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Abstract: Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the
metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted
therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the
administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However,
also, if this drug combination is clinically relevant, the patient’s response is not yet optimal. In this
scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of
advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level
by overcoming biological barriers. Various nanomedicines have been proposed for the treatment
of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy,
researchers are focusing on the pharmaceutical development of nanoformulations for malignant
melanoma therapy. The present review reports an overview of the main melanoma-addressed
nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy.
Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for
melanoma are described.

Keywords: nanotechnology; nanoparticles; melanoma; Italy

1. Introduction

The clinical treatment of skin cancers, including cutaneous melanoma, has attracted
much research interest. Of note, cutaneous melanoma is a global health issue, being one of
the most aggressive cancers with a high rate of morbidity and mortality. Recent research of
Bray and colleagues, considering 185 countries, reports 324,635 new cases of melanoma
in 2020 [1].

Moreover, the results of epidemiological studies suggest that melanoma incidence
will increase in the near future [2]. The countries with the highest risk are Australia,
New Zealand, North America and Europe, together representing 85% of global incidence
per year.

It is well known that recently developed clinical practices, such as targeted therapy
and immunotherapy, have been approved by the Food and Drug Administration (FDA)
for the treatment of melanoma [3]. Targeted therapies exploit the use of drugs targeting
specific gene alterations that are able to block melanoma oncogenesis. Currently Rapidly
Accelerated Fibrosarcoma homolog B (BRAF) mutations represent the main drug target.
On the other hand, immunotherapies stimulate the response of a patient’s T cells.
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Despite these innovative therapeutic regimens, the clinical treatment of advanced or
metastatic melanoma is still challenging. In this scenario, nanomedicine is considered a
promising therapeutic strategy to improve the clinical outcomes.

This review aims at describing past and current attempts by Italian scientists to exploit
their expertise in the nanotechnology field for innovative and efficient therapies addressing
cutaneous melanoma. Within this concern, it should be pointed out that the originality of
the approach should merge with a high translational potential, in order to be considered
as a promising pharmacological therapy for clinical application. A brief overview of the
available clinical treatments of cutaneous melanoma will be also described.

1.1. Classification, Staging, Risk Factors, Associated Deaths

Despite being the third commonest skin cancer (after basal and squamous cell carci-
noma), malignant melanomas are responsible for 65% of associated deaths [4,5]. According
to their body distribution, melanomas are broadly classified as cutaneous and extracuta-
neous, the former being the commonest type [6]. Cutaneous melanomas originate from
atypical and genetically altered melanocytes [7] and according to the World Health Organi-
zation (WHO), they can be classified into four histologic subtypes [8,9].

1. Lentigo maligna melanoma (LMM) is the second commonest type [10], developing
in the chronically sun-exposed skin, such as head and neck [11]. Given that LMM
arises on visible areas and owing to its slowest progression rate among all histologic
subtypes [12,13], it is usually diagnosed at an early stage with a good prognosis.

2. Superficial spreading melanoma (SSM) is the commonest type [14] and it usually
arises on intermittently sun-exposed skin, such as on trunk and extremities [15].
Despite being endowed with a higher growth rate compared to LMM, SSM is usually
associated with good prognosis [12,13].

3. Nodular melanoma (NM) consists of a smooth and uniform pigmented nodule, which
predominantly spreads in the skin dermis [11]. For this reason, NM is reported to be
more aggressive than the other subtypes [16].

4. Acral lentiginous melanoma (ALM) is the rarest histologic subtype [17], arising from
glabrous (non-hair-bearing) skin, such as on soles and palms and nail beds [18].
ALM is associated with poor prognosis, usually because it is diagnosed at an ad-
vanced stage [19,20].

Atypical changes of a benign melanocytic lesion (nevi), which are commonly visible
and well-circumscribed on healthy skin, should be carefully investigated, since they could
give rise to melanoma in situ (MIS), consisting in an abnormal proliferation in the skin
epidermis, without dermis invasion [21]. Nonetheless, MIS can further spread into the
deeper layers of skin, acquiring metastatization potential [22,23]. Therefore, staging is the
most important prognostic indicator for melanoma. Within this concern, the American
Joint Committee Cancer (AJCC) Melanoma Staging System is the most accepted and peri-
odically updated system, with the most recent edition (eighth) being released in 2018 [24].
Accordingly, as in other solid tumors, melanoma stage is established through the following
criteria: tumor dimension; number of metastatic nodes; presence of distant metastases [25].
Four stages can be identified [26].

• Early stages (stages 0–II): skin localized melanoma, without spreading beyond the
primary site.

• Stage III: presence of loco-regional metastasis into local lymph nodes.
• Stage IV: presence of distant metastases.

Patients diagnosed with early stage disease have a 5-year survival of 98%, whereas
patients with lymph node spread have 62%, and patients at stage IV have an 18% 5-year
survival. The stage IV high mortality rate is probably due to the fact that melanoma
cells easily reach the bloodstream and can be transported to distal body sites [27]. As
for other solid tumors, the lungs and liver are common sites of metastasis (about 10 and
10–20% of patients, respectively); however, a specific common site of metastatic spread
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for cutaneous melanoma is the brain (about 12–20% of patients), especially when the
primary lesion is located in the head, neck or trunk. On the other side, skeletal and
gastrointestinal metastases are relatively uncommon, sometimes detected in patients at
late-stage disease [28].

Excessive sun exposure resulting in sunburn is an important risk factor for the devel-
opment of melanoma [29–31], in particular in childhood and young adulthood, because of
the larger number of melanocyte progenitor cells (melanoblasts) interested [32,33]. Simi-
larly, artificial sources of UV light, such as a tanning bed, can contribute to the total UV
exposure burden, with an increased incidence of melanoma diagnosed in subjects younger
than 30–40 [29,34]. Epidemiological analyses have identified two main forms of cutaneous
melanomas resulting from UV exposure [35–37].

1. Melanomas without cumulative sun-induced damage: arisen on intermittently sun-
exposed skin such as trunk and proximal extremities. It is associated with early life
sunburns and usually develops at a young age (<55 years) [38,39], with an intermedi-
ate UV signature mutations burden [32].

2. Melanomas with cumulative sun-induced damage: arisen on chronically sun-exposed
skin such as face, ears and neck. It develops significantly later in life, typically in
individuals older than 60 [40], is characterized by pre-cancerous keratinocytic lesions
and solar elastosis and harbors a very high mutation burden [41].

Other risk factors include phenotype/genetic factors (UV susceptibility), frequently
associated to familiar risk [42,43]; comorbidities (i.e., Xeroderma pigmentosum) [44]; organ
transplantation, with medically induced immunosuppression reported to be a significant
risk factor [45,46].

1.2. Mutational Burden

Melanoma has the highest frequency of genetic mutations among all types of cancer,
mainly those that are UV light driven: it has, approximately, a median of more than
10 mutations per megabase [47,48]. According to the whole-exome sequence analysis of
melanoma patients carried out by The Cancer Genome Atlas (TCGA), the following four
main melanoma mutants can be identified: BRAF, Neuroblastoma Rat Sarcoma (NRAS),
Neurofibromatosis type 1 (NF1) and Triple-wild-type [49]. There are many differences
among the subtypes in terms of mutations burden: melanomas arisen on chronically
sun-exposed skin harbor the highest numbers of mutations, especially NF1 and NRAS,
and occasionally BRAF [50], while melanomas arisen on intermittently sun-exposed skin
usually have an intermediate number of mutations, the commonest being BRAF V600E
(50%) and NRAS (15–20%). Moreover, the mutation burden increases along with malignant
evolution: invasive melanomas show Cyclin-Dependent Kinase inhibitor 2A (CDKN2A)
loss, Phosphatase and Tensin Homolog (PTEN) loss, or TP53 mutations [51].

Identifying the genomic subtype of melanoma is an important requirement for the clin-
ical management of melanoma patients [52]. The BRAF gene encodes for a serine/threonine
kinase belonging to the Mitogen-Activated Protein Kinase (MAPK/MEK) pathway. BRAF
interacts with MEK, resulting in MEK phosphorylation and subsequent Extracellular signal-
Regulated Kinase (ERK) activation, which ultimately promotes cellular growth and inhibits
apoptosis [53]. Mutations in BRAF result in MAPK function activation, independently from
RAS upstream signaling. The BRAF gene is the commonest mutated gene in melanoma
(40–50% of patients with cutaneous melanoma) [52,54,55] and 70–88% of all BRAF muta-
tions is represented by the V600E mutation, which consists of a substitution of glutamic
acid for valine in position 600 [52,54,56]. BRAF V600E mutations are essential to guide treat-
ment decision-making: indeed, melanomas harboring BRAF V600 mutations are generally
responsive to BRAF inhibitors (BRAFi) and/or MEK inhibitors (MEKi), which, therefore,
are the main targeted agents for melanoma therapy [57].

