb
Lymphocyte antigen 86 LY86 <100 kb

24 Hapmap42981-BTA-57599 21,985,252 Microtubule associated protein RP/EB family member 2 MAPRE2 in
Dystrobrevin alpha DTNA <250 kb
Zinc finger protein 397 ZNF397 <250 kb
Zinc finger and SCAN domain containing 30 ZSCAN30 <250 kb

27 ARS-BFGL-NGS-111566 32,967,390 Zinc finger protein 703 ZNF703 <100 kb
ER lipid raft associated 2 ERLIN2 <100 kb
Pyridoxal phosphate binding protein PLPBP (PROSC) <100 kb
Adhesion G protein-coupled receptor A2 ADGRA2 <250 kb
BRF2 RNA polymerase III transcription initiation factor subunit BRF2 <250 kb
RAB11 family interacting protein 1 RAB11FIP1 <250 kb
Glutamic-oxaloacetic transaminase 1 like 1 GOT1L1 <250 kb
Adrenoceptor beta 3 ADRB3 <250 kb

aDistance from the significant SNP: in¼ the SNP was inside the gene; �100 kb¼ the SNP was from 1 to 100 kb upstream or downstream from the gene;
�250 kb¼ the SNP was from 101 to 250 kb upstream or downstream from the gene.

ITALIAN JOURNAL OF ANIMAL SCIENCE 1961



was recently associated with RFI, residual gain, and
feed efficiency in French beef cattle (Taussat et al.
2020). Another gene already associated with feed effi-
ciency in beef cattle and highlighted also in the pre-
sent study was the DTNA gene. This was reported to
be associated with residual ADG by Ser~ao et al. (2013),
and with RFI by Chen et al. (2011). Interestingly, the
HTR4 gene was highlighted by Yao et al. (2013) in a
random forest carried out to identify additive and epi-
static SNPs associated with RFI in dairy cattle.

Other genes, even if not directly related to RFI,
were reported to be associated with other meat or
growth traits related to this phenotype. The ABCG1,
located on BTA1, has been associated with ADG in a
GWAS carried out on Hereford cattle (Seabury et al.
2017); this gene has also a role in adiposity and fat
mass growth in humans and mice (Frisdal et al. 2015).
Another gene already associated with ADG, even if in
pigs, and also highlighted in the present study is the
OLFM4 gene, located on BTA12. Onteru et al. (2013)
associated this gene with ADG in pigs through GWAS,
whereas Liu et al. (2018) associated the gene with RFI
in broilers by using a differential expression analysis.
As far as cattle breeds were concerned, the OLFM4
gene has been also associated with milking speed in
Brown Swiss cattle (Kramer et al. 2014) and with coat
colour in Vrindavani cattle (Chhotaray et al. 2021).
Continuing with the genes already related to growth
traits, Lindholm-Perry et al. (2020) recently found the
LY86 gene among the genes differentially expressed
comparing cohorts of beef steers based on different
feed intakes. The ZNF397 gene was found to be signifi-
cant in gene expression analyses carried out compar-
ing two groups of animals, high-marbling and
low-marbling, of Hawoo cattle breed (Lim et al. 2013).
Furthermore, its protein is overexpressed in the sper-
matozoa of high fertile buffalo bulls compared to low
fertile bulls (Muhammad Aslam et al. 2019). The TIMP4
gene has been found over-expressed in the double-
muscled foetuses, compared to normal ones
(Hocquette et al. 2007), suggesting a possible role in
the muscle development and the animals’ growth; in
another study, its mRNA expression remained constant
in Longissimus dorsi muscle associated with different
stages of intramuscular adipose tissue development
(Roberts et al. 2015). The TAPT1 gene was reported to
be associated with carcase weight and with eviscer-
ated weight, even if in Beijing-You chickens (Liu et al.
2013). The NR2C2 gene was reported among the
genes downregulated in the low plane compared to
the high plane of nutrition in Angus x Simmental beef
cows (Mois�a et al. 2015). Thus, its role in energy

mobilisation, and therefore a connection with growth
traits and RFI, could be supposed. The other three
genes found in the present study (RIPK4, PRDM15, and
C2CD2) were reported to be associated with the devel-
opment of loin in Charolaise (Doyle et al. 2020). Two
of these genes (PRDM15 and C2CD2) have been also
associated with milk yield in Portuguese Holstein cat-
tle (Silva et al. 2020). BBS12 gene has been associated
with pure meat weight, foreshank weight, and silver-
side weight in Chinese Simmental beef cattle (Chang
et al. 2019). Also, MRPS25 was already associated with
meat traits, even if in sheep. In particular, according to
Bolormaa et al. (2016), this gene is associated with
several meat traits. It influences retail colour and
increases myoglobin and wet iron contents in muscle;
moreover, it increases meat tenderness, decreases pH
level, and it influences other important meat traits,
such as eye muscle area and eye muscle depth, glyco-
gen, isocitrate dehydrogenase activity and polyunsat-
urated fatty acids level (Bolormaa et al. 2016).
ZSCAN30 has been associated with first calving interval
in buffaloes (de Araujo Neto et al. 2020).

