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Abstract 11 

Alpine soils can provide valuable paleo-environmental information, representing a powerful tool for 12 

paleoclimate reconstruction. However, since Pleistocene glaciations and erosion-related processes 13 

erased most of the pre-existing landforms and soils, reconstructing soil and landscape development 14 

in high-mountain areas can be a difficult task. In particular, a relevant lack of information exists on 15 

the transition between the Last Glacial Maximum (LGM ~21,000 yr BP) and the Holocene (~10,000 16 

yr BP), with this climatic shift that plays a crucial role for environmental thresholds identification. 17 

The present study aims at reconstructing the history and origin of hidden paleosols inside periglacial 18 

blockstreams and blockfields on a high-elevation Alpine plateau (Stolenberg Plateau) above 3000 m 19 

a.s.l., in the Northwestern Italian Alps. The results indicate that these soils recorded the main warming 20 

climatic phases occurring from the end of the LGM until the beginning of Neoglacial (~4,000 yr BP). 21 

Our reconstructions, together with the high carbon stocks of these paleosols, suggest that during 22 

warming phases the environmental conditions on the Plateau were suitable for plant life and 23 

pedogenesis, already since 22,000-21,000 yr BP. These paleosols reasonably evidence the existence 24 

of a Lateglacial nunatak representing, to our knowledge, one of the first documented relict non-glacial 25 
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surfaces in the high-elevated European Alps. Thus, the Stolenberg Plateau provides important 26 

information about past climate and surface processes, suggesting new perspectives on the long-term 27 

landscape evolution of the high European Alps. 28 

 29 
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 31 

Introduction 32 

High-mountain areas can preserve traces of dramatic climatic variations, representing unique 33 

geosites and “storytellers'' about the past landscape dynamics (Favilli et al., 2008). However, 34 

reconstructing soil and landscape evolution in such areas can be a difficult task because Pleistocene 35 

glaciations and related processes erased most of the pre-existing landforms and soils, leading to the 36 

formation of a complex mosaic of Quaternary sediments and soils of different ages (Sartori et al., 37 

2001). Nevertheless, on scattered stable surfaces preserved during Pleistocene glaciations, ancient 38 

soils can be locally preserved for long periods (D’Amico et al., 2016). These soils, apparently in 39 

contrast with Holocene soil forming conditions, represent paleosols (when buried) or relict soils 40 

(Ruellan, 1971) that constitute excellent pedo-signatures of different specific past 41 

climatic/environmental conditions. 42 

Relict surfaces are recognizable as flat summits and plateaus perched high above the valley floors 43 

at different elevations, in which erosion and deposition processes were very limited (D’Amico et al., 44 

2016), because of lateral migration of glacial masses (Carraro and Giardino, 2004). Those surfaces 45 

that were not affected by the passage of glaciers experienced extreme cold conditions, which induced 46 

strong frost-action processes (e.g., frost-shattering, frost sorting, frost heave, etc.) (Karte, 1983), 47 

leading to the formation of periglacial features such as blockfields, blockstreams, and tors 48 

(Goodfellow, 2007; Ballantyne, 2010). Because of their high stability on certain poorly weatherable 49 

materials (D’Amico et al., 2019), these Pleistocene relict periglacial landforms are considered key 50 
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indicators of ancient non-glacial surfaces (Goodfellow, 2007). Therefore, they have been used in 51 

paleoclimatic reconstructions, as their formation can be associated with specific past environmental 52 

conditions (e.g., Karte, 1983; Wilson, 2013; D’Amico et al., 2019). In particular, blockfields, which 53 

are usually associated with mountain summits and plateaus, have been used as paleo-indicators of 54 

nunataks (e.g., Ballantyne and Harris, 1994; Ballantyne, 1998, 2010) or non-erosive ice covers such 55 

as cold-based glaciers (e.g., Nesje et al., 1988; Kleman and Borgström, 1990; Hättestrand and 56 

Stroeven, 2002). 57 

Nunataks (Dahl, 1987) are isolated hills or mountain peaks that projected above the ice shields and 58 

alpine-type icecap (Fairbridge, 1968). They have been proposed as possible biological refugia during 59 

glacial periods (Schönswetter et al., 2005; Goodfellow, 2007; Birks and Willis, 2008), serving as 60 

sources for the rapid reoccupation of the later deglaciated landscape (Fairbridge, 1968). While several 61 

studies have been focused on nunataks especially at high latitudes (e.g., Birks, 1994; McCarroll et al., 62 

1995; Ballantyne et al., 1998), there is a paucity of works that have studied nunataks in the European 63 

Alps (Schönswetter et al., 2005; Carcaillet and Blarquez, 2017; Carcaillet et al., 2018), likely due to 64 

intrinsic difficulties in finding relict surfaces preserved from glaciations. Moreover, although many 65 

studies proposed paleoclimatic reconstruction in Alpine environments, they were mostly localized at 66 

elevation lower than 2200 m a.s.l. and in different climatic conditions (e.g., Kerschner and Ochs, 67 

2008; Samartin et al., 2012a; Heiri et al., 2014). Furthermore, while the environmental conditions 68 

from the Oldest Dryas to the Holocene are relatively well documented (e.g., Samartin et al., 2012b; 69 

Cossart et al., 2012, Heiri et al., 2014), a substantial gap of paleoclimate data during the transition 70 

between Last Glacial Maximum (LGM) and the Early Lateglacial still exists in the Alps, despite the 71 

well reported beginning of deglaciation, which occurred no later than 22,000-18,000 yr BP (Ivy-Ochs 72 

et al., 2006a; Ivy-Ochs, 2015, Monegato et al., 2017; Seguinot et al., 2018). 73 

Based on these considerations, the object of this work is the reconstruction of the history of a high-74 

elevation Alpine plateau (Stolenberg Plateau), covered by periglacial features, located in the 75 