The BRAF mutation, together with the RAS mutation, are strictly correlated with
the high Extracellular Signal Related Kinases (ERK) activity in melanoma. The activation
of ERK plays a crucial role in cancer development by promoting cell proliferation [53]
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and invasion, altering the adhesion properties of melanoma cells, also by regulating cell
proliferation in the G1 phase. Furthermore, ERK activation might also be involved in
chemoresistance. Taken together, these data suggest that the inhibition of ERK is a potential
therapeutic approach for melanoma treatment [58,59]. Another mechanism that can be
potentially targeted for therapeutic purposes is the so-called Epithelial to Mesenchymal
Transition (EMT) that involves changes in marker expression, which can be correlated
to melanoma’s invasiveness and progression as well as to survival outcomes. Several
pathways are involved in EMT. The literature associating EMT with the metastatic process
is conflicting, while consistent evidence supports a role for EMT in chemoresistance devel-
opment. Indeed, EMT results in an invasive melanoma phenotype with reduced sensitivity
to BRAFi. Since an EMT switch is partly regulated by the BRAF/MEK signaling path-
way in normal melanocytes, BRAF/MEK inhibitors induce the opposite reprogramming
in melanoma. Furthermore, EMT-driven tumor antigens modification allows immune
surveillance escape, as illustrated by the role of SNAIL in the recruitment of Treg lympho-
cytes [60–63].

1.3. Clinical Management

Recent advances in the understanding of the pathophysiology and molecular pathol-
ogy of melanoma have led to new effective therapies for advanced disease, as well as to
programs supporting sun protection habits, greater awareness and early diagnosis, which
have significantly increased patients’ overall survival [64]. Treatment options include
surgery, radiation, conventional therapy (chemotherapy) and advanced therapy (targeted
therapy and immunotherapy). For early stages (0–IIA), wide excision of the primary tumor
is recommended. In high-risk primary cutaneous melanoma (stage IIB/C; tumor thickness
>2.0 mm) and stage III, surgery is associated with adjuvant therapies [65]. Furthermore,
at stage III, surgical removal of regions surrounding the metastasized lymph nodes is
indicated, too.

Before 2011, the standard-of-care treatment for IV stage melanoma was dacarbazine [66],
with no improvement in survival. Temozolomide (TMZ) was employed as a second
line treatment, because it can penetrate the central nervous system, allowing it to treat
melanoma brain metastasis [67,68]. Recently, thanks to advances in cancer genomics [69]
and immune response [70], new advanced therapeutic agents have been approved for the
treatment of metastatic melanoma, especially targeted therapy and immunotherapy [71].

Despite the fact that melanoma is considered to be relatively radiation resistant,
radiation therapy is employed to relieve symptoms in patients with brain metastases, or
tumors too large for surgical intervention [65].

Chemotherapy, Targeted Therapy and Immunotherapy

BRAF mutated melanomas (nearly half of the total) show response to BRAF and/or
MEK inhibitors, allowing the practicing of targeted therapies [57,69]. The first developed
V600-mutantBRAFi was vemurafenib, 30 times more selective towards mutated BRAF
compared to wild-type. Therefore, vemurafenib exhibited from partial to complete response
in BRAF-mutated melanoma patients, and no response in patients with the wild-type
BRAF gene [72,73]. Dabrafenib is another highly potent BRAFi, 100 times more selective for
mutated BRAFV600E compared to wild type [74]. The main limitation of BRAFi is the quick
development of resistance [75,76] due to MAPK pathway reactivation [77–79]. Therefore,
in order to counteract resistance mechanisms, MEKi have been employed, including
trametinib, which was approved by the FDA in 2013 for the treatment of metastatic
melanoma with BRAFV600E mutations [75]. Therefore, BRAFi and MEKi combinations
have become the standard-of-care treatment for unresectable or distant metastatic V600E-
mutant melanoma. The three approved combination therapies are dabrafenib/trametinib,
vemurafenib/cobimetinib and encorafenib/binimetinib [80–83].

Immunotherapy is based upon the employment of monoclonal antibodies, in order
to enhance cell-mediated immunity toward cancer cell, owing to the so-called “immune-
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checkpoint blockade”. The first immune-checkpoint inhibitors employed were anti-Cytotoxic
T-Lymphocyte-Associated-4 protein (CTLA-4) antibodies ipilimumab and tremelimumab.
Afterwards, anti-Programmed Death-1 protein (PD-1) antibodies such as nivolumab and
pembrolizumab underwent rapid clinical development [84]. A combination of anti-PD-1
and anti-CTLA-4 antibodies led to benefits in melanoma treatment [85]. Contrarily to
targeted therapy, the mechanisms of resistance to immunotherapy are less well under-
stood. An upregulation of Programmed Death Ligand 1 (PD-L1) expression on melanoma
cells at the invasive tumor margin may be responsible for primary resistance to anti-PD-
1 immunotherapy. Nevertheless, despite the great efforts spent to develop predictive
biomarkers of response to immunotherapy, the ‘positivity’ for PD-L1 expression is still
undefined [86]. More recently, the interplay between intratumoral genomic changes and
immune response has been investigated, because some tumor-intrinsic signaling path-
ways were disclosed to be associated with immune exclusion. For example, PTEN loss in
melanoma cells has been implicated in the exclusion of T cells from the tumor microen-
vironment and, therefore, a lack of response to immunotherapy [87]. Moreover, a high
mutation burden has been clearly related to an improved response to immunotherapy with
anti-CTLA-4 and anti PD-1 antibodies [88–90]. To this aim, since whole-exome sequencing
cannot be practiced in clinical routine, gene panels (comprising 170–315 genes) could serve
as a useful surrogate for the evaluation of the total exonic mutation burden [84].

At the moment, the choice of frontline chemotherapy is driven by patient-specific
features, such as comorbidities, biochemical and clinical parameters and patient tolerance
to side effects. Currently, combinations of targeted agents and immunotherapies are
under investigation. Several research findings support potentially positive interactions.
In particular, recent evidence supports the concept that combined BRAF-MEK inhibitors
could enhance recognition of melanoma cells by the immune system, thus favoring the
activity of immune-checkpoints inhibitors [91].

Recently, research carried out by the Italian Clinical National Melanoma Registry
(CNMR) investigated the real-life clinical management data of patients with advanced
cutaneous melanoma, aiming to evaluate the oncological outcome of the new therapeutic
associations. The results of this research showed that immunotherapy significantly im-
proved the patient’s survival in a real-world population. Moreover, the study pointed out
that the combination of nivolumab/pembrolizumab with ipilimumab is the best therapy
for the clinical management of advanced melanoma [92] (Figure 1).

Anyway, even if recent studies showed that combination therapy has a greater efficacy
than monotherapy, it is associated to a higher incidence of adverse side effects.

Furthermore, while different ERK inhibitors are currently under evaluation in pre-
clinical and clinical studies for melanoma (SCH772984, MK-8353, ulixertinib, ravoxertinib,
LTT462 and LY3214996), as single agents or in combination therapy [93,94], only few innova-
tive strategies proposed the EMT switch as a therapeutic target. Three agents (salinomycin,
etoposide and abamectin) were identified through molecular screening, for targeting cells
in the mesenchymal state, but to date, major evidence concerns EMT prevention and/or
reversal. Although many cytotoxic agents induce EMT, inhibitors of microtubule assembly,
such eribulin and the vinca alkaloids, might exert the reverse effect, as assessed in Phase
III clinical trials with eribulin, used both for breast cancer and liposarcoma. Moreover,
combination regimens can also be considered. Indeed, given that various Receptor Tyro-
sine Kinases (RTK) can mediate the EMT switch in melanoma, combinations of selected
RTK and oncogenic BRAF inhibitors can be successful, such as in the case of the EMT
switching inhibitor TGFßR2 with vemurafenib. Moreover, since a chronic inhibition of
BRAF resulted in elevated Wnt with increased expression of the EMT inducer, WNT5A,
knockdown of WNT5A was able to reverse chemoresistance caused by chronic treatment
with vemurafenib [95].
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Figure 1. Summary of the most common therapeutic approaches in the Italian clinical landscape for
the treatment of advanced metastatic melanoma. Between 30 and 40% of all patients receive at least
one immunotherapy or at least one targeted therapy (upper panel). Among the patients treated with
immunotherapeutic agents, Anti-CTLA4 (ipilimumab) monotherapy is the most administered (lower
panel, left). BRAFi and MEKi combination is the most used targeted therapy (lower panel, right).
Data elaborated from [92].

