The best in the class

Ainoa Aparicio Fenoll ${ }^{1}$
University of Turin Corso Unione Sovietica, 218bis, Torino 10134, Italy

ARTICLE INFO

Keywords:

Rank effects
Peer effects
Omitted variables bias
Ability tracking

Abstract

I estimate the effect of being the best in the class in primary school on performance in secondary school. I implement a novel methodology that exploits that some students are the best in the class because better students in the same school are assigned to other classes. If students were randomly assigned, the probability of being the best in the class would be a well-known function of students ranking in the school and the number of classes. I use this exogenous probability as an instrument for actually being the best in the class. I find a positive impact of being the best in the class on future performance: being the best in primary school increases test scores by 0.13 standard deviations in secondary school. My instrument is suitable to account for the sorting of units into groups in other contexts.

1. Introduction

Top-performing students are likely to be tomorrow's leaders. Jeff Bezos, founder and chief executive officer of Amazon.com and richest man in the world, graduated valedictorian of his high school and summa cum laude from Princeton University. Bill Gates, founder of Microsoft and second richest man in the world, was a National Merit Scholar and scored 1590 out of 1600 on the SAT (Forbes, 2019). Also according to Forbes (2000), most top CEOs excelled in education: 24% of top CEOs in Europe have PhD degrees, while the proportion of PhD graduates among top CEOs in China is 33%. However, little research is devoted to excellent students. In the US, the National Association for Gifted Students regrets the absence of a uniform federal policy for "gifted services". This lack of regulation results in a variety of State policies which go from "Accommodation in the regular classroom" (where gifted students become the best in the class) to "Full-time grouping with students of similar abilities" (where, with one exception, excellent students are not the best in the class). ${ }^{2}$ In this paper, I study the consequences of being the best student in the class for future academic performance.

Previous literature shows that, on average, higher positions in the school-cohort ranking lead to better future academic performance. However, this average effect may not apply to the top performer in the
class: first, being the best is more salient. Students may know who the best student in their class is, but may ignore the identity of the fifth or the nineteenth student. Visibility may imply social approval which boosts self-confidence and therefore future performance (Ferkany, 2008). It may also imply more attention and better treatment by teachers and peers. However, it may also imply higher expectations about students' future performance which may harm those students with low capacity to cope with pressure (Cotton, Dollard, \& De Jonge, 2002). Second, the very best student may be demotivated from lack of competition, worsening future performance. Third, the very best students do not have better peers who may influence them positively, which puts them at a disadvantage in comparison to similar students who have better peers. ${ }^{3}$ However, best in the class students may benefit from having worse peers if teachers grade on the curve (Calsamiglia \& Loviglio, 2019). Finally, best students may be more likely to be bully victims, which harms future performance (Brown \& Taylor, 2008). Actually, Murphy \& Weinhardt (2020) estimate school-cohort ranking effects in a sample of schools where most schools have only one class per cohort and find that the impact of being at the top of the school cohort is higher than the average school cohort ranking effect.

I propose a novel methodology to estimate the impact of being the best in the class on future performance that can be applied to contexts

[^0]where school cohorts have more than one class. I exploit the allocation of students to classes within a school. In practice, this allocation may not be random. For this reason, I use the theoretical probability of being the best in the class under random assignment of students to classes within a school as an instrument for being the best in the class. My identification strategy relies on two facts: first, a student becomes the best in the class only if all better students in the same school-cohort are allocated to other classes. Second, if the allocation of students to classes within a school was completely random, the probability of being the best in the class would be a deterministic function of the student's position in the schoolcohort ranking and the number of classes in the school-cohort. For example, the second student in a school-cohort with two classes only becomes the best in her class if the first student is allocated to another class. This occurs with a probability of one half. If the second student in the school-cohort attends a school with three classes, this probability goes up to two thirds. Finally, the third student in the school-cohort has a probability of being the best in the class in a school with two classes equal to the probability that both the first and the second student in the school-cohort are in the other class $\left(0.5^{2}=0.25\right)$. My instrument can be applied in many situations where sorting to classes may be an issue.

My objective is to compare the future performance of individuals with the same ability where one is the best in the class and the other one is not. To make these individuals comparable, I use information on students' performance in a standardized test. I take into account individuals' ability by including test score fixed effects and show that my results are consistent when I use the highest rank polynomial used by previous literature. ${ }^{4}$

An additional challenge for the estimation of best in the class effects is that the assignment of students to classes may not be random. I account for selection into classes as well as peers and teacher characteristics by including class fixed effects in my regressions and by instrumenting best in the class by the theoretical probability of being best in the class. The latter is based on information from the entire school-cohort and is therefore unaffected by selection of students into classes.

I use data on standardized tests administered to all students in Italy. These tests cover two subjects (mathematics and reading), are designed by an agency of the Italian Government (the National Institute for the Evaluation of the School System - INVALSI), and are mandatory for all students. Students are tested in second, fifth, eighth, and tenth grades of compulsory schooling. In my main analysis, I use information on mathematics test scores for fifth and eighth grades, which correspond to the last grades of primary school and secondary school.

Best in the class effects could be consistently estimated by OLS regressions of future performance on the best in the class dummy including class fixed effects if the assignment of students to classes within a school was random. I test whether my data is consistent with random allocation using the random allocation test proposed in Guryan, Kroft, \& Notowidigdo (2009), which explores the correlation between test scores within a class. I adapt the test to my setting by studying whether primary school grades are correlated within secondary school classes. My results indicate that there is a positive and significant correlation between students' primary-school performances within secondary-school classes in my data. The positive sign of the correlation indicates that allocation of students to classes within a school is not random and therefore I cannot interpret OLS estimates of future performance on best in the class as causal. This justifies the use of my instrument.

Results show that being the best in the class significantly increases students' future performance. The magnitude of the estimated effects is high. Being the best in the class in fifth grade increases test scores by 0.13 standard deviations in eighth grade. Results are robust to the use of data from other grades and reading rather than mathematics test scores.

[^1]Estimates cannot be explained by students' absences or measurement error in students' performance. The effect of being second in the class on future performance is also positive but smaller in magnitude.

1.1. Related literature

I focus on the best students in the class. The economic literature that studies talented students is scarce. Some exceptions are Griffith \& Rask (2007) and Horstschräer (2012), who study talented children's school choice and Figlio \& Lucas (2004), who analyze the impact of high grading standards on high ability students.

This paper relates to the literature on the impact of relative position in the school ranking on future educational outcomes. ${ }^{5}$ Recent papers on this argument include Murphy \& Weinhardt (2020), Elsner \& Isphording (2017), and Denning, Murphy, \& Weinhardt (2018). Murphy \& Weinhardt (2020) find that being ranked highly during primary school has large positive effects on secondary school achievement in the UK, with the impact of rank being more important for boys than girls. In their sample, most schools have only one class per school cohort and therefore their school ranking effects are very similar to class ranking effects. To identify ranking effects, they account for test scores in primary school using polynomials up to cubic and include school-subject-cohort fixed effects in their regressions. Additionally, they estimate separate parameters for being top and bottom of the school cohort and, consistent with this paper, they find discontinuously large estimates for being at the extremes of the rank distribution.

Elsner \& Isphording (2017) and Denning et al. (2018) focus on long run ranking effects. In the US context, Elsner \& Isphording find that if two students with the same ability have a different rank in their respective cohort, the higher-ranked student is significantly more likely to finish high school, attend college, and complete a 4 -year college degree. Denning et al. find that a student's rank in third grade negatively impacts grade retention while it positively affects test scores, high school graduation, college enrollment, and earnings up to 19 years later in the US. In contrast to the two papers mentioned above, I estimate the effect of being the best rather than the average effect over all ranking positions. Moreover, I focus on the best in the class rather than the best in the school. The high magnitude of my best in the class effect compared to the effect of school-cohort percentile rank in these papers is consistent with the class being a closer reference group for students (Dopplinger, 2014).

