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A B S T R A C T

The soil microbiome is linked to the microbial ecosystem of aboveground plant tissues and it is able to modulate
and stimulate plant responses. The community composition, i.e. diversity and abundance, is influenced by
several factors such as agronomical practices, agrochemical practices and geographical location. For the first
time, we present here the investigation of the microbial community related to the soil of a long-established
cultivated vineyard using the meta-barcoding approach. Specifically, we analyzed the bacterial and fungal
communities of the bulk soils associated with esca-symptomatic and asymptomatic vines. Results showed no
significant differences in richness between the two types of samples. Conversely, we observed that esca-related
pathogens and grapevine trunk disease (GTD) pathogens were more abundant in the bulk soils of symptomatic
plants, suggesting that the soil could represent an important source of inoculum. We also identified two fungal
genera, Curvularia and Coprinopsis, which are exclusive to the soil associated with asymptomatic plants.
Moreover, Actinobacteria, a well-known group of bacteria symbionts, are over-represented in asymptomatic
soils. Further studies are needed to expand the knowledge about these microorganisms, since they could have a
role in controlling the development and/or spread of esca pathogens.

1. Introduction

Worldwide, the decline of vineyards associated with esca syndrome
and grapevine trunk diseases (GTDs) is becoming an issue of increasing
concern for viticulture, leading to economic losses and threatening the
final product quality (Scheck et al., 1998; Mugnai et al., 1999; Bertsch
et al., 2009). Esca is a chronic and complex wood disease in which
multiple pathogens simultaneously or sequentially colonize plant tis-
sues (Bertsch et al., 2013), causing mild to severe symptoms. One of the
best-known symptoms is tiger-striped leaves (Viala, 1926), in which
interveinal discoloration and scorching of leaves is observed. This
symptom was initially described as the lighter form of esca and there-
fore as the chronic form (Surico, 2009), which is thought to be due to
both the activity of phytotoxic metabolite secreted by the invading
fungi and by the degrading activity of fungal enzymes (Mugnai et al.,
1999; Andolfi et al., 2011). The most severe symptom is apoplexy, in
which the diseased plants display a sudden wilting, the dieback of one
or more shoots accompanied by leaf drop and the withering of fruit
clusters, followed by plant death (Mugnai et al., 1999). A number of
fungal species are associated with esca syndrome, but two tracheomy-
cotic fungi, both belonging to the Ascomycota phylum, are considered

to be essential for syndrome development: Phaeomoniella chlamydospora
(Phaeomoniellales: Phaeomoniellaceae) and Phaeoacremonium minimum
(Diaporthales: Togniniaceae) (Crous et al., 1996; Crous and Gams, 2000;
Fischer, 2006; Kuntzmann et al., 2010). In addition, the white rot
fungus Fomitiporia mediterranea (belonging to the Basidiomycota
phylum) and Botryosphaeriaceae species, e.g. Neofusicoccum parvum,
seem to play an important role in chronic wood disease development
(Cloete et al., 2014; Abou-Mansour et al., 2015).

Several multidisciplinary studies were performed to understand
both fungal and plant behaviours during syndrome development. In
more detail, the best studied fungus to date is P. minimum, for which it
is well known to produce several phytotoxic secondary metabolites
(Bruno and Sparapano, 2006a, 2006b); in addition, it is able to secrete
cell-wall-degrading enzymes (Valtaud et al., 2009). Despite the generic
description of the pathogen, significant differences in virulence were
reported among the different P. minimum isolates studied, suggesting
the possibility of a plastic genome (Tegli et al., 2000) and an efficient
heterothallic reproductive system (Rooney-Latham et al., 2005).
Moreover, a recent study investigated the genome plasticity of different
fungal isolates through the use of high throughput sequencing techni-
ques, revealing the presence of genomic structural variation that
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impacted blocks of genes involved in virulence and secondary meta-
bolism (Massonnet et al., 2018). On the plant side, some more details
are known, especially about the physiological changes occurring during
the pathogenesis, which represent complex and diverse responses in
different plant organs, such as berries, leaves and stems (Fontaine et al.,
2016). Berries are not only affected by significant decreases in catechin,
epicatechin, anthocyanins, and sugar, but also by an increase of tartaric
acid, malic acid, and mineral levels (Calzarano et al., 2008; Lorrain
et al., 2012), leading to decreased product quality. In leaves, besides the
evident symptoms, foliar physiology has been reported to be strongly
affected by both stomatal closure and alteration of the photosynthetic
apparatus, leading to: 1) reduced total chlorophyll content, 2) de-
creased CO2 assimilation and 3) reduced Photosystem II quantum yield
(Petit et al., 2006; Magnin-Robert et al., 2011). Moreover, looking at
the general physiological state of the plant, water transport was also
impaired due to xylem dysfunction, which leads to a dramatic loss of
water transport, that in turn causes a considerable decline of leaf gas
exchange and water use efficiency (Edwards et al., 2007a, 2007b;
Pouzoulet et al., 2014). Furthermore, despite an accumulation of anti-
microbial compound in leaves of symptomatic plants, it was recently
demonstrated that phytoalexins are not involved in pathogens inhibi-
tion under natural conditions (Calzarano et al., 2018).

