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Abstract 1 

A multidisciplinary approach to the study of collisional orogenic belts can improve our knowledge of their 2 

geodynamic evolution and may suggest new tectonic models, especially for (U)HP rocks inside the 3 

accretionary wedge. In the Western Alps, wherein nappes of different origin are stacked, having recorded 4 

different metamorphic peaks at different stages of the orogenic evolution. This study focuses on the External 5 

(EPZ) and Internal (IPZ) ophiolitic units of the Piedmont Zone (Susa Valley, Western Alps), which were 6 

deformed throughout four tectonometamorphic phases (D1 to D4), developing different foliations and 7 

cleavages (S1 to S4) at different metamorphic conditions. The IPZ and EPZ are separated by a shear zone (i.e. 8 

the Susa Shear Zone) during which a related mylonitic foliation (SM) developed. S1 developed at high pressure 9 

conditions (Epidote-eclogite vs. Lawsonite-blueschist facies conditions for IPZ and EPZ, respectively), as 10 

suggested by the composition of white mica (i.e. phengite), whereas S2 developed at low pressure conditions 11 

(Epidote-greenschist facies conditions in both IPZ and EPZ) and is defined by muscovite. White mica defining 12 

the SM mylonitic foliation (T1) is mostly defined by phengite, while the T2-related disjunctive cleavage is 13 

defined by fine-grained muscovite. The relative chronology inferred from meso- and micro-structural 14 

observations suggests that T1 was near-coeval respect to the D2, while T2 developed during D4.  15 

A new set of radiometric ages of the main metamorphic foliations were obtained by in situ Ar/Ar dating on 16 

white mica. Different generations of white mica defining S1 and S2 foliations in both the IPZ and EPZ and 17 

SM in the SSZ, were dated and two main groups of ages were obtained. In both IPZ and EPZ, S1 foliation 18 

developed at ~46-41 Ma, while S2 foliation developed at ~40-36 Ma and was nearly coeval with the SM 19 

mylonitic foliation (~39-36 Ma). 20 

Comparison between structural, petrological and geochronological data allows to define time of coupling of 21 

the different units and consequently to infer new tectonic implications for the exhumation of meta-ophiolites 22 

of the Piedmont Zone within axial sector of the Western Alps.  23 

 24 
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Abstract 13 

A multidisciplinary approach to the study of collisional orogenic belts can improve our knowledge of their 14 

geodynamic evolution and may suggest new tectonic models, especially for (U)HP rocks inside the 15 

accretionary wedge. In the Western Alps, wherein nappes of different origin are stacked, having recorded 16 

different metamorphic peaks at different stages of the orogenic evolution. This study focuses on the External 17 

(EPZ) and Internal (IPZ) ophiolitic units of the Piedmont Zone (Susa Valley, Western Alps), which were 18 

deformed throughout four tectonometamorphic phases (D1 to D4), developing different foliations and 19 

cleavages (S1 to S4) at different metamorphic conditions. The IPZ and EPZ are separated by a shear zone (i.e. 20 

the Susa Shear Zone) during which a related mylonitic foliation (SM) developed. S1 developed at high pressure 21 

conditions (Epidote-eclogite vs. Lawsonite-blueschist facies conditions for IPZ and EPZ, respectively), as 22 

suggested by the composition of white mica (i.e. phengite), whereas S2 developed at low pressure conditions 23 

(Epidote-greenschist facies conditions in both IPZ and EPZ) and is defined by muscovite. White mica defining 24 

the SM mylonitic foliation (T1) is mostly defined by phengite, while the T2-related disjunctive cleavage is 25 

defined by fine-grained muscovite. The relative chronology inferred from meso- and micro-structural 26 

observations suggests that T1 was near-coeval respect to the D2, while T2 developed during D4.  27 
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A new set of radiometric ages of the main metamorphic foliations were obtained by in situ Ar/Ar dating on 28 

white mica. Different generations of white mica defining S1 and S2 foliations in both the IPZ and EPZ and 29 

SM in the SSZ, were dated and two main groups of ages were obtained. In both IPZ and EPZ, S1 foliation 30 

developed at ~46-41 Ma, while S2 foliation developed at ~40-36 Ma and was nearly coeval with the SM 31 

mylonitic foliation (~39-36 Ma). 32 

Comparison between structural, petrological and geochronological data allows to define time of coupling of 33 

the different units and consequently to infer new tectonic implications for the exhumation of meta-ophiolites 34 

of the Piedmont Zone within axial sector of the Western Alps.  35 

 36 

Keywords: 40Ar/39Ar, exhumation, meta-ophiolites, Piedmont Zone, Western Alps 37 

 38 

1. Introduction 39 

Unravelling deformation history recorded in mountain ranges provide important information for reconstructing 40 

their tectono-metamorphic evolution. The geochronological approach, combined with fieldwork and detailed 41 

petrographic studies, provide constraints in absolute time for the geodynamic evolution of orogens. The most 42 

interesting results expected from this kind of studies come from shear zones, which are key-sectors for studying 43 

the stacking of rock volumes belonging to different geological units. In particular, the evolution of stacked 44 

nappes and their timing of deformation in orogenic chains can be inferred by comparing data collected along 45 

shear zones with those coming from their footwall and hanging wall blocks.  46 

In the Western Alps, studies giving geochronological constraints are mainly focused on dating subduction-47 

related HP metamorphism (see e.g., Rosenbaum and Lister, 2005, and Weber et al., 2015), whereas other works 48 

mainly aimed to constrain the exhumation history of tectonic units and related deformation phases (see e.g., 49 

Reddy et al., 2003, and Angiboust & Glodny, 2020).  50 

In situ 40Ar/39Ar ultraviolet (UV) laser-ablation spot analyses is one of the most used methods for giving 51 

absolute time constraints and, in particular, data obtained from minerals oriented along metamorphic foliations 52 

provide ages of deformation (see e.g. Itaya et al., 2018; Wiederkehr et al., 2009; Villa et al., 2014 and reference 53 

therein).  54 
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Data from in situ 40Ar/39Ar UV laser-ablation spot analyses on white mica allow us to constrain the whole 55 

exhumation history of meta-ophiolitic units occurring along the Susa Valley section and within the Western 56 

Alpine axial sector.  57 

This paper deals with metamorphic and deformation ages from Western Alpine meta-ophiolite units, exposed 58 

in the Susa Valley. The meta-ophiolite units are currently missing any geochronological constraints. In situ 59 

40Ar/39Ar UV laser-ablation spot analyses is one of the most used methods for giving absolute time constraints 60 

and, in particular, data obtained from minerals oriented along metamorphic foliations provide ages of 61 

deformation (see e.g. Itaya et al., 2018; Wiederkehr et al., 2009; Villa et al., 2014 and reference therein).  62 

We present new 40Ar/39Ar geochronological data on white mica obtained from well-constrained microstructural 63 

sites (i.e. superimposed foliations and related metamorphic imprints; see Ghignone et al., 2020a, 2020b). By 64 

taking into account ages of both P-T peaks and metamorphic re-equilibration, and of related deformation 65 

phases, it is possible to place new constraints on the timing of the whole exhumation history of meta-ophiolitic 66 

units occurring along the Susa Valley section and within the Western Alpine axial sector. 67 

These new data are compared with published ages from other Western Alpine meta-ophiolite units (e.g., Cliff 68 

et al., 1998; Dal Piaz et al., 2001; Agard et al., 2002; Rubatto and Hermann, 2003; Dragovic et al., 2020) in 69 

order to discuss the timing of different tectono-metamorphic events along the belt and provide geodynamic 70 

interpretations on the exhumation history. 71 

 72 

 73 

2. Geological setting 74 

2.1 Geology of the Alpine belt 75 

The Western Alps result from the convergence between the European lower plate and Adria upper plate after 76 

the closure of the interposed Jurassic Ligurian-Piedmont Ocean, followed by (i) Late Cretaceous to Middle 77 

Eocene subduction, (ii) Late Eocene to Early Oligocene continental collision and (iii) Late Oligocene to 78 

Neogene extensional tectonics (see e.g. Dal Piaz et al., 2003; Rosenbaum & Lister, 2005; Handy et al., 2010; 79 

Schmidt et al., 2017, and references therein). The Western Alpine axial sector corresponds to an exhumed 80 

fossil subduction-complex, which was overthrusted on the European foreland (see e.g. Ricou & Siddans, 1986; 81 

Coward & Dietrich 1989; Polino et al., 1990).  82 
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Remnants of the Ligurian-Piedmont Ocean (i.e., the Piedmont Zone; see e.g., Ernst & Dal Piaz, 1978; Lemoine 83 