The closest papers to mine focus on the class ranking rather than the school ranking and exploit a random allocation of students. Cicala, Fryer, \& Spenkuch (2017) find that, in the context of 61 Kenyan primary schools, increasing a student's class rank by fifty percentiles boosts test scores at the end-line by about 0.2 standard deviations. They make use of random allocation of students to classes within the same school and assume that ability is well accounted for using a quadratic polynomial of test scores. Bertoni \& Nisticò (2018) exploit a similar experiment implemented in the University of Amsterdam where first year students in Economics were randomly allocated to tutorial groups. They show that students with higher ordinal ability rank within groups have better

[^2]academic outcomes. In their setup, moving from the bottom to the top of the within-group ability distribution increases the number of credits achieved by about half of a standard deviation. Elsner, Isphording, \& Zölitz (2018) exploit data with repeated random assignment of students to teaching sections and find that a higher rank increases performance and the probability of choosing related follow-up courses and majors. Differently from these three papers, I focus on the best student rather than the average effect of ranking positions and my methodology does not require experimental data.

Given that the best in the class is a very salient position, my paper closely relates to the literature on ranking concerns. There is evidence suggesting that students care about their achievement rank even in the absence of specific rank incentives (Tran \& Zeckhauser, 2012, and Azmat \& Iriberri, 2010). Rank concerns have been studied also in various fields outside of education, for example, in the study of well-being at work and job satisfaction (Brown, Gardner, Oswald, \& Qian, 2008, and Card, Mas, Moretti, \& Saez, 2012), of performance in sports tournaments (Genakos \& Pagliero, 2012), and of labor market productivity (Vidal \& Nossol, 2011), among others. Tincani (2017) points at ranking concerns as one of the mechanisms behind the heterogeneity of peer effects. The experimental papers by Gill, Kissová, Lee, \& Prowse (2019) and Kuziemko, Buell, Reich, \& Norton (2014) show that individuals react to being at the extremes of the distribution. I provide field evidence broadly in line with their experimental findings.

The remainder of this paper is organized as follows. I present the data and institutional background in Section 2. In Section 3, I describe my methodology and in Section 4, I present my results. Section 5 discusses several extensions and robustness checks. I conclude in Section 6.

2. Data and institutional framework

Education is compulsory in Italy from age 6 to 16 . The education system is divided into primary school (five years), secondary school (three years), and high school (five years). Admission to Italian primary schools is based on a point system in which distance from home to school, having attended a kindergarten under the same school administration, and number of siblings (especially if they already attend the same school) increase the likelihood of admission. The weight given to each of these factors changes across municipalities. I provide more details about the institutional framework in Appendix A.1.

I use standardized test score data from the National Institute for the Evaluation of the School System (INVALSI) which covers the universe of Italian students. Students take standardized tests in the second quarter of the second and fifth year of primary school, then three years later in the third year of secondary school and finally two years later in the second year of high school. INVALSI provides data from academic years 2009-10 to 2016-17.

INVALSI tests present two crucial features for this analysis: first, all students in Italy take the same test. This allows me to rank individuals in the same school and to use standardized scores as a measure of ability. Second, individual identifiers are available for the academic years 2013-14 to 2016-17. I use these identifiers to link individuals in two consecutive tests taken three years apart. This is crucial for my identification strategy because I can study the impact of being the best in the class in a given grade on performance three years later: performance in eighth grade (secondary school) of the best in the class in fifth grade (primary school).

From second to fifth grade most students remain in the same school, with the same classmates and teachers. In contrast, from fifth to eighth grades all students change school, teachers and at least part of their classmates. For the identification of ranking effects, it is crucial to rely on a pre-determined test score. Murphy \& Weinhardt (2020) for example use primary school (KS2) test scores to rank students in secondary school. Elsner \& Isphording (2017) rank students on a measure of crystallized intelligence which they argue to be fixed before primary school. I hence focus on the impact of being best in school in primary
school (fifth grade) on performance in secondary school (eighth grade).
The INVALSI data contains test scores from two subjects (reading and mathematics) and indicates the number of correct answers. I focus on mathematics tests instead of reading because Italian proficiency is likely to be affected by migrant status or the use of a regional language at home (14% of students declare to speak a language other than Italian at home). Still, I check the consistency of my results with those obtained using reading test scores in Section 5. I standardize test scores by subject, academic year, and grade to have zero mean and unit variance (as in Angrist, Battistin, \& Vuri, 2017). The data set also includes students' characteristics (among them: gender, migrant status, and whether they attended daycare and/or kindergarten) and parental characteristics (among them: migrant status, level of education, and occupation).

I make a series of exclusions to arrive at the sample that I use for my analysis. I start from individuals who attended fifth grade in the academic years 2012-13 to 2013-14 because those are the only cohorts for which I have information on test scores in eighth grade. From this sample, I select individuals who are in the first eighteen positions of the school ranking. I choose that threshold because for those individuals the probability of being the best in their class is at least 1%. I show that results remain arguably unchanged when I use individuals in the first ten, fifteen, and twenty-five positions instead. Finally, I exclude students in schools with only one class as my instrument is not exogenous for them.

The resulting data set includes 249,309 students. As part of my supplementary analysis, I also estimate the impact of being the best in second grade on fifth grade and the impact of being the best in eighth grade on tenth grade for which there are 234,502 and 147,520 students, respectively. ${ }^{6}$ The average fifth grade student answers correctly 75% of the questions in the mathematics tests. The corresponding percentages for second and eighth graders are 76% and 81%, respectively.

Table 1 presents average key characteristics of students and their parents. I describe separately the samples used in the estimations of the effect of being the best in the class in second grade on fifth grade performance (first two columns), being the best in the class in fifth grade on eighth grade performance (third and fourth columns), and being best in the class in eighth grade on tenth grade performance (last two columns). I first comment on the samples of fifth to eighth graders which are used in my main analysis and then highlight the differences with respect to the sample of second to fifth graders and eighth to tenth graders.

The average test score in the sample of fifth to eighth graders moves from 0.8 standard deviations in fifth grade to 0.6 in eighth grade. The average student in my sample has a theoretical probability of being the best in the class slightly below 0.15 . On average students are in schools with 3 classes and 18 students per class. ${ }^{7}$ As my sample is composed of students in ranking positions $1-18$, the average student in my sample is number 9 in the school-cohort ranking. There are slightly more males than females. Although the incidence of foreign-born is relatively low (3%), around 8% of students have an immigrant father and around 10% of mothers are immigrants. In the sample of second to fifth graders, descriptive statistics are extremely similar to those in the main estimation. Only the reduction in test scores three years later is sharper. In the sample of eighth to tenth graders, average test scores are much higher (1.14 in eighth grade which go down to 0.77 in tenth grade). Also, the theoretical probability of being the best in the class is much higher (0.23). The latter is a consequence of the larger number of classes in the

[^3]average school (4). Demographic characteristics are comparable across the three samples.

Table 7 in Appendix A. 2 provides further information for these groups; it describes daycare and kindergarten attendance and the education and labor market status of parents. The proportion of students who attended daycare was 34% among fifth graders. As much as 86% of students attended kindergarten. Regarding the education level of parents, 43% of mothers have a high-school degree. The proportion of university graduated mothers is 21%. Fathers are slightly less educated: 39% of them have a high-school degree and around 18% have a university degree. The proportion of homemakers among mothers is relatively high (33\%). Although the proportions of white collar workers are the same for mothers and fathers ($43-44 \%$), the proportions of selfemployed and blue collar workers are low for mothers (9% and 11% in each category). These proportions are much more relevant for fathers (one fourth of fathers are self-employed and another fourth are blue collar). These characteristics are in line with those observed for the sample of second to fifth and the sample of eighth to tenth graders except for the proportion of students who attended daycare which decreases with the grade (moves from 39% to 34% and 27%) and for the proportion of students who attended kindergarten which is higher (89\%) for children in the highest grades.

