
08 January 2022

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A resilient leader election algorithm using aggregate computing blocks

Publisher:

Published version:

DOI:10.1016/j.ifacol.2020.12.1497

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

Elsevier B.V.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1807002 since 2021-09-29T15:17:52Z



A Resilient Leader Election Algorithm Using
Aggregate Computing Blocks ?

Yuanqiu Mo ∗ Giorgio Audrito ∗∗ Soura Dasgupta ∗∗∗
Jacob Beal ∗∗∗∗

∗Westlake Institute for Advanced Study, Westlake University,
Hangzhou 310024, China (email: moyuanqiu@westlake.edu.cn)

∗∗Department of Computer Science, University of Turin, Turin, Italy
(e-mail: giorgio.audrito@gmail.com )

∗∗∗University of Iowa, Iowa City, Iowa 52242 USA and Shandong
Academy of Science. (e-mail: soura-dasgupta@uiowa.edu).

∗∗∗∗Raytheon BBN Technologies Cambridge, MA, USA 02138 (e-mail:
jakebeal@ieee.org )

Abstract: Leader election, a fundamental coordination problem in distributed systems, has
been addressed in many different ways. Among these works, resilient leader election algorithms
are of particular interest due to the ongoing emergence of open, complex distributed systems
such as smart cities and the Internet of Things. However, previous algorithms with O(diameter)
stabilization time complexity either assume some prior knowledge of the network or that very
large messages can be sent. In this paper, we present a resilient leader election algorithm with
O(diameter) stabilization time, small messages, and no prior knowledge of the network. This
algorithm is based on aggregate computing, which provides a layered approach to algorithm
development based on composition of resilient algorithmic “building blocks.” With our algorithm,
a key design parameter K defines important performance attributes: a larger K will delay the
recovery from loss of current leader, while a small K may lead to multiple leaders, and the
algorithm will stabilize with O(diameter) time complexity when K ≥ 2.

Keywords: Leader election, multiagent system, resilience, aggregate computing.

1. INTRODUCTION

Recent intense activity in the control and stability of
multiagent systems has included consensus, (e.g., Olfati-
Saber et al. (2007)), distributed agreement, (e.g., Cao et al.
(2008)) and formation control, (e.g., Baillieul and Suri
(2003), Dasgupta et al. (2011), Summers et al. (2009),
Fidan et al. (2013) and Summers et al. (2011)). All are
distributed graph algorithms with local control action
guided by limited information flow between neighbors.
Most, though not all, represent nonlinear systems. In
this tradition, this paper presents and analyzes a leader
election algorithm that involves the feedback composition
of two nonlinear systems, each of which is a distributed
graph algorithm.
Leader election is a fundamental problem in distributed
systems, where a network elects a single node as a leader in
? Supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001117C0049. The views, opinions,
and/or findings expressed are those of the author(s) and should
not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government. This document
does not contain technology or technical data controlled under either
U.S. International Traffic in Arms Regulation or U.S. Export Ad-
ministration Regulations. Approved for public release, distribution
unlimited (DARPA DISTAR case 32200, 10/31/19). Mo was also
partially supported by the Australian Research Council under grant
DP190100887 and DP160104500.

a distributed, and in our case, resilient fashion. Resilience
implies the eventual election of a single leader and the
ability to recover from transient perturbations like the
disappearance of leaders, temporary emergence of false
leaders and link failures that do not disconnect the graph.
The study of leader election algorithms (e.g., Gallager
(1977) and Le Lann (1977)), has considered time, space
and message complexity of deterministic leader election
on general networks with identifiers, that of probabilistic
leader election on anonymous networks, of leader election
on specific networks like ring and complete graphs, and of
leader election in asynchronous graphs.
This paper considers election in open, complex distributed
systems such as smart cities and the Internet of Things,
that have many devices and intermittent perturbation of
both network membership and topology. We assume that
each node carries a unique identifier of size O(logN) bits
with N the number of nodes and that each node exchanges
messages with its neighbors in synchronous rounds (a
simplifying assumption for analytical purposes; our results
will also hold for fair asynchronous execution). We measure
time, space, and message complexities by communication
rounds, bits, and multiples of logN bits respectively.
In general synchronous networks, the global lower bound
on the time required for a leader election algorithm is