& Tricart 1986; Vissers et al., 2013; Balestro et al., 2019) are now stacked in the Alpine wedge and they are 84 

generally divided into an Internal Piedmont Zone (IPZ) and an External Piedmont Zone (EPZ), which 85 

corresponds to the Zermatt-Saas-like and Combin-like units of Bearth (1967), respectively.  86 

The IPZ consists of meta-ophiolites with a thin metasedimentary cover, (see e.g., Lombardo and Pognante, 87 

1982; Tartarotti et al., 2017; 2019; Balestro et al., 2018; De Togni et al., 2021, and reference therein), and is 88 

mainly made up of serpentinite hosting Middle to Late Jurassic metagabbro bodies and overlain by 89 

mafic/ultramafic metabreccia and metabasalt lavas (Lombardo et al., 2002; Manatchal and Muntener, 2009; 90 

Festa et al., 2015). IPZ reached P-T peak under eclogite-facies conditions, followed by a pervasive greenschist 91 

facies overprint (see e.g., Bucher et al., 2005; Reddy et al., 1999 and references therein). P-T peak conditions 92 

in the range of ~520–600 °C and ~2.2–3.0 GPa were proposed for the Zermatt-Saas meta-ophiolites (Angiboust 93 

et al., 2009; Bucher et al., 2005) and similar conditions (i.e. of roughly 2.5 GPa and 550°C) were proposed for 94 

the Monviso meta-ophiolite Complex (Angiboust et al., 2012; Balestro et al., 2014; Groppo & Castelli, 2010, 95 

Agard, 2021).  96 

EPZ consists of meta-sedimentary oceanic successions wherein meta-ophiolite bodies are embedded. Meta-97 

ophiolite bodies are made up of serpentinite, metagabbro, mafic/ultramafic metabreccia and metabasalt (Tricart 98 

and Lemoine, 1991), whereas metasediments correspond to Middle Jurassic-Late Jurassic radiolarian 99 

metachert, marble and Cretaceous calcschist (Lemoine and Tricart, 1986; Cordey et al., 2012; Lagabrielle et 100 

al., 2015). The EPZ was metamorphosed under blueschist facies conditions and re-equilibrated under 101 

greenschist conditions (Agard et al., 2001; Schwartz et al., 2013 and references therein), and it reached 102 

different P-T conditions along the Western Alpine belt (e.g., 1.2–1.5 GPa and 425–500 °C for the Combin 103 

Unit; Cartwright & Barnicoat 2002; Negro et al., 2013, 1.1–1.4 GPa and 330–350 °C, 1.5-2.0 GPa and 370-104 

450°C for the upper and middle Queyras Units, Agard et al. 2021, and Michard et al., 2004). 105 

The eclogitic peak of the IPZ along the Alpine belt was dated between 50 and 43 Ma depending on the lithology 106 

and the dating technique, while the greenschist-facies re-equilibration ranges between 43 and 32 Ma (Agard 107 

et al., 2002; Agard, 2021; Amato et al., 1999; Bowtell et al., 1994; Cliff et al., 1998; Duchêne et al., 1997; 108 

Monié and Philippot, 1989; Rubatto & Hermann, 2003; Rubatto et al., 1998; Angiboust & Glodny, 2020; 109 

Dragovic et al., 2020). The age of peak-P in EPZ is slightly younger, ranging between 57 and 38 Ma, while 110 
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the greenschist-facies re-equilibration encompasses values between 39 and 35 Ma (Dal Piaz et al, 2001; Agard 111 

et al., 2002; Reddy et al., 1999; Rosenbaum & Lister, 2005; Weber et al., 2015). UHP conditions for the Lago 112 

di Cignana Unit of the Zermatt Zone (P>3.2 GPa; T = 590-605°C, Groppo et al., 2009) were dated at ~ 48 – 113 

40 Ma (Skora et al., 2015; Dal Piaz et al., 2001; Rubatto et al., 1998; Amato et al., 1999; Gouzu et al., 2016). 114 

Recently, Angiboust & Glodny (2020) dated the age of shearing (Rb-Sr multi-mineral method) between IPZ 115 

and EPZ at 38-35 Ma, which is mostly coherent with other shearing ages previously calculated along the 116 

Western Alpine belt in the same structural position (e.g. 39-37 Ma, Reddy et al., 1999).  117 

 118 

2.2 Geology of the study area 119 

The study area (Figure 1b) is located in the Susa Valley, wherein IPZ is juxtaposed to the northern sector of 120 

the Dora Maira Massif (DM), a slab of the paleo-european thinned margin, and is overlain by the External 121 

Piedmont Zone (EPZ). These units were deformed throughout four regional deformation phases (D1 to D4): 122 

three common phases (D2 to D3) and an early HP phase (D1) that developed in eclogite-facies and blueschist-123 

facies conditions in IPZ and EPZ, respectively. Each phase developed a different foliation or cleavage (S1 to 124 

S4; Gasco et al., 2011; Ghignone et al., 2020a, Ghignone et al., 2020b). In the study area, the DM and the 125 

overlying IPZ were folded together during early exhumation-related deformation phase (D2, Gasco et al. 2011) 126 

and are both separated from the EPZ through the Susa Shear Zone (SSZ; Ghignone & Gattiglio, 2013; 127 

Ghignone et al., 2020a). Along the SSZ, two different events of shearing occur (T1 and T2) (Ghignone et al., 128 

2020b). T1 shearing is defined by a mylonitic foliation (SM) along which Top-to-E kinematics occur, while 129 

T2 is defined by a disjunctive cleavage along with Top-to-W kinematics (Ghignone et al., 2020a, Ghignone et 130 

al., 2020b).  131 

In the Susa Valley, the IPZ consists of serpentinized metaperidotite, metagabbro and metabasite (Nicolas, 132 

1966; Pognante, 1979; Pognante, 1980; Leardi & Rossetti, 1985; Balestro et al., 2009), and of a 133 

metasedimentary cover consisting of minor Mn-rich quartzite, impure marble and micaschist, and widespread 134 

calcschist. In this sector, recent estimations on IPZ (Ghignone et al., 2020c) allowed to identify two HP peaks 135 

(peak-P at P = 2.5-2.9 GPa, T = 460-510°C and peak-T at P = 2.1-2.5 GPa, T = 500-530°C) and a LP 136 

decompressional evolution, consisting of a strong greenschist facies re-equilibration and a near-isobaric late 137 

heating, at the boundary between greenschist and amphibolite facies conditions. Peak-T corresponds to the 138 
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development of the D1 deformation phase (characterized by S1 axial plane foliation), while greenschist facies 139 

re-equilibration corresponds to the D2 deformation phase (characterized by the development of the S2 regional 140 

foliation), as reported by Ghignone et al. (2020b; 2020c).  141 

The underlying DM was metamorphosed under eclogite-facies P-T peak conditions (i.e. P = 1.9 GPa and T = 142 

510°C; Gasco et al., 2011) and subsequently re-equilibrated under greenschist-to-amphibolite facies conditions 143 

(Gasco et al. 2011).  144 

EPZ consists of a thick calcschists meta-sedimentary cover with bodies of metabasalt and serpentinite, and 145 

with interlayered paragneiss, quarzite and micaschist.  146 

The metamorphic evolution of the EPZ was characterized by a HP peak developed in blueschist-facies 147 

conditons (P = 1.2-1.3 GPa, T = 350°C) and a LP re-equilibration in greenschist conditions Agard et al. (2001). 148 

These two metamorphic events likely correspond to the D1 (with the development of S1 axial plane foliation) 149 

and D2 (characterized by the development of the S2 regional foliation) deformation phases, respectively. 150 

 151 

3. Petrography and microstructures 152 

Six samples of metasediments (i.e. calcschist and micaschist) were selected from the study area for 153 

geochronological investigations. All sampled metasediments are white mica-rich and come from the lower IPZ 154 

(VS17, VS14), the upper EPZ (VS74, VS19) and the interposed SSZ (VS4, VS15). Locations of the collected 155 

samples are shown in Figure 1b (GPS coordinates in Table 1). 156 

The samples collected in the SSZ contain pre-shearing structural relics. In particular, before mylonitization 157 

processes, VS15 and VS4 samples pertained to the IPZ and EPZ, respectively.   158 

Main pervasive foliations (i.e. S1 and SM) and several relics of previous foliation (i.e. S1) occur in each 159 

sample. S1 and S2 foliations, locally, appear parallel each other, due to re-orientation during D2 stage. 160 