Due to the complexity of esca syndrome, over the last few years
efforts have been made to decipher the molecular mechanisms involved
in the pathogenesis, with the advent of modern molecular techniques,
such as gene expression analysis and transcriptomics (Camps et al.,
2010; Czemmel et al., 2015). To the best of our knowledge, only one
study has looked deeply at grapevine trunk pathogens (GTPs) by means
of a wider point of view, demonstrating the possibility to study the
community of associated microorganisms and the plant responses using
a new bioinformatics pipeline for the analysis of metatranscriptomics
data (Morales-Cruz et al., 2018). On the other hand, despite the recent
interest in meta-omics sciences, the decreasing cost of high-throughput
sequencing services, and the increase of new user-friendly computa-
tional methodologies, little is known about the microbial community

Fig. 1. Relative abundances of bacterial orders (a) and genera (b) in bulk soils of asymptomatic and symptomatic vines detected in each of the biological replicate.
Only orders or genera representing at least the 1% over the total number of classified amplicons were retained.

Table 1
Average abundances of bacterial orders calculated for Asymptomatic and
Symptomatic bulk soils samples. Student t-test were conducted to evaluate
differences between the two groups.

Asymptomatic Symptomatic

Percentage SD Percentage SD

Order
Acidimicrobiales 2.90 ± 0.65 2.72 ± 0.08
Acidobacteriales 3.86 ± 0.71 2.23 ± 0.29 ∗

Alteromonadales 2.27 ± 0.41 2.67 ± 0.51
Bacillales 1.17 ± 0.21 2.62 ± 0.51 ∗

Burkholderiales 10.46 ± 0.95 12.54 ± 0.49
Caulobacterales 1.29 ± 0.24 0.94 ± 0.16
Chitinophagales 2.74 ± 0.21 2.58 ± 0.65
Chthoniobacterales 2.43 ± 0.80 4.64 ± 0.91
Cytophagales 3.91 ± 0.56 3.52 ± 0.82
Flavobacteriales 1.06 ± 0.48 1.31 ± 0.22
Gaiellales 3.06 ± 0.26 2.72 ± 0.52
Gemmatimonadales 1.32 ± 0.33 0.91 ± 0.17
Micrococcales 1.02 ± 0.18 1.14 ± 0.02
Micromonosporales 2.35 ± 0.12 1.02 ± 0.15 ∗∗

Myxococcales 13.70 ± 0.91 13.34 ± 0.96
Nevskiales 2.80 ± 0.60 2.27 ± 0.21
Nitrosomonadales 0.98 ± 0.18 1.29 ± 0.32
Planctomycetales 7.20 ± 0.84 5.72 ± 0.64
Propionibacteriales 1.50 ± 0.28 0.93 ± 0.10 ∗

Pseudomonadales 1.29 ± 0.40 2.29 ± 0.33 ∗

Pseudonocardiales 1.23 ± 0.47 0.76 ± 0.27
Rhizobiales 10.67 ± 0.44 11.82 ± 0.78 ∗

Rhodospirillales 3.54 ± 0.18 3.25 ± 0.58
Solibacterales 1.65 ± 0.19 1.08 ± 0.07 ∗

Solirubrobacterales 1.94 ± 0.29 1.16 ± 0.25
Sphingomonadales 2.82 ± 1.00 1.24 ± 0.12
Streptomycetales 1.42 ± 0.11 0.81 ± 0.12 ∗∗

Verrucomicrobiales 7.57 ± 1.01 10.47 ± 0.45
Xanthomonadales 1.85 ± 0.22 2.04 ± 0.55

∗p < 0.05.
∗∗p < 0.01.
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associated with symptomatic or asymptomatic plants. To date, little is
documented that describes the microbiome in grape plants with esca
symptoms using high throughput sequencing. For example, the bac-
terial communities in symptomatic plants have been observed and the
results about the potential role(s) of bacterial species in disease de-
velopment were not as informative as expected (Bruez et al., 2015).
New information needs to be unearthed within the scope of the holo-
biont concept (Martins et al., 2013; Vandenkoornhuyse et al., 2015;
Perrone et al., 2017); it has been shown that grapevine growth and
survival are significantly impacted by the associated microflora
(Compant et al., 2011). In addition, grape associated microorganisms
are able to influence plant physiological responses, which in turn is
believed to impact the organoleptic properties of wine, contributing to
what is known as the terroir (Verginer et al., 2010; Bokulich et al.,
2014).