Ω(D) 1 rounds (Kutten et al. (2015)), where D is the
diameter of the network. This is achieved by Peleg (1990),
which elects a leader via the construction of a breadth
first search tree (BFS) rooted at the leader. Its time and
message complexities are O(D) and O(DE) respectively,
where E is the number of edges. Closely competitive is
Casteigts et al. (2016), which elects a leader in O(D +
logN) rounds but sends messages of size O(1) instead of
O(logN) bits. Both assume a perturbation free graph.
Some time optimal (i.e. with O(D) complexity) solutions
consider perturbations but also assume such prior knowl-
edge of the graph as the number of nodes N or the diam-
eter D. In Awerbuch et al. (1993), the authors implement
the Bellman-Ford algorithm with IDs requiring that nodes
know an upper bound on the diameter of the network.
Similarly, Burman and Kutten (2007) assumes that nodes
know an upper bound on D. The space complexity of both
solutions is O(logN logD), as they require Θ(logN logD)
bits per node. These assumptions do not hold in open
networks where nodes are lost or the network grows.
Algorithms in Aggarwal and Kutten (1993) and Kravchik
and Kutten (2013) accommodate perturbations without
such knowledge. In the former, an Extend-ID mechanism
is used to eliminate a corrupted leader, but their messages
may increase to unbounded length. The latter implicitly
uses the network size by utilizing a synchronizer requir-
ing knowledge of an upper bound on N . Solutions in
Datta et al. (2011a,b) and Altisen et al. (2017) assume
a distributed unfair daemon and have space complexity of
O(logN) bits per node, but stabilize in a far from optimal
O(N) as opposed to the best achievable O(D) rounds.
We take an approach based on aggregate computing (Beal
et al. (2015)), which offers a layered abstraction approach
to simplifying the design, creation, and maintenance of
complex open distributed systems, much like the OSI
model for communication. Key for this paper is its middle
layer, comprising a collection of three general “building-
block” operators for resilient coordination applications: (i)
G-blocks that spread information through a network of
devices, (ii) C-blocks that summarize information about
the network to be used by interacting units, and (iii) T-
blocks that maintain temporary state. Their compositions
realize a broad class of dispersed services, as described in
Beal and Viroli (2014) and Viroli and Damiani (2014).
We introduce a globally, uniformly, asymptotically stable
(GUAS) leader election algorithm via a feedback inter-
connection of aggregate computing building blocks. Our
algorithm is time optimal with a stabilization time of
O(D), space optimal at O(logN) bits per node (given
that every node needs to store its own ID using O(logN)
bits), and has a message complexity of O(DE). While
running a slightly different Bellman-Ford algorithm than
Awerbuch et al. (1993) with IDs, our algorithm also simul-
taneously estimates the diameter of the network, and thus
does not need any prior knowledge of the network. Like
most feedback systems, it has one free design parameter
K that determines important performance attributes. A
large value accelerates convergence but impairs resilience
1 A quantity X is Ω(D) if there exist positive constants k1 and D0
such that X ≥ k1D for D ≥ D0. It is Θ(D) if there is an additional
constant k2 such that it is between k1D ≤ X ≤ k2D for D ≥ D0.

by delaying recovery from loss of the current leader. A
small value improves resilience but slows convergence or
can elect multiple leaders. Trade-off between resilience and
convergence speed is common in most algorithms.
Section 2 provides preliminaries. Section 3, gives a formal
description of our leader election algorithm. Section 4
demonstrates its resilience by upper bounding the time to
recovery from transient perturbations and proves GUAS.
Section 5 validates our results through simulations and
shows that our algorithm compares favorably to Datta
et al. (2011b). In particular, it recovers much faster from
perturbations caused by a leader loss or the temporary
advent of a fake leader. Section 6 concludes. Proofs are
omitted due to space constraints.