Analysed white mica crystals were distinguished based on their (i) microstructural position and (ii) 161 

composition. The latter have been detected by electronic microprobe (SEM-EDS), and were referred to a 162 

specific foliation (S1, S2 and SM) based on meso- and micro-scale observations. Mineral abbreviations in the 163 

text, figures and tables are from Whitney and Evans (2010). 164 

 165 

3.1 IPZ Samples 166 
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VS17 sample is a garnet-bearing micaschist and contains mostly white mica, quartz, garnet, chlorite and minor 167 

chloritoid, tourmaline, biotite, plagioclase, with accessory rutile, titanite, zircon and apatite. The rock texture 168 

is characterized by mm-sized lens-shaped white mica aggregates, locally intergrowth with chlorite, which 169 

transitionally pass to sub-cm-sized stripes of quartz. White mica is dominant in the sample, wrapping mm-170 

sized garnet, and it is partly re-equilibrated by chlorite and biotite (Figure 2a). 171 

The main foliation (S2) is defined by the shape-preferred orientation of white mica aggregates. Kinematic 172 

indicators along the S2 at the microscale are represented by asymmetrical recrystallization tails of micas, 173 

asymmetrical strain shadows around garnet porphyroclasts and mica fishes, which show a Top-to-W sense of 174 

shear (as reported by Ghignone et al., 2020a). Some evidences of dynamic deformation occur in quartz 175 

domains, such as grain boundary migration and subgrain rotation (GBM and SGR; see Passchier & Trouw, 176 

2005).  177 

VS14 sample is a calcschist composed by calcite, white mica, quartz, chlorite and minor biotite and titanite. 178 

The texture is defined by a transition between calcite- and quartz-rich domains and phyllosilicates-rich 179 

domains, consisting of white mica, chlorite and biotite, where deformation is concentrated. Single flakes of 180 

white mica are scattered inside calcite- and quartz-rich layers. The main foliation present in the sample (S1) is 181 

defined by the preferred orientation of white mica and other phyllosilicates. Moreover, in the sample, are also 182 

present some kinematic indicators (i.e. S-C structure, mica fishes, mantled porphyroclasts), showing Top-to-183 

E sense of shear, referred to T1-shearing event, which crosscuts and partly re-orient S1 foliation (Figure 2b). 184 

 185 

3.2 SSZ Samples 186 

VS15 is a mylonitic Grt-Cld-bearing micaschist, mainly composed of white mica, quartz, chloritoid, garnet, 187 

chlorite, graphite and minor biotite, plagioclase, tourmaline, apatite, rutile and titanite. The well-developed 188 

mylonitic foliation (SM) is the dominant structural element in the sample, which wraps cm- to mm-sized micro-189 

lithons, which contain rootless D2-fold hinges (Figure 2c), defined by the older foliation (S1). The rock texture 190 

is characterized by a cm-scale layering, defined by discrete transition between quartz-rich and phyllosilicates-191 

rich layers, strongly deformed by mylonitic foliation. Several kinematic indicators are present, mostly C-planes 192 

(S-C structures), δ- and σ-type mantled porphyroclasts, mica fishes and minor domino structure, showing Top-193 

to-E sense of shear, related to T1-shearing event.  194 
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VS4 sample is a mylonitic calcschist, constituted by calcite and white mica, with minor quartz, chlorite, biotite 195 

and graphite. The rock is banded, alternating carbonate and quartz layers to phyllosilicates-rich ones. Some 196 

white mica flakes are moreover present in carbonate-quartz rich layers. The texture is defined by pervasive 197 

foliation (S1) defined by the preferred oriented white mica crystals, almost parallel to the compositional 198 

banding. A spaced mylonitic foliation (SM) is also present in the sample, which wrap several micro-lithons 199 

containing differently oriented older foliation (S1). Mm- to sub-mm scale kinematic indicators are present in 200 

the sample, such as S-C structures, mostly showing Top-to-E sense of shear. Locally, S1 and SM foliations are 201 

deformed in microfolds (i.e. CCC, compressional crenulation cleavage), related to D3 deformation phase. 202 

The deformation is mostly concentrated in the weaker phyllosilicate-rich layers, although evidences of 203 

dynamic deformation occur also in the stiffer carbonate-quartz layers, such as polysynthetic twinning in calcite 204 

and SGR in quartz (Figure 2d).  205 

In this sample are also present some later C-planes, mm- to cm-spaced, defining a disjunctive cleavage, 206 

constituted by very fine-grained white mica, showing Top-to-W sense of shear (referred to T2 shearing event).   207 

3.3 EPZ Samples 208 

VS74 is a fine-grained micaschist, composed of white mica, chlorite, quartz, albite, biotite and titanite. The 209 

rock texture is characterized by a weak layering defined by alternating mm-sized quartz-rich and 210 

phyllosilicates-rich layers.  The rock sample is characterized by a pervasive main S2 foliation, defined by very 211 

fine-grained and irregularly shaped aggregates of white mica and minor chlorite, which locally crosscuts and 212 

re-orient the layering. The texture is strongly deformed by D2 micro-folds (Figure 2e), which re-orient S1 213 

older foliation almost parallel to the banding. Some kinematic indicators occur along the S2 foliation, such as 214 

fine-grained mantled porphyroclasts, showing Top-to-W sense of shear (D2-related). 215 

VS19 is a foliated calcschist, composed of white mica, calcite, quartz and minor chlorite, biotite. The texture 216 

is defined by an mm-spaced layering between calcite-rich domains and phyllosilicates-rich domains, where 217 

deformation is concentrated (Figure 2f). Single flakes of white mica are scattered in the quartz-rich domains. 218 

A strongly pervasive foliation (SM) is the dominant structural element in the sample, defined by preferred 219 

orientation of white mica and other phyllosilicates. The foliation is pervasive and sub-mm spaced, wrapping 220 

several porphyroclasts of white mica, which contain differently oriented S1 relics.  221 

 222 
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4. Mineral chemistry  223 

The compositional variation of white mica (Si content) defining different foliation generations were 224 

investigated at the electron microprobe considering the microstructural position and the relative timing of 225 

growth.  226 

Compositional data point analyses were collected using a JEOL IT300LV Scanning Electron Microscope at 227 

the Department of Earth Sciences, University of Torino. The instrument is equipped with an energy dispersive 228 

spectrometry (EDS) INCA Energy 200 system and an SDD X-Act3 detector (Oxford Instruments).  Used 229 

working conditions were E = 15kV, I probe = 5nA, EDS process time = 1 micro-sec, 105 cnts/sec, live time =  230 

30 sec. White mica analyses were recalculated as atoms per formula unit (a.p.f.u.) on the basis of 11 oxygens, 231 

using Minsort software (Petrakakis & Dietrich, 1995). Selected analyses of the different foliation-related white 232 

mica are given in Table S1 (supplementary material). 233 

In the studied samples white mica show a strong zonation along the muscovite-celadonite join (Figure 3). 234 

High celadonite contents are widely considered as a marker of high-pressure low-temperature metamorphic 235 

conditions, while muscovite rims are inferred as a decompression-related feature (e.g. Massonne and Schreyer, 236 

1987). In Figure 3 are reported the compositional variations for the recognized foliation (S1, S2 and SM) in 237 

each sample. Same-named foliations, in both IPZ and EPZ, present slightly different compositions, due to the 238 

different P-T conditions of growth, especially for the S1.  239 

In IPZ samples, S1 foliation is defined by phengite (black diamonds in Figure 3), showing values of Si between 240 

3.41 and 3.71 a.p.f.u., with similar values in micaschist samples (VS17 and VS15), while, in sample VS14, Si 241 

content on S1-related phengite is more concentrated in a restricted field, ranging between 3.47 and 3.51 a.p.f.u.. 242 

This variation is probably due to the different lithology (calcschist), which include a slight variation in the bulk 243 

composition of the rock. In VS15 and VS14 samples, S1-related white mica show Al and Si values laying 244 

above the muscovite-celadonite join, with slightly higher Al/Si ratio.  245 

S2-related white mica is defined by muscovite (red triangles in Figure 3), showing values of Si between 3.09 246 

and 3.38 a.p.f.u.. In VS17 sample, S2-related muscovite are concentrated in a restricted field, between 3.20 247 

and 3.30 a.p.f.u., while in VS14 and VS15 samples the chemical variation is wider, ranging  between 3.15 and 248 