Northwestern Italian Alps at 3000 m a.s.l. More specifically, this work aims at investigating the age 76 
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and origin of soils discovered within blockstreams and blockfields (Pintaldi et al., 2021), through the 77 

application of I) plant remains investigation (carpological approach), II) plant fragments and soil 14C 78 

dating, and III) soil δ13C analysis. Moreover, based on the interpretation of the obtained results and 79 

literature data, the work aims at IV) reconstructing the possible paleoenvironmental evolution of this 80 

high-elevated periglacial landscape since the end of the LGM. 81 

 82 

2. Materials and Methods 83 

2.1 Study Area 84 

The Stolenberg Plateau (3030 m a.s.l.) is located at the foot of the southern slope of Monte Rosa 85 

(4634 m a.s.l.), along the border between Valle d’Aosta and Piemonte regions, NW Italian Alps 86 

(Long-Term Ecological Research-LTER site Istituto Mosso, 45°52'42.87"N, 7°52'0.64"E) (Fig. 1, 87 

Supplementary material 1). The Plateau has a south-east orientation and covers a surface of ca. 1.35 88 

ha, with a slope angle between 0° and 13°. Meteorological parameters of the study area (air 89 

temperature and total liquid precipitation) were recorded by the Bocchetta delle Pisse Automatic 90 

Weather Station (AWS) (2401 m a.s.l., managed by ARPA Piemonte), located ca. 2.5 km east of the 91 

study area (on the same slope). The temperatures at the Plateau were obtained using the standard lapse 92 

rate of 6 °C km-1. The mean cumulative annual snowfall was recorded by the Col d’Olen AWS (2901 93 

m a.s.l., managed by the Italian Army, Comando Truppe Alpine - Servizio Meteomont), located ca. 94 

500 m south-east of the Plateau. The LTER area has a total annual precipitation of ca. 1300 ±270 mm 95 

(1997-2019) at 2400 m a.s.l., with a winter minimum and a late spring-summer maximum. The 96 

Plateau has a mean annual air temperature of –2.4 ±0.7 °C (1988-2019) and a mean summer (June, 97 

July, August) air temperature of 4.4 ±1.3 °C; July is the warmest month, with a mean air temperature 98 

of 5.2 ±2.7 °C. The mean annual liquid precipitation is ca. 358 ±86 mm (1997-2019) while the mean 99 

cumulative annual snowfall is ca. 800 ±143 cm, with a snow cover lasting for at least 8 months (2008-100 

2019).  101 
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The Plateau is covered by a thick layer of stones of variable size (from decimetric to metric), well 102 

organized in autochthonous blockfields, blockstreams/sorted stripes, gelifluction lobes, tilted stones, 103 

and weakly developed sorted circles (Pintaldi et al., 2021). No glacial striations or roches moutonnées 104 

have been detected on the few highly fractured rock outcrops. The parent material is composed of 105 

gneiss and mica-schists (Monte Rosa nappe, Pennidic basement), and metabasites (Zermatt-Saas unit) 106 

(Tognetto et al., 2021). The vegetation cover, which is almost absent or confined to small patches, 107 

reaching no more than 5% of the Plateau surface, is composed of alpine species such as Silene acaulis, 108 

Carex curvula, Salix herbacea in the vegetated patches, while Festuca halleri, Poa alpina, 109 

Ranunculus glacialis, Leucanthemopsis alpina, Cerastium uniflorum, Oxyria digyna and a few other 110 

scattered species grow also in the stone-covered area. No relevant permafrost bodies have been 111 

detected in the site, even though some permafrost patches cannot be excluded (Pintaldi et al., 2021). 112 

The ground surface thermal regime monitoring (2019-2020) showed no significantly negative soil 113 

temperatures under the blockstreams (Supplementary material 2, Fig. S1,2). However, during the 114 

snow-free season, soil temperatures under these periglacial features were colder than in nearby 115 

snowbed soils covered by vegetation (Supplementary material 2, Fig. S3, Tab. S1).  116 

 117 

2.2. Soil characteristics  118 

In 2017, during operational activities for constructing a new cableway station on the Plateau, three 119 

soil trenches were opened in the construction area close to the protected geosite (soil profiles P1, P2, 120 

and P3 in Fig. 1), revealing surprisingly well-developed soils under the stony cover. These soils were 121 

characterized by dark and thick organic C-rich A horizons (Fig. 2,3,4), and were classified as Skeletic 122 

Umbrisol (Arenic, Turbic), according to IUSS Working Group WRB (2015). Soil texture was 123 

generally loamy sand or sandy loam, pH (measured in H2O) values were extremely to moderately 124 

acidic and carbonates were absent. Total Organic Carbon (TOC) content reached maximum values 125 

of ca. 20 g kg-1 in the A horizons of profiles P1 and P2 and over 10 g kg-1 in profile P3; the soil C 126 
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stocks (up to ~ 5 kg m-2) were comparable to vegetated or even forest soils, despite the extremely 127 

sparse vegetation cover (Pintaldi et al., 2021). Geophysical investigations indicated that these hidden 128 

soils were widespread on the Plateau. The detailed description of the soil profiles, as well as their 129 

physical and chemical properties, distribution and thickness, are reported in Pintaldi et al. (2021).  130 

 131 

2.3. Plant remains analysis 132 

The presence of few plant fragments mixed within the soil material was observed within soil 133 

samples collected from the umbric A horizons in the soil profiles. In order to isolate and identify the 134 

plant fragments within soil matrix, to reconstruct the possible past vegetation of the Plateau, a 135 

carpological approach was adopted, starting from the assumption that plant material contained in 136 

paleosols may preserve the main features of soil "seed banks'' (Ter Heerdt et al., 1996). Furthermore, 137 

the investigation was applied on two additional soil samples collected deep inside a soil-filled rock 138 

wedge (a vertical fracture in the substrate filled with vertically stratified soil materials, likely formed 139 

by freeze-thaw action), at 3 m depth (Fig. 5) along the southern border of the plateau (site “Wedge” 140 

in Fig. 1). We used the standard method (Supplementary material 3) for extraction of seeds and fruits 141 

from deep time sediments (e.g., Martinetto, 2009; Martinetto and Vassio, 2010), because recent 142 

experiences (Bertolotto et al., 2012) on a few soils showed that this was effective. 143 

 144 

2.4. Plant fragments and soil 14C dating  145 

Radiocarbon dating (14C) was performed on six plant fragment samples, accurately selected after 146 

the carpological investigation: five samples, consisting of recognizable but fossil-resembling plant 147 

fragments (dark coloured, mineral coatings), were obtained from soil samples collected in the umbric 148 