Another therapeutic option for melanoma consists of topical formulations (Figure 1).
Topical chemotherapy has been proposed as an adjuvant, by using imiquimod, an agent that
activates Toll-Like Receptor (TLR) 7 and 8, currently employed for the clinic management
of basal cell carcinoma. Activated TLR7 induces the production of different cytokines
such as Interferon-α (IFN-α), Interleukin (IL)-12 and Tumor Necrosis Factor (TNF)-α,
thus activating the immune system towards cancer cells [96]. Imiquimod was able to
control cutaneous metastases spreading from primary melanoma [97], when used after
surgical excision [98].

2. Rationale for Nanotechnology Approach to Malignant Melanoma

Although melanoma treatment has significantly improved in the last decade, malig-
nant melanoma is still a major health challenge, because of its aggressive and resistant
nature and its variable response to chemotherapy, which, despite being able to prolong
median survival, is still to be considered as a palliative care for IV stage. Therefore, a
nanotechnology approach has been proposed for the treatment and diagnosis of malignant
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melanoma at a preclinical or clinical level. Indeed, nanomaterials are purposed as drug de-
livery systems for several types of cancer, because, owing to their size and surface features,
they are able to enhance targeted delivery to cancer cells, and to easily cross biological
barriers. Thus, side effects in off-target tissues are reduced and efficacy is increased [99].
Additionally, nanosystems prevent the drug from chemical and/or biological degradation,
and reduce drug clearance, leading to an extended half-life. Consequently, drug dosing
can be reduced.

Within this concern, a powerful nanoplatform is represented by targeted nanosystems.
Among the commonest targeting moieties, antibodies allow a very selective binding to
targeted cells through specific antibody-receptor interactions, while specific ligands can
also be engineered for the antigens over-expressed on melanoma cells [100].

The most important nanosystems proposed for melanoma therapy include lipid sys-
tems (liposomes, solid lipid nanoparticles, nanoemulsions), polymeric systems (polymeric
micelle and nanospheres, polymeric nanoparticles, hydrogels, dendrimers), inorganic
nanoparticles (silica nanoparticles, gold nanoparticles, copper nanoparticles, nanotubes)
and natural nanosystems [100]. Among the latter, exosomes (EXOs) can be included. They
are cellular vesicles made of a bilayer membrane, ranging from 30 to 150 nm, carrying
different types of biomolecules, including proteins, lipids and nucleic acids, with an intrin-
sic ability to target specific cells [101] and to overcome cell membrane and blood/brain
barriers [102]. In particular, EXOs are studied as therapeutic vaccines for melanoma treat-
ment [103,104]. Moreover, EXOs can also work as melanoma biomarkers: analyses of
circulating EXOs in blood from patients could represent a promising strategy for cancer
diagnosis, also in order to assess therapeutic response. Exosomal micro-ribonucleic acid
(miRNA) [105], as well as several proteins [106] in circulating EXOs could be considered
as possible prognostic biomarkers. Indeed, monitoring the exosomal PD-L1 level could
be a relevant predictor of response to immunotherapy [107,108]. Cell-membrane-coated
nanoparticles also belong to the natural category [109]. A platelet membrane coating
allows melanoma cells to be targeted, whereas a red blood cells membrane coating results
in macrophage clearance escape [110].

Finally, drug release from a nanocarrier can be controlled by internal (within the
human body) or external stimuli, which are able to induce a structural modification in
the nanocarrier matrix, resulting in drug release [111,112]. Internal stimuli include body
temperature, pH, ionic strength and redox potential shifts. In particular, a tumor tissue
shows different features compared to a healthy one: the lowest pH or the slightly higher
temperature in the tumor may be exploited for a selective drug release [113]. External
stimuli include light, temperature, magnetic and electrical fields and ultrasounds [114,115].

However, remarkable technological and toxicological drawbacks hamper the clinical
translation of nanosystems to melanoma, and cancer therapy in general [116]. Indeed, the
low drug payload is a relevant limitation, meaning that only potent drugs can be success-
fully loaded into nanocarriers, since large volumes cannot be administered to humans [117].
Moreover, stressful synthetic conditions, such as heat, extreme pH, solvents can be harmful
for sensitive drugs [118], and potential contaminants, such as residual solvents, reaction
byproducts and endotoxins, can lead to a considerable cellular toxicity, requiring extensive
purification procedures [119]. Furthermore, rapid blood clearance, in the case of large
sized nanosystems, as well as premature burst release, can reduce the tissue targeting of
the loaded drugs. Within this concern, since the surface properties, along with protein
corona effects, regulate the biological fate of such nanosystems, surface functionalization
allows passive or active targeting to be achieved, but it is usually associated with high
costs and scale-up issues [120]. Therefore, nanosystems constituted by biocompatible mate-
rials and/or physiological lipids, with a safe history of clinical use, and produced owing
to feasible/easy to scale-up methods, show clear advantages for translational purposes.
Nonetheless, as a matter of fact, the approval rate for novel nanomedicines is currently
below 10% [121], and none of them have been specifically approved for melanoma. Indeed,
it is noteworthy that, among those entering clinical trials, the major part involves the
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off-label use of already marketed nanotechnology products (Table 1). At present, great
hopes are placed on monoclonal antibodies: after the FDA approval of ipilimumab and
more recently, nivolumab, pembrolizumab and atezolizumab [3], a number of clinical trials
are currently evaluating the safety and efficacy of combining two monoclonal antibodies
(i.e., NCT01844505, NCT03068455, NCT03743766) [122]. Such clinical trials are not listed in
Table 1, given that the table is focused on nanocarriers.

Table 1. Nanotechnology products under clinical evaluation for melanoma [122].

Product Description Phase Recruitment Trial Number

TREATMENT

Abraxane (Celgene) Albumin-bound paclitaxel

Phase III, monotherapy Completed
NCT00864253

(Metastatic
Melanoma)

Phase II, monotherapy Completed
NCT00093119

(Metastatic
Melanoma)

Phase II, monotherapy Completed
NCT00081042

(Metastatic
Melanoma)

Phase II, monotherapy Completed
NCT00738361
(Intraocular
Melanoma)

Phase I, Hepatic Arterial
Infusion Completed NCT00833807

(Liver Metastasis)

Phase II, in combination with
ipilimumab Completed

NCT01827111
(Metastatic
Melanoma)

Phase II, in combination with
Bevacizumab Completed

NCT00462423
(Metastatic
Melanoma)

Phase II, in combination with
Bevacizumab o ipilimumab Completed

NCT02158520
(Metastatic
Melanoma)

Phase II, in combination with
rituximab Recruiting

NCT02142335
(Metastatic
Melanoma)

Phase I, in combination with
cisplatin, Temodar

(temozolomide), interferon
alfa-2b and interleukin-2 (IL-2)

Completed
NCT00970996

(Metastatic
Melanoma)

Phase II, in combination with
sorafenib Completed

NCT00483301
(Metastatic
Melanoma)

Phase II, in combination with
carboplatin Completed

NCT00404235
(Metastatic
Melanoma)

Marqibo
(Spectrum)

Liposomal vincristine
(non-PEGylated)

Phase I/II, monotherapy Completed
NCT00145041

(Metastatic
Melanoma)

Phase II, monotherapy Completed
NCT00506142

(Metastatic
Melanoma)

2B3-101
Doxorubicin

glutathione-pegylated
liposomes

Phase I/II, monotherapy or in
combination with trastuzumab Completed

NCT01386580
(Metastatic
Melanoma)
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Table 1. Cont.