3.38 a.p.f.u. (VS14) and 3.09 and 3.25 a.p.f.u. (VS15).  249 
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In EPZ samples, S1-related white mica also resulted phengite (black diamonds in Figure 3), showing values 250 

of Si between 3.65 and 3.30 a.p.f.u.. The zoning is similar in samples VS74 and VS19, wherein the wide 251 

dispersion show similar values (3.60 – 3.35 a.p.f.u.). S1-related phengite in sample VS4 show a minor zoning, 252 

with values concentrated between 3.30 and 3.42 a.p.f.u..  253 

S2-related white mica resulted muscovite (red triangles in Figure 3), showing values of Si between 3.05 and 254 

3.31 a.p.f.u.. In all the three EPZ samples, the distribution is very similar and show the same zoning, and the 255 

values plot on the muscovite-celadonite join.  256 

SM-related white mica present high Si content (phengite, green triangles in Figure 3) and show similar 257 

composition in all the samples, where it is present (3.59 – 3.31 a.p.f.u.). The relationships with the S1-related 258 

phengite vary from sample to sample, showing similar compositions (VS15, VS19), lower Si content (VS17, 259 

VS14) and higher Si content (VS4), respectively. In sample VS74 SM-related phengite is not present.  260 

 261 

5. In situ 40Ar/39Ar dating 262 

Foliations recognized at the meso- and micro-scales (S1, S2 and SM) were dated applying in situ 40Ar/39Ar UV 263 

laser ablation spot analyses (see e.g., Maluski & Monié, 1988; Kelley et al., 1994), performed at the Potsdam 264 

University. The procedure of sample preparation and the operating conditions are similar to those reported by 265 

Wiederkehr et al. (2009), Wilke et al. (2010) and Halama et al. (2014).  266 

As stated before, the accurate microstructural and compositional control on white mica crystals (Figure 4) 267 

allowed accurate in situ spot analyses along different foliation generations. Some of the single ages are reported 268 

in Figure 5, 6, 7 in correspondence of measurements sites, allowing identification of the relationships between 269 

apparent ages (i.e., ages obtained in each site, punctual analyses) and the location of the dated domains in the 270 

microstructural context. The results of the in situ laser probe experiments are listed in Table 2 (full detailed 271 

results are reported in Table S2). All isotopic ages and calculated weighted averages are quoted with their 2σ 272 

uncertainties; error on single ages include the uncertainty in the J value. 273 

 274 

5.1 40Ar/39Ar dating procedure 275 

5.1.1 Sample preparation 276 
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Rock sections of almost 500 µm thickness and 12x12 mm in size have been cut out from double-polished thick 277 

sections. Referring to thin section for petrographic description and mineral chemistry, the samples for dating 278 

have been prepared from the opposite cut-out side of the hand specimen. Details from optical microscope 279 

photographs (Figure 2), microprobe quantitative maps (Figure 4) of some polished surfaces and BSE imaging 280 

(Figure 5, 6, 7) provided (i) an accurate pattern of the distribution of K-bearing white micas and (ii) the control 281 

on the chemical zoning and the intergrowth of different phases (e.g., chlorite intergrowing with muscovite). 282 

All these information were fundamental for selecting the most suitable places for performing the laser ablation-283 

spot 40Ar/39Ar isotope analysis.  284 

5.1.2 Neutron activation 285 

Neutron activation of polished sections was performed at CLICIT (Cadmium-Lined In-Core Irradiation Tube) 286 

facility in the nuclear reactor OSTR (Oregon State TRIGA Reactor), Oregon State University, USA. The six 287 

samples were wrapped in Al foil and subsequently loaded into a sample container (22.7 mm in diameter and 288 

101.5 mm in height) made of 99.999% pure Al. All samples were irradiated for 4 hours with the fast neutrons 289 

of the flux of 2.47x1013 n/cm2/s for inducing reactions of 39K (n, p) 39Ar in the samples. The 40Ar/39Ar ages 290 

were obtained as relative ages against the neutron flux (or J value) monitoring mineral standard, which was 291 

irradiated together with unknown samples. The used age standard was Fish Canyon Tuff sanidine, FC3, which 292 

was prepared at the Geological Survey of Japan and its age was determined as 27.5 Ma (Uto et al., 1997; 293 

Ishizuka, 1998). This age is consistent with that obtained by Lanphere & Baadsgaard (2001). Additionally, 294 

crystals of K2SO4 and CaF2 were also irradiated for correcting the interference of Ar isotopes produced by the 295 

reactions of K or Ca in the samples during neutron irradiation. After the irradiation the samples were stored 296 

for a few weeks at OSTR to cool down their radioactivities. Finally, argon isotope analyses were performed at 297 

the 40Ar/39Ar geochronology laboratory in the University of Potsdam. 298 

5.1.3 Ar isotope analysis 299 

The 40Ar/39Ar dating system consists of: (i) a Micromass 5400 high sensitivity–low background sector-type 300 

noble gas mass spectrometer, (ii) a New Wave Research DualWave laser ablation system comprising a 50W 301 

CO2 continuous laser (10.6 m wavelength) and a 6 mJ UV pulsed laser (266 nm wavelength, frequency 302 

quadrupled), and (iii) an ultrahigh vacuum, all-metal purification line which includes Zr-Al SAES alloy getters 303 

and a cold trap. The cold trap is a stainless-steel finger kept at -90 °C through ethanol cooled by an electric 304 
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immersion cooler. The software used for performing Ar isotope analysis is “Mass Spec” which is made by Dr. 305 

Alan Deino in Berkeley Geochronology Center, USA. Each analysis involves 10 min for gas extraction and 306 

purification and 20 min for data acquisition by 8 cycles of peak jumping from mass 40 to mass 36. CO2 307 

continuous laser was used for the total fusion analyses of the sanidine age standard and K and Ca salts, while 308 

the UV pulsed laser was used for analysing the unknown samples. System blanks were measured after every 309 

3 sample analyses. The isotopic ratios of the analysed samples are obtained after the corrections of blank 310 

measurements (procedural blanks), mass discrimination by analysis of standard air Ar (atmospheric Ar), 311 

interference of the Ar isotopes derived from Ca and K by the neutron irradiation and the decay of the radiogenic 312 

Ar isotopes (37Ar and 39Ar) produced by the neutron irradiation. 313 

The sample site spots were ablated by the UV pulse laser with a beam size of 30–50 micron for white mica, 314 

60 sec pulsing duration and a repetition rate of 10 Hz. The number of spots for each single analysis has been 315 

set on 5, in order to obtain the necessary amount of sample gas for the enough precision of obtained ages. It 316 

was assumed that the incision of the sample by laser do not exceed 100 m by this condition due to the 317 

previously conducted test to examine the depths of produced craters within white micas. In the cases of the 318 

fine-grained investigated sites (few tens of microns in size), they may also contain portions of different 319 

foliation generations. Furthermore, such areas may not be considered as exclusively constituted of white mica 320 

where particularly quartz, chlorite and some matrix material may also be ablated during gas extraction.  321 

 322 

5.2 Results 323 

In VS17 sample (Figure 5a), for the white mica arranged along S1 foliation, were obtained apparent ages 324 

scattered between 41.6 ± 0.6 and 47.2 ± 0.8 Ma, while along S2 foliation obtained apparent ages are scattered 325 

between 36.6 ± 0.5 and 37.6 ± 0.6 Ma (Figure 5b, c, d). Along S2 main foliation, in fine-grained micro-326 

domains, older apparent ages were also detected (66.5 ± 0.7 Ma and 59.4 ± 0.4 Ma, Table 2) due to the presence 327 

of other fine-sized K-free minerals (< 20 µm). Consequently, the contribution of non-Wm minerals (e.g., 328 

chlorite) provided older ages (see Discussion below), considered not consistent with those obtained on single 329 

crystals (or group of homogeneous crystals). The resulting simple average age is 42.6 ± 0.6 (SD = 0.9) Ma for 330 

S1, 37.1 ± 0.6 (SD = 0.7) Ma for S2. In addition, in VS17 sample, along a T1-related discrete mylonitic 331 
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domains (referred to SM mylonitic foliation), were obtained the apparent age of 39.2 ± 0.4 Ma, as single age 332 

(Figure 5c).  333 

In VS14 sample (Figure 5e), the main foliation (S1) is defined by the preferred orientation of preserved 334 

phengite crystal cores, surrounded by S2 muscovite rims (Figure 5f, g, h). Along S1 foliation obtained 335 

apparent ages are scattered between 42.6  ±  0.9 Ma and 44.9  ±  0.7 Ma in phengite cores, whereas the apparent 336 

age of 38.6  ±  0.4 Ma was obtained in muscovite rim (related to S2 foliation development) (Figure 5f, g, h). 337 