3. Methodology

My first objective is to address whether students are assigned to secondary school classes depending on their performance in primary school. ${ }^{8}$ If allocation was completely random, I could estimate the impact of best in the class using an OLS regression of future test scores on best in the class controlling for class dummies. Otherwise, my instrument becomes useful to estimate the impact of best in the class on future performance. The random allocation test also speaks about the properties of my IV estimation. If class assignment is close to a random allocation, the correlation of best in the class with the exogenous probability of being the best in the class is high and hence my instrument is strong.

I explore the randomness of class assignment by regressing the individuals' test scores in primary school on the average test scores obtained in primary school by their secondary school classmates. In the context of this regression, the coefficient associated with the average test scores is negatively biased even when classes are formed randomly. The reason is that individuals cannot be their own peers, i.e., the urn from which the classmates of an individual are drawn does not include the individual. Thus, even under random assignment, students at risk to be classmates with high-test score individuals have on average lower test scores than students at risk to be classmates with low-test score individuals. Guryan et al. (2009) propose a correction to account for this negative bias by including the average test score of all potential class members excluding the student as a control in the regression. The resulting equation is as follows:
where TS is the mathematics test score at the individual level while Mean TS in class and Mean TS in school are the average test scores of all students excluding individual i in the class and school-cohort, respectively. Subindexes t and $t+3$ refer to primary and secondary school, respectively. Under random assignment, γ_{1} equals zero.

If the coefficients arising from the estimation of Eq. (1) are equal to their theoretical values under random assignment, I can estimate the impact of being the best in the class on future outcomes using OLS. Otherwise, I need to use an IV. In this latter case, if the coefficient estimates are close to their theoretical values, class assignment is close to random, and as a consequence, my instrument is strong.

After this preliminary check, I move to the estimation of the impact of being the best in the class on future performance. I regress the test score in secondary school on a dummy for being the best in the class in primary school as follows:
$T S_{i, t+3}=\alpha_{0}+\alpha_{1}$ Best $_{i, t}+\alpha_{2} X_{i, t}+\alpha_{3} D(T S)_{i, t}+\alpha_{4} D\left(\right.$ Class $_{t}+\varepsilon_{i, t}$
where Best is an indicator of best student in the class. X are the individual characteristics described in tables 1 and $7, D(T S)$ are dummies for test scores (rounded up to the first digit), and D (Class) are class fixedeffects. ${ }^{9}$

Including students' test scores at time t accounts for students' ability. Contemporaneous test scores also control for contemporaneous effects of being the best in the class on test scores. Cicala et al. (2017) account for ability including the baseline score and its square, Murphy \& Weinhardt (2020) include polynomials up to the cubic term, while Elsner \& Isphording (2017) include a fourth order polynomial of test scores in their regressions. In my main analysis, I use the most flexible specification by first rounding the test score data up to the first digit and then including (rounded) test score fixed effects in my regressions. Finally, the vector of class fixed effects is necessary to account for average selection into classes, peer effects, teacher quality, and any other average unobservable characteristic which is common to all students in a class.

In the context of the previous regression, some concerns on the exogeneity of best in the class may arise. Excellent students may influence each other such that the presence of another excellent student in the class makes it less likely to be the best in the class and increases future test scores, generating a negative bias. Class fixed effects do not eliminate this bias as excellent students may not affect all classmates equally. For this reason, I propose an instrument that provides consistent estimates even if class allocation is not random. The instrument is also useful to attenuate measurement error or in case specific types of students move classes. It also helps if expectations about future test scores influence the effort students make to become the best in the class.

$$
\begin{array}{r}
T S_{i, t}=\gamma_{0}+\gamma_{1} \text { Mean } \text { TS }_{t} \text { in class }_{-i, t+3}+\gamma_{2}{\text { Mean } T S_{t} \text { in school }_{-i, t+3}+\gamma_{3} \text { School-cohort }_{i, t+3}+\ldots}_{\ldots+\gamma_{4} \text { Class-size }_{i, t+3}+\gamma_{5} D(t+3)+v_{i, t}} .2
\end{array}
$$

[^4][^5]
3.1. The instrument

My instrument is the theoretical probability P of being the best in the class under random assignment of students to classes within a school. To construct P, I take two variables as given: students' position in the school-cohort ranking and the number of classes in the school-cohort. Therefore, P is the theoretical probability that all better students in the same school-cohort are allocated to other classes. In practice, this is a deterministic function of position in the school-cohort ranking and number of classes in the school-cohort such that:

- If the student is the second in the school-cohort \& there are two classes in the school, then $P=1 / 2$.
- If the student is the second in the school-cohort \& there are three classes in the school, then $P=2 / 3$.
- If the student is the third in the school-cohort \& there are two classes in the school, then $P=1 / 2 * 1 / 2=1 / 4$
- If the student is the third in the school-cohort \& there are three classes in the school, then $P=2 / 3 * 2 / 3=4 / 9$

The general formula for this theoretical probability is:
$P=\left(\frac{\# \text { classes }-1}{\# \text { classes }}\right)^{(C R-1)}$
where \#classes is the number of classes in the school-cohort and $C R$ is the position of the student in the school-cohort ranking. ${ }^{10}$

Fig. 1 shows the theoretical and empirical probabilities of being the best in the class. The empirical probabilities are the proportion of best in the class students among those with the same theoretical probability. The 45-degree line illustrates the reference case in which theoretical and empirical probabilities are the same, i.e., under random assignment. The size of the circles reflects that the nature of the instrument makes certain values of the theoretical probabilities more common (for example: 0.5, $0.25,0.125$, and 0.03125). The actual probabilities of being the best in the class are similar but typically smaller than the corresponding theoretical values under random assignment. This can be explained if in some cases, students of similar abilities are assigned to the same class or if there are peer effects.

The instrument is a function of the school-cohort ranking and the number of classes in the school. The instrument would be invalid only if there was an omitted factor correlated with the specific functional form in Equation (3) after controlling for class fixed effects.

4. Results

I first present the results of testing the random assignment of students to classes within a school. I then show the naïve OLS estimates of test scores on best in the class which constitute a reference for the causal estimates. Finally, I describe the results of the set of regressions associated with the causal estimate of best in the class on future performance.

Table 2 shows the results of the test for exogeneity of assignment of individuals to different groups proposed by Guryan et al. (2009). This test incorporates a correction of the negative bias induced by the presence of the individual herself in the analyzed group. I implement it by estimating Equation (1). The results of this test suggest that there is a

[^6]positive and significant correlation among students' performance within classes. Results are robust to the inclusion of average test score obtained in primary school by primary school classmates as an additional control in Equation (1). This positive assortative matching may arise because principals assign students of similar ability to the same class. This confirms that I need to use my instrument to obtain consistent estimates of the effect of being the best in the class on future performance.

I then move to the estimation of the causal effect of being the best in the class. As a reference point, I estimate the OLS regression of test scores in secondary school on being the best in the class in primary school controlling for a fourth order polynomial of test scores at t, indicators of other positions in the class ranking, the individual characteristics described in Tables 1 and 7, school-cohort fixed effects, and year indicators (see column 1 of Panel A, Table 3). I first add class fixed effects (column 2) and then substitute the fourth order polynomial of test scores by test score dummies (column 3) to arrive to the specification in Equation (2). We find that the association between best in the class and future test scores is positive and small in all regressions. Controlling for class fixed effects reduces the coefficient associated with best in the class from 0.14 to 0.05 . Substituting the fourth order polynomial in test scores by test score fixed effects leaves the coefficient almost unaltered. This suggests that unobserved average characteristics of the class may be biasing the OLS coefficient upward.