Soil microbial communities have a crucial role in nutrient recycling,
soil fertility, and carbon sequestration (Fierer, 2017). They are able to
greatly influence the productivity of agricultural systems forming
complex and dynamic associations, which can range from mutualistic to
commensal to pathogenic (Newton et al., 2010), and for these reasons
they are also referred to as the second genome of plants (Berendsen
et al., 2012). The impact that soil microbial communities can have on
plant health is evident in disease-suppressive soils. Pathogens grow
saprophytically in soils to reach the host plant and infect its tissues;
prior to reaching the plant, pathogens must interact with the rhizo-
sphere-associated microbial community, which can suppress the ability
of pathogens to invade plant tissues (Schroth and Hancock, 1982). The
ability of the suppressive soils is related to the microbial composition,

and it is enhanced by agricultural practices that promote microbial
diversity in soils (Cook, 2014), but in some cases can depend upon a
single microorganism. Specifically, it was recently reported that a single
soil bacterial species is able to suppress a tomato fungal pathogen, and
if transplanted to susceptible plants, it can suppress disease symptoms
(Kwak et al., 2018). For these reasons, it is important to investigate the
microbial community and decipher relationships occurring between
microorganisms and the grape rhizosphere, which could help to define
the best agronomical strategies on the topic of a sustainable viticulture.

In the present study, we characterized the bacterial and fungal
communities associated with the bulk soils of a long-established culti-
vated vineyard in the Veneto region. We used the amplicon sequencing
technique applied on variable regions of the 16 S ribosomal RNA
(rRNA) gene for bacteria and the internal transcribed spacer (ITS) of
rRNA polycistronic gene of fungi. The vineyard was selected because it
was subjected to a high percentage of esca-symptomatic vines (more
than 50% of plants displaying the tiger stripe symptoms), and because
plants were singularly monitored for several years. We present here, for
the first time, the comparisons of microorganism community compo-
sitions associated with bulk soils of symptomatic and asymptomatic
vines in the same vineyard.

2. Material and methods

2.1. Vineyard location and sampling

Our study was conducted in the experimental vineyard of the CREA
- Research Centre for Viticulture and Enology in Spresiano (TV) in
Veneto region, Italy. The elevation is 56m a.s.l, and the area is char-
acterized by a warm temperature climate as reported in the Köppen and
Geiger climate zones (http://koeppen-geiger.vu-wien.ac.at/alps.htm).
The region is one of the most intensive wine producing areas of
northern Italy (90000 ha of vineyard) and decline associated to esca
syndrome generally appears ten to twelve years after planting (Manici
et al., 2017). Plant replacement is the most applied control system and
is thought to be the best agronomical practice to limit the spread of
diseases (Bruno and Sparapano, 2007; Ogawa, 2016). Soil was sandy-
loamy, with 8.2 pH, 0.18% total nitrogen, and 67 and 177mg/kg ex-
changeable phosphorous and potassium, respectively with a soil carbon
content ranging from 1.2 to 2.4%.

Bulk soil samples were collected in mid-September 2017 at a depth
of 30–40 cm under canopy of adult vines (cultivar Glera, grafted on
Selection Oppenheim 4 – SO4 rootstock) asymptomatic for ESCA syn-
drome or displaying tiger striped leaves (considered as symptomatic).
Plants were selected based on the sanitary data monitored in the last
four vegetative seasons, selecting continuous asymptomatic plants and
vines displaying symptoms at the collection date and more than once
over the monitoring period. To avoid differences in soil composition,
plants were chosen in couple, one symptomatic and one asymptomatic,
close to each other (adjacent or in front). Soil samples surrounding the
roots of 9 plants for each condition (500 g for each sampling point)
were taken and mixed to obtain a homogeneous sample of about 4.5 kg
(bulk soil of asymptomatic plants=As, bulk soil of symptomatic
plants= Sy). Three subsamples of 200 g for each were randomly se-
lected and stored at −80 °C in sterile 50 ml tubes until processing.

2.2. DNA isolation and sequencing

Total nucleic acid were obtained from 1 g of soil following a pre-
vious reported protocol (Angel, 2012). DNA was then cleaned using the
commercial kit E.Z.N.A. Soil DNA Kit (Omega Bio-tek, Norcross, GA,
USA) according to manufacturer's protocols yielding 3–5 μg of DNA per
extraction quantified using a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific). DNA integrity was evaluated by electro-
phoresis on a 1% agarose gel in 1x TAE buffer (40mM Tris-HCl, 20mM
acetic acid, 1 mM EDTA, pH 7.5) stained with Red Safe Nucleic Acid

Table 2
Average abundances of bacterial genera calculated for Asymptomatic and
Symptomatic bulk soils samples. Student t-test were conducted to evaluate
differences between the two groups.