A horizons (usually in the 0-10 cm layer); one sample, consisting of unrecognizable plant fragments 149 

(strongly decomposed), derived from soil samples collected in the soil wedge at 3 m depth. 150 

Furthermore, 14C radiocarbon dating was performed on ten soil samples, nine of which selected from 151 
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soil profiles: two from profile P1 (1,2), four from P2 (7,8,9,9bis) and three from P3 (2,3,5) (Fig. 1); 152 

one sample was collected in the only fully vegetated patch of the plateau (P4), at 10-20 cm depth (A 153 

horizon) (Fig. 1). The radiocarbon dating was performed at CEDAD, the Centre for Applied Physics, 154 

Dating and Diagnostics, Department of Mathematics and Physics “Ennio de Giorgi” - University of 155 

Salento, Lecce, Italy, using radiocarbon accelerator mass spectrometry (AMS) analysis (Calcagnile 156 

et al., 2005) and the standard preparation methods (D’Elia et al., 2004). Radiocarbon dates of soil 157 

samples were calibrated in calendar age by using the software OxCal Ver. 3.10 (Supplementary 158 

material, Figs. S4-S14), based on atmospheric data (Reimer et al., 2013). Further methodological 159 

details can be found in Supplementary material 4. 160 

 161 

2.5 Soil δ13C stable isotope signature 162 

To verify the typical δ13C signature of present-day vegetated soils in the study area, which clearly 163 

reflects the existing vegetation (Meyer et al., 2014), soil samples were collected from the A horizons 164 

of five vegetated permanent study areas at slightly lower elevation in the LTER site (2750-2900 m 165 

a.s.l., Supplementary material 5). Moreover, the analysis was performed on fourteen selected soil 166 

samples (A horizons) from the Plateau (Supplementary material 5). Samples were air-dried, sieved to 167 

2 mm and checked using stereomicroscope to eventually remove macro-contaminants. Then samples 168 

were ground and sieved to 0.5 mm. The δ13C signature of total organic carbon (due to the absence of 169 

carbonates) was directly determined using an Isoprime 100 continuous flow stable isotope mass 170 

spectrometer coupled to a Vario Isotope Select elemental analyzer (EA-IRMS; Elementar 171 

Analysensysteme GmbH, Hanau, Germany) and expressed in parts per thousand (‰) relative to the 172 

international standard Vienna Pee Dee Belemnite (VPDB) (further methodological details in 173 

Supplementary material 5). Significant differences (p-value < 0.05) in δ13C values between present-174 

day vegetated soils and soils under periglacial features were evaluated through one-way analysis of 175 
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variance (ANOVA) combined with Tukey HSD test. Statistical analyses were performed using R 176 

software, v. 3.6.0 (R Core Team, 2019). 177 

 178 

3. Results 179 

3.1. Plant remains and 14C dating  180 

The quantity of plant fragments found in the soils was very scarce, representing a negligible 181 

fraction compared to the soil matrix. However, they were composed of remains with definite 182 

morphologies, including cm-sized leaves (consisting mainly of well-preserved and recognizable 183 

specimens of Salix herbacea, Cerastium uniflorum and Poaceae sp.) and mm-sized fruits and seeds, 184 

which have been mostly identified as belonging to taxa growing today in surrounding snowbed areas 185 

and in the small vegetated patch on the Plateau (Tab. 1, Fig. 1). Only in sample F, which was collected 186 

inside the wedge (Fig. 5), the degree of decomposition was much higher, so that the morphology of 187 

larger plant fragments was vague and not recognizable. Only a few tiny fruits and seeds still had 188 

diagnostic morphologies and allowed the identification of some plant taxa (Tab. 1) Concerning 189 

radiocarbon dating, the plant fragment samples were all modern (after 1950 AD, Tab. 2), except the 190 

strongly decomposed sample F, which was dated back to 1,824-1,594 yr cal. BP.  191 

 192 

3.2. Soil Organic Matter 14C dating and δ13C signature 193 

Unlike plant fragments, the results from AMS on soil samples revealed a wide range of ages, 194 

covering several thousands of years and different well-distinct climatic periods, between ca. 22,000-195 

21,000 yr and 4,400-4,100 yr cal. BP (Tab. 2). All radiocarbon dates were rounded and here presented 196 

as calibrated radiocarbon ages (yr cal. BP = years before 1950 A.D.). In P1 the age of soil samples 197 

was related with depth, in fact the oldest samples P1-1, dated between 8,782 and 8,412 yr cal. BP, 198 

was located close to the lower boundary of the umbric A horizon, while the youngest one (P1-2), 199 

dated between 5,735 and 5,589 yr cal. BP, was located close to the surface stones-soil interface (Fig. 200 
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2). In P2 the age of the samples was not related to depth: the oldest sample P2-9, dated between 201 

17,584-16,985 and 18,148-17,719 (P2-9bis) yr cal. BP (values obtained from two independent and 202 

blind datings performed in different moments), was located close to the surface stones-soil interface, 203 

while the stable organic C in C-rich cryoturbated patches (P2-7), located close to the lower boundary 204 

of the umbric A horizon, was much younger (6,506-6,306 yr cal. BP) (Fig. 3); the central and rather 205 

homogeneous part of the A horizon (P2-8) dates back to 8,561-8,300 yr cal BP. In P3 the age of the 206 

samples was not related to depth as well: the oldest samples P3-2 and P3-3, dating back to 18,921-207 

18,518 and 22,145-21,427 yr cal. BP respectively, were taken from homogeneous materials in the 208 

central part of the umbric horizon, while a younger radiocarbon age was obtained in the deeper part 209 

of the A horizon, close to the lower boundary (sample P3-5), dating back to 13,306-13,076 yr cal. BP 210 

(Fig. 4). The youngest soil sample, P4, taken from the A horizon in the currently fully vegetated 211 

patch, was dated between 4,360 and 4,090 yr cal. BP (Tab. 2). 212 

The δ13C signature of present-day vegetated soils provided by EA-IRMS ranged between -23.3 213 