To address the potential endogeneity of best in the class in the OLS regressions above, I use the instrument defined in Section 3.1. The first stage estimations displayed in Panel B, Table 3 show that the instrument is strong in all three specifications. Therefore, my IV regressions provide valid estimates of the causal effect of best in the class for the subpopulation of compliers, i.e., those randomly assigned to classes for whom the probability of being the best in the class depends on the exogenous probability that better students are assigned to other classes.

Next, I estimate the impact of the theoretical probability of being the best in the class in primary school on test scores in secondary school. I use a reduced form specification in which I substitute the dummy for being the best in the class by the theoretical probability of being the best in the class under random assignment in Equation (2). The results of such exercise are displayed in Panel C, Table 3. The effect of the theoretical probability of being the best in the class on future test scores is positive, significant and consistent across specifications. The magnitude of the estimated causal effect shows that a change in the theoretical probability of being the best in the class from zero to one increases test scores three years later by 0.14 standard deviations.

To gain a sense of the magnitude of the impact of being the best in the class on future test scores I instrument being the best in the class by the theoretical probability of being the best in the class. Results in Panel D, Table 3 show that individuals who become the best in the class because school mates who are better than them are assigned to a different class improve their test scores three years later by 0.13 standard deviations on average. ${ }^{11}$ The higher magnitude of my IV estimates with respect to my OLS estimates indicates that, when within-class correlation is present, the estimated best in the class effect is smaller because also the performances of the best and other students in the class are correlated. Results are robust to the use of raw test scores computed as the sum of correct

[^7]

Fig. 1. Empirical versus theoretical probabilities of being the best in the class. Notes: Data is from INVALSI test for the years 2012-13 and 2013-14. Each circle represents the proportion of best of the class students for each value of the theoretical probability of being the best in the class. The size of the circle is proportional to the number of students used to compute the probabilities.

Table 1
Descriptive statistics. Grades 2, 5 and 8.

Variable	Grade 2		Grade 5		Grade 8	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Test score in t	0.769	0.639	0.778	0.663	1.137	0.623
Test score in $t+\tau$	0.481	0.840	0.606	0.879	0.771	0.926
Instrument	0.148	0.265	0.148	0.265	0.232	0.294
\# classes	2.647	1.019	2.65	1.026	4.178	2.339
\# students in class	19.135	3.761	18.458	3.772	19.683	3.926
Student ranking in grade	9.444	5.184	9.449	5.186	9.247	5.189
Male	0.531	0.499	0.534	0.499	0.541	0.498
Immigrant child	0.019	0.138	0.027	0.163	0.031	0.173
Immigrant father	0.085	0.28	0.079	0.27	0.069	0.253
Immigrant mother	0.108	0.31	0.099	0.299	0.088	0.284

Notes: This table presents averages and standard deviations (left and right column, respectively) for each sample used in the estimations. The number of observations is 234,502 in grade $2,249,309$ in grade 5 and 147,783 in grade 8. $t+\tau$ refers to the next grade for which an INVALSI test is available.
answers rather than standardized test scores. Removing students with test score equal to that of another classmate leaves the estimated effect of best in the class arguably unchanged (there are 7\% of test score ties in the data.).

5. Robustness checks and extensions

In this section, I first study the robustness of my main results. In

Table 2
Random assignment test with negative bias correction.

	Grade 5	Grade 8	Grade 10
Mean TS $_{t}$ class $_{t+3}$	0.216	0.192	0.349
	$(0.006)^{* * *}$	$(0.007)^{* * *}$	$(0.011)^{* * *}$
Mean TS $_{t}$ grade $_{t+3}$	-39.868	-60.076	-43.454
	$(0.188)^{* * *}$	$(0.494)^{* * *}$	$(0.966)^{* * *}$
Obs.	645890	818615	356762
R^{2}	0.839	0.705	0.519

Notes: Data is from INVALSI test for the years 2012 - 13 and 2013 - 14. The dependent variable is the standardized mathematics test score. All regressions include school-cohort fixed effects, class size dummies, and year indicators. Standard errors are clustered at the school level. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05$, ${ }^{*} \mathrm{p}<0.1$.
particular, I check whether students who are best in the class are comparable to those in other positions of the class ranking in terms of predetermined characteristics after controlling for all the variables in Equation (2). Next, I explore whether my results are affected by students' absenteeism. I then study whether my results are driven by measurement error in students' performance. Moreover, I show that my results are robust to the inclusion of the standard measure of percentile rank used by previous literature (Murphy \& Weinhardt, 2020 and Elsner \& Isphording, 2017) as an additional control in my regressions. Besides, I show that results become even stronger when I exclude the best student in the school cohort who does not contribute to the identification.

I also extend my analysis in several ways: I study the impacts of being the best in the class in second grade on performance in fifth grade and being the best in the class in eighth grade on performance in tenth grade, I replicate my analysis using reading test scores rather than mathematics

Table 3
Main specification Panel A: Test scores in secondary school on best in the class in primary school. OLS.

	(1)	(2)	(3)
Best in class	0.144	0.05	0.052
	$(0.005)^{* * *}$	$(0.005)^{* * *}$	$(0.005)^{* * *}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.234	0.251	0.25

Panel B: First stage. Best in the class in primary school on theoretical probability

	(1)	(2)	
Theoretical probability	0.951	1.037	1.038
	$(0.003)^{* * *}$	$(0.003)^{* * *}$	$(0.003)^{* * *}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.483	0.592	0.592

Panel C: Reduced form. The impact of theoretical probability of being best in the class in primary school on test scores in secondary school

(1)			
	(2)		
Theoretical probability	0.166	0.134	0.139
	$(0.01)^{* * *}$	$(0.01)^{* * *}$	$(0.01)^{* * *}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.232	0.251	0.251

Panel D: The impact of best in the class in primary school on test scores in secondary school. IV

	(1)	(2)	
Best in class	0.175	0.129	0.134
	$(0.011)^{* * *}$	$(0.01)^{* * *}$	$(0.01)^{* * *}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.234	0.25	0.25

Notes: Data is from INVALSI test for the years $2012-13$ and $2013-14$ together with INVALSI test scores for years $2015-16$ and $2016-17$. All regressions include the individual characteristics described in Tables 1 and 7, school-cohort fixed effects, and year indicators. Best in the class is instrumented using the theoretical probability of being the best in the class. Standard errors are clustered at the school level. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05$, ${ }^{*} \mathrm{p}<0.1$.
test scores, and I explore the impacts of being second and worst in the class on future performance.

Next, I perform some heterogeneity analysis. In particular, I study how the estimated effect changes by gender, by class size, and by school quality. I also explore whether the best in the class effect changes when I modify my sample to include students at different positions of the school-cohort ranking. Finally, I study how the estimated effect changes with the distance between the best and the second student in the class.

5.1. Robustness checks

My estimation strategy assumes that being best in the class is as if randomly assigned in the context of my regressions. If this is the case, there should not be any effect of best in the class on pre-determined characteristics. Panel A of Table 4 shows the result of using each of the predetermined characteristics in tables 1 and 7 as alternative dependent variables in Equation (2). All estimated effects are highly insignificant except for the effect of being the best in the class on the male dummy which gives a negative significant estimate. I argue that this is not a concern since males tend to get higher mathematics grades and hence it operates against the positive effect of best in class on future performance. Moreover, I control for a male dummy in all regressions.