2. PRELIMINARIES

We consider an undirected graph G = (V,E), with V =
{1, 2, ..., N} the set of nodes (devices), and E the set of
edges. Without loss of generality, we assume the index of
a node represents its ID and also reflects its priority, i.e.,
node i has a higher priority than node i+1. The algorithm
must elect the node i = 1 (unless it is lost) to be the single
leader in the graph. An edge indicates the existence of a
communication link between nodes and i is a neighbor of
j if there is an edge between i and j, defining N (i) as the
set of all neighbors of node i. All edge lengths are 1, i.e.,
distances are hop counts.
The shortest distance di of i from 1, the desired leader,
obeys the following recursion from Mo et al. (2019):

di =
{

0, i = 1
min

k∈N (i)
{dk + 1}, i 6= 1 (1)

Based on (1), we introduce the following definition.
Definition 1. A k that minimizes the right hand side
of (1) is a true constraining node of i. As there may be
many neighbors k and l of i such that dl = dk, a node
may have multiple true constraining nodes. The set of true
constraining nodes of i is defined as C(i). Moreover, the
true constraining node of 1 is itself.
Further, we also make the following related definition:
Definition 2. The effective diameter D(G) of G is:

D(G) = max{di | i ∈ V }.
Note that D(G) may be smaller than the diameter of G.

3. ALGORITHM

The leader election algorithm, in Figure 1, uses a feed-
back interconnection comprising two aggregate computing
building blocks, each of which is a distributed algorithm.
Before providing details of this algorithm, we summarize
the basic approach. A node i is attached to the leader σi

estimated as being nearest to it (a leader is attached to
itself). The distance estimates d̂i are obtained using an
algorithm similar to the adaptive Bellman-Ford algorithm
analyzed in Mo et al. (2019). Each node i carries a diame-
ter estimate Di of the sub-network of the nodes attached
to the same leader as itself, which the leader converts
(through a design parameter K) into a propagation radius
Ri that bounds its influence area.



A node accepts the leader of a neighbor as its own
only if the resulting distance estimate is smaller than
the propagation radius. Among acceptable leaders, the
one with higher priority (lower i) is chosen. A leader i
relinquishes its status if a neighbor j is attached to a higher
priority leader within Rj hops from i. If none exists, the
node assumes or retains the role of a leader.

MABF

C

d̂i(t)
ci(t)

Di(t)

Fig. 1. Block diagram of our leader election algorithm.
Block C computes values Di(t), feeding them directly
to block MABF. This block in turn produces values
d̂i(t) and ci(t), which are fed to C in the following
round.

This diameter-based strategy provides resilience. When a
leader is lost, all its neighbors are thereafter constrained
by others. As shown in Lemma 3, their distance estimates
d̂i keep increasing while the propagation radii Ri remain
unchanged. Eventually, as quantified in Lemma 4, they
will not find a neighbor j within Rj hops from the leader
it is attached to. New leaders will propose themselves, and
the highest priority one will become the new leader.
Figure 1 describes the structure of the algorithm. The
modified adaptive Bellman-Ford (MABF) block is a G-
block that broadcasts radius bounds Ri to nodes attached
to a leader, determines current leaders σi, and obtains
distance estimates d̂i of nodes attached to it. The C block
maximizes over the d̂i to obtain diameter estimates Di,
which are then used by the MABF block to produce the
propagation bounds Ri. The dotted line from MABF to C
indicates the latter works on MABF output with a delay
of one cycle. Thus although there is no delay in the C to
MABF connection, the closed loop avoids a delay free loop.

3.1 The MABF block

As introduced in Section 2, the node ID, represented by
node index, is unique and cannot be falsified. Thus, we
define σi(t) as the estimated leader ID of node i at time t,
which may be corrupted under perturbations. The purpose
of leader election is to elect the highest priority node as
the unique leader, i.e., σi(t) = 1 for all i ∈ V and t ≥ T
with some finite T . We say that node i is a current leader
if σi(t) = i, and that i is attached to a leader j if σi(t) = j.
MABF decides whether a node i should be a leader, by
selecting leader estimates from neighbors j ∈ N (i) that
(i) carry distance estimate (hop count) d̂j that is smaller
than the propagation radius d̂j < Rj , and (ii) their leader
σj has a higher priority than i. A node becomes a leader
whenever no such neighbor exists. More precisely, define
Vi(t + 1) comprising the neighbors of i whose distance
estimates are within their propagation radius:

Vi(t+ 1) = {j ∈ N (i) | d̂j(t) < Rj(t)} (2)

Then define V̄i(t+ 1) ⊂ Vi(t+ 1) comprising members j of
Vi(t+ 1) that carry the smallest leader estimate σj(t) < i:
V̄i(t+ 1) = {j ∈ Vi(t+ 1) | σj(t) = k and σj(t) < i} (3)

where k = min
`∈Vi(t+1)

{σ`(t)}. If V̄i(t + 1) is empty, then

i becomes a leader, with a distance estimate of 0, and a
propagation radius calculated by the C block. Thus,
σi(t+1) = i, d̂i(t+1) = 0, Ri(t+1) = g(Di(t+1)) (4)

assuming that g(Di(t+ 1)) = KDi(t+ 1) + 1 where K ≥ 1
is a design parameter.
If V̄i(t + 1) is nonempty, i cannot be a leader, and will
attach itself to the leader one of the members of V̄i(t+ 1)
is attached to. This neighbor also becomes the current
constraining node ci(t+1) of i, used to update the MABF
variables σi(t), d̂i(t), Ri(t). If i becomes a leader, we say
that its current constraining node is itself ci(t+ 1) = i.

The current constraining node is a member of V̄i(t + 1)
with (i) the smallest distance estimate d̂j(t); (ii) if tied,
the largest propagation radius Rj(t); (iii) if still tied, the
smallest j. Because of the definition of V̄i, the selected j
is the node in Vi that is attached to the highest priority
leader. Thus we define V̂i(t + 1) ⊂ V̄i(t + 1) as set of
neighbors with the smallest distance estimate:
V̂i(t+ 1) = {j ∈ V̄i(t+ 1) | d̂j(t) = min

`∈V̄i(t+1)
{d̂`(t)}} (5)

and Ṽi(t+1) as the subset of V̂i(t+1) of neighbors carrying
the largest propagation radius:
Ṽi(t+1) = {j ∈ V̂i(t+1) | Dj(t) = max

`∈V̂i(t+1)
{D`(t)}}. (6)

Finally, we set the ci(t+1) to min Ṽi(t+1). Each non-leader
node then updates its leader, distance, and propagation
radius estimates as below with j = ci(t+ 1):
σi(t+1) = σj(t), d̂i(t+1) = d̂j(t)+1, Ri(t+1) = Rj(t).

(7)
This also explains the strict inequality in (2). It forces the
distance estimate of node i to obey d̂i = d̂j + 1 ≤ Rj . It
leads to the following lemma that is key to resiliency.
Lemma 1. Under (2)- (7), there holds:

d̂i(t) ≤ Ri(t), ∀i ∈ V and ∀t ≥ 1. (8)

The set of nodes constrained by i at time t is:
Ci(t) = {j ∈ V \ {i} | cj(t) = i}, (9)

and the set of leaders at time t is defined as:
S(t) = {i | σi(t) = i}. (10)

3.2 The C block

The C block, specialized from Viroli et al. (2018), collects
and sends to each leader its current estimated diameter
Di, by maximizing among the estimated distances d̂i(t)
and diameter estimates at nodes that i constrains:

Di(t+ 1) = max{d̂i(t), {Dj(t) | j ∈ Ci(t)}} (11)
with Ci(t) defined in (9).

3.3 Desired stationary point

Evidently the desired stationary state has the following
components. Every node accepts node 1 as the leader:



σi(t) = 1, ∀ i ∈ V. Consequently, d̂i(t) = di and Di(t) =
D(G) ∀ i ∈ V.

4. STABILITY AND RESILIENCE ANALYSIS

We now prove the GUAS of the algorithm, while bound-
ing the time required for its convergence. The following
constitutes our standing assumption.
Assumption 1. The undirected graph G = (V,E) is
connected, t0 = 0 is the initial time, di, N (i), ci(t), Ci(t),
σi(t), d̂i(t), Ri(t), Di(t), g(D) = KD + 1 with K ≥ 1 are
as in Section 3, and for all i ∈ V , the quantities d̂i(0),
Ri(0), Di(0) are non-negative integers.