In addition, apparent ages of 32.9 ± 1.8 Ma were obtained with low amount gas emitted during the ablation. In 338 

this case, fluids implement a “selective metasomatic overprint”, causing local re-crystallization of white mica 339 

grains (see Halama et al., 2014). In this case, the amount of emitted gas may lead to obtain younger ages. 340 

Because of this, the obtained value should be handled carefully, and considered as a not accurate single age 341 

(see Table 2). 342 

Along S2 main foliation, in single flakes included in calcite matrix, older apparent ages (54.7 ± 1.4 Ma and 343 

251.5 ± 8.0 Ma, Figure 5g and Table 2) were also obtained, due to the probable contribution of K-free minerals 344 

involved in the laser spot analysis. In addition, in VS14 sample, apparent ages of 39.7 ± 0.8 Ma and 40.6 ± 0.5 345 

were obtained along T1-related discrete mylonitic foliation (SM). The resulting simple average age is 43.7 ± 346 

0.7 Ma (SD = 1.1) for S1 and 40.1 ± 0.7 Ma (SD = 0.6) for SM. 347 

In sample VS15 (Figure 6a) the apparent ages that were obtained along the main SM foliation were scattered 348 

between 36.3 ± 0.4 Ma and 38.7 ± 0.4 Ma. The analyses measured in micro-lithons on S1 foliation gave 349 

apparent ages scattered between of 44.1 ± 0.6 Ma and 46.8 ± 0.4 Ma (Figure 6b, c, d). The resulting simple 350 

average age is 37.3 ± 0.4 Ma (SD = 1.4) for SM and 45.3 ± 0.5 Ma (SD = 1.0) for S1.  351 

In this sample the fine-grained white mica crystals mixed with chlorite provided some inconsistent results as 352 

63.2 ± 0.6 Ma or 92.3 ± 0.8 Ma (Figure 6b and Table 2). These analyses gave older ages, because of the low 353 

amount of emitted Ar gas from finer K-free chlorite in the ablated spots similarly observed in the above cases 354 

(see Discussion below). 355 

The obtained apparent ages for S1 in VS4 (Figure 6e) sample are comprised between 40.2 ± 0.5 Ma and 46.4 356 

± 0.5 Ma (Figure 6f, g, h). The resulting simple average age for S1 is 42.9 ± 0.7 Ma (SD = 2.6). The obtained 357 

single apparent age on a T1-related kinematic indicator gave 38.8 ± 0.4 Ma. 358 
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In VS74 sample (Figure 7a), obtained apparent ages on S1 encompasses values between 40.4 ± 0.6 Ma and 359 

46.0 ± 0.6 Ma (Figure 7b, c, d), with resulting simple average age of 42.3 ± 0.5 Ma (SD = 1.4). As in previous 360 

samples, also in VS74 a few older ages were obtained (53.7 ± 1.8 Ma and 52.9 ± 1.9 Ma) along the same 361 

foliation level (see Figure 7b and Table 2), due to K-free minerals below the surface involved in the ablation. 362 

In VS19 sample (Figure 7e), obtained apparent ages along S1 micro-lithons are scattered between values of 363 

41.2 ± 0.4 Ma and 43.9 ± 0.4 Ma (Figure 7f, h), while along S2 foliation, apparent ages encompass between 364 

37.4 ± 0.4 Ma and 39.7 ± 0.5 Ma (Figure 7g). The resulting simple average age is 42.6 ± 0.4 Ma (SD = 1.2) 365 

for S1, and 38.8 ± 0.4 Ma (SD = 1.3) for S2. Measured ages along SM foliation gave apparent ages scattered 366 

between 38.6 ± 0.3 Ma and 38.9 ± 0.4 Ma (Figure 7f, g), for a resulting simple average age of 38.8 ± 0.4 Ma 367 

(SD = 0.2). In this sample, the amount of emitted gas was constant, and no older ages were obtained.  368 

 369 

6 Discussion  370 

6.1 Significance of individual Age Data 371 

40Ar/39Ar system is classically applied in the context of the “closure temperature” versus “formation 372 

temperature” concepts, especially for the case of metamorphic minerals (i.e., white mica). Purdy & Jager 373 

(1976) proposed 350°C as the closing T for white mica, based only on certain cooling rate (10°C/m.y.), while 374 

T have been lately raised to 500°C (Di Vincenzo et al., 2001; Philippot et al., 2001; Bucher, 2003; Balogh & 375 

Dunkl, 2005; Allaz, 2008), based on the assumption that cooling rate is not the only parameter controlling the 376 

closure of the white mica.  377 

Several Alpine studies on HP phengites from the axial sector of the belt have shown that the closure 378 

temperature is not only the parameter to keep into account for obtained plausible 40Ar/39Ar ages (see e.g., Villa, 379 

1998; Di Vincenzo et al., 2001). These studies have emphasized the complexity of the factors controlling argon 380 

diffusion. The presence of extraneous 40Ar is due to its incorporation as result of several processes. It may be 381 

of external origin by diffusion through grain boundaries (excess argon) or, alternatively by the presence of 382 

inherited argon (in situ decay), due to re-crystallization. In any case, ages affected by the presence of 383 

extraneous 40Ar inevitably leads to obtain older ages, with no geological significance. Nevertheless, Villa et 384 

al. (2014), accordingly with Agard et al. (2002), stated in their works that HP phengite normally records 385 
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formation and/or deformation ages, rejecting the hypothesis of the presence of inherited Ar at the scale of the 386 

whole orogen.  387 

Villa et al. (2014) and Villa (2015) also stated that, in deformed and sheared rocks, microstructures and 388 

chemical composition of the white mica are more important than thermally activated diffusion, which is always 389 

slower than other forming processes such as fluid-induced recrystallization and deformation-induced 390 

recrystallization (Cole et al., 1983; Lasaga, 1986; Villa, 1998, 2006, 2010; Allaz et al., 2011; Villa & Williams, 391 

2013: Villa et al., 2014; Villa, 2015). Thus, the recorded ages of the white micas were interpreted as formation 392 

(i.e. deformation) ages, precisely distinct, on microstructural and petrological constrains reported in this study. 393 

The observed outliers values in age were explained by existence of mixed population (Wiederkehr et al, 2009), 394 

and therefore rejected. Although there are not a plenty of amounts of obtained geochronological data, the 395 

distribution of the apparent ages can be used to discriminate the time during which the foliations develop. This 396 

time lapse is precisely limited by microstructural evidence and chemical zonation, confirming that iso-397 

orientated white micas, showing the same composition, grew in the time during which the related tectono-398 

metamorphic event occurred. 399 

 400 

6.2 Structural framework of calculated ages  401 

The combination of microstructural and petrological approaches allowed us to date the different tectonic 402 

structures precisely, as long as obtained ages are consistent through the different sampled lithologies 403 

(micaschist and calcschist) belonging to the same tectonic unit.  404 

The probability diagrams for each sample are summarized in Figure 8, showing the maximum probability of 405 

ages for each foliation. In these diagrams the obtained ages are shown without outlier data (i.e. data affected 406 

by low gas amount or contaminated by ablation of other K-poor phases). 407 

Samples from the IPZ (Figure 8a, b, c) show two main ages distribution: (i) an older group, with apparent 408 

ages scattered between 41.8 ± 0.4 and 46.8 ± 0.4 Ma (blue bars), defined by phengite (S1), and (ii) a younger 409 

group, with apparent ages scattered between 36.3 ± 0.4 and 40.6 ± 0.5 Ma (orange bars), representing SM 410 

foliation and itself defined by phengite. In samples VS17 and VS14, there is another group of apparent ages, 411 

which are scattered between 36.6 ± 0.5 and 38.6 ± 0.4 Ma (green bars), defined by muscovite and attributed to 412 

the S2 foliation.  413 
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Samples from the EPZ (Figure 8d, e, f) show a main distribution of values, with apparent ages scattered 414 

between 40.2 ± 0.5 and 46.4 ± 0.5 Ma (pale blue bars), and  defined by phengite (S1). Other two groups of 415 

apparent ages occur in VS19 sample: the first shows values scattered between 38.6 ± 0.4 and 39.0 ± 0.4 Ma 416 

(orange bars), defined by phengite and referred to SM foliation, while the second group shows values scattered 417 

between 37.4 ± 0.4 and 39.7 ± 0.5 Ma (light green bars), defined by muscovite and attributed to the S2 foliation. 418 