In my analysis, the main regressor of interest is a dummy equal to one if the student is the best in the class. In practice, the best in the class is the student with the highest test score in the class. One potential concern is that the variable best in the class is subject to measurement error if the

Table 4
Robustness Checks Panel A: Effect of Best in the Class on Pre-determined Characteristics. IV.

	male	immigrant	immigrant father	immigrant mother
	(1)	(2)	(3)	(4)
Best in class	$\begin{aligned} & -.038 \\ & (0.008)^{* * *} \end{aligned}$	$\begin{aligned} & -.0004 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.007 \\ & (0.004) \end{aligned}$	$\begin{aligned} & -.006 \\ & (0.004) \end{aligned}$
Obs.	249309	249309	249309	249309
R^{2}	0.012	0.165	0.325	0.339
	mother high school (1)	father high school (2)	mother university (3)	father university (4)
Best in class	0.005	0.001	0.009	0.007
	(0.007)	(0.007)	(0.006)	(0.005)
Obs.	249309	249309	249309	249309
R^{2}	0.112	0.121	0.225	0.228
	mother employed (1)	father employed (2)	mother unemployed (3)	father unemployed (4)
Best in class	0.006	0.01	-. 003	-. 001
	(0.007)	(0.007)	(0.003)	(0.003)
Obs.	249309	249309	249309	249309
R^{2}	0.198	0.244	0.013	0.03
Panel B: Excluding Randomly Selected Students. Average over 100 replications. IV (1) (2) (3)				
Best in class	$\begin{aligned} & 0.175 \\ & (0.011)^{* * *} \end{aligned}$	$\begin{aligned} & 0.129 \\ & (0.010)^{* * *} \end{aligned}$	$\begin{aligned} & 0.134 \\ & (0.010)^{* * *} \end{aligned}$	
Class fixedeffects	No	Yes	Yes	
Test score dummies	No	No	Yes	
Obs.	249309	249309	249309	
R^{2}	0.244	0.253	0.253	
	Panel C: Scores given by the Teacher in the First Quarter. IV (1) (2) (3)			
Best in class	$\begin{aligned} & 0.208 \\ & (0.011)^{* * *} \end{aligned}$	$\begin{aligned} & 0.163 \\ & (0.01)^{* * *} \end{aligned}$	$\begin{aligned} & 0.169 \\ & (0.01)^{* * *} \end{aligned}$	
Class fixedeffects	No	Yes	Yes	
Test score dummies	No	No	Yes	
Obs.	246029	246029	246029	
R^{2}	0.236	0.252	0.252	

Panel D: Standard Percentile Rank Measure as Control. IV

Best in class	$1 \text { D: }$	rcen	
		(2)	
	$\begin{aligned} & 0.148 \\ & (0.011)^{* * *} \end{aligned}$	$\begin{aligned} & 0.111 \\ & (0.01)^{* * *} \end{aligned}$	$\begin{aligned} & 0.115 \\ & (0.01)^{* * *} \end{aligned}$
Percentile rank	0.162	0.119	0.123
	(0.009)***	$(0.008){ }^{* * *}$	(0.008) ${ }^{* * *}$
Class fixedeffects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.237	0.251	0.251

Panel E: Excluding the Best Student in the School Cohort. IV

	(1)	(2)	(3)
Best in class	0.288	0.216	0.225
	(0.02)***	(0.018)***	(0.018) ${ }^{* * *}$
Class fixedeffects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	235278	235278	235278
R^{2}	0.19	0.205	0.204

Notes: Data is from INVALSI test for the years 2013 - 14 and 2014 - 15 together with test scores for years 2015 - 16 and 2016 - 17. The dependent variable in panels B-E is the mathematics test score in secondary school. All regressions include the individual characteristics described in tables 1 and 7, school-cohort fixed effects, and year indicators. Best in the class is instrumented
using the theoretical probability of being the best in the class. Standard errors are clustered at the school level. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$.
actual best student in the class is absent the day of the test or has a "bad day". To understand the consequences of this source of measurement error in terms of coefficient estimates, I randomly select five percent of students in my original estimation sample, exclude them from the sample, and replicate the main estimation. I repeat this exercise one hundred times and present the average of these estimates in Panel B of Table 4. They show that the absence of randomly chosen individuals from the sample leaves the coefficient unchanged.

Students' performance on the INVALSI test may not mirror their school performance. INVALSI data contains information on the mathematics score given by the teacher in the first quarter of the academic year. This score is a discrete number from one to ten. It is an intermediate score which does not appear in the final student record. Hence, it is also an imperfect measure as teachers may use it to affect students' effort. However, school scores may still be informative as students are likely to find out about the best in their class through performance during the academic year rather than through INVALSI tests which are given towards the end of the academic year. I use the score obtained in the first quarter as an alternative measure of students' school performance. 82% of best in the class students according to INVALSI tests are also best in the class according to the score obtained in the first quarter. In Panel C of Table 4, I restrict my sample to those students who are best in the class according to both scores and results become even stronger.

I argue that the effect of being best in the class is different from the average ranking effect. I provide evidence in this regard by including the standard measure of percentile rank used by previous literature (Murphy \& Weinhardt, 2020 and Elsner \& Isphording, 2017) as an additional control in my regressions. The coefficient of best in the class remains very similar which indicates that the best in the class effect is different from average rank effects. Panel D of Table 4 includes the corresponding results.

The best student in the cohort is always the best in the class. As a result, these students do not provide useful variation to identify the effect of being best in the class. I re-run the whole specification without the students who are top of their cohort and show the results of this exercise in Panel E of Table 4. The estimated coefficient of best in the class is even higher.

5.2. Extensions

As mentioned above, INVALSI data also allows me to study the impact of best in the class in second grade on performance in fifth grade (both in primary school) and the impact of best in the class in eighth grade (third grade of secondary school) on performance in tenth grade (second grade of high-school). The transition from second to fifth grade takes place in the same school so it is more difficult to consider the class ranking in second grade as pre-determined with respect to fifth grade performance. Still, I present the corresponding results in Panel A of Table 5. Similarly to the transition from primary to secondary school, the transition from eighth to tenth grade implies a change in school, from secondary to high school. Unfortunately, the estimation of best in the class effects on performance in tenth grade is affected by attrition as some students in that grade become sixteen and can therefore legally drop out from school. As those students are unlikely to be at top positions of the school-cohort ranking, I show the results of such estimation in Panel B of Table 5. Both sets of results confirm the positive impact of being the best in the class on future performance. The estimated effects are stronger as compared to those in the main analysis and indicate that being the best in the class increases future test scores by $0.15-0.16$ standard deviations.

Throughout my analysis, I focus on mathematics instead of reading test scores because the former are less affected by Italian language proficiency which varies significantly across Italian regions depending

Table 5
Extensions Panel A: The impact of best in the class in second grade on test scores in fifth grade. IV .

	(1)	(2)	(3)
Best in class	0.196	0.151	0.15
	$(0.009)^{* * *}$	$(0.008)^{* * *}$	$(0.008)^{* * *}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	234502	234502	234502
R^{2}	0.175	0.197	0.197

Panel B: The impact of best in the class in secondary school on test scores in high school. IV

Best in class	(1)school. (2)		
	0.201	0.15	0.159
	(0.014)***	(0.013) ${ }^{* * *}$	(0.013)***
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	147783	147783	147783
R^{2}	0.215	0.23	0.23

(3)

Panel C: The impact of best in the class in primary school on reading test scores in secondary school. IV

	(1)	(2)	
Best in class	0.187	0.151	0.159
	$(0.008)^{* * *}$	$(0.008)^{* * *}$	$(0.008)^{* * *}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249195	249195	249195
R^{2}	0.204	0.215	0.215

(3)

Panel D: The impact of second in the class in primary school on test scores in secondary school. IV

	(1)		
(2)			
Second in class	0.133	0.125	0.133
	$(0.012)^{* * *}$	$(0.012)^{* * *}$	$(0.012)^{* * *}$
Best in class	0.195	0.148	0.155
	$(0.011)^{* * *}$	$(0.01)^{* * *}$	$(0.01)^{* * *}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.237	0.25	0.25

Notes: Data is from INVALSI test for the years 2013 - 14 and 2014 - 15 together with test scores for years 2015 - 16 and 2016 - 17. All regressions include the individual characteristics described in tables 1 and 7, school-cohort fixed effects, and year indicators. Best in the class is instrumented using the theoretical probability of being the best in the class. Standard errors are clustered at the school level. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$.
on the incidence of regional languages and migration. Still, I replicate my analysis using reading test scores to define the ranking of students and to measure their performance. Panel C of Table 5 shows the results of this exercise which are stronger than those obtained using mathematics test scores. The magnitude of the estimated effects indicates that being the best in the class in primary school increases reading test scores in secondary school by 0.16 standard deviations.