4.1 Resilience to fake or lost leaders

We demonstrate the resilience of the algorithm to the
fleeting advent of fake leaders or the loss of a legitimate
leader. We assume that the loss or advent occurs before
t = 0 and that at t = 0, even though no fake nodes exist,
extant nodes may be attached to a lost or past fake leader.
Thus we allow σi(0) /∈ V, i.e., σi(0) may not be a positive
integer. We define the set of unrooted nodes and prove that
only unrooted nodes can carry fake leader IDs.
Definition 3 (Unrooted Node Set). Define the set of
unrooted nodes U(t) as U(0) = V , and

U(t+ 1) = {i ∈ V | i 6= ci(t+ 1) ∈ U(t)}.
Thus U(t+ 1) comprises non-leader nodes constrained by
members of U(t). Let L(t) = {σi(t) | i ∈ U(t)} be the set of
unrooted leaders, and define Uk(t) to be the set of unrooted
nodes with leader k:

Uk(t) = {i ∈ U(t) | σi(t) = k}.
Furthermore, define

d̂k
min(t) = min{d̂i(t) | i ∈ Uk(t)},

Rk
max(t) = max{Ri(t) | i ∈ Uk(t)}.

We first show that the set of unrooted leaders cannot grow
and more importantly only unrooted nodes can carry fake
IDs, as IDs carried by rooted nodes are in V.
Lemma 2 (Unrooted Leader Set Decay). Consider (2-
11) under Assumption 1 and Definition 3. The set of
unrooted leaders cannot expand over time, i.e., obeys L(t+
1) ⊆ L(t). Furthermore, leaders σi(t) of rooted nodes
i ∈ V \ U(t) are in V .
As the intuition give in Section 3 states, nodes attached
to lost leaders attach to legitimate ones as their distance
estimates grow, while their estimated Ri do not. The next
lemma shows that this occurs for all unrooted nodes.
Lemma 3. Consider (2-11) under Assumption 1 and
Definition 3. Consider t ≥ 0 and k ∈ L(t). Then,
d̂k

min(t) ≥ d̂k
min(0) + t and Rk

max(t) ≤ Rk
max(0).

Thus eventually unrooted nodes violate (8) and attach
to a node in V . The next lemma bounds the time it
takes for this to happen. Given (2), this recovery takes
longer for larger K, though as later shown smaller K slows
subsequent convergence.
Lemma 4 (Fake Leader IDs Disappear). Consider (2-11)
under Assumption 1 and Definition 3. Let:

T̂ = 1 + max{0, Rk
max(0)− d̂k

min(0) | k ∈ L(0) \ V }.
Then σi(t) ∈ V for every node i ∈ V and t ≥ T̂ .

Thus fake leader IDS disappear after time T̂ .

4.2 GLOBAL UNIFORM ASYMPTOTIC STABILITY

We now show that a node attached to the desired leader
must eventually have an overestimated distance estimate.
Lemma 5 (Underestimates Decay). Consider (2-11) un-
der Assumption 1. For every i ∈ V and t ≥ 0 such that
σi(t) = 1, we have d̂i(t) ≥ min(di, t).
Hereafter correct estimates flow outwards from the desired
leader 1 bounded by the propagation radius computed
from leader diameter estimates (Lemma 7), while these
diameter estimates flow inwards bounded by the stabiliza-
tion of distances (Lemma 6).
More precisely, suppose at time Tx the distance estimates
and the leader ids of all nodes i within x hops of 1 have
converged. Then after time Tx+x+1 the diameter estimate
collected at 1 cannot be smaller than x.
Lemma 6 (Diameter Collection). Consider (2-11) under
Assumption 1. Assume that Tx ≥ x for x ≤ D(G) is such
that every device i ∈ V with di ≤ x stabilizes to σi(t) = 1,
d̂i(t) = di for t ≥ Tx. Then D1(t) ≥ x for t ≥ Tx + x+ 1.
We now have the final lemma described before Lemma 6.
Lemma 7 (Diameter Broadcast). Consider (2-11) under
Assumption 1 and Definition 1. Assume that Tx ≥ T̂
defined in Lemma 4 is such that σ1(t) = 1, d̂1(t) = 0 and
D1(t) ≥ x for t ≥ Tx. Then every i ∈ V with di ≤ g(x)
stabilizes to σi(t) = 1, d̂i(t) = di and Ri(t) ≥ g(x) for
t ≥ Tx + di.
These last two lemmas recursively characterize the conver-
gence time Tx for nodes at distance x (Theorem 1).
Definition 4 (Discrete Inverse). We define g−1(D) =⌈