Asymptomatic Symptomatic

Percentage SD Percentage SD

GENUS
Acidobacterium 2.99 ± 0.93 1.36 ± 0.31 *
Azospirillum 2.06 ± 0.26 2.16 ± 0.70
Bacillus 1.04 ± 0.40 4.15 ± 1.94 *
Bradyrhizobium 1.65 ± 1.31 1.99 ± 0.95
Candidatus Solibacter 2.60 ± 0.56 1.74 ± 0.42
Chryseolinea 2.59 ± 0.64 2.71 ± 0.59
Chthoniobacter 2.14 ± 0.64 5.02 ± 0.94 *
Flavobacterium 2.25 ± 0.92 3.06 ± 0.72
Gaiella 7.47 ± 0.33 6.18 ± 1.38
Gemmata 3.55 ± 1.13 2.26 ± 0.40
Hyphomicrobium 2.15 ± 0.40 2.99 ± 0.57
Ilumatobacter 2.10 ± 1.03 2.10 ± 0.25
Lysobacter 2.95 ± 0.15 2.84 ± 0.86
Mesorhizobium 1.25 ± 0.29 1.81 ± 0.82
Niastella 1.25 ± 0.95 1.84 ± 0.61
Nitrospira 2.64 ± 1.03 1.80 ± 0.81 *
Nocardioides 2.91 ± 0.73 1.29 ± 0.15 *
Ohtaekwangia 3.55 ± 1.11 2.94 ± 0.52
Pedomicrobium 3.51 ± 1.02 4.98 ± 0.72
Pedosphaera 4.65 ± 0.82 7.33 ± 0.46 *
Pseudomonas 2.80 ± 1.26 4.51 ± 0.96
Solirubrobacter 3.42 ± 0.73 1.88 ± 0.71
Sphingomonas 6.19 ± 2.44 1.87 ± 0.37 *
Stenotrophobacter 2.21 ± 0.81 0.87 ± 0.31
Steroidobacter 5.11 ± 0.37 3.72 ± 0.54 *
Streptomyces 2.82 ± 0.28 1.62 ± 0.18 ∗∗

Terrimicrobium 2.67 ± 1.24 4.19 ± 0.83
Terrimonas 1.94 ± 0.53 1.87 ± 0.27
Thiobacter 7.07 ± 0.12 11.37 ± 1.20 ∗

Variovorax 3.28 ± 1.15 2.47 ± 0.25
Vicinamibacter 7.20 ± 0.48 5.09 ± 0.75

*p < 0.05.
**p < 0.01.
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Staining Solution (Labotaq, Sevilla, Spain) and then visualized under
UV light. Three biological replicates for each condition were obtained
and used as independent samples.

Illumina tag screening of the V3eV4 hypervariable regions of the
16 S rRNA gene was performed on the DNA by Macrogen Inc. (South
Korea), using primers 341f and 785r to build the bacterial amplicon
libraries (Kuczynski et al., 2012). The primer ITS3-ITS4 were used to
amplify the highly variable spacers ITS2 of the rDNA fungal operon
(Lindahl et al., 2013) by Macrogen, Inc. (South Korea). Sequencing of
both bacterial and fungal libraries were done with the MiSeq Illumina
apparatus.

2.3. Metaphylogenomic analyses, taxonomic distributions and statistical
analyses

The obtained raw data were first subjected to strict quality control
with PrinSeq v0.20.4 (Schmieder and Edwards, 2011) and then pro-
cessed in Qiime 2 (Caporaso et al., 2010). For fungi, cleaned reads were
then subjected to accurately trim using the hidden Markov models
(HMMs), implemented in ITSxpress (Rivers et al., 2018), created for
fungi and 17 other groups of eukaryotes to identify the start and stop
sites for the ITS region. Briefly, the software allows to distinguish true
sequences from sequencing errors (quite frequent in the amplicon se-
quencing technique), then sequences are clustered into operational
taxonomy units (OTU's) by sorting reads by abundance and then clus-
tered in a greedy fashion at 97% percent identity. Trimmed sequences

are then analyzed with DADA2 (Callahan et al., 2016), which models
and corrects Illumina-sequenced amplicon errors. Sequence variants are
then taxonomically classified through the UNITE database (we selected
the reference database built on a dynamic use of clustering thresholds)
(Abarenkov et al., 2010).

For bacteria, DADA2 was used for quality filtering, chimera re-
moval, error-correction and sequence variant calling with reads trun-
cated at 260 bp, resulting to a quality score above 20. Obtained feature
sequences were summarized and annotated using the RDP classifier
(Cole et al., 2013) trained to the full length 16 S database retrieved
from the curated NCBI database.

To statistically test differences in the relative abundances of mi-
crobial taxa (family for bacteria or genera for fungi) the DESeq2 R
package was used (McMurdie and Holmes, 2014). Non-parametric
multivariate analysis (PERMANOVA) and non-metric multidimensional
scaling (NMDS) was calculated among both the fungal and bacterial
diversity in As and Sy bulk soils communities using PAST (Hammer
et al., 2001).