Are ranking effects linear? If they are, the impact of being best in the class should be equivalent to the impact of being second in the class. I estimate the impact of being the second as opposed to lower-ranking positions in the class on future performance using the theoretical probabilities of being second in the class as an instrument (see Panel D of Table 5). The general formula for these theoretical probabilities is:
$P=\left(\frac{1}{\# \text { classes }}\right) *\left(\frac{\# \text { classes }-1}{\# \text { classes }}\right)^{(C R-2)}$
for all school-cohort ranking positions other than the first. For the best student in the school-cohort P equals zero. All specifications show that being second in the class in primary school has a positive and significant effect on performance in secondary school. In terms of magnitude, the impacts of being best and second as opposed to lower-ranking positions in the class equal 0.16 and 0.13 standard deviations, respectively. Therefore, the impact of being best is higher than the impact of being
second in the class by 23%. This constitutes evidence against the linearity of ranking effects. My findings are in line with the non-linear relationships found in experiments that emphasize the importance of being ranked first or last (Gill et al., 2019 and Kuziemko et al., 2014).

The methodology employed to estimate the impact of the best of the class on future performance can be used to estimate the impact of being the worst in the class. In this case, the instrument is based on the probability that individuals who are worse than a given student are in classes different from him or her. The estimated coefficient is close to zero and insignificant and hence, I could not find any effect of being worst in the class. Results are available upon request.

5.3. Heterogeneity

Similarly to the average ranking effect (Murphy \& Weinhardt, 2013), the effect of being the best in the class may differ across genders. I explore this possibility by interacting the best in the class variable with a male dummy. Results, presented in Panel A of Table 6, are consistent with Murphy \& Weinhardt (2013) in that males are more affected by ranking effects. Males who are best in the class increase their future performance by 0.05 standard deviations more than females in the first position of the class ranking. I also explore whether the estimated positive effect differs by class size and school quality as measured by the average score in the school. I find that the best in the class effect decreases with class size and increases with school quality.

In my main analysis, I restrict my sample to students who are in positions from one to eighteen in the school-cohort ranking. Those

Table 6
Heterogeneity Panel A: Heterogeneity by gender, class size, and school quality. IV.

	(1)	(2)	(3)
Best in class by male	$\begin{aligned} & 0.054 \\ & (0.012)^{* * *} \end{aligned}$		
Best in class by class size		$\begin{aligned} & -0.003 \\ & (0.001)^{*} \end{aligned}$	
Best in class by school quality			$\begin{aligned} & 0.215 \\ & (0.013)^{* * *} \end{aligned}$
Best in class	$\begin{aligned} & 0.103 \\ & (0.012)^{* * *} \end{aligned}$	$\begin{aligned} & 0.184 \\ & (0.027)^{* * *} \end{aligned}$	$\begin{aligned} & 0.152 \\ & (0.01)^{* * *} \end{aligned}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.25	0.25	0.249
Pan	Different sa up to 10th (1)	IV up to 15th (2)	up to 25th (3)
Best in class	$\begin{aligned} & 0.217 \\ & (0.011)^{* * *} \end{aligned}$	$\begin{aligned} & 0.162 \\ & (0.01)^{* * *} \end{aligned}$	$\begin{aligned} & 0.102 \\ & (0.009)^{* * *} \end{aligned}$
Obs.	139492	205868	340683
R^{2}	0.166	0.219	0.313
Panel C: High distance from best to second student in the class. IV			
Best in class by high distance	$\begin{aligned} & -0.055 \\ & (0.01)^{* * *} \end{aligned}$	$\begin{aligned} & -0.141 \\ & (0.01)^{* * *} \end{aligned}$	$\begin{aligned} & -0.143 \\ & (0.01)^{* * *} \end{aligned}$
Best in class	$\begin{aligned} & 0.221 \\ & (0.012)^{* * *} \end{aligned}$	$\begin{aligned} & 0.18 \\ & (0.011)^{* * *} \end{aligned}$	$\begin{aligned} & 0.186 \\ & (0.011)^{* * *} \end{aligned}$
Class fixed-effects	No	Yes	Yes
Test score dummies	No	No	Yes
Obs.	249309	249309	249309
R^{2}	0.234	0.25	0.25

Notes: Data is from INVALSI test for the years $2013-14$ and $2014-15$ together with test scores for years 2015 - 16 and 2016 - 17. The dependent variable is the mathematics test score in secondary school. All regressions include the individual characteristics described in tables 1 and 7, school-cohort fixed effects, and year indicators. Best in the class is instrumented using the theoretical probability of being the best in the class. Standard errors are clustered at the school level. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$.
students have probabilities above one percent of being the best in the class. Moreover, eighteen is also the average number of students in a class. In this section, I explore how my results change when I modify this sample selection criterion. Panel B of Table 6 contains the results of using three different samples including students who are in ranking positions up to ten, fifteen, and twenty-five. As a result of changing the sample, the number of observations becomes $139,492,205,868$, and 340,683 , respectively. The resulting estimates show that the estimated effect is always positive and significant and it becomes stronger for more restrictive sample definitions. This indicates that students at higher positions in the school-cohort ranking benefit more from being best in the class. This finding is consistent with psychological mechanisms like the impostor phenomenon. Students with the impostor phenomenon experience intense feelings that their achievements are undeserved and worry that they are likely to be exposed as a fraud (Clance, 1985). In my setup, students who are more likely to feel as an impostor are those students who are best in the class due to luck instead of true talent, i.e., those are relatively low positions in the school-cohort ranking.

The distance between the best and the second student in the class in terms of current performance may influence the effect of best in the class on future performance. On the one hand, best students who perform much better than the second student in their class may have higher selfesteem. On the other hand, best students who perform similarly to the second student in their class may exert more effort in response to competition or enjoy higher-quality peer effects from the second student in the class. I explore how the best in the class effect changes with the distance between the best and the second student in the class. To this, I perform alternative regressions in which I add the interaction of the best in the class dummy with a dummy for distance equal to or higher than 0.221 (the median distance in the sample). I present the results of this exercise in Panel C of Table 6. Results show that the best in the class effect is higher for best in the class students who are closer to the second student in the class. This constitutes evidence in favor of the competition and better peer mechanisms.

6. Discussion

Being the best student in the class would be beneficial if it makes students have more self-confidence, exert effort in line with high expectations, or receive more attention and better treatment by teachers and peers. In contrast, being the best in the class would be detrimental if it implies unbearable psychological pressure, if it makes students exert lower effort because they do not feel challenged or inspired by a better peer, if a better peer would have been helpful when studying or doing homework together, or if best in the class students are more likely to be bully victims. Hence, the question of whether being the best in the class is beneficial or detrimental does not have an obvious theoretical answer. Moreover, answering this question empirically is challenging because in most cases students are not assigned to classes randomly. Actually, in my data, I find evidence of positive assortative matching across classes within the same school. In this paper, I design a novel methodology to estimate the impact of being the best in the class on future performance. My methodology can be applied when experimental data is not available.

I exploit natural exogenous variation in class assignment within schools and I find that being the best in the class has enhancing effects on future performance. Results are robust to the study of different grades and to the use of reading rather than mathematics test scores. Interestingly, the effect of being second in the class is smaller, confirming that best in the class is different from other positions in the ranking. The estimated positive effect is stronger for males, students in smaller classes, and those in high-quality schools. It is also stronger for students in higher positions of the school-cohort ranking and for students who perform similarly to their best peer. My findings have implications in terms of the non-linearity of ranking effects at the extremes of the ability distribution and inform education policy: Excellent students may benefit

Table 7
Additional descriptive statistics.