(Site 1) and -25.7 ‰ (Site 3), with a mean value of -24.2 ‰ (+/-1.1) (Tab. 3). The δ13C of soil samples 214 

from the plateau showed very similar values, ranging between -23.5 (P3-3) and -24.7 ‰ (P1-1), with 215 

a mean of -24.1 ‰ (+/- 0.4), while the soil sample collected from the vegetated patch (P4) had a 216 

slightly greater value of δ13C of -22.7 ‰ (Tab. 3). No significant differences were detected between 217 

present-day vegetated soils and soils under periglacial features (Supplementary material, Fig. S15). 218 

 219 

4. Discussion 220 

4.1 Plant fragments 14C dating 221 

The plant fragment samples were generally modern (Tab. 2), except sample F, which was dated 222 

between 1,824 and 1,594 yr BP, corresponding therefore to the small warm phase occurred during 223 

the Roman time (Mercalli, 2004). The strong difference in age between sample F and the other 224 

samples was already reflected in the different degree of decomposition, as the larger plant fragments 225 
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in sample F were not recognizable. This sample, collected at ca. 3 m depth below the present-day 226 

surface inside a rock wedge, evidenced strongly active periglacial processes, sufficient to activate the 227 

rock wedge and thus its filling by surface soil material in the following centuries. This indicates that 228 

cryoturbation processes acted across millennia, strongly mixing plant fragments within the soil 229 

matrix, until they became unrecognizable. The presence of modern plant fragments within the soil 230 

matrix, although very scarce, can be explained mainly by the aeolian transport from the surrounding 231 

vegetated surfaces. The plant material could have been trapped by the stone layer and moved towards 232 

the soil surface through the large spaces between the rocks. Alternatively, a small input from the 233 

sporadically occurring vegetation growing within the stones may have contributed. 234 

 235 

4.2 Soil 14C dating 236 

Radiocarbon dating of soils and sediments can be problematic due to the presence of pre-aged 237 

carbon (e.g., Lowe and Walker, 2000; Pessenda et al., 2001; Thorn et al., 2009) or fresh/allochthonous 238 

organic matter (Wang et al., 1996; Tonneijck et al., 2006). Therefore, terrestrial plant macrofossils 239 

have been considered the most reliable material for 14C dating (Lowe and Walker, 2000; Hatté et al., 240 

2001). However, the fossil record of the Alpine flora is generally scarce due to the lack of conditions 241 

suitable for the accumulation of macro-remains at the highest elevations (Lang, 1994). If materials 242 

such as charcoal, wood, or other plant macrofossils (Muhs et al., 2003) are lacking, dating of soils or 243 

sediments is generally accepted (Wang et al., 2014), especially in specific sites and under certain 244 

conditions (Lowe and Walker, 2000). Thus, the interpretation of 14C dates must be adapted to the 245 

specific soil ecosystem under study (Tonneijck et al., 2006).  246 

Differently from plant samples, datings of the soil samples collected from the Plateau covered an 247 

extended time interval, involving both Pleistocene and Holocene epochs. If some kind of very old-248 

aged material (i.e. from LGM or even older) was deposited on the Plateau surface, it should have 249 

been deposited also on the nearby glacier surfaces. However, similar old-aged organic materials have 250 
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never been detected in the well-studied Monte Rosa glaciers (Jenk et al., 2009; Thevenon et al., 2009). 251 

Currently, the oldest date obtained from an ice core, collected at ~80 m depth on the nearby Colle 252 

Gnifetti, was around 15,000 yr (Jenk et al., 2009). In the European Alps, on glacier surfaces, the most 253 

important source for the deposition of already aged organic materials is soil dust (Hoffman, 2016), a 254 

large part of which is originated from Saharan dust storm (e.g., Wagenbach and Geis, 1989; 255 

Wagenbach et al., 1996; Hoffman, 2016). The age of organic matter in these atmospheric depositions 256 

range between 1,000 and 5,000 yr (Eglinton et al., 2002; Jenk et al., 2006), with a mean of ca. 2,500 257 

(Hoffman, 2016). Finally, the contribution of anthropogenic emissions was also considered as a 258 

possible cause for the aging of samples (Jenk et al., 2006), the so-called Suess effect (Suess, 1955). 259 

However, this effect is generally negligible on the samples older than 2,000-5,000 yr BP (Graven et 260 

al., 2015; Köhler, 2016). Therefore, most of our samples, especially the oldest ones, were out of the 261 

range of influence of the Suess effect. 262 

Based on the previous considerations, our soil samples cannot therefore be influenced by other 263 

than local organic carbon sources (i.e. vegetation grown during warming phases). Furthermore, the 264 

soil texture of the paleosols at the Stolenberg Plateau was loamy sand or sandy loam and no 265 

differences were found among profiles and between surface and deep samples (Pintaldi et al., 2021), 266 

thus rejecting also the hypothesis of a Loess deposition, which is otherwise mainly composed of silt-267 

sized material dominated by quartz (Smalley et al., 2006), but could also include organic matter. 268 

These soils could have experienced several different climatic conditions, retaining information 269 

about past climates, ranging from the end of the LGM (Ivy-Ochs, 2015) to the beginning of the 270 

Neoglacial (Orombelli et al., 2005). All the detected ages matched exactly and exclusively with the 271 

main warming phases/interstadials occurring from the LGM until the transition between the Holocene 272 

Climatic Optimum (HCO) and the Neoglacial (Deline and Orombelli, 2005; Ivy-Ochs et al., 2009), 273 

whereas no soil samples from cold phases/stadials were detected (further details in chapter 5). 274 

The surface position of the oldest samples and the general inversion of the typical age-depth 275 

relationship can be explained by the strong cryoturbation processes occurring on the Plateau, 276 
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especially during the cold climatic phases. Indeed, cryoturbation processes mix and displace soil 277 

horizons (Bockheim and Tarnocai, 1998; Pintaldi et al., 2016), redistributing organic matter (e.g., van 278 

Vliet-Lanoë et al., 1998; Hormes et al., 2004; Bockheim, 2007). Furthermore, other works reported 279 

inverted soil age-depth relationship (e.g., Carcaillet et al., 2001; Favilli et al., 2008; Egli et al., 2009; 280 