A single value referred to SM foliation was measured in sample VS4, giving apparent age of 38.8 ± 0.4 Ma. 419 

Along S2 foliation, it was difficult to obtain meaningful and consistent isotopic ages. Indeed, it mainly consists 420 

of re-oriented phengite grains, developed during the D1 deformation phase, and of tiny rims of muscovite 421 

growing around phengite. Values measured along S2 foliations therefore come from few coarse-grained 422 

muscovite grains.  423 

The results of absolute chronology are remarkably consistent with the related tectono-metamorphic evolution 424 

previously established on macro- meso- and micro observations (Ghignone et al., 2020a; 2020b; 2020c). S1-425 

related phengite grains are older than the other white mica generations, in both IPZ (44.1 ± 0.6 Ma) and EPZ 426 

(42.1 ± 0.5 Ma). S2-related muscovite grains are younger than S1-related phengite and show similar apparent 427 

ages in both IPZ (37.4 ± 0.4 Ma) and EPZ (37.7 ± 0.4 Ma). SM-related phengite shows a homogeneous group 428 

of values (38.0 ± 0.5 Ma), almost coeval with the S2-related muscovite. S1-related phengites, in both IPZ and 429 

EPZ, grew during a long-lived tectonic phase (Figure 9a, d), which is referred to the first and the second HP 430 

metamorphic events (D1), respectively. S2-related muscovite grew during a subsequent second stage (D2), 431 

which was coeval to greenschist-facies re-equilibration and exhumation at shallower crustal levels of the 432 

tectonic units (Figure 9b, e).  433 

 434 

6. 3 Tectono-metamorphic ages in Western Alpine meta-ophiolite units    435 

The obtained ages can be compared with other data from meta-ophiolite units of the Western Alps whose 436 

different tectono-metamorphic stages have been dated.  437 

In different units of the IPZ the eclogite-facies stage (D1 of this work) was dated at 49 and 45 Ma in the 438 

Monviso meta-ophiolite Complex (Duchene et al., 1997; Rubatto & Hermann, 2003), 51–42 Ma south of the 439 

study area (Colle delle Finestre, Agard et al., 2002), 48-44 Ma in the Rocciavrè unit (Angiboust & Glodny, 440 
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2020), 48-47 Ma north of the study area (Entrelor, Villa et al., 2014) and 46-42 Ma in the Zermatt-Saas unit 441 

(Dal Piaz et al., 2001; Barnicoat et al., 1995; De Meyer et al., 2014; Dragovic et al., 2020).    442 

In EPZ, blueschist-facies stage (D1 of this work) was dated at 45-39 Ma north of the study area (Entrelor; 443 

Bucher et al., 2003; Villa et al., 2014) and at 41-36 Ma in the Combin unit (Gouzu et al., 2016).  444 

In both IPZ and EPZ, greenschist stage (D2 in this work) were dated at 42-37 in the Zermatt-Saas unit (Amato 445 

et al., 1999; De Meyer et al., 2014; Gouzu et al., 2016), and at 38–35 Ma (Agard et al., 2002) and 40-39 Ma 446 

(Villa et al., 2014) south and north of the study area, respectively,.   447 

The shearing event (T1 of this work), responsible for the coupling between IPZ and EPZ, was dated at 37-35 448 

Ma across the Monviso/Rocciavrè and Queyras units (Angiboust & Glodny, 2020), 36-34 Ma (Freeman et al., 449 

1997; Malusà et al., 2005) and 41-34 Ma (Rosenbaum et al., 2012) across the ophiolite units of the Southern 450 

Aosta Valley (Entrelor Shear Zone). Coupling between the Zermatt-Saas and Combin units has been dated at 451 

39-37 Ma (Gressoney Shear Zone, Reddy et al., 1999), and 42-37 Ma (Täschalp Shear Zone, Barnicoat et al., 452 

1995; Cartwright & Barnicoat, 2002). 453 

As stated before, the UHP Lago di Cignana Unit were dated at ~ 48 – 40 Ma (Skora et al., 2015; Dal Piaz et 454 

al., 2001; Rubatto et al., 1998; Amato et al., 1999; Gouzu et al., 2016), but such metamorphic conditions are 455 

conditions not representative for the regional evolution of the Western Alps. 456 

These literature data are overall similar to the ages presented here, highlighting that, in both IPZ and EPZ, the 457 

HP event (D1 of this work) occurred during the Middle Eocene (Rosenbaum & Lister, 2005). Our data clearly 458 

show the subsequent and regionally less documented greenschist-facies re-equilibration (D2 of this work), 459 

developed during the Late Eocene, which is essentially also the age of shearing and tectonic juxtaposition 460 

between IPZ and EPZ. 461 

The exhumation history of IPZ and EPZ continued during late deformation phases (D3 and D4, not dated in 462 

this work). D3 phase has been dated at around 35-37 Ma in the Queyras units (Agard et al., 2002). Dating of 463 

D4 phase and coeval westward T2 shearing along the Susa Shear Zone can be given by considering that they 464 

developed at shallow crustal levels and in the field of ductile/brittle transition (see Ghignone et al., 2020b), 465 

and therefore consistent with zircon fission-track thermochronological data. Published data (Bernet et al., 466 

2001; Schwartz et al., 2007; Perrone et al., 2011) roughly indicate that the different tectonic units (including 467 

the underlying DM Massif) cooled below 200-250° C at around 30 Ma.  468 
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 469 

6.4 Exhumation rates 470 

Linking isotopic ages with well-constrained retrograde metamorphic paths allows us to calculate exhumation 471 

rates (Duchêne et al. 1997; Agard et al. 2009). Here exhumation rates are obtained for the IPZ between the D1 472 

(eclogite-facies conditions, Ghignone et al., 2020c) and D2 (greenschist-facies requilibration) phases. P is 473 

assumed here as purely lithostatic, an assumption expected to  be valid inside nappes and away from major 474 

shear zones – in the latter instead the contributions of oriented (over)pressure cannot be actually neglected (see 475 

e.g., Bauville & Yamato, 2021).  476 

The conversion from pressure to depth was calculated by assuming an average density for the meta-ophiolitic 477 

units of 3 kg/dm3, according with the lithostratigraphic successions, and the composition of the IPZ, and 478 

considering a lithostatic pressure. The resulting is an average gradient of 0.1 GPa = 3km.  479 

In the IPZ, the HP D1 stage occurred at an average P value of 2.3 GPa (Ghignone et al., 2020c), which would 480 

correspond to a depth of ~70 km, while D2-related greenschist-facies re-equilibration occurred at an average 481 

P of 0.5 GPa (~15 km). 482 

Our 40Ar/39Ar geochronological investigations indicates that in the IPZ, the D1 stage took place at 44 Ma, and 483 

greenschist-facies metamorphic re-equilibration were dated at 37 Ma (D2 stage). In the IPZ, the P conditions 484 

thus changed from 2.3 GPa to 0.5 GPa in about 6-7 Ma. The resulting exhumation rates would roughly 485 

correspond to 8 mm/y (8 km/Ma) for the IPZ.  486 

For the EPZ, Agard et al. (2002) and Villa et al. (2014) proposed realistic exhumation rates of 1-2 mm/y (1-2 487 

km/Ma) in the EPZ area (Northern Queyras and Entrelor Area, respectively), although their peak ages are older 488 

than those proposed in this work.  489 

The resulting exhumation rates result faster in the lower IPZ and slower in the upper EPZ (with respect to 490 

Agard et al., 2002), (Figure 10). This confirm that the IPZ and EPZ were exhumed at different velocities (see 491 

the different steepness of black and pale blue/red curves in Figure 10) during the westward collision-related 492 

tectonic transport, giving rise to the relative Top-to-E sense of shear along the T1-related shear zone (see 493 

Ghignone et al., 2020b). This latter apparent tectonic movement opposite to the general westward direction of 494 

transport is therefore due to a difference in speed between the units.  495 



19 

 

Calculated exhumation rate for the IPZ is consistent with those proposed in literature for the other Alpine 496 

eclogite-bearing meta-ophiolitic units (Figure 10). Exhumation rates of the Rocciavrè (Agard et al., 2002), 497 