Variable	Grades 2 to 5		Grades 5 to 8		Grades 8 to 10	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Attended daycare	0.393	0.488	0.336	0.472	0.274	0.446
Attended kindergarten	0.859	0.348	0.858	0.349	0.887	0.316
Mother primary school	0.015	0.12	0.017	0.131	0.012	0.109
Mother secondary school	0.214	0.410	0.243	0.429	0.228	0.419
Mother high school	0.437	0.496	0.43	0.495	0.446	0.497
Mother vocational school	0.069	0.253	0.078	0.268	0.086	0.28
Mother tertiary non-university	0.026	0.159	0.027	0.161	0.027	0.162
Mother university	0.24	0.427	0.205	0.404	0.201	0.401
Father primary school	0.018	0.135	0.021	0.142	0.015	0.120
Father secondary school	0.295	0.456	0.314	0.464	0.297	0.457
Father high school	0.401	0.49	0.389	0.487	0.397	0.489
Father vocational school	0.079	0.27	0.085	0.278	0.094	0.292
Father other tertiary	0.017	0.129	0.017	0.129	0.015	0.123
Father university	0.19	0.392	0.175	0.38	0.182	0.386
Mother unemployed	0.053	0.224	0.044	0.205	0.032	0.177
Mother homemaker	0.302	0.459	0.325	0.469	0.307	0.461
Mother white collar	0.445	0.497	0.429	0.495	0.453	0.498
Mother self-employed	0.084	0.278	0.086	0.281	0.094	0.291
Mother blue collar	0.114	0.318	0.114	0.318	0.113	0.317
Mother retired	0.001	0.032	0.001	0.034	0.001	0.038
Father unemployed	0.044	0.205	0.041	0.199	0.029	0.166
Father homemaker	0.004	0.059	0.003	0.056	0.003	0.058
Father white collar	0.444	0.497	0.441	0.497	0.455	0.498
Father self-employed	0.242	0.428	0.25	0.433	0.261	0.439
Father blue collar	0.261	0.439	0.256	0.437	0.241	0.427
Father retired	0.005	0.07	0.008	0.087	0.011	0.106
Year of the test	2013.504	0.5	2013.495	0.5	2014.523	0.499

Notes: This table presents averages and standard deviations (left and right column, respectively) for the samples used in the estimations.
from accommodation in a regular classroom where they are the best in the class rather than grouping with students of similar abilities. Thus, my results constitute an additional argument in favor of forming classes with heterogenous ability levels.

Declaration of Competing Interest

Author declare that they have no relevant or material financial interests that relate to the research described in this paper.

Appendix A

A1. Institutional background

The Italian education system is divided into primary school (grades 1 to 5), secondary school (grades 6 to 8) and high school (grades 9 to 13). Education is compulsory between the age of six (grade 1) and sixteen (grade 10). After secondary school, students start high school and follow one of three tracks (vocational school, technical school, lyceum). The school year starts mid-September and finishes mid-June. Education is compulsory from September of the year the student becomes 6 up to age 16 which implies that students who have not repeated any grade can drop out from school in grade 10 (second grade of high school). Students who repeat grades can drop out in lower grades as soon as they become 16.

The randomness of class assignment is at the heart of my estimation. In Italian primary schools, classes are formed in first grade when there is no comparable information on student performance (most students cannot read or write yet and in the vast majority of cases there are no interviews or psychological assessments) and the composition of classes is typically kept fixed up to fifth grade. New classes are formed in sixth grade when students move from primary to secondary school and their composition is kept fixed up to eighth grade. Again, principals of the new school typically do not have access to comparable performance information when they form classes. Even if they had, there are no official indications or directives on whether homogenous or
heterogeneous classes should be formed. However, principals may use other observable characteristics (students' home address, parental education, previous school, number of siblings, special needs, etc.) to proxy for student future performance and use this information to form classes. Principals may also respond to parental requests to group their children with their friends. Moreover, by the time that the ranking is measured students have already spent time in school, sharing teachers with their classmates. Hence, peer interaction, teacher traits, and school characteristics may generate a positive correlation of students' test scores within a class even if the class composition was random with respect to the pre-school ranking.

A2. Other student characteristics

Table 7 describes daycare and kindergarten attendance, parental education and parental labor market status of students included in the regressions of being the best in the class in second grade on fifth grade performance, being the best in fifth grade on eighth grade, and being the best in eighth grade on tenth grade.

References

Angrist, J., \& Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion (1st). Princeton University Press. https://EconPapers.repec.org/RePEc: pup:pbooks:8769.
Angrist, J. D., Battistin, E., \& Vuri, D. (2017). In a small moment: Class size and moral hazard in the Italian mezzogiorno. American Economic Journal: Applied Economics, 9 (4), 216-249. https://doi.org/10.1257/app. 20160267.

Azmat, G., \& Iriberri, N. (2010). The importance of relative performance feedback information: Evidence from a natural experiment using high school students. Journal of Public Economics, 94(7-8), 435-452.
Bertoni, M., \& Nisticò, R. (2018). Rank Concerns, Peer Effects, and Ability Tracking in University. Evidence from a Randomized Experiment. Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy. CSEF Working Papers, Number 506. https://ideas.repec.org/p/sef/csefwp/506.html
Black, S. E., Devereux, P. J., \& Salvanes, K. G. (2013). Under pressure? the effect of peers on outcomes of young adults. Journal of Labor Economics, 31(1), 119-153. https://id eas.repec.org/a/ucp/jlabec/doi10.1086-666872.html.
Booij, A. S., Leuven, E., \& Oosterbeek, H. (2017). Ability peer effects in university: Evidence from a randomized experiment. Review of Economic Studies, 84(2), 547-578. https://ideas.repec.org/a/oup/restud/v84y2017i2p547-578.html.

Brown, G. D. A., Gardner, J., Oswald, A. J., \& Qian, J. (2008). Does wage rank affect employees' well-being? Industrial Relations: A Journal of Economy and Society, 47(3), 355-389.
Brown, S., \& Taylor, K. (2008). Bullying, education and earnings: Evidence from the national child development study. Economics of Education review, 27(4), 387-401.
Calsamiglia, C., \& Loviglio, A. (2019). Grading on a curve: When having good peers is not good. Economics of Education Review, 73, 101916.
Card, D., Mas, A., Moretti, E., \& Saez, E. (2012). Inequality at work: The effect of peer salaries on job satisfaction. American Economic Review, 102(6), 2981-3003. https:// doi.org/10.1257/aer.102.6.2981.
Carrell, S. E., Fullerton, R. L., \& West, J. E. (2009). Does your cohort matter? measuring peer effects in college achievement. Journal of Labor Economics, 27(3), 439-464. https://doi.org/10.1086/600143.
Cicala, S., Fryer, R. G., \& Spenkuch, J. L. (2017). Self-selection and comparative advantage in social interactions. Journal of the European Economic Association, 16(4), 983-1020.
Clance, P. R. (1985). The impostor phenomenon: Overcoming the fear that haunts your success (vol. 209). Peachtree Publishers Atlanta, GA.
Comi, S., Origo, F., Pagani, L., \& Tonello, M. (2021). Last and furious: Relative position and school violence. Journal of Economic Behavior \& Organization, 188, 736-756.
Cotton, S. J., Dollard, M. F., \& De Jonge, J. (2002). Stress and student job design: Satisfaction, well-being, and performance in university students. International Journal of Stress Management, 9(3), 147-162.
Denning, J. T., Murphy, R. J., \& Weinhardt, F. (2018). Class Rank and Long-Run Outcomes. IZA Discussion Papers, 11808. Institute for the Study of Labor (IZA). https://ideas.repec.org/p/iza/izadps/dp11808.html.
Dopplinger, U. (2014). How schoolchildren choose their friends, how teachers think about these relationships and what influence they have. Universal Journal of Educational Research, 2(6), 480-486.
Elsner, B., \& Isphording, I. E. (2017). A big fish in a small pond: Ability rank and human capital investment. Journal of Labor Economics, 35(3), 787-828.
Elsner, B., Isphording, I. E., \& Zölitz, U. (2018). Achievement rank affects performance and major choices in college. Working Paper, Number 300. University of Zurich, Department of Economics.
Ferkany, M. (2008). The educational importance of self-esteem. Journal of Philosophy of Education, 42(1), 119-132.
Festinger, L. (1954). A theory of social comparison processes. Human relations, 7(2), 117-140.
Figlio, D. N., \& Lucas, M. E. (2004). Do high grading standards affect student performance? Journal of Public Economics, 88(9-10), 1815-1834.