Serra et al., 2020), as the young and contemporary carbon can be transported by soil turbation 281 

processes, such as cryoturbation and bioturbation, thus contributing to the rejuvenation of the subsoil 282 

(Scharpenseel and Becker-Heidmann, 1992; Rumpel et al., 2002; Favilli et al., 2008). Besides the 283 

well-developed periglacial features, cryoturbation processes were also evidenced by the internal soil 284 

morphology, which showed inclusions of surface A-horizon materials at depth, as well as strong 285 

convolutions and block displacement above wedges (Pintaldi et al., 2021).  286 

Remarkably, ages similar to the ones of our oldest samples have never been detected in soils at 287 

such high-elevated ecosystems in the European Alps. For instance, Baroni and Orombelli (1996) 288 

found a Cambisol with buried A horizons at Tisa Pass (3200 m a.s.l.), but with a radiocarbon age of 289 

around 6,400-6300 yr BP , while Orombelli (1998) obtained an age up to ca. 9,000 yr BP (2500 m 290 

a.s.l.) for the Rutor Peat Bog. As reported by Ivy-Ochs et al. (2008), the oldest date yet obtained for 291 

an ice-free Swiss foreland is 17,000-18,000 yr, although it is a minimum age, because pinpoint the 292 

timing during this period, using radiocarbon age, remains difficult due to the lack of organic material 293 

(Kerschner and Ivy-Ochs, 2008), which is rare and often reworked (Ivy-Ochs et al., 2008). Glacier 294 

basal sediments at the Jamtalferner and Stubai glaciers (Austria) had ages around 17,000 and 22,000 295 

yr BP, respectively (Hoffman, 2016). Furthermore, although at lower elevation (2100 m a.s.l.), Favilli 296 

et al. (2008, 2009) obtained comparable ages (17,000-18,000 yr BP) for an Entic Podzol, in the alpine 297 

belt in NE Italy. Other comparable radiocarbon ages (~21,000 yr BP) were reported by Carcaillet and 298 

Blarquez (2017) for a tree refugium at ~2200 m a.s.l., in the Western Alps. 299 

 300 

 4.3 Soil δ13C signature 301 
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The soil δ13C signatures are frequently used to reconstruct plant community history and the sources 302 

of soil organic carbon (Bai et al., 2012). As plant residues enter the soils, their δ13C values may be 303 

modified slightly from their original values by isotope fractionation associated to preferential C 304 

mineralization (Bai et al., 2012). The overall δ13C signature of present-day vegetated soils obtained 305 

by the stable isotope analysis, was comparable to those reported for soils and alpine vegetation in 306 

high-elevation ecosystems (Bird et al., 1994; Körner et al., 1991, 2016; Körner, 2003). The δ13C 307 

signatures of soils under periglacial features corresponded very well with those of present-day 308 

vegetated soil (Tab. 3), thus indicating that the soil organic carbon probably originated from alpine 309 

plants with the same isotopic signature of present-day vegetation. Furthermore, studies conducted by 310 

Colombo et al. (2020) on a nearby rock glacier at ~2700 m a.s.l., indicated δ13C values of surrounding 311 

vegetated soils (-24.5 ‰) very similar to those of the Plateau, while the δ13C signature of the active 312 

rock glacier soil, characterized by cold ground thermal regimes, coarse debris cover, and extremely 313 

reduced plant cover, increased considerably (ca. -18 ‰). Thus, the overall correspondence of the δ13C 314 

signatures between present-day vegetated soils and paleosols under periglacial features suggested a 315 

common origin of the soil organic carbon from very similar alpine flora. 316 

 317 

5. Historical and paleoenvironmental setting 318 

In Fig. 6 we propose a conceptual model reporting a tentative paleoenvironmental reconstruction 319 

of the Stolenberg Plateau. Despite uncertainties, we believe that it may facilitate the interpretation of 320 

our data and also the generation (and testing) of the different hypotheses, as it includes and 321 

coordinates the different evidences we collected.   322 

The LGM (Fig. 6A1-B1) ended around 22,000-19,000 yr BP (Ivy-Ochs et al., 2006a; Gianotti et 323 

al., 2015; Ivy-Ochs, 2015; Monegato et al. 2017), during which transection glaciers, flowing into 324 

valley systems, characterized the Western European Alps (Kelly et al., 2004). The mean air 325 

temperature was ~12 °C lower than present day in the European Alps (Peyron et al., 1998; Becker et 326 
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al., 2016) and the mean July air temperature was likely around -4/5 °C on the Plateau (cf. Renssen et 327 

al., 2009; Samartin et al., 2012a,b; Heiri et al., 2015). Considering the lack of soil samples older than 328 

ca. 22,000 yr and the inferred cold conditions during LGM, together with the strongly weathered, 329 

autochthonous soil and stone materials, we can hypothesize the presence of a barren cryoturbated 330 

surface or of a small cold-based “ice cap” covering the Plateau (Fig. 6A1-B1). 331 

Our oldest 14C datings (P3-2, P3-3, P2-9, and P2-9bis) span from 22,000 to 17,000 yr BP, falling 332 

exactly during a period of massive downwasting of transection glaciers (Early Lateglacial Ice Decay-333 

ELID) (e.g., Ravazzi, 2005; Ivy-Ochs et al., 2006a, 2008; Monegato et al., 2007; Reitner, 2007; 334 

Wirsig et al., 2016). Glacial shrinking also occurred at high elevations (Dielfolder and Hetzel, 2014), 335 

with some mountain peaks, around 2300-2600 m a.s.l., protruding out of the ice surface (Wirsig et 336 

al., 2016). The ELID occurred on both sides of the Alps due to significant rise in air temperatures 337 

(e.g., Huber et al., 2010; Schmidt et al., 2012; Samartin et al., 2012a,b). Assuming a pronounced 338 

climate continentality (Jost-Stauffer et al., 2001; Ivy-Ochs et al., 2009), summer air temperatures 339 

were likely similar to the ones inferred for the Bølling-Allerød interstadial (e.g., Huber et al., 2010; 340 

Samartin et al., 2012a,b; Schmidt et al., 1998, 2012). In addition, soil surface temperatures in alpine 341 

environments during summer are generally 2-4 °C above the air temperatures (Scherrer and Körner, 342 