3. Results

3.1. Sequencing information

Raw reads obtained from the MiSeq apparatus were cleaned from
adaptor and quality filtered using a Macrogen Inc. in-house script based
on the Illumina conversion software package bcl2fastq v1.8.4. After the

Fig. 2. Relative average abundances of fungal orders in bulk soils of asymptomatic (a) and symptomatic (b) vines. The top 10 representative orders for each condition
were retained.
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reads were cleaned, sequences ranged from 290 to 302 bp. The total
number of reads per sample for 16 S sequencing were 96291, 82003,
90187, and 85294, for bulk soil of As samples; and 74420 and 74812
for bulk soil of Sy samples. The total number of reads per sample for ITS
sequencing were 81638, 82526, and 84833 for bulk soil of As and
86297, 82921, 88227 for bulk soil of Sy. A further summary of se-
quencing data is reported in Table S1. The species accumulation curve
tended to saturation when increasing the number of samples, indicating
that sequencing depth was sufficient (Fig. S1).

3.2. Bacterial community diversity and composition

The bacterial community was first analyzed at the order level; we
retained only orders with a comprehensive relative abundance above
1%. For As samples, 47794, 41438, and 45383 amplicons were taken,
and 43593, 37405, and 37794 amplicons were taken for Sy samples.
Order Myxococcales is the most abundant order in both As and Sy
samples, followed by Rhizobiales, Burkholderiales, Verrucomicrobiales
and Planctomycetales, which, when taken all together, account for
about 50% of identified amplicons (Fig. 1a). Statistical analysis re-
vealed that Rhizobiales, Pseudomonadales, and Bacillales are more
abundant in Sy samples than in As samples. Conversely, orders Acid-
obacteriales, Micromonosporales, Solirubrobacterales, Propionibacter-
iales, and Streptomycetales are more abundant in As samples than in Sy
samples (Table 1).

Bacterial genera were then analyzed, retaining only the ones with a
comprehensive relative abundance above a fixed cut-off of 1%; for As
samples, 32101, 28016, and 31332 amplicons were retained after fil-
tering; for Sy samples, 28466, 24910, and 24939 amplicons were re-
tained after filtering. At the genera level, bacteria accounting for at
least 50% of the identified amplicons were different in As and Sy
samples. Specifically, bulk soil data showed the presence of three
genera (Gaiella, Vicinamibacter and Thiobacter), each representing about
the 7% of amplicons, followed by Sphingomonas, Steroidobacter,
Pedosphaera, Gemmata, Ohtaekwangia, Pedomicrobium, and

Solirubrobacter. The ten genera mentioned above, taken all together,
represent about 50% of the identified amplicons (Fig. 1b). Data ob-
tained from Sy samples revealed Thiobacter as the most abundant
genera (accounting for an average of more than 11% of reads), followed
by Pedosphaera. Gaiella, Vicinamibacter, Chthoniobacter, Pedomicrobium,
Pseudomonas, Terrimicrobium, and Bacillus all together accounted for at
least the 50% of identified amplicons. Analysis of abundances in the
two groups showed that Sphingomonas, Steroidobacter, Acidobacterium,
Nocardioides, Streptomyces and Nitrospira genera were more abundant in
As samples. However, Thiobacter, Pedosphaera and Chthoniobacter
genera were more abundant in Sy samples (Table 2).

3.3. Fungal community diversity and composition

To analyze the fungal community diversity, we first focused on the
abundances at the order level to determine whether any diversity was
detectable. Orders with a comprehensive abundance of at least 1% (in
both As or Sy samples) were retained; to perform the comparative
analysis (after filtering) for As samples, 69909, 67758, and 72760 reads
were taken into account; for Sy samples, 77648, 68294, and 70181
reads were taken into account. Data showed that, in both Sy and As
samples, Botryosphaeriales is the most abundant order, followed by
Togniniales and Pleosporales, together representing more than the 90%
of identified reads (Fig. 2a and b). When we compared the two condi-
tions, we observed a slight diversity in abundances; as reported in
Table 3, Botryosphaeriales is a significantly more abundant order in As
samples with respect to Sy samples. Conversely, Togniniales and
Pleosporales display an inverted pattern, being more abundant in Sy
samples than in As samples. Moreover, Phaeomoniellales and Capno-
diales also occurred more in Sy samples than in As samples. Interest-
ingly, the Agaricales order accounted for about 5% of amplicons in As
samples, but it was detected in only 0.15% of Sy samples.

For the genera level, we selected the top 10 representatives for each
condition: for As, 60178, 62565 and 67141, amplicons were retained
after filtering, and, for Sy, 73192, 65729 and 65712 amplicons were
retained after filtering. Data reported in Fig. 3a and b mirrored what
was observed in the analysis of order abundances; Neofusicoccum, a
genera belonging to the Botryosphaeriales order, is the most abundant
in both As and Sy samples, followed by Phaeoacremonium (order Tog-
niniales) and Camarosporium (order Pleosporales), which all together
represented more than the 90% of identified amplicons. Similarly, the
relative genera abundances (Table 3) are mirrors of those of the orders:
Neofusicoccum is more abundant in As samples than in Sy samples, and
Phaeoacremonium and Camarosporium are more abundant in Sy samples
than in As samples. Notably, Phaeomoniella significantly accumulated in
Sy samples at a rate more than 6 times that of As samples. In addition,
the Cladosporium genera accumulate at higher level in Sy samples with
respect to As samples. Moreover, two genera are exclusive to As sam-
ples: Curvularia (order Pleosporales), accounting for about 1.26%, and
Coprinopsis (order Agaricales), accounting for 0.3% of identified am-
plicons.