Five genes belonging to the CXC family of chemo-
kines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL8) were
flagged as significant genes on BTA 6. This family is
involved in the immune response: CXCL1 and CXCL2
have an important role in immune defense because
they modulate the leukocyte infiltration (Sharifi et al.
2018), CXCL3 is responsible for the constitutive chemo-
tactic activity of bovine milk for neutrophils (Rainard
et al. 2008), whereas CXCL8 plays an important role in
a wide range of bovine diseases (Widdison and Coffey
2011). Mukiibi et al. (2019) found CXCL2 among the
differently expressed genes between Charolaise steers
with high and low ADG, and CXCL3 associated with
ADG in Angus, Charolaise, and Kinsella composite pop-
ulations. Also, the IL21 gene was reported to be asso-
ciated with immune system response and it has been
reported as significant in an FST analysis between
selected and conserved Polish Red cattle (Gurgul et al.
2019). Other five genes (BBS12, CETN4, SPATA5, NUDT6,
and FGF2), mapped in the regions highlighted in this
study and related to the immune system in cattle,
have been associated with somatic cell count in seven
GWAS on different populations of dairy cows (Chen et
al. 2015). FGF2 is involved in embryonic mortality in
cattle (Khatib et al. 2008), probably because of its role
in the stimulation of the interferon-s which plays a
regulating role in the establishment and maintenance
of pregnancy in ruminants. (Michael et al. 2006).
Another gene associated with reproductive traits
found in this study is the UMODL1 gene, which is
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involved in the regulation of ovarian follicle develop-
ment (Grigoletto et al. 2018).

Gene enrichment and protein–protein
interaction (PPI)

When genes were divided according to their molecular
function, five different classes were observed (Table 3).
The highlighted classes were binding (23 genes, 47.9%
on the total), molecular function regulator (13 genes,
27.1% on the total), catalytic activity (eight genes,
16.7% on the total), molecular transducer activity (three
genes), and transporter activity (two genes). The clus-
tering of genes according to the different cellular
components is shown in Table 4. Three clusters were
obtained: cellular anatomical entity (31 genes), intracel-
lular (20 genes), and protein-containing complex (four
genes). When looking at the genes divided according
to the biological process they are involved in, 12 dif-
ferent clusters could be observed (Table 5). The three
largest classes were cellular process (30 genes, 62.5%
on the total), biological regulation (24 genes, 50% on
the total), and metabolic process (15 genes, 31.3% on
the total). The other highlighted classes grouped 13 or
less genes (Table 5).

PPI was investigated for the 48 candidate genes of
the present study (Figure 1). The PPI showed more
interactions than expected: 55 edges identified (aver-
age node degree of 2.34) compared to the nine
expected. The p-value of the PPI enrichment was
lower than 1e�16. A big cluster with nine genes (IL21,

FGF2, PROM1, CXCL6, GRO1, CXCL8, CXCL3, CXCL2, and
OLFM4) already associated with the immune system in
the gene-by-gene description (see above) could be
observed. A mini-cluster with three genes (ADRB2,
ADRB3, and HTR4), previously reported to be associ-
ated with RFI in cattle (Yao et al. 2013; Hardie et al.
2017) was also highlighted. Another cluster with six
genes (GOT1L1, ZNF703, ERLIN2, PROSC, GPR124, and
RAB11FIP1) was observed: some of these genes
(GOT1L1, ZNF703, ERLIN2, PROSC, and RAB11FIP1) were
already associated with ADG in Nellore and with RFI in
Holstein.

Conclusions

A novel index, the RCI, was defined to identify efficient
and inefficient individuals in converting concentrate
into animal products The GWAS with a Bayesian
approach did not highlight any significant marker.
However, the use of two complementary approaches
of GWAS allowed to select a restricted number of
markers, which are more likely to be associated with
the investigated trait. When the B-GWAS was com-
bined with the M-GWAS, 11 significantly associated
markers and 48 candidate genes were found. Most of
them were previously obtained by other authors in
GWAS developed for RFI and feed efficiency in gen-
eral. Moreover, the selected genes were clustered in
five different groups according to their molecular
function, and, based on cellular components, three
clusters were obtained. These results suggest that,

Table 3. Genes divided according to their molecular functions.
Molecular function Genes

Description GO term N % on total Acronyms

Binding GO: 0005488 23 47.90% CXCL3, ZNF397, RAB11FIP1, PRDM15, ZSCAN30, KCNAB1, FGF2,
ADRB3, ERLIN2, ZNF703, PPARG, CXCL8, PLPBP, NUDT6, HTR4,
PROM1, MAPRE2, BFR2, NR2C2, ADRB2, ZBTB21, TIMP4, CETN4