Genakos, C., \& Pagliero, M. (2012). Interim rank, risk taking, and performance in dynamic tournaments. Journal of Political Economy, 120(4), 782-813. https://doi. org/10.1086/668502.
Gill, D., Kissová, Z., Lee, J., \& Prowse, V. (2019). First-place loving and last-place loathing: How rank in the distribution of performance affects effort provision. Management Science, 65(2), 494-507.
Griffith, A., \& Rask, K. (2007). The influence of the US news and world report collegiate rankings on the matriculation decision of high-ability students: 1995-2004. Economics of Education Review, 26(2), 244-255.
Guryan, J., Kroft, K., \& Notowidigdo, M. J. (2009). Peer effects in the workplace: Evidence from random groupings in professional golf tournaments. American Economic Journal: Applied Economics, 1(4), 34-68.
Horstschräer, J. (2012). University rankings in action? the importance of rankings and an excellence competition for university choice of high-ability students. Economics of Education Review, 31(6), 1162-1176.
Kuziemko, I., Buell, R. W., Reich, T., \& Norton, M. I. (2014). Last-place aversion: Evidence and redistributive implications. The Quarterly Journal of Economics, 129(1), 105-149.
Marsh, H. W., Trautwein, U., Lüdtke, O., Baumert, J., \& Köller, O. (1987). The big-fish-little-pond effect: Persistent negative effects of selective high schools on self-concept after graduation. American Educational Research Journal, 44(3), 631-669.
Murphy, R., \& Weinhardt, F. (2013). The importance of rank position. CEP discussion paper no. 1241. Centre for Economic Performance.
Murphy, R., \& Weinhardt, F. (2020). Top of the class: The importance of ordinal rank. The Review of Economic Studies.
Pagani, L., Comi, S., \& Origo, F. (2019). The effect of school rank on personality traits. Journal of Human Resources, 1218-9916R2.
Sacerdote, B. (2001). Peer effects with random assignment: Results for dartmouth roommates. The Quarterly Journal of Economics, 116(2), 681-704.
Tincani, M. (2017). Heterogeneous peer effects and rank concerns: Theory and evidence.
Tran, A., \& Zeckhauser, R. (2012). Rank as an inherent incentive: Evidence from a field experiment. Journal of Public Economics, 96(9-10), 645-650.
Vidal, J. B.i., \& Nossol, M. (2011). Tournaments without prizes: Evidence from personnel records. Management Science, 57(10), 1721-1736. https://EconPapers.repec. org/RePEc:inm:ormnsc:v:57:y:2011:i:10:p:1721-1736.
Whitmore, D. (2005). Resource and peer impacts on girls' academic achievement: Evidence from a randomized experiment. American Economic Review, 95(2), 199-203. https://doi.org/10.1257/000282805774670158.

[^0]: E-mail addresses: ainoa.apariciofenoll@unito.it, ainhoa.aparicio@carloalberto.org.
 ${ }^{1}$ I am grateful to Marco Bertoni, Giorgio Brunello, Philip Cook, Lawrence Katz, Krzysztof Krakowski, Annalisa Loviglio, Giovanni Mastrobuoni, Ignacio Monzón, Juan Morales, Roberto Nisticò, and Guglielmo Weber for their useful comments. I thank seminar participants at WOLFE workshop, AIEL conference, Padova-CHILD workshop and the Collegio Carlo Alberto.
 ${ }^{2}$ See https://www.nagc.org/ for more detailed information.
 ${ }^{3}$ The peer effects literature shows the positive influence of high ability students on their peers: Sacerdote (2001), Whitmore (2005), Carrell, Fullerton, \& West (2009), Black, Devereux, \& Salvanes (2013), and Booij, Leuven, \& Oosterbeek (2017).
 https://doi.org/10.1016/j.econedurev.2021.102168
 Received 16 March 2021; Received in revised form 14 August 2021; Accepted 16 August 2021
 Available online 8 September 2021
 0272-7757/© 2021 Elsevier Ltd. All rights reserved.

[^1]: ${ }^{4}$ Current test scores also include contemporaneous effects of being the best in the class and hence my estimation of the effect of being the best in the class on future performance is net of those contemporaneous effects.

[^2]: ${ }^{5}$ In this literature review, I focus on the Economic literature which is the closest to mine from a methodological point of view. However, the big fish in small pond effect has been widely documented in the psychology literature starting with the seminal paper by Marsh, Trautwein, Lüdtke, Baumert, \& Köller (1987) while in sociology the first work on social comparisons was written by Festinger as early as 1954 (Festinger, 1954). I also focus on future educational outcomes but ranking effects have been found on alternative outcomes. Pagani, Comi, \& Origo (2019) analyze the impact of relative rank on students' personality traits. They find that the main channels through which rank works are motivation, self-confidence, and learning about own ability and hence about expected marginal benefits from studying. Comi, Origo, Pagani, \& Tonello (2021) find that rank reduces both the probability and frequency of perpetrating school violence including verbal, relational, and physical violence.

[^3]: ${ }^{6}$ Education is compulsory up to age 16 . Thus, some non-randomly selected students drop out by tenth grade. This attrition could bias my estimation of the impact of best in the class in eighth grade on performance in tenth grade. I nevertheless show these results in Section 5. They are consistent with those obtained when using students in compulsory education.
 ${ }^{7}$ There are 62% of students in schools with two classes, 21% in schools with three classes, 11% with four classes, 5% with five classes, and the remaining 1% in schools with six or more classes.

[^4]: ${ }^{8}$ I test for randomness of class assignment with respect to performance in primary school which is different from innate ability or pre-school performance. For instance, principals may have initially assigned students randomly with respect to their innate ability or pre-school performance but peer effects, teacher traits, and school characteristics may generate a non random allocation in primary school. Alternatively, principals may have sorted students across classes according to their ability but later changes in performance may result in a more random allocation.

[^5]: ${ }^{9}$ The inclusion of contemporaneous test scores as controls refers to the proxy control version of the bad control problem (pages 66-68 of Angrist \& Pischke, 2009). Therefore, under the assumption that the slope coefficient from a regression of academic ability on best in the class is positive, my estimates of the effect of being best in the class on future performance are lower bounds of the true effect.

[^6]: ${ }^{10}$ In computing the theoretical probability of being the best in the class I omit that this probability depends on the number of slots in each class. Results remain invariant when I use an alternative instrument that takes class size into account. I construct this alternative instrument under the condition that all classes within a school-cohort are equally sized. Thus, I avoid that the correlation between students' ability and class size affects my instrument. Such correlation is different from zero if, for instance, principals assign poor performing students to small classes.

[^7]: ${ }^{11}$ In Equation (2), I could have included dummies for all ranking positions other than the second one to precisely define the control group (students who are second in the class). In the context of that regression, α_{1} would reflect the effect of being best rather than second in the class. However, simultaneously instrumenting all class ranking dummies is not possible as the full rank condition of the instrument matrix would fail. Therefore, I exclude all ranking positions other than the second one from my regressions and interpret the coefficient associated to best in the class as the impact of being best with respect to any other ranking position. Results remain arguably unchanged. The reason is that compliers in my regressions are mostly students who are best in the class if the instrument is high and second in the class if the instrument is low.