2010), indicating that life conditions of alpine organisms growing on the soil surface can be strongly 343 

decoupled from conditions in the free atmosphere, particularly on south oriented surfaces like the 344 

Plateau (e.g., Scherrer and Körner, 2010). Our ancillary measurements confirmed that the mean 10 345 

cm depth soil temperature during summer was ~3 °C warmer than air temperature on the Plateau 346 

(vegetated patch GST2), while at slightly lower elevation soil temperatures was 1-3 °C warmer 347 

(Supplementary material 2, Tab. S2). Therefore, the Stolenberg Plateau was likely ice-free since 348 

~22,000-21,000 yr BP, i.e. the (micro)climatic conditions were probably suitable for pedogenesis and 349 

growth of some vegetation (Fig. 6A2,3-B2,3). 350 

 No radiocarbon ages were detected in our soils between ~17,000 yr BP and ~14,700 yr BP, which 351 

was a period (Gschnitz stadial or Oldest Dryas; Walker et al., 1999; Ivy-Ochs et al., 2006b, 2008) 352 
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characterized by a decrease of both temperatures and precipitations, with values 8.5-10 °C and 25-50 353 

% lower than the respective modern values (Ivy-Ochs et al., 2006a,b; Kerschner and Ivy-Ochs, 2008; 354 

Ivy-Ochs, 2015). These cold climatic conditions allowed a readvance of mountain glaciers (Kerschner 355 

et al., 2002; Ivy-Ochs et al., 2006a,b, 2008). Thus, it is probable that the environmental conditions on 356 

the Plateau were not suitable to sustain plant life and pedogenesis, while they favored strong frost-357 

action processes which led to the activation of periglacial features (Goodfellow, 2007; Ballantyne, 358 

2010) (Fig. 6A4-B4). 359 

The age of the P3-5 sample, dated between 13,306 and 13,076 yr cal. BP, matched perfectly with 360 

a warm period occurred between ~14,700 and 12,900 yr BP, corresponding to the Bølling-Allerød 361 

interstadial (Rasmussen et al., 2006; Ivy-Ochs et al., 2008; Dielfolder and Hetzel, 2014). A strong 362 

rise in the mean annual air temperatures was inferred (ca. 3 °C), with respect to the Oldest Dryas, 363 

causing the melting of valley glaciers (e.g., Ravazzi, 2005; Vescovi et al., 2007; Dielfolder and 364 

Hetzel, 2014). Other studies indicated even greater rises in temperature, ~3-4 °C (Larocque-Tobler et 365 

al., 2010) and ~5 °C (Renssen and Isarin, 2001). The mean July temperature at the Plateau, during 366 

this period, may have been higher than 3 °C (cf., Heiri and Millet, 2005; Samartin et al., 2012a,b; 367 

Dielfolder and Hetzel, 2014). Thus, the summer climate could have been suitable again for 368 

pedogenesis and plant life (Fig. 6A5-B5). 369 

After the Bølling-Allerød, a general worsening of climate conditions occurred, leading to another 370 

cold phase, the Younger Dryas, also called Egesen Stadial (Ivy-Ochs et al., 2006b, 2008), which 371 

lasted until 11,700 yr BP. The summer temperatures were 3.5-4 °C lower, while precipitation was 372 

reduced by 10 to 30% compared to modern values (Kerschner et al., 2000, Kerschner and Ivy-Ochs, 373 

2008). Again, on the Plateau, no soil radiocarbon ages were detected from this cold period, as the 374 

environmental conditions likely favored frost-action processes rather than pedogenesis, probably 375 

leading to a new expansion of periglacial features (Fig 6A6-B6). 376 

The ages of four soil samples (P1-1, P1-2, P2-7, and P2-8) span from 8,700 to 5,700 yr BP, 377 

corresponding to the warm Holocene Climatic Optimum (HCO), occurred between 10,000 and 5,000 378 
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yr BP (Mercalli, 2004; Orombelli, 2011). In this period a ~3-4 °C temperature increase was estimated 379 

with respect to the Younger Dryas (e.g., Tinner and Kaltenrieder, 2005; Ilyashuk et al., 2009; 380 

Larocque-Tobler et al., 2010; Samartin et al., 2012b). Glaciers were probably smaller than present 381 

day during the height of the HCO (e.g., Ivy-Ochs et al., 2009; Orombelli, 2011; Grämiger et al., 2018; 382 

Bohleber et al., 2020). Mean air temperature was up to 1-2 °C warmer with respect to the present-day 383 

values in the European Alps (e.g., Grove, 1988; Nesje and Dahl, 1993; Antonioli et al., 2000; Ivy-384 

Ochs et al., 2009) and the inferred July temperature at the Plateau may have reached values around 385 

6-7 °C (or even more) (cf. Ilyashuk et al., 2009; Samartin et al., 2012b), therefore above present-day 386 

values (cf., Birks and Willis, 2008; Ilyashuk et al., 2009; Samartin et al., 2012b). This likely led to 387 

conditions suitable for plant life (Fig. 5A7-B7). 388 

The age of our youngest sample (P4), dated 4,360-4,090 yr BP, corresponded with a period of 389 

climate stability or slight cooling encompassed between 5,000 and 4,000 yr BP, after which a strong 390 

decrease in temperature was estimated (Heiri et al., 2015), which led to Alpine glacier expansion 391 

from 3,300 yr BP (Ivy-Ochs et al., 2009); this period has been called Neoglacial (Deline and 392 

Orombelli, 2005; Orombelli, 2005). After 3,300 yr BP, colder climatic conditions caused prolonged 393 

and frequent glacier advances, leading finally to the Little Ice Age (LIA, 1300-1850 A.D.) (Ivy-Ochs 394 

et al., 2009). During this last and prolonged cold phase, no soil radiocarbon ages were detected at the 395 