Product Description Phase Recruitment Trial Number

IMAGING

124I-cRGDY-PEG-dots

Silica nanoparticles with
an NIR fluorophore, PEG

coating and a 124I
radiolabeled cRGDY

targeting peptide

Phase I/II Recruiting
NCT02106598
(Head/Neck
Melanoma)

CANCER VACCINE

Lipo-MERIT
(Biontech RNA

Pharmaceuticals)

Four naked RNA-drug
products formulated with

liposomes
Phase I Active, not recruiting

NCT02410733
(Malignant
Melanoma)

Abbreviations: NIR: Near Infra-Red; PEG: polyethylene glycol; RNA: ribonucleic acid.

3. The Italian Landscape
3.1. Relevant Interest of the Italian Concern

The worldwide incidence of cutaneous melanoma has increased over the last decade,
up to 4–6% a year in fair-skinned populations in North America, Europe and Oceania,
and recent clinical studies indicate that this increasing trend will continue in the next two
decades [1,2].

Incidence depends on skin pigmentation, but also varies by geographic location,
among people of the same ethnicity, owing to atmospheric absorption, latitude, altitude,
cloud cover and season, all parameters influencing incident UV radiation. Indeed, in
2012, the International Agency for Research on Cancer (IARC) reported an inverse lat-
itude gradient in Europe, with a three- to six-fold higher incidence in northern than in
southern countries, probably attributable to the fair skin features of northern Europe in-
habitants [123]. However, among southern Europe countries, Italy showed the highest
incidence (11.4 cases in every 100,000 inhabitants per year). More recent epidemiological
data reported about 12,300 new cases in 2019 and 14,900 in 2020, with an increase of 2600 in
1 year [124,125]. Potential reasons for this increase could be also found in the availability of
better diagnostic tools. However, in northern Italy, mortality from cutaneous melanoma is
about two-fold that recorded in the southern regions, with major incidence peaks in Trieste
and Genoa [126]. These data are confirmed by 2020 Guidelines of AIOM (Associazione
Italiana di Medicina Oncologica) on melanoma, comprising the epidemiological data of the
Italian population [127]. Cutaneous melanoma in Italy is the second cancer per incidence
in the male population <50 years old. As far as concerns the female population, cutaneous
melanoma is in the third position for frequency in the same age range. The melanoma
incidence trend is increasing also in Italy with +4.4% per year for men and +3.1% per
year for women. Epidemiological data concerning melanoma mortality in Italy are shown
in Figure 2 [128]. This scenario reflects on the increasing number of Italian medical and
patient associations dedicated to melanoma. While Intergruppo Melanoma Italiano is a
non-profit association, constituted by over 400 medical and diagnostic specialists dealing
with melanoma and non-melanoma skin cancer, including epidemiological, preventive,
bio-molecular, diagnostic, therapeutic and experimental aspects [129], at least three dif-
ferent patients associations (Associazione Melanoma Italia Onlus, Associazione Pazienti
Italia Melanoma, Associazione Italiana Malati di Melanoma) are involved in promoting
assistance and social politics for melanoma patients, as well as in providing information
and prevention and supporting preclinical and clinical research about melanoma [130–132].
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Figure 2. Melanoma mortality in Italy: recorded deaths in the years 1956-2015 (left panel), and prediction until 2040 (right
panel). Re-elaborated from WHO IARC [128] (accessed on 15 September 2021).

On the other side, in Italy, the nanotechnology landscape is rapidly growing up. More
than 200 structures are conducting Research and Development (R&D) in this field. Around
55% refer to public institutions and the remaining 45% to private companies. The activity
is widely distributed across the national territory and usually nested around the following
biggest universities and major public research organizations: Consiglio Nazionale delle
Ricerche/Istituto Nazionale di Fisica e Metrologia (CNR/INFM), Consorzio Interuniversi-
tario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Istituto Nazionale di
Fisica Nucleare (INFN), Consorzio Interuniversitario Nazionale per la Scienza e Tecnolo-
gia dei Materiali (ENEA). The major concentration is in the northern-central part of the
Country, with the Lombardia region showing the highest one, with more than 20% of the
structures and 30% of the employees. However, it must also be stressed that the regions
with a lower number of structures do not play a secondary role, due to their high level
of expertise and equipment. Moreover, during the past few years, the number of Italian
private companies dealing with nanotechnology have steadily increased. Indeed, the last
update of the Associazione Italiana per la Ricerca Industriale (AIRI) Nanotec IT Census
2010 identified 86 companies with activity in this field [133,134].

3.2. The Vitro/Vivo Bottleneck

The main studies involving nanosystems aiming at melanoma treatment, developed
by Italian researchers, are reported here below (Figure 3).

The major evidence concerns relevant studies on cellular models. In particular, stimuli
responsive nano-platforms for potential application in PhotoDynamic Therapy (PDT) and
hyperthermia to hit melanoma were developed, including photoactivable compounds,
that have been conjugated either to iron oxide nanoparticles [135] or to mesoporous sil-
ica nanoparticles (MSNs) [136], or that have been encapsulated in polymeric nanoparti-
cles [137] and amphiphilic cyclodextrin [138]. Moreover, magnetic nanoparticles mineral-
ized with human ferritin were explored for their potential hyperthermic properties [139].
According to these studies, different melanoma cell lines (B78-H1, SK-MEL-28, B16 and
A375) demonstrated a strong reduction in cell proliferation following the stimuli responsive
treatment. Various nanosystems have also been proposed for adjuvant topical chemother-
apy [140–144]. Active targeting was exploited with gold nanoparticles decorated with
cyclic 4-aminoproline-RGD semipeptides, allowing internalization via receptor-mediated
endocytosis, and showing the inhibition of the integrin-mediated melanoma tumor cell
adhesion [145]; on the other side, lipid nanoparticles encapsulating two oncosuppressor
miRNAs showed promising results on several melanoma cell lines [146].
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Figure 3. Main drug delivery strategies involving nanosystems for melanoma treatment within the Italian concern (Created
with BioRender.com).

However, the most intriguing results came from the employment of innovative ma-
terials for nanosytem formulation. Indeed, an innovative approach based on coupling
nanodiamonds with a plant secondary metabolite citropten (5,7-dimethoxycoumarin) was
proposed as a tool against melanoma. In vitro studies with B16-F10 cells allowed the mech-
anism of action of such a nanomaterial, that demonstrated higher cytotoxicity compared
to the free compound, to be better understood [147]. An alternative strategy was based
upon nanohydrogels for the delivery of the bovine serum amine oxidase, an enzyme that
converts the polyamines overexpressed in cancer cells. In cell models, the immobilized
enzyme was more active than the free one, paving the way for the use of such a nanosystem
as a tool for the treatment of melanoma [148].

Nonetheless, only a few of the aforementioned nanosystems, extensively tested on
in vitro cell models, shifted to the in vivo setting [149,150]. Indeed, a crucial aspect for the
development of novel therapeutic approaches for melanoma therapy is the possibility to
rely on animal models that recapitulate the clinical settings of the disease (Table 2).
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Table 2. Animal models in melanoma research.

Models Advantages/Drawbacks References

Xenografts

Human cell lines Nude mice

Easily available and propagated after
subcutaneous transplantation.

Melanoma cell lines established under
non-physiological conditions for several
years may result in selection of clones

that differ significantly from the
originating cells and are no longer

representative of the original tumor.
Poorly predictive of clinical outcome:
drugs showing efficacy in this model

often fail in clinical trials.
Growth in inadequate tumor

microenvironment, including the lack of
an immune system.

[151–159]

PDTXs

Immunosuppressed
mice

Nude athymic (nu/nu)
mice

SCID mice
NSG mice

Good availability and affordability
Good representation of a

comprehensive patient population with
different mutation burden.

Helpful in guiding clinical management
of the patient’s tumor: the process from
target identification to validation and

then to efficacy screening can be
rationalized around the same model,

from the patient to the mouse and then
back to the patient.

Useful to determine mutations required
for melanocyte transformation and

melanoma cell invasion.

Technically challenging and
time-consuming process: time for

palpable tumor to develop typically
ranges from three to nine months, and
in many cases, tumors fail to develop.

Failure in modelling immune responses:
tumors do not grow in the context of an

intact immune system.

[151,160–164]
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Table 2. Cont.

Models Advantages/Drawbacks References

UVR induced HGF⁄SF transgenic mice

Useful for simulating the natural
progression of melanoma development

as it occurs in human beings.
Strong epidermal component, or

junctional activity, with a variety of
histopathologies

.Neonatal UVR irradiation sufficient for
induction of junctional melanoma.