Zermatt-Saas (De Meyer et al., 2014), Monviso and Rocciavrè (Angiboust & Glodny, 2020) units, roughly 498 

range between 6 and 10 mm/y).  499 

 500 

7 Tectonic implications and conclusions 501 

The above discussed tectono-metamorphic ages and exhumation rates allow us to summarize the exhumation 502 

history of EPZ and IPZ. 503 

1) The geochronological data reported in this paper, discussed with literature petrological and structural 504 

data allow providing a pressure – temperature – deformation – time (P – T– d – t) evolution of the IPZ 505 

and EPZ meta-ophiolite units of the Western Alps (Figure 11a, b). The metamorphic peak of the IPZ, 506 

developed under eclogitic conditions (P = 21-25 kbar, T = 500-530 ° C, Ghignone et al., 2020c), at 41 507 

- 46 Ma. The blueschist-facies metamorphic peak of the EPZ developed at a very similar age (40 - 46 508 

Ma), although it occurred at pressures of at least 1.0 GPa lower (1.3 – 1.5 GPa, Agard et al., 2002; 509 

Plunder et al., 2012).  510 

2) The agreement among metamorphic ages from different meta-ophiolite units of the Western Alpine 511 

belt confirm their near-coeval subduction- and exhumation-related evolution, as also suggested by P-512 

T trajectories defined by Agard et al. (2009), Angiboust et al. (2012) and Ghignone et al. (2020c),  513 

3) The D2-related muscovite-bearing foliation (i.e. the S2), in both IPZ and EPZ, developed during 514 

exhumation and under greenschist-facies metamorphic conditions, and almost 6-8 Ma later than the 515 

metamorphic peaks (Agard et al., 2002; Ghignone et al. 2020c). The juxtaposition of EPZ and IPZ was 516 

nearly coeval to the D2 and was driven by the T1-related shear zone (i.e. the phengite-bearing SM 517 

foliation). It should be noted that matching between the D2 and T1 phases implies an almost coeval 518 

growth of two different generations of white mica, which correspond to a LP muscovite along S2 and 519 

a relative HP phengite along SM foliation. This suggests that the SM-related phengite did not grown 520 

under regional metamorphic conditions but in a context of localized overpressure, which can be likely 521 

developed along the major shear zone (i.e., the Susa Shear Zone) separating IPZ and EPZ.  522 
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This localized P increase can be related to strain variation along T1 shear zones, as a result of the 523 

relative movements of IPZ and EPZ during exhumation. The relative motion (Top-to-E kinematics) of 524 

the two units along the E-dipping shear zone would result after the different exhumation rates, higher 525 

in the IPZ and lower in EPZ (Figure 10 and Figure 11a).  526 

4) The high exhumation rates calculated for the IPZ (7–8 mm/yr) cannot be result only from isostatic 527 

uplift or erosion, but needs to be driven by extensional tectonic, buoyancy and/or oriented tectonic 528 

forces. It is worth to point out the role played by the SSZ in fast exhumation of the IPZ towards shallow 529 

crustal levels compared to the relatively slow exhumation of EPZ (1-2 mm/yr, Agard et al., 2002).  530 

5) Finally, we want to emphasize that the tectonic contact separating the IPZ from the underlying 531 

Mesozoic cover of the DM massif has been deformed by D2-folds and developed during a late-D1 532 

stage (Gasco et al. 2011; Figure 11b). Taking into account the here presented geochronological data, 533 

the coupling between DM and IPZ in the study area should have occurred between 44 Ma (D1 phase) 534 

and 37 Ma (D2 phase). This implies that, at least in the northern DM, the D1-related P-T peak age 535 

should predate the Early Oliogocene age calculated in the southern DM (i.e. in the Brossasco-Isasca 536 

Unit; Moniè and Chopin, 1991; Gebauer et al., 1997; Itaya et al., 2017), wherein a complex tectonic 537 

stack of continental crust and ophiolitic units occurs (Henry et al., 1993; Groppo et al., 2019; Balestro 538 

et al., 2020).   539 
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Captions 830 

 831 

Figure 1: (a) Simplified tectonic sketch-map of the Western Alps, modified after Balestro et al. (2015). Black 832 

box indicates the study area. Susa Shear Zone is reported in red. (b) Simplified geological map of the Susa 833 

Valley, modified after Ghignone et al. (2020a).  Dora Maira (DM), Internal Piedmont Zone (IPZ), External 834 

Piedmont Zone (EPZ: metaophiolites, blue; Ambin Massif (AM). Stars indicate the sampling locations.  835 

 836 

Figure 2: Representative microstructures and geometric relationships between different foliations of the 837 

studied samples at Plane Polarized Light, PPL: (a) VS17, (b) VS14, (c) VS15, (d) VS4, (e) VS74, (f) VS19. 838 

Details in Table 1 and text. 839 

 840 

Figure 3: White mica Si vs Al diagram for the studied samples. Different mica genenration are reported in 841 

black (S1), red (S2) and green (SM). 842 

 843 

Figure 4: Compositional X-ray map of Al content (expressed as wt%) of a detailed microstructure in the VS17 844 

sample, showing different white mica generations oriented along different foliations.  845 

 846 
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Figure 5: BSE images of the analysed samples, showing foliations with different orientation and metamorphic 847 

ages for IPZ samples (VS17 and VS14). White circles indicate the position of the spots analyses by laser 848 

ablation. Blue arrows indicate S1 foliation orientation, green arrows S2 foliation, orange arrows SM foliation. 849 

Apparent ages are reported in the boxes and differently coloured accordingly with each foliation generation. 850 

(a) BSE map of the whole analyses performed on VS17 sample, white squares indicates the positions of the 851 

details reported in (b), (c), (d). (e) BSE map of the whole analyses performed on VS14 sample, white squares 852 

indicates the positions of the details reported in (f), (g), (h).    853 

 854 

Figure 6: BSE images of the analysed samples, showing foliations with different orientation and metamorphic 855 

ages for SSZ samples (VS15 and VS4). White circles indicate the position of the spots analysis by laser 856 

ablation. Blue arrows indicate S1 foliation; pale blue arrows indicate S1 foliation, green arrow S2 foliation in 857 

IPZ, orange arrows SM foliation. Apparent ages are reported in the boxes and differently coloured accordingly 858 

with each foliation generation. The apparent ages without geological significance are highlightened with red 859 

contours (a) BSE map of the whole analyses performed on VS15 sample, white squares indicates the positions 860 

of the details reported in (b), (c), (d). e) BSE map of the whole analyses performed on VS4 sample, white 861 

squares indicate the positions of the details reported in (f), (g), (h).   862 

 863 

Figure 7: BSE images of the analysed samples, showing foliations with different orientation and metamorphic 864 

ages for EPZ samples (VS74 and VS19). White circles indicate the position of the spots analyses by laser 865 

ablation. Pale blue arrows indicate S1 foliation, pale green arrows S2 foliation, orange arrows SM foliation. 866 

Apparent ages are reported in the boxes and differently coloured accordingly with each foliation generation. 867 

The apparent ages without geological significance are highlighted with red contours (a) BSE map of the whole 868 

analyses performed on VS74 sample, white squares indicates the positions of the details reported in (b), (c), 869 

(d). e) BSE map of the whole analyses performed on VS19 sample, white squares indicates the positions of 870 

the details reported in (f), (g), (h).   871 

 872 

Figure 8: Probability diagrams for the investigated samples. In the first row we reported the samples of the 873 

IPZ, (a) VS17 sample, (b) VS14 sample, (c) VS15 sample, while in the second row the samples of the EPZ, 874 
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(d) VS74 sample, (e) VS19 sample, (f) VS4 sample. We reported in blue the age range referred to S1 foliations, 875 

in green the age referred to S2 foliations, in orange the age range referred to SM mylonitic foliation. 876 

 877 

Figure 9: Absolute time for the different generations of white mica. (a) S1 in IPZ; (b) S2 in IPZ; (c) SM in 878 

both IPZ and EPZ; (d) S1 in EPZ; (e) S2 in EPZ. 879 

 880 

Figure 10: Calculated exhumation rates compared in a pressure vs. time diagram for the IPZ (black line), in 881 

the graph with the exhumation rates estimated for other meta-ophiolite units of the Western Alps. 882 

 883 

Figure 11: (a) Simplified sketch (modified after Angiboust & Glodny, 2020, Ghignone et al., 2020b, Ghignone 884 

et al., 2020c) representing the tectonic evolution of the IPZ and EPZ in absolute time during their exhumation 885 

path, and their relationships with adjacent DM unit. Continuous lines on top indicates ages from this work, 886 

dashed lines represent the uncertainty (D1, D2 and T1). D3 and D4 ages (dashed lines) were inferred from 887 