Plateau, apart from highly weathered plant fragments collected deep inside the rock wedge. The frost 396 

action likely prevailed, causing the final expansion of the periglacial features and the complete 397 

covering of the Plateau (Fig. 5A8-B8), while few plants could thrive without being able to leave 398 

measurable amounts of organic matter in the soil horizons. 399 

 400 

6. Nunataks: yes or no? 401 

The nunatak theory hypothesizes that unglaciated reliefs in glacial and periglacial areas acted as a 402 

refugium for isolated colonies of microorganisms, plants, and animals which survived the rigorous 403 
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condition of the last glacial times for a few thousand years (Fairbridge, 1968; Dahl, 1987). These 404 

nunataks could have served as center for the recolonization of the later deglaciated landscape 405 

(Fairbridge, 1968). However, clear evidence for in situ survival of alpine floras on nunataks in the 406 

Alps during the last ice age are rather limited (e.g., Stehlik, 2002; Schönswetter et al., 2005; Carcaillet 407 

and Blarquez, 2017; Carcaillet et al., 2018) and subjected to a heated debate (e.g., Gugerli and 408 

Holderegger, 2001; Carcaillet and Blarquez, 2019; Finsinger et al., 2019). The existence and 409 

identification of such refugia during glacial or interglacial stages has been a topic of active research 410 

for decades (Hampe et al., 2013). The recolonization of the Alps would have started not only from 411 

peripheral refugia, but also from areas within the ice sheet (Schönswetter et al., 2005), where isolated 412 

nunataks could have been sources and targets as well of species immigration and establishment (Paus 413 

et al., 2006). Indeed, barren substrate or saprolite (Goodfellow, 2007), exposed just after glacier 414 

retreat (Fig. 6A2-B2), could become targets of autotrophic organisms (e.g., algae, mosses, lichens, 415 

higher plants), starting the process of primary succession (Bardgett et al., 2007). Thus, nunataks may 416 

have been indeed inhabited for several thousand years during the last glaciation (Gugerli and 417 

Holderegger, 2001), before the surrounding lowlands became deglaciated and invaded by organisms 418 

in the early Holocene. Remarkably, the Plateau location matched exactly with an area assumed to be 419 

a potential refugia for the survival of high-elevation plants on ice-free mountain tops within the 420 

strongly glaciated central parts of the Alps, particularly among the north of the Aosta Valley (NW-421 

Italy) and south Valais, and within the mountain ranges of Monte Rosa (Stehlik, 2002; Schönswetter 422 

et al., 2005; Kosiński et al., 2019). 423 

Based on the results reported here and the presence of strong geomorphological evidences (i.e. 424 

periglacial features such as blockstreams/blockfields), as well as the overall specific morphology, 425 

aspect and position, the Stolenberg Plateau is thought to represent a Lateglacial Alpine Nunatak, on 426 

which specific pedoclimatic conditions could have been suitable for alpine plant life already since 427 

22,000-21,000 yr BP. As sometimes observed at high elevation at present day (e.g. Saxifraga 428 

oppositifolia growing at 4500 m a.s.l. near the summit of Dom in Switzerland, Körner, 2011), 429 
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soil/substrate temperatures can be increased by solar surface warming in specific protected sites. This 430 

is particularly true where adiabatic winds, topography, local rock warming effect (Carturan et al., 431 

2013), long-wave radiation from nearby rocky walls (i.e., the Mt. Stolenberg rock wall), and mass 432 

elevation effect (e.g. Monte Rosa Massif) (Samartin et al., 2012a), favor specific and stable 433 

microclimate features (e.g., Stewart and Lister, 2001), allowing the formation of the nunatak 434 

conditions. 435 

 436 

6. Conclusion  437 

In the severe periglacial environment of the Stolenberg Plateau, at 3030 m a.s.l., thick and well-438 

developed Umbrisol were detected inside periglacial features (blockstreams/blockfields). As 439 

previously reported in Pintaldi et al (2021), these soils, despite the large stony cover and the scattered 440 

vegetation, showed carbon stocks comparable to alpine tundra or even forest soils. Radiocarbon 441 

dating and soil δ13C signatures indicated that these hidden soils were paleosols that recorded 442 

exclusively the main warming phases occurring since the end of LGM until the beginning of 443 

Neoglacial. This finding suggests that the environmental conditions on the Plateau were suitable for 444 

alpine plant life and pedogenesis, already since the end of LGM. Our results, coupled with the inferred 445 

paleoclimate reconstruction, indicate that the Stolenberg Plateau can be considered a direct evidence 446 

of a Lateglacial Alpine Nunatak, representing therefore a valuable natural and historical archive for 447 

unravelling the post-LGM history of the high-elevation landscape of the European Alps. 448 
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Figures 809 

 810 
Figure 1. (a) Location of the study area in the NW Italian Alps (www.pcn.minambiente.it) and overview of the 811 
study area (orthoimage Piemonte Region, year 2010) (coordinate system WGS 84 / UTM zone 32N); green forms 812 
indicate the location of the three soil profiles (P1, P2, P3) and the vegetated patch (P4); yellow polygon indicates 813 



35 

 

the location of the soil-filled wedge. (b) View of the Plateau from the base of the Mt. Stolenberg (photo by M. 814 
D’Amico). (c) View of the Plateau (photo by M. D’Amico).  815 
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 816 
 817 
Figure 2. Soil profile P1, with the corresponding scheme (below) reporting sampling points (number), the horizon 818 
limits (lines therein), and the age of soil samples (ka cal. BP). P1-1 and P1-2 were analyzed for 14C (Tab. 2) and δ13C 819 
(Tab. 3).  820 
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 821 
Figure 3. Soil profile P2, with the corresponding scheme (below) reporting sampling points (number), the horizon 822 
limits (lines therein), and the age of soil samples (cal. ka BP). P2-7, P2-8, and P2-9 (and P2-9bis, not shown in the 823 
figure) were analyzed for 14C (Tab. 2); P2-7, P2-8, P2-9 (and P2-9bis), P2-13, and P2-15 were analyzed for δ13C (Tab. 824 
3).  825 
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 826 
Figure 4. Soil profile P3, with the corresponding scheme (below) reporting sampling points (number), the horizon 827 
limits (lines therein), and the age of soil samples (ka cal. BP). P3-2, P3-3, and P3-5 were analyzed for 14C (Tab. 2); P3-828 
1, P3-2, P3-3, P3-4, and P3-5 were analyzed for δ13C (Tab. 3). 829 