Exposure of neonatal animals to UVR
resulting in the development of lesions
resembling RGP/ VGP melanoma and
invasive melanoma with junctional and

dermal components.
Adult UVR irradiation unable to initiate

melanoma but able to increase the
multiplicity of melanocytic lesions in

neonatally irradiated animals.
Progression from early proliferative

lesion to
metastasis, such as that observed for k4a

deletions
in humans.

Useful to determine the most implicated
UVR band in melanomagenesis.

Difference between localization of
melanocytes within the mice and

human skin.
Spontaneous melanoma in nearly 22%

of HGF/SF transgenic mice with a mean
onset of 15,6 months

[165–171]

Chemically induced
Mice

DMBA induced
TPA induced

Fully functional immune system (useful
for

immunotherapeutic strategies).
Used in combination with other models

to decrease the latency of developing
melanoma.

DMBA alone can induce nevi in
pigmented mice, useful to study

mechanism(s) of malignant
transformation

Lack of clinical relevance to the human
disease

[172–178]

Syngeneic

Harding-Passey cells in
BALB/c

× DBA/2F1 mice
S91 cells in

DBA/2 mice
B16 cells in

C57BL/6 mice

Due to melanin production, useful to
study the effects of melanin content on

the metabolic function of melanoma.
Intact immune system.

No spontaneous metastases.

[171,172,179,
180]



Pharmaceutics 2021, 13, 1617 14 of 33

Table 2. Cont.

Models Advantages/Drawbacks References

GEM

CDKN2A loss Mice

Loss of CDKN2A locus located at 9p21
encoding two well-identified tumor
suppressor proteins, p16INK4A and

p14ARF (p19ARF in mouse)

Melanomas predominantly originating
in the eyes, skin melanomas infrequent

and mostly benign.
Ink4a or ARF loss not enough to trigger

melanoma development but makes
animals susceptible to UVR or

carcinogen-induced melanomagenesis.

[181–191]

RAS mutated

HRASV12G mice
UVR/DBA induced

HRASV12G
mice/p16INK4a/p19ARF
knockout mice (Cross

breeding)

Tyrosinase-driven expression of
activated HRASV12G not able to trigger
spontaneous melanoma development.
Induction of melanoma in a relatively
short latency with concurrent UVR or

DMBA treatment.
A new model with the capability of

developing a large number of
spontaneous cutaneous melanomas
with a shorter latency obtained by

crossbreeding between HRASV12G and
p16INK4a/p19ARF knockout mice

[192–196]

PTEN loss/BRAF
mutated Mice

Tyr:Cre-ERT2 transgenic mice useful to
investigate BRAF V600E mutated and

PTEN deleted melanomas.
[197,198]

RCAS/TVA system Mice

Multiple genetic alterations introduced,
through retroviral-vector delivery

systems, rapidly and in a sequential
manner, without the requirement of

crossing multiple mice strains
Rapid assessment of newly identified

genes on disease progression and
maintenance.

Well mimicked tumor
microenvironment, as cancer develops

from few modified surrounded by
normal cells.

[151,172,199,
200]

RET controlled Mice

Stepwise melanoma development, RET
expression driven, under the control of

metallothionein-1 promoter.

No tumors for several months after
birth, followed by growth of multiple

benign melanocytic tumors that
eventually become malignant and

metastasize to distant organs.

[151,199–201]

GRM1 Mice

Melanocyte-specific expression of
GRM1 via Dct promoter able to trigger
development of spontaneous, highly

pigmented melanomas in skin, eyes and
ear of the animals with 100% penetrance.

Useful as a spontaneous uveal
melanoma model.

[202–204]
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Table 2. Cont.

Models Advantages/Drawbacks References

GNAQ mutated Mice

When crossed with mice defective in
p16INK4A and p19ARF genes, 50% of

the mice developed cutaneous
melanoma with a latency of ~35 weeks,

following doxycycline treatment.

Melanoma not developed up to
40 weeks.

[205,206]

Fish
Platyfish and

swordtails
Transgenic Zebrafish

Short generation time, large number of
progenies, low cost, small housing
Simple genetic manipulation, with

transgenes or morpholinos injected into
the embryo

In Zebrafish, due to the transparency of
their embryos, which develop externally,

high-resolution visualization of
transplanted fluorescent melanoma cells

in vivo is possible with relative ease

[207–216]

Avian and other mammalian

Hamster
Swine
Horse

Gray short-tailed
opossum

Chick embryo

In the chick embryo model:

- the neural tube transplant used as a
model for spontaneous neural crest
migration: while there is sponta-
neous neural crest migration of
melanoma cells, this is not the case
for primary human melanocytes

- the optic cup transplant used as a
model for melanoma invasion

- the rhombencephalon transplant
used as a model for brain metas-
tasis

[217–229]

Abbreviations: ARF: alternate reading frame; BRAF: v-raf murine sarcoma viral oncogene homolog B1; CDKN2A: cyclin-dependent
kinase inhibitor 2A; Dct: dopachrome tautomerase; DMBA: 7,12-dimethylbenz(a)anthracene; GEM: genetically engineered models;
GNAQ: guanine nucleotide-binding protein G(q) subunit alpha; GRM1: metabotropic glutamate receptor 1; HGF ⁄ SF: hepatocyte growth
factor / scatter factor; NSG: non obese diabetic (NOD) SCID gamma; PDTXs: patient-derived tumor xenografts; PTEN: phosphatase and
tensin homolog; RCAS/TVA: replication-competent avian sarcoma-leukosis virus long terminal repeat with splice acceptor/tumor virus A;
RET: rearranged during transfection; RGP: radial growth phase; SCID: severe immuno-deficient; TPA: 12-o-tetradecanoylphobol-13-acetate;
Tyr:Cre-ERT2: melanocyte-specific inducible Cre recombinase; UVR: ultraviolet rays; VGP: vertical growth phase.

Murine models are often considered poorly predictable of the efficacy of the tested
drugs in humans [151]. Among the syngeneic models, those based on B16 cells (in particu-
lar the B16-F10 subclone) are the most exploited to evaluate nanomedicines. Despite the
skepticism arisen from the high aggressiveness of these cells once implanted in mice, as
well as from the lack of genetic diversity typical of human melanoma and of BRAF muta-
tion [230], the B16 model represents a great tool for the evaluation of traditional chemothera-
pies [231–234], vaccines and immunotherapies [235–238] and photodynamic/photoacoustic
therapies [149,239,240] (Table 3).
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Table 3. Nanomedicines developed in Italy in advanced pre-clinical characterization.

Nanosystem Drug Targeting
Strategy

Stimuli
Responsive Animal Model References

Leukosomes Doxorubicin
Leukocyte
membrane

proteins

B16-F10 melanoma
cells s.c. in

C57BL/6 mice
[231]

Pyromellitic
Nanosponges Paclitaxel

B16-F10 melanoma
cells s.c. in C57BL6/J

mice
[232]

Solid Lipid
Nanoparticles Temozolomide

B16-F10 melanoma
cells s.c. in C57BL6/J

mice
[233]

Nanoemulsion
(Intralipid®-IL)

Temozolomide
rapamycin and
bevacizumab

B16-F10 melanoma
cells s.c. in C57BL6/J

mice
[234]

Lipopolyplex
vector

TRP2-mRNA/α-
Galactosyl-ceramide

Size and Charge
mediated-

targeting to
DC

B16-F10 melanoma
cells s.c. in

C57BL/6 mice
[235]

DOTAP-
Liposomes Clodronate Size dependent

uptake by TAM

B16-F10 melanoma s.c.
in C57BL/6JOlaHsd

mice
B16-F10-luc melanoma

cells iv in
C57BL/6JOlaHsd

mice, lung metastasis

[236]

CDNS and PLGA Np ICOS-Fc
B16-F10 melanoma

cells s.c. in C57BL/6J
mice

[237]

PLA/PLGA Np MART1 peptides
(melanoma antigens)

Mannose
(targeting DC)

Ret melanoma cells s.c.
in of C57BL/6J

B16-F10 melanoma
cells s.c. in C57BL/6J

mice

[238]

Phthalocyanine–gold
Np conjugates Zn(II)-C11Pc PDT

B78H1 amelanotic
clone of B16

melanoma cells s.c. in
C57BL/6 mice

[239]

PEGylated gold Np C11Pc PDT

B78H1 amelanotic
clone of B16

melanoma cells s.c. in
C57BL/6 mice

[240]

Mesoporous Silica Np Verteporfin PDT irradiation
B16-F10 melanoma

cells s.c. in C57BL/6J
mice

[149]

Fibrin gels
Loaded with a

complex of DDP with
HA and
Chitosan

DDP HA (CD44 and
RHAMM)

B16 melanoma cells s.c.
in nude mice

SK-MEL-28 melanoma
cells s.c. in NOD-SCID

mice

[241]

Ferritin based Np ADC: Ep1- cisplatin

Ep1-mediated
melanoma
targeting

(melanoma specific
antigen CSPG4)

Colo 38 human
melanoma cells in CD1

nude mice
[242]
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Table 3. Cont.