3.4. Community structure

Community structure is represented by two factor: the diversity and
the complexity of taxa present in each condition. Diversity indices
(Chao, Shannon, Simpson and Fisher), representing species richness and
evenness, were calculated for both bacterial and fungi in As or Sy bulk
soil (Table 4). No significant differences were detected between bulk
soil of esca-symptomatic and asymptomatic vine-related samples. Re-
sults indicate that the fungal and bacterial community was not affected
in composition, as also attested to by the permutational multivariate
analysis of variance (PERMANOVA) for the fungal communities
(F= 4.06 and p= 0.094) and bacterial communities (F= 6.42 and
p=0.091).

To better understand differences occurring between the microbial

Table 3
Average abundances of fungal orders and genera calculated for Asymptomatic
and Symptomatic bulk soils samples. Student t-test were conducted to evaluate
differences between the two groups.

Asymptomatic Symptomatic

Percentage SD Percentage SD

Order
Botryosphaeriales 46.51 ± 2.20 39.26 ± 2.42 ∗

Togniniales 24.81 ± 1.35 31.76 ± 1.14 ∗

Pleosporales 20.77 ± 0.95 23.10 ± 0.69 ∗

Hypocreales 2.05 ± 0.52 2.79 ± 1.77
Phaeomoniellales 0.28 ± 0.03 1.95 ± 0.72 ∗

Capnodiales 0.50 ± 0.02 0.99 ± 0.09 ∗∗

Agaricales 5.07 ± 2.58 0.15 ± 0.11 ∗

Genus
Neofusicoccum 51.27 ± 0.37 41.46 ± 1.25 ∗∗

Phaeoacremonium 25.54 ± 0.52 33.91 ± 1.97 ∗∗

Camarosporium 16.44 ± 2.25 18.02 ± 1.62 ∗

Arxiella 1.70 ± 1.27 0.12 ± 0.14
Alternaria 1.15 ± 0.90 0.92 ± 0.26
Fusarium 0.92 ± 0.10 1.16 ± 1.11
Cladosporium 0.46 ± 0.05 0.82 ± 0.03 ∗∗

Paraconiothyrium 0.32 ± 0.05 0.40 ± 0.04
Phaeomoniella 0.30 ± 0.04 2.02 ± 0.75 ∗

Mortierella 0.27 ± 0.11 0.69 ± 0.38
Pithomyces 0.07 ± 0.05 0.48 ± 0.66
Curvularia 1.26 ± 1.20 0.00 ± 0.00 ∗∗∗

Coprinopsis 0.30 ± 0.23 0.00 ± 0.00 ∗∗∗

*p < 0.05.
**p < 0.01.
***p < 0.001.
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communities of the two conditions tested, we analyzed some general
features related to each of the community structures. First, we de-
termined the exclusive orders or genera in both the fungal and bacterial
community using Venn diagrams (Fig. 4). After such analysis for the
fungal community, we detected 40 orders: 4 exclusive to the As sam-
ples, 9 exclusive to the Sy soils and 27 shared between the two condi-
tions. Focusing on the 102 bacterial orders identified, diagram showed

that 4 of them were exclusive to As samples, 9 were exclusive to Sy
samples, and 89 were shared between the two conditions. Repeating the
same analysis at genera level, we obtained 22 fungal genera and 59
bacterial genera exclusive to the asymptomatic samples, 28 fungal
genera and 66 bacterial genera detected only in symptomatic-related
bulk soil samples, and 57 fungal genera and 237 bacterial genera shared
among all the samples. Taken together, among the samples analyzed,

Fig. 3. Relative average abundances of fungal genera in bulk soils of asymptomatic (a) and symptomatic (b) vines. The top 10 representative genera for each
condition were retained.

Table 4
Richness estimators and diversity indices for fungal (ITS) and bacterial (16 S) communities sampled in the bulk soil of ESCA asymptomatic (As) and ESCA symp-
tomatic (Sy) vines. Statistical Student's t-test (p < 0.05) was conducted to detect significant differences.

Sample Chao Shannon Simpson Fisher

Value SD p Value SD p Value SD p Value SD p

As_ITS 77.92 ± 1.91 0.16 1.72 ± 0.11 0.38 0.75 ± 0.02 0.35 8.45 ± 0.19 0.12
Sy_ITS 82.08 ± 2.55 1.80 ± 0.15 0.77 ± 0.03 8.99 ± 0.31
As_16 S 139.28 ± 4.50 0.71 2.53 ± 0.03 0.08 0.69 ± 0.01 0.16 16.08 ± 0.47 0.28
Sy_16 S 140.75 ± 1.56 2.46 ± 0.01 0.68 ± 0.00 16.79 ± 0.38
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107 and 362 genera were detected for fungal and bacterial commu-
nities, respectively.