Schwartz et al. (2007) and Perrone et al., (2010). (b) Age versus P diagram, summarizing different tectono-888 

metamorphic stages in time, between IPZ, EPZ and DM (values from Gasco et al., 2011). Black, grey and blue 889 

arrows indicate the evolution of IPZ, EPZ and DM, respectively, from D1 to D2, inside the nappes, away from 890 

the SSZ.  891 

 892 

Table 1: Main petrological and microstructural features of the samples investigated with in situ 40Ar/39Ar UV 893 

laser probe dating. 894 

 895 

Table 2: Full results of White Mica 40Ar/39Ar in Situ UV Laser Probe Analysis. Obtained ages are reported 896 

with 2σ error. 897 

 898 

SUPPORTING INFORMATIONS 899 

 900 

Table S1: Representative microprobe chemical analysis for the three selected samples. 901 

Table S2: Full Results of White Mica 40Ar/39Ar in situ UV Laser Probe Analysis. 902 
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Sample Lithology Tectonic domain

VS17 Grt-micaschist IPZ

VS14 Calcschist IPZ

VS15 Grt-Cld mylonitic micaschist IPZ/SSZ

VS4 Mylonitic calcschist EPZ/SSZ

VS74 Micaschist EPZ

VS19 Calcschist EPZ
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Mineral assemblage Foliations Coordinates

Wm+Qz+Grt+Cld+Chl+Bt (±Pl±Tur) S1, SM, S2 7°4'45"E  45°8'43"N

Cal+Wm+Qz+Chl S1, SM, S2 7°3'40"E, 45°7'24"N

Wm+Qz+Grt+Cld+Chl (± Bt) S1, SM, S2 7°7'10"E, 45°10'28"N

Cal+Wm+Qz+Chl+Bt+Gr S1, SM, S2 7°4'00"E, 45°8'47"N

Wm+Qz+Chl (± Bt±Pl±Ep) S1, S2 7°3'31"E, 45°9'5"N

Cal+Wm+Qz+Chl S1,SM, S2 7°2'27"E  45°8'30"N



Run ID Sample
Tectonic 

domain
Mineral Microstructural position Foliation

1105-01 VS17 IPZ Ph Microlithon S1

1105-02 VS17 IPZ Ms Wm rim - main foliation S2

1105-03 VS17 IPZ Ph Wm core - main foliation S1

1105-04 VS17 IPZ Ms Wm rim S2

1105-05 VS17 IPZ Ph Wm core S1

1105-06 VS17 IPZ Ms Wm rim S2

1105-07 VS17 IPZ Ph Microlithon S1

1105-08 VS17 IPZ Ph Wm core S1

1105-09 VS17 IPZ Ph Top-to-E C-plane SM

1105-10 VS17 IPZ Ms Wm rim S2

1105-11 VS17 IPZ Ph Wm core S1

1105-12 VS17 IPZ Ph Wm core S1

1106-01 VS14 IPZ Ph Top-to-E C-plane SM

1106-02 VS14 IPZ Ph Wm core S1

1106-03 VS14 IPZ Ph Top-to-E C-plane SM

1106-04 VS14 IPZ Ms Wm rim S2

1106-05 VS14 IPZ Ph Wm core S1

1106-06 VS14 IPZ Ph Wm core S1

1106-07 VS14 IPZ Ms Wm rim S2

1106-08 VS14 IPZ Ms Wm rim S2

1106-09 VS14 IPZ Ms Wm rim S2

1107-01 VS15 IPZ/SSZ Ph Microlithon (wm core) S1

1107-02 VS15 IPZ/SSZ Ph Microlithon (wm core) S1
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1107-03 VS15 IPZ/SSZ Ph Microlithon (wm core) S1

1107-04 VS15 IPZ/SSZ Ph Main (mylonitic) foliation SM

1107-05 VS15 IPZ/SSZ Ph Main (mylonitic) foliation SM

1107-06 VS15 IPZ/SSZ Ph Microlithon (wm core) S1

1107-07 VS15 IPZ/SSZ Ph Microlithon (wm core) S1

1107-08 VS15 IPZ/SSZ Ms Microlithon (wm rim) S2

1107-09 VS15 IPZ/SSZ Ph Main (mylonitic) foliation SM

1107-10 VS15 IPZ/SSZ Ms Microlithon (wm rim) S2

1107-11 VS15 IPZ/SSZ Ph Microlithon (wm core) S1

1107-12 VS15 IPZ/SSZ Ph Top-to-E C-plane SM

1107-13 VS15 IPZ/SSZ Ph Microlithon (wm core) S1

1107-14 VS15 IPZ/SSZ Ph Mylonitic foliation SM

1108-01 VS4 EPZ/SSZ Ph Microlithon S1

1108-02 VS4 EPZ/SSZ Ph Microlithon S1

1108-03 VS4 EPZ/SSZ Ph Main (mylonitic) foliation SM

1108-04 VS4 EPZ/SSZ Ph Microlithon S1

1108-05 VS4 EPZ/SSZ Ph Microlithon S1

1108-06 VS4 EPZ/SSZ Ph Microlithon S1

1108-07 VS4 EPZ/SSZ Ph Main (mylonitic) foliation SM

1108-08 VS4 EPZ/SSZ Ph Microlithon S1

1108-09 VS4 EPZ/SSZ Ph Main (mylonitic) foliation SM

1108-10 VS4 EPZ/SSZ Ph Microlithon S1

1109-01 VS74 EPZ Ph Main foliation (Wmcore) S1

1109-02 VS74 EPZ Ph Qz+chl-rich microlithon S1



1109-03 VS74 EPZ Ph Main foliation (Wm core) S1

1109-04 VS74 EPZ Ph Qz+chl-rich microlithon S1

1109-05 VS74 EPZ Ph Main foliation (Wm core) S1

1109-06 VS74 EPZ Ph Main foliation (Wm core) S1

1109-07 VS74 EPZ Ph Microlithon (Wmcore) S1

1109-08 VS74 EPZ Ph Microlithon (Wm core) S1

1109-09 VS74 EPZ Ph Main foliation (Wm core) S1

1109-10 VS74 EPZ Ph Microlithon (Wm core) S1

1109-11 VS74 EPZ Ph Main foliation (Wm core) S1

1110-01 VS19 EPZ Ph Top-to-E C-plane SM

1110-02 VS19 EPZ Ph Mylonitic foliation SM

1110-03 VS19 EPZ Ms Fine grained main foliation S2

1110-04 VS19 EPZ Ms Fine grained main foliation S2

1110-05 VS19 EPZ Ph Mylonitic foliation SM

1110-06 VS19 EPZ Ph Microlithon (Wm core) S1

1110-07 VS19 EPZ Ph Microlithon (Wm core) S1

1110-08 VS19 EPZ Ph Microlithon (Wm core) S1

1110-09 VS19 EPZ Ph Microlithon (Wm core) S1

1110-10 VS19 PZ Ms Fine grained main foliation S2



Age±2σ (Ma) Note

42.4±0.6

37.6±0.6

42.4±0.5

36.6±0.5

41.6±0.6

66.5±0.7 Too fine grained

47.2±0.8 K-free phases involved

43.4±0.4

39.2±0.4

59.4±0.4 Too fine grained

41.8±0.4

44.0±0.9

39.7±0.8

42.6±0.9

40.6±0.5

32.9±1.8 Too fine grained

44.9±0.7

43.6±0.6

38.6±0.4

54.7±1.4 Too fine grained

251.5±8.0 Too fine grained

92.3±0.8 K-free phases involved

68.6±0.6 K-free phases involved



44.9±0.4

36.3±0.4

38.7±0.4

44.1±0.5

48.4±1.4 Too fine grained

63.2±0.6 Too fine grained

75.2±0.9 Too fine grained

62.7±0.5 K-free phases involved

46.8±0.4

36.9±0.3

49.4±0.5  Too fine grained

37.1±0.5

40.8±1.4

133.5±8.3 K-free phases involved

38.8±0.4

40.2±0.5

44.9±0.4

46.4±0.5

51.6±0.7 K-free phases involved

42.2±0.5

47.4±0.5  Too fine grained

48.7±0.4  Too fine grained

42.7±0.4

53.7±1.8 K-free phases involved



42.8±0.4

52.9±1.9 K-free phases involved

43.1±0.6

41.5±0.6

45.4±0.4

41.4±0.5

42.2±0.4

40.4±0.6

41.3±0.5

38.6±0.4

39.0±0.4

37.4±0.4

37.4±0.4

38.9±0.4

41.8±0.5

43.9±0.4

43.4±0.4

41.2±0.4

39.7±0.5
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