Nanosystem Drug Targeting
Strategy

Stimuli
Responsive Animal Model References

EXOs TRAIL

INT12 melanoma cells
(from a human

melanoma specimen)
s.c. in SCID mice

[243]

PCL and PEO Np
Docetaxel

Zn(II)-
phthalocyanine

PDT

A375 human
melanoma cells s.c. in
athymic Nu/Nu nude

mice

[244]

ECFC-loaded
chitosan-capped

Gold Np
PA

A375-M6 melanoma
cells (M6) were
isolated in the

laboratory from lung
metastasis of SCID

bg/bg mice

[245]

PEO-PDPA block
copolymer

polymersomes
Doxorubicin

Zebrafish embryos
injected Red

fluorescent B16
Melanoma Cells in the

neural tube

[246]

Nanohybrids of
catechin-gelatin

conjugates
incorporating carbon

nanotubes

Catechin

WM266-4 human
melanoma cell line

microinjected into the
yolk of zebrafish

[247]

Abbreviations: C11Pc: phthalocyanine disulphide; CDNS: β-cyclodextrin nanosponges; DC: dendritic cells; DOTAP: 1,2-dioleoyl-3-
trimethylammonium-propane; DDP: cisplatin; ECFC: endothelial colony forming cells; EXOs: exosomes; HA: hyaluronic acid; ICOS:
inducible co-stimulator; iv: intravenous; Np: nanoparticles; PCL: Poly(ε-caprolactone); PDPA: poly[2-(diisopropylamino)ethyl methacry-
late]; PDT: photo-dynamic therapy; PA: photo-acoustic therapy; PEG: polyethylene glycol; PEO: Poly(ethylene oxide); PLA: poly-lactic acid;
PLGA: poly-lactic-glycolic acid; s.c.: subcutaneous; TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand.

Genetically engineered mouse models (GEMMs) of melanoma are a fundamental
tool to evaluate the genetic components of the disease and for the development of novel
targeted therapies [248], although they do not recapitulate the high mutational burden
of human melanoma. Nevertheless, for instance, Rearranged during Transfection (Ret)
cells inoculated in C57BL/6J mice have been used for the evaluation of dendritic cells
(DC)-targeted nanovaccines [238], as the Ret model presents a high expression of regulatory
T cells [249], which often limit the potency of the vaccination strategies. Furthermore, Ret
melanoma cells have the capability to form spontaneous brain metastasis [250], and this
represents a valuable tool to evaluate the efficacy of the proposed therapies, as in most cases
of primary lesions, surgery is resolutive. Another interesting cell line is the BRAF V600E
mutated D4M.3A [251], which grows in C57BL/6 mice; this model can be exploited to eval-
uate targeted therapies [252], as well as immunotherapeutic agents. With the establishment
of immunotherapy as the gold standard for melanoma treatment, xenografts of human
melanoma cell lines in immunocompromised mice became a less attractive model of the
disease, although they still offer valuable insights on the evaluation of nanomedicines tar-
geting cancer cells [241–243] and of stimuli sensitive-based nanomedicines [244,245]. Cells
obtained by biopsies are particularly interesting, because they maintain the clinical features
of the human tumor, in particular, tumor heterogeneity [248]. Once inoculated in immune-
humanized mice, patient-derived tumor xenografts (PDTXs) can also be used for testing the
efficacy of immunotherapeutic agents. Finally, it is worth mentioning that in the last decade,
other animal models, such as zebrafish, gained great attention for the development of
melanoma models. Zebrafish allow for high throughput in vivo studies [248,249,253], and
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furthermore, the peculiar transparency of zebrafish embryos allows for rapid visualization
of fluorescently labelled melanoma cells, as well as of nanomedicines [246,247].

3.3. Pre-Clinical Development of Nanomedicines for Melanoma Therapy in Italy

In the last decade, in Italy, some nano-therapies for melanoma underwent an advanced
pharmaceutical development, being able to reach the in vivo setting (Table 3). They were
directed toward the following three main approaches: (i) nanosystems to ameliorate
the pharmaceutical properties of traditional chemotherapeutic drugs, (ii) nanosystems
targeting the immune system to trigger and (iii) nanosystems able to exploit PDT.

Traditional chemotherapeutics were loaded into nanosystems constituted by different
matrixes. Those of natural origin are of particular interest. Among them, leukosomes are a
new and very promising biomimetic nanovesicles, which combine both the physical and
the biological properties of liposomes and leukocytes. Leukosomes are able to target cancer
vasculature, due to the presence of the leukocyte membrane proteins responsible for cellular
adhesion, such as Lymphocyte Function-associated Antigen 1 (LFA-1), Macrophage-1
antigen (Mac-1) and P-Selectin Glycoprotein Ligand-1 (PSGL-1). This formulation showed
high intratumoral accumulation in mice bearing B16-F10 tumors. Furthermore, their
nanosized vesicular nature allows for the encapsulation of anticancer drugs, such as
doxorubicin. An in vivo tumor efficacy study in B16-F10 tumor-bearing mice showed that
doxorubicin-loaded leukosomes possess a strong anti-cancer activity in terms of a reduction
in tumor volume and prolonged survival [241]. Similarly inspired by nature, EXOs are
nanosized extracellular vesicles that can be exploited for tumor targeting [254] and have
been engineered to express TNF-related apoptosis-inducing ligand (TRAIL), a protein able
to induce apoptosis in cancer cells [243]. An intratumor injection of the TRAIL-EXOs in
INT12 human melanoma-bearing mice showed a strong inhibition of tumor growth, but
systemic administration failed to accomplice the anticancer effect, probably due to the
poor tumor homing capacity of the vesicles under study. Relevant achievements were
also obtained with conventional nanosystems. The intratumor administration of cisplatin
complexed with hyaluronate and loaded in fibrin gels showed promising results in mice
bearing a sc human SK-MEL-28 [241]. Cisplatin encapsulated in ferritin nanoparticles,
decorated with a melanoma-targeting antibody (Ep-1), also showed good in vivo anticancer
activity following intravenous (iv) injection in mice bearing Colo 38 human melanoma
cells tumors [242]. Other strategies, including lectin targeted dioleoylphosphatidylcholine
(DOPC)/dioleoylphosphatidylethanolamine (DOPE) liposomes [255], PEGylated poly (ε-
caprolactone) nanoparticles [256] and PEGylated gold nanoparticles targeted with RGD-like
peptide [150], showed good ability to accumulate at the tumor site.

In order to develop immunotherapeutic agents for melanoma treatment, different
types of formulations have been designed. Within this context, nanosized systems have
been employed as nucleic acid vectors for specific gene delivery. Indeed, either Poly(amidoamine)
(PAMAM) dendrimer decorated with the CD124/IL-4Rα peptide (targeting myeloid cells)
and bearing a combination of STAT3- and C/EBPβ-specific short hairpin RNA or miRNA-
142-3p [257], or cationic liposomes physically attached on the envelope of a vaccinia virus
loaded with therapeutic messenger RNA (mRNA) and miRNA (viRNA) [258], showed
the ability to transfect in vivo the target cells, although the anticancer efficacy still re-
mains to be proven. Furthermore, two lipid-based formulations showed promising
pre-clinicals results. A lipopolyplex vector formed by a poly-(β-amino ester) polymer
(PbAE)/mRNA polyplex core, entrapped into a lipid shell composed of multivalent cationic
lipid (MLV5), DOPE, distearoylphosphatidilethanolamine-polyethilenglycol (DSPE-PEG)
and α -Galactosylceramide (α-GalCer) as an immunoadjuvant, has been tested as an anti-
tumor vaccine, showing good potential to transfect DC in vivo, inducing antigen-specific
CD8+ T cells and humoral immune responses. This activation of the immune system
caused a strong anticancer effect, both inhibiting tumor growth and prolonging survival
in a B16 F10 melanoma-bearing mice model [235]. On the other side, a novel clodronate-
containing liposomal formulation targeting tumor-associated macrophages (TAM) was able
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to induce apoptosis, reduce angiogenesis and reduce the secretion of pro-inflammatory
cytokines and finally reduce tumor volume in a primary melanoma model (B16-F10 in-
oculated s.c. in C57BL/6JOlaHsd). Moreover, the same formulation led to a significant
reduction in pulmonary tumor nodules in a metastatic model of melanoma, in which
lung metastases were induced by an i.v. injection of luciferase-B16-F10 melanoma cells in
C57BL/6JOlaHsd mice [236].