In addition, after the bioinformatics classification of amplicons of
both the 16 S and ITS regions were considered, we summarized and
reduced the dataset of each biological replicate to a bi-dimensional
scaling using a Bray-Curtis distance matrix and plotting the results in
corresponding non-metric multidimensional scaling (NMDS). As re-
ported in Fig. 5, for each community analyzed, the three biological
replicates for each condition tended to cluster together, similarly for
fungal, bacterial or the general microbial communities.

4. Discussion

The aims of our work were to investigate the microbial community
associated with the bulk soil of esca-symptomatic and asymptomatic
vines, focusing on the richness and abundance of esca-related patho-
gens as well as the community structure of both the conditions tested.
We started from a vineyard where ≈20-year-old grapevine plants of cv.
Glera were cultivated. Here, plants were visually monitored in-
dividually over a four-year period to check their sanitary status.
Interestingly, in our work, the diversity and richness of the two con-
ditions (As and Sy) in the soil samples did not differ one from each other
(Table 1). This is possibly because, as already stated in another work,
the major components shaping the soil microbial composition are re-
lated to environmental factors such as soil physio-chemical composi-
tion, climate, cropping practices, geographical area and grapevine
cultivars present (Berendsen et al., 2012; Manici et al., 2017). In ad-
dition, as recently reported, the plant microbiome compositions (en-
dophytes in particular) are often similar to those found in the associated
soil and play key roles in influencing growth and sanitary status and
consequently ensuring the balance in plant ecosystems
(Vandenkoornhuyse et al., 2015). The complexity of grapevine micro-
biomes is still under scrutiny and is not fully understood; the plant-
microbial interactions and the possibility of shaping the soil micro-
biome in response to several biotic and/or abiotic stimuli are assertions
challenging the scientific community. To add a further level of com-
plexity, in a vineyard, the agricultural practices are many and diverse
during the seasons, influencing soil characteristics, with effects on the
grapevine root system, which in turn impacts microbial community

assemblages (Vega-Avila et al., 2015; Marasco et al., 2018). Accord-
ingly, it is important to study the microbial community and determine if
any connection between the sanitary status of vines and the associated
soil microbiome exists, particularly in an economically important dis-
ease syndrome such as esca, where several pathogens act together to
influence the entire microbial community that seems to have crucial
roles in syndrome development (Elena et al., 2018).

It is well known that bacteria form complex associations with
plants, which range from mutualistic to pathogenic, thus playing crucial
roles in plant health status (Kogel et al., 2006; Newton et al., 2010).
They can also trigger direct or indirect responses, activating defense
mechanisms or producing metabolites against pathogens (Compant
et al., 2010; Bhattacharyya and Jha, 2012). In addition, the community
composition of soil acts as the microbial reservoir, able to drive the
composition of the microbial community associated with the above-
ground organs and influencing in this way the terroir of the vineyard
(Zarraonaindia et al., 2015). To the best of our knowledge, only one
work has taken into account the bacterial community associated with
wood tissues of esca-symptomatic vines, highlighting some difference
when compared to the asymptomatic ones (Bruez et al., 2015). Inter-
estingly, we found that Bacillales order, and hence the Bacillus genus, is
more abundant in the bulk soil of symptomatic plants, accordingly to
what was observed by Bruez et al. in their work focusing on the above
ground tissues. To date, the Bacillus genus hosts several species that are
known for their ability to inhibit plant fungal pathogens (Kai et al.,
2007; Chen et al., 2008; Ongena and Jacques, 2008), to promote plant
growth (Idriss et al., 2002), or to induce systemic resistance
(Choudhary and Johri, 2009).

Conversely, the Streptomyces genus, belonging to the Actinobacteria
phylum, was over-represented in the bulk soil of our asymptomatic
plants. Similarly to the Bacillus genera, the Actinobacteria are known
for their antagonistic activity, inducing the activation of plant defense
pathways (Conn et al., 2008), or suppressing diseases and inducing
plant growth (Palaniyandi et al., 2013). Aside from this, it is still un-
clear how these last two genera accumulate preferentially in the bulk
soil of symptomatic or asymptomatic plants (or in plant tissues), and
how this can affect the microbial community composition. In addition,
we speculate that the isolation and characterization of Streptomyces
genera surrounding the asymptomatic plants could result in interesting

Fig. 4. Venn-diagram illustrating the overall community composition, with number of exclusive and shared orders and genera detected in both fungi and bacteria
communities.
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Fig. 5. NMDS algorithm based on Bray-Curtis distances matrixes were used to reduce into a bi-dimensional scaling data obtained for bacteria (a), fungi (b) and the
overall microbial community (c).
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potential prospects to control esca, because of the already reported
ability of Actinobacteria to contain other grape pathogens such as Bo-
trytis cinerea (Loqman et al., 2009), and also to reduce the presence of
GTPs in soil (Álvarez-Pérez et al., 2017).