Catalytic activity GO: 0003824 8 16.70% F1A31, SPATA5, KCNAB1, GOT1L1, MTHFD2L, NUDT6, ABCG1, TIMP4
Molecular function regulator GO: 0098772 13 27.10% CXCL3, ZNF397, PRDM15, ZSCAN30, KCNAB1, FGF2, ZNF397, PPARG,

CXCL8, BRF2, NR2C2, ZBTB21, TIMP4,
Molecular transducer activity GO: 0060089 3 6.30% ADRB3, HTR4, ADRB2
Transporter activity GO: 0005215 2 4.20% KCNAB1, ABCG1

Table 4. Genes divided according to the cellular component.
Cellular component Genes

Description GO term N % on total Acronyms

Cellular anatomical entity GO: 0110165 31 64.60% CXCL3, ZNF397, F13A1, RAB11FIP1, PRDM15, SPATA5, ZSCAN30,
KCNAB1, GOT1L1, FGF2, ADRB3, SSR3, PCDH8, ERLIN2, TAPT1, DTNA,
ZNF703, MTHFD2L, CXCL8, HTR4, PROM1 MAPRE2, SYN2, BRF2,
NR2C2, ADRB2, ZBTB21, ABCG1, ADGRA2, TIMP4, CETN4

Intracellular GO: 0005622 20 41.70% ZNF397, RAB11FIP1, PRDM15, SPATA5, ZSCAN30, KCNAB1, GOT1L1,
FGF2, SSR3, ERLIN2, TAPT1, ZNF703, MTHFD2L, PROM1, MAPRE2,
SYN2, BRF2, NR2C2, ZBTB21, CETN4

Protein-containing complex GO: 0032991 4 8.30% KCNAB1, PROM1, BRF2, ADGRA2
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Table 5. Genes divided according to the biological process they are involved in.
Biological process Genes

Description GO term N % on total Acronyms

Biological adhesion GO: 0022610 1 2.10% PCDH8
Biological regulation GO: 0065007 24 50.00% CXCL3, ZNF397, F13A1, PRMD15, ZSCAN30, KCNAB1, FGF2, ADRB3, ERLIN2, TAPT1,

ZNF703, PPARG CXCL8, CNMD, NUDT6, HTR4, MAPRE2, SYN2, NR2C2, ADRB2,
ZBTB21, ABCG1, ADGRA2, TIMP4

Cellular process GO: 0009987 30 62.50% CXCL3, ZNF397, F13A1, RAB11FIP1, PRDM15, ZSCAN30, KCNAB1, GOT1L1, FGF2,
ADRB3, PCDH8, ERLIN2, TAPT1, DTNA, ZNF703, PPARG, MTHFD2L, CXCL8, CNMD,
NUDT6, HTR4, MAPRE2, SYN2, BRF2, NR2C2, ADRB2, ZBTB21, ADGRA2, TIMP4,
CETN4

Developmental process GO: 0032502 5 10.40% FGF2, PPARG, CNMD, NR2C2, ADGRA2
Immune system process GO: 0002376 2 4.20% CXCL3, CXCL8
Interspecies interaction

between organisms
GO:0044419 2 4.20% CXCL3, CXCL8

Localisation GO: 0051179 8 16.70% CXCL3, RAB11FIP1, KCNAB1, FGF2, TAPT1, CXCL8, MAPRE2, SYN2
Locomotion GO: 0040011 3 6.30% CXCL3, FGF2, CXCL8
Metabolic process GO: 0008152 15 31.30% ZNF397, F13A1, PRDM15, ZSCAN30, KCNAB1, GOT1L1, FGF2, ERLIN2, ZNF703, PPARG,

MTHFD2L, BRF2, NR2C2, ZBTB21, TIMP4
Multicellular organismal

process
GO: 0051704 7 14.60% F13A1, FGF2, ADRB3, CNMD, NR2C2, ADRB2, ADGRA2

Response to stimulus GO: 0050896 13 27.10% CXCL3, F13A1, FGF2, ADRB3, ERLIN2, PPARG, CXCL8, CNMD, NUDT6, HTR4, ADRB2,
ADGRA2, TIMP4

Signaling GO: 0023052 13 27.10% CXCL3, FGF2, ADRB3, ERLIN2, DTNA, PPARG, CXCL8, CNMD, NUDT6, HTR4, SYN2,
ADRB2, ADGRA2

Figure 1. Protein–protein interaction (PPI) was carried out using STRING for the 48 candidate genes.
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even though referred to as a part of the daily intake,
RCI could be a promising index to select animals that
better convert concentrates into animal products.
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