Another interesting nano-therapeutic strategy for melanoma developed by Italian
scientists is the association of photosensitizers to nanoparticles, as a tool for PDT. PDT is
well established for the treatment of local tumors, since it exploits a photosensitizer as a cy-
totoxic agent able to destroy tumors following irradiation. Hydrophobic phthalocyanines,
such as Zn(II)-phthalocyanine disulphides (C11Pc), very commonly used photosensitizers,
are ideal candidates for encapsulation in nanoparticles. The use of a nanoparticulate drug
delivery system allowed for an i.v. administration of the photosensitizer and promoted its
accumulation into tumor tissue, thus improving its therapeutic efficacy in an amelanotic
melanoma model [239]. Moreover, the conjugation of polyethylene glycol (PEG) molecules
on the surface of the gold nanoparticles enhanced their water solubility and circulation time
in the bloodstream, further improving the efficacy of the PDT [240]. Further interesting
results have been obtained by grafting the FDA-approved photosensitizer Verteporfin to
the surface of MSNs. Irradiation of B16-F10 melanoma-bearing mice following a tran-
scutaneous administration of the verteporfin-MSN led to a cytotoxic effect and inhibited
tumor neoangiogenesis [149]. PDT can also be exploited in combination with conventional
chemotherapy. A Zn-based photosensitizer has been encapsulated together with docetaxel
in poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) “core-shell” nanoparticles.
The formulation showed superior anticancer efficacy compared to controls in a model of
A375 (human amelanotic melanoma cells) in nu/nu mice [244].

Lastly, some efforts were dedicated to developing diagnostic systems with potential
therapeutic applications for melanoma treatment. Photo-acoustic (PA) imaging is an
interesting non-invasive and highly sensitive diagnostic tool. Many of the contrast agents
utilized for this technology are also cytotoxic for cancer cells. For instance, oil in water
(O/W) nano-emulsions embedding hydrophobic iron-cobalt oxide cubic nanoparticles
and loaded with curcumin were able to induce in vitro toxicity in melanoma cells and to
accumulate in a time-dependent manner in the tumor parenchyma of melanoma-bearing
mice. Although the anticancer efficacy has still to be proven, this seems a promising
theranostic approach [259]. Additionally, gold nanoparticles are good candidates for
PA imaging. Indeed, when loaded in Endothelial Colony Forming Cells (ECFC), gold
nanoparticles are efficiently delivered to the target site (tumor) with a favorable clearance.
Furthermore, such nanoparticles allowed PA signal detection and displayed anticancer
efficacy following an i.v. injection in CD1 mice bearing M6 melanoma tumors [245].

3.4. The University of Turin Approach

It should be noticed that a relevant number of the experimental works published in
this field within the Italian landscape has been carried out from researchers affiliated to the
University of Turin. Indeed, since placed in Northern Italy, a region characterized by a high
melanoma epidemiological incidence, as well as by a well-integrated nanotechnological
research network, the University of Turin is an important incubator for the advanced
pharmaceutical development of nanosystems aimed at melanoma treatment. The research
developed here was focused mainly toward the following three different approaches: (i) tra-
ditional chemotherapy repurposing, (ii) immunotherapy and (iii) a theranostic approach.

As the first option, nanocarriers were employed in order to repurpose traditional cyto-
toxic drugs: improved drug delivery was achieved by increasing stability in the biological
environment, by ameliorating the cross through biological barriers and by overcoming
chemoresistance. Within this concern, the following three main innovative and biocompat-
ible carrier systems, in house developed and patented, were considered: β-cyclodextrin
nanosponges (CDNS), lipid nanocarriers and chitosan-shelled nanobubbles (NBs). The
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former one consisting of cross-linked cyclodextrins, which were used to load paclitaxel,
a mitotic fuse inhibitor. The engineered formulations showed (1) an improved efficacy
against several immortalized melanoma cell lines, as well as a primary culture; (2) in vitro
motility and angiogenesis inhibition. In vivo experiments using B16-BL6 mouse model
demonstrated that CDNS-paclitaxel reduced tumor growth and neovascularization at sub-
therapeutic drug doses [232]. Among lipid nanocarriers, solid lipid nanoparticles (SLN)
prepared owing to the fatty acid coacervation method were firstly explored. In particular,
this solvent-free method allowed the delivery of TMZ as a dodecyl ester prodrug [233].
TMZ, a second line drug for metastatic melanoma, is administered by the oral route, and,
owing to its low molecular weight, is easily absorbed by the gastrointestinal tract and
able to overcome the blood–brain barrier, targeting brain metastases. However, its low
stability at the physiological pH makes it necessary to use high doses to obtain therapeutic
efficacy. Engineered TMZ SLN exerted promising efficacy at a sub-therapeutic dose after an
i.v. administration, without exhibiting toxic effects (B16-BL6 mouse model). Interestingly,
more robust results were obtained by using the same TMZ prodrug in a combination
chemotherapy protocol. In this case, injectable lipid nanoemulsion for parenteral nutrition
(Intralipid®-IL) was used as the lipid nanocarrier: mTOR inhibitor, rapamycin and the
high molecular weight monoclonal antibody, bevacizumab, were used in order to reduce
TMZ chemoresistance and to increase its antiangiogenic potential, respectively (Figure 4).
The drug combination strongly inhibited tumor relapse, migration and angiogenesis both
in vitro and in vivo, also through the activation of the immune system. No relevant side
effects were noted [234]. Nonetheless, cancer chemoresistance remains a relevant issue
for traditional chemotherapy. Therefore, melanoma chemoresistance can be overcome by
the silencing RNA (siRNA)-mediated inhibition of the Nuclear factor E2-related factor
2 (Nrf2), which is involved in the transcription of antioxidant and cytoprotective genes.
Indeed, it has been shown that upregulation of Nrf2 is able to inhibit several characteristics
that confer malignant behavior to the tumor. In an interesting work, siRNA was encap-
sulated in aqueous droplets inside the decafluoropentane core of chitosan-shelled NBs.
The siNrf2-NBs were rapidly internalized in M14 melanoma cells and induced a down-
regulation of the target genes, thus sensitizing the resistant melanoma cells to cisplatin.
Therefore, an siRNA-mediated Nrf2 inhibition could be a useful approach to overcome
drug resistance [260].