On one hand, grapevine trunk diseases (GTDs), such as esca, Petri,
or many others, are becoming a significant problem for grapevine
cultivation worldwide (Bertsch et al., 2013; Úrbez-Torres et al., 2013);
however, little is known about their molecular and biochemical fea-
tures, especially from the aspect of the microbial community compo-
sition. The complexity of GTDs is due to peculiar characteristics specific
to the latent infections, during which plants do not show symptoms for
years (Marchi, 2001; Savocchia et al., 2007). The exact moment at
which plants become infected is still under debate, but all the authors
agree to the fact that a wound is necessary for the pathogen to invade
plant tissues. For example, several studies infer that the pruning prac-
tices are the main cause of infection, since wounding represents the
preferential entry site (Mugnai et al., 1999; Rolshausen et al., 2010;
Mondello et al., 2018), which is probably linked to the production of a
gel rich in pectins as a plant reaction to cutting. The latter is a perfect
substrate for the development of fungi such as P. minimum and P.
chlamydospora (Sun et al., 2008). Another proposed entry site was re-
ported as grafting; grapevine rootstock mother plants and propagation
processes of grapevine plants were indicated as important sources of
inoculum for fungal trunk pathogens (Aroca et al., 2010; Gramaje and
Armengol, 2011).

Among routes of entry, a few authors proposed the possibility of the
soil as a source of inoculum, which could lead to new infections
(Whiteman et al., 2003; Giménez-Jaime et al., 2006). Specifically, it has
been demonstrated that P. minimum and P. chlamydospora were not
detectable in grafted plants until transplanting in open-field and growth
during summer (Giménez-Jaime et al., 2006). Specifically, the authors
showed that in the case of young vines during the summer season
without the presence of pruning or similar wounds, the pathogens are
somehow capable of invading plant tissues. Furthermore, in other
works, it was also demonstrated that pathogens can easily move from
soil to the upper plant tissues, because of several dispersal mechanisms,
including rain and wind (Madden, 1997; Bock et al., 2012). Coupling
this evidence with the finding of our work in which Neofusicoccum and
Phaeoacremonium are the two most abundant fungal genera, accounting
for Botryosphaeria canker and esca syndrome, respectively, we can
speculate that soil could represent a primary source of inoculum, at
least for these pathogens independent from entry site mechanisms.

An effective protocol to control the spread of GTPs still does not
exist and when plants become symptomatic, the most widespread
practice is single plant replacement (Bruno and Sparapano, 2007;
Becker and Oberhofer, 2009; Ogawa, 2016). If our work can represent a
supporting approach for viticulturists to counteract yield and quality
losses, it is also possible that the fungal communities associated with
soil and roots are not different before and after vine replacement
(Manici et al., 2017). To date, different scientific papers are reporting
an increasing trend of GTDs in the last decades, which are now reaching
worrying proportions in the main grape producing countries (Mugnai
et al., 1999; Larignon et al., 2009; Bertsch et al., 2013).

Integrating the observations that long-established grape-cultivated
soils overcome the ability of plants to shape the microbial community
associated with the rhizosphere with the data collected in our study, we
can speculate that replacing symptomatic plants can mitigate the eco-
nomic losses caused by GTDs, but the newly transplanted plants would
be surrounded by a bulk soil enriched in GTPs. Furthermore, it is worth
noting that GTPs are not obligate biotrophs, are not strictly associated
with the root system and are impossible to be eradicated with the
simple replacement of symptomatic plants. Specifically, if we look at
the comparison between the bulk soils related to symptomatic and
asymptomatic plants we observe, in Sy samples, an enrichment of
Phaeoacremonium and Phaeomoniella genera, known to be involved in
esca disease. Moreover, the reduction and/or disappearance of some

other genera, as for example Curvularia and Coprinopsis, could play a
role in the overall balance of the microbial community, by containing
the pathogenic genera (simply by competing with them) or stimulating
plants to respond to fungal infections. Especially in the case of
Curvularia, it has already been demonstrated that it can establish a
positive symbiotic relationship, as reported for Curvularia protuberata
and the host plant Dichanthelium languinosum (Marquez et al., 2007).
Some efforts have been already done to identify possible biological
agents able to induce resistance and/or tolerance against esca syndrome
(Mondello et al., 2018), but to date the soil microbial community has
not been analyzed. In light of our results, more information is needed to
elucidate the role of some bacterial and fungal genera in shaping the
microbial community and also to deepen the understanding of the in-
teractions occurring with the surrounding plants.

5. Conclusions

In conclusion, we reported here for the first time a comprehensive
evaluation of the soil microbiome in a long-established cultivated vi-
neyard affected by esca syndrome, highlighting the differences in the
abundance of fungal and bacterial communities in the soil surrounding
symptomatic and asymptomatic plants. Moreover, the observed results
suggest that soil can represent a reservoir of pathogens; hence, new
transplanted vines, taking place of the symptomatic ones in an infected
vineyard, could be exposed to a high source of pathogens. We suggest
that the establishing of a suppressive microbial community could re-
present a potential alternative protocol for disease restraint.
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