 830 

 831 

 832 
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 834 
 835 
Figure 5. The soil-filled rock wedge along the southern border of the Plateau and detail of the sampling site.   836 
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 837 
Figure 6. Tentative paleoenvironmental reconstruction of the Stolenberg Plateau based on the findings in this paper 838 
and on literature reported in the text. (1) Reference timeline from LGM to present day: blue colors indicate cooling 839 
phases, orange ones warming phases, the light blue segment (on the right) indicates a period of progressive cooling 840 
occurred at the beginning of Neoglacial phase; red segments indicate the age of soil samples reported in table 2. (2) 841 
Corresponding visual of the Plateau during the different phases: letters A (A1, A2, etc.) are the frontal views, B ones 842 
are the planimetric views. Details in the text. 843 
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Tables 844 
 845 

Profile samples 

Family/Genus/Species 
N° 

(seeds/fruits/leaves) 

Frequency 

(%) 

Asteraceae indet. 1 0.3 

Brassicaceae indet. 1 0.3 

Carex  parviflora 1 0.3 

Carex myosuroides 7 1.9 

Cerastium sp. 16 4.4 

Cerastium uniflorum 90 24.6 

Cirsium sp. 1 0.3 

Crepis sp. 1 0.3 

Draba sp. 1 0.3 

Gentiana gr. verna 1 0.3 

Juncus sp. 1 0.3 

Leucanthemopsis alpina 1 0.3 

Minuartia sp. 23 6.3 

Oxyria digyna 1 0.3 

Poaceae sp. 75 20.5 

Potentilla sp. 1 0.3 

Salix cf. herbacea 103 28.1 

Saxifraga oppositifolia 10 2.7 

Sibbaldia procumbens 1 0.3 

Silene acaulis 27 7.4 

Taraxacum cf. alpinum 2 0.5 

cf. Vaccinium uliginosum 1 0.3 

TOT 366 100.0 

Wedge sample (F) 

Family/Genus/Species 
N° 

(seeds/fruits/leaves) 

Frequency 

(%) 

cf. Artemisia 1 5.9 

Carex myosuroides 1 5.9 

Cerastium sp. 1 5.9 

Juncus sp. 1 5.9 

Poaceae indet. 8 47.1 

Primulaceae 1 5.9 

Selaginella selaginoides 1 5.9 

Silene acaulis 1 5.9 

Taraxacum cf. alpinum 1 5.9 

cf. Vaccinium uliginosum 1 5.9 

TOT 17 100.0 
 846 
Table 1. Results of the carpology investigation: identified plant taxa within soil samples collected from the Umbric 847 
horizons in the soil profiles and from the soil-filled rock wedge. 848 
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 849 
 850 
 851 
 852 

Lab. Code Sample ID 
TOC  

(g/kg)* 
Type 

Radiocarbon Age (yr 
BP) 

     Cal. Radiocarbon Age (yrs cal. 

BP) (confidence level 2) 
Phase 

LTL19173A P1-1 19.0 Soil 7798 ± 75 8782-8412 (92.1%) HCO 

LTL19174A P1-2 10.8 Soil 4918 ± 45 5735-5589 (95.4%) HCO 

LTL19175A P2-7 20.5 Soil 5639 ± 45 6506-6306 (95.4%) HCO 

LTL19172A P2-8 11.0 Soil 7608 ± 75 8561-8300 (92.1%) HCO 

LTL19176A P2-9 11.3 Soil 14203 ± 100 17584-16985 (95.4%) ELID  

LTL19542A P2-9bis 12.5 Soil 14745 ± 70 18148-17719 (95.4%) ELID  

LTL19169A P3-2 8.7 Soil 15463 ± 100 18921-18518 (95.4%) ELID 

LTL19543A P3-3 10.6 Soil 17978 ± 120 22145-21427 (95.4%) LGM/ELID 

LTL19170A P3-5  11.8 Soil 11345 ± 65 13306-13076 (95.4%) BA 

LTL19871A  P4 13.8 Soil 3820 ± 45  4360-4090 (88.5%) HCO-NG 

LTL19865A A  - Plant - After 1950 AD M 

LTL19866A B  - Plant - After 1950 AD M 

LTL19867A C  - Plant - After 1950 AD M 

LTL19868A D  - Plant - After 1950 AD M 

LTL19869A E  - Plant - After 1950 AD M 

LTL19870A F  - Plant 1789 ± 45  1824-1594 (94.0%) RWP 
 853 
 854 
Table 2. Radiocarbon 14C dating results of soil samples and plant fragments. HCO: Holocene Climatic Optimum; ELID: Early Lateglacial Ice Decay; BA: Bølling-855 
Allerød; NG: Neoglacial; M: Modern; RWP: Roman Warm Period. *Total Organic Carbon (TOC) values derived from Pintaldi et al. (2021). 856 
 857 
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Site 
Elevation 
(m a.s.l.) 

Cover type 
δ13C 
(‰) 

S1 2840 Vegetation -23.3 

S2 2800 Vegetation -25.1 

S3 2770 Vegetation -25.7 

S6 2854 Vegetation -23.4 

S8 2749 Vegetation -23.4 

P4 3030 Vegetation -22.7 

P1-1 3030 Blockstream/Blockfield -24.7 

P1-2 3030 Blockstream/Blockfield -23.9 

P2-7 3030 Blockstream/Blockfield -24.2 

P2-8 3030 Blockstream/Blockfield -23.9 

P2-9 3030 Blockstream/Blockfield -24.5 

P2-9bis 3030 Blockstream/Blockfield -24.5 

P2-13 3030 Blockstream/Blockfield -24.0 

P2-15 3030 Blockstream/Blockfield -24.3 

P3-1 3030 Blockstream/Blockfield -24.6 

P3-2 3030 Blockstream/Blockfield -23.8 

P3-3 3030 Blockstream/Blockfield -23.5 

P3-4 3030 Blockstream/Blockfield -24.0 

P3-5 3030 Blockstream/Blockfield -23.6 
 858 
Table 3. IRMS δ13C results of present-day vegetated soils in the study area and soils from the Plateau under blockstream/blockfield. 859 