However, the most intriguing results came from the immunotherapeutic approach.
Indeed, nanosystems can be exploited for the delivery into nanocarriers of costimulatory
molecules related to immune checkpoints, which mediate signals associated with the
anti-tumor response. Inducible Co-Stimulator (ICOS) is mainly expressed by activated
T cells and binds ICOS-ligand (ICOS-L or B7H) expressed by several immune cell types,
as well as by fibroblasts. By using a soluble form of ICOS, called ICOS-Fc, developed
and patented in house [261], cell adhesion and migration inhibition was demonstrated
in several immortalized melanoma cell lines, as well as in a primary culture expressing
ICOSL. Furthermore, ICOS/ICOSL interaction inhibited lung metastasis in a B16-F10
mouse model. The anti-tumor effect was probably exerted by acting on both cancer
cells and the tumor microenvironment, including DCs, endothelial cells (ECs) and TAM.
However, no effect on primary tumor growth was demonstrated, regardless of the dose,
administration route and animal experimental model. An inefficient in vivo biodistribution
of ICOS-Fc could explain these unsatisfactory results [262]. Therefore, the above mentioned
CDNS and poly (lactic-co-glycolic acid) (PLGA) nanoparticles were used as ICOS-Fc
delivery systems. Interestingly, these formulations inhibited tumor growth acting on
different mechanisms. Indeed, CDNS/ICOS-Fc inhibited T regulatory lymphocytes (Treg),
reducing IL-10 and Forkhead box P3 (FoxP3) expression [263], as immune checkpoint
inhibitors do, while PLGA/ICOS-Fc nanoparticles worked efficiently despite the absence
of an immune modulating effect. Furthermore, both the formulations inhibited tumor
vascularization, as well as the adhesion and migration of the tumor cells expressing
ICOSL [237]. Further efforts are currently underway in order to determine the molecular
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basis underlying the different mechanism through which these different nanocarriers
exert their therapeutic effect. A different approach to exploit the immune system to fight
melanoma involved the development of vaccines based on polylactic acid (PLA)/PLGA
nanoparticles decorated with mannose residues, for DCs targeting. Such nanoparticles were
able to encapsulate two different melanoma antigens (MART-1 MHCI and MHCII restricted
peptides), together with adjuvants and immunopotentiators (mainly TLR agonists). The
immunization of tumor-bearing mice with the nanosized vaccine showed superior ability
to elicit a specific anticancer immune response compared to the co-administration of
all the vaccine components (antigens, adjuvants, etc.) in solution. Furthermore, the
treatment of C57BL/6J mice bearing either RET or B16-F10 s.c. murine melanoma with the
nanovaccine in combination with immunocheckpoint modulators (PD-1 and OX40) and
with ibrutininb, an inhibitor of myeloid-derived suppressor cells (MDSC), led to a strong
therapeutic effect [238].

Figure 4. Rationale for melanoma polychemotherapy loaded in nanoemulsions. Abbreviations: Akt: protein kinase B; BVZ:
bevacizumab; ERK: extracellular signal-regulated kinases; FOXO: forkhead box O; Mcl-1: Induced myeloid leukemia cell
differentiation protein 1; mTOR: mammalian target of rapamycin; PTEN: phosphatase and tensin homolog; RAP: rapamycin;
ROS: reactive oxygen species; SOD: superoxide dismutase; TMZ: temozolomide; VEGF: vascular endothelial growth factor.

Finally, nanosized delivery systems have been exploited for diagnostic purposes. A
new amphiphilic chelate of Gadolinium, GdDOTAGA(C18)2, was synthesized and then
embedded in either liposomes or dendrimersomes [264]. The latter formulation has shown
optimal features to enhance the imaging capacities of the Gadolinium complex. Following
the i.v. injection of the dendrimersomes in the tail vein of C57BL/6, no cytotoxic effects were
reported. Furthermore, the formulation shows thermodynamic stability, water exchange
rate and high relaxivity, which are fundamental for in vivo MRI imaging and for potential
theranostic applications.

4. Current Challenges and Future Directions

Despite the introduction in clinical practice of the BRAFi/MEKi and of the immune
checkpoint modulators for the treatment of metastatic melanoma, the 5-year overall sur-
vival remains poor [27]. In fact, BRAFi are effective in up to 50% of melanoma patients,
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but typically after 6–8 months of treatment, drug resistance phenomena lead to a relapse
of the disease [265]. Immune checkpoint inhibitors are indeed more effective in achieving
long-term remission but are still limited to 30% of melanoma patients as single therapy.
Nevertheless, severe side effects often lead to treatment discontinuation [266].

Therefore, the main open challenges in melanoma treatment are (1) to improve the
selectivity of anticancer drugs for tumor cells and the microenvironment, while spar-
ing healthy tissues; (2) to overcome the chemo-resistance, since malignant melanoma is
notoriously resistant to radiotherapy and chemotherapy, this fact being relevant to its
clinical outcome.

In this context, the targeting of tumor tissue by nanomedicines is a promising approach.
Indeed, nanocarriers’ unique features (such as reduced size, variable shape, high surface
area-to-volume ratio, favorable drug release profile and targeting features) promote their
preferential accumulation in tumor tissues, where they can deliver multiple therapeutic
agents, not only to enhance their therapeutic effect on a synergistic or additive basis, but
also to overcome the acquired resistance to single chemotherapeutic drugs. Indeed, among
the large number of nanomedicines in the clinical stage of development, very few are
intended for melanoma therapy. Nevertheless, at the preclinical level, many nano-sized
formulations showed efficacy in animal models [267].

In particular, researchers in Italy employed nanocarriers to deliver several types of
therapeutic molecules, both conventional, targeted and/or immunotherapies. Despite the
fact that most of these drugs are not currently used in the clinical routine for melanoma,
the improved efficacy of these nanomedicines was documented in cell and animal models,
in terms of therapeutic dose reduction and selective tumor accumulation, as compared to
free drugs. This opens future perspectives for the repurposing of such compounds also
for melanoma therapy. In fact, the future of nanomedicine will improve the efficacy of
conventional therapies by exploiting the concept of personalized therapy as a consequence
of the opportunity of modulating the various parameters of nanosystems. For instance,
their application for the combined therapy of tumors (simultaneous delivery of multiple
anticancer drugs/combination of conventional chemotherapeutics with other treatment
modalities), as well as the delivery of anticancer drugs in association with photosensitizing
agents, nucleic acids, antiangiogenic compounds may all better exploit the versatility of
the proposed systems and their ability to overcome chemoresistance mechanisms, thus
increasing the final anticancer effect [268]. Finally, bio-nanotechnology has added a new
dimension to the development of nanomedicines. If nanocarriers based on supramolecular
assemblies can be intelligently designed to exploit physiological or biochemical features
of infectious or malignant diseases, it should be possible to carry large payloads of the
respective drug to the pathogenic site. It is noteworthy that, since the vitro/vivo bottleneck
is the main obstacle to pharmaceutical development, toxicity and pharmacokinetic issues
should be addressed at an early stage, when selecting promising new nanomedicines, since
in vivo studies will primarily decide their fate [269].

Nevertheless, although selective targeting of nanomedicines represents a great im-
provement in comparison to free drugs, it is a very complex mechanism and represents
a challenge itself. Indeed, for instance, overexpression of a specific surface protein is not
enough to assure selective targeting, as they are also normally expressed in normal cells.
Therefore, in the case of unexpected and unwanted off-target distribution, the high toxicity
of most of the administered drugs for melanoma therapy is still a critical point. Some
studies developed in small animal models showed promising results, but currently, the
translation from animal results into clinical success has been limited, since more clinical data
are needed to fully comprehend the mechanism and toxicity of such nanomedicines [270].
Within this concern, pharmaceutical companies should face high expenses for manufac-
turing processes and clinical trials with uncertain perspectives, due to the low success
rates of novel nanomedicines. Perhaps, focusing on more specific indications for novel
nanomedicines, suitable for particular categories of patients affected by melanoma, as well
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as extensions to other types of cancer potentially sensitive to such therapeutic approaches,
could be a good recommendation to maintain a profitable economic growth rate [271].

5. Conclusions

This review pointed out that nanomedicine can be a significant tool for improving
melanoma treatment. Indeed, employing a nanoplatform would allow some limitations
of current melanoma therapy, such as cancer resistance and lack of specificity to tumor
cells, to be overcome. Moreover, nanosystems can be designed to modify the drug biodis-
tribution, to deliver chemotherapeutics into the tumor microenvironment and to increase
drug retention at the target tumor site. These benefits might allow the administration of
decreased doses of chemotherapeutic compounds, thus reducing the occurrence of adverse
side effects, and resulting in an improved quality of life for patients. However, due to
the inherent limitations of nanotechnology, the approval rate for novel nanomedicines is
below 10% and the most valuable nanotechnology approaches currently under evaluation
in clinical trials for advanced melanoma involve the off-label use of already marketed
nanotechnology products.

The interest of the Italian research groups for the treatment of malignant melanoma
is due both to epidemiological and industrial reasons, and it led to the development of
innovative nanomedicines that are able to store and release small molecules as well as
biomacromolecules. Such nanodelivery systems might be employed to overcome the
critical points of either traditional monotherapy or combination therapy, including the im-
munotherapy approach. A relevant number of them were able to overcome the vitro/vivo
bottleneck, since their melanoma-fighting potential was shown in animal models, and the
encouraging results obtained could pave the way for future clinical translation. Indeed,
presently, all the developed nanoformulations can represent an interesting and challenging
library for clinical researchers, addressing the main therapeutic issues of local advanced
stage and metastatic stage melanoma.
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