D−1
K

⌉
, which is the smallest number x such that g(x) =

Kx+ 1 ≥ D.
Theorem 1 (Convergence). Consider (2-11) under As-
sumption 1. Let Tx for x ≤ D(G) be recursively defined as
T0 = T̂ with T̂ defined in Lemma 4,

Tx = Tg−1(x) + g−1(x) + x+ 1.
Then for t ≥ Tx and i ∈ V such that di ≤ x, we have that
σi(t) = 1, d̂i(t) = di.
Notice that the time to convergence derived above is
independent of the initial time t0 = 0, and thus the global
convergence is uniform. Furthermore, the bound above is
strict e.g., whenever σi(0) > 1 for all i ∈ V \ {1}, and
r1(0) = D1(0) = 0. Define, L to be the smallest integer for
which g−L(x) = 0. Then we get the following close form
expressions verifiable using induction:

Tx = T̂ + x+
L∑

k=1

(
2
⌈
x−

∑i<k
i=0 K

i

Kk

⌉
+ 1
)

(12)

For K = 1
⌈

x−
∑i<k

i=0
Ki

Kk

⌉
= x− k for x ≥ k and thus:

Tx = T̂ + x+
x∑

k=1
(2(x− k) + 1) = T̂ + x(x+ 1)

which is quadratic in x. However, if K ≥ 2, we have that
L = dlogK(x(K − 1) + 1)e and:



20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Fig. 2. Leader election with different K in a randomized
graph without perturbations.

Tx = T̂ +
(

1 + 2
K − 1

)
x+

(
3− 2

K − 1

)
L+ 2

(K − 1)2

which is asymptotically linear in x (since L is logarithmic
in x): e.g., Tx ≤ T̂+3x+log2(x+1)+3 forK = 2. Assuming
the initial values Ri(0) to be not greater than the final
values Ri(t) = g(D(G)) = KD(G) + 1 reached after
stabilisation (that is, the perturbation did not decrease
the graph diameter), we furthermore get that Tx ≤ 5x +
log2(x+ 1) + 5 for K = 2, x = D(G).

5. SIMULATIONS

We first investigate behavior without perturbations com-
paring performance with Datta et al. (2011b)—the only
other small message (i.e., where an ID using log2(N)-
bits is passed) knowledge free leader election algorithm.
Five hundred nodes (ids from 1 to 500) are randomly
distributed in a 4× 1 field, communicating synchronously
with a 0.25 unit disc. The initial conditions are: ∀i ∈ V ,
d̂i(0) = Ri(0) = Di(0) = 0, and σi(0) is a random integer
between 1 to 500, with 10 runs per initial condition.
Figure 2 depicts results with K = 1, K = 2, and K = 3;
D(G) ranges from 11 to 19 for these 10 trials. With
K = 1 convergence is much slower (average 115 rounds)

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Fig. 3. Leader election by Datta in a randomized graph
without perturbations.

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Fig. 4. Leader election using different K in a randomized
graph under perturbations.

compared with K = 2 and K = 3. This is consistent
with our result that in this case the time complexity
is O(D(G)2). With K = 2 or K = 3, our algorithm
has a much better performance, having an average time
to convergence of 36 rounds and 28 rounds respectively.
Figure 3 depicts the performance of Datta’s algorithm.
The average time to convergence in this case is 41 rounds,
which is worse than our algorithm with K = 2 or 3.
Moreover, Datta’s algorithm has frequent oscillations with
many leaders, whereas in most times ours has very few
leaders.
We next compare resilience to perturbations, otherwise
keeping the same setup as above but omitting the K = 1
case. For i = 50 to 100, σi(10) = 0.5, i.e., 51 nodes are
corrupted by a fake leader ID with the highest priority
during run time.
As shown in Figure 4 with K = 2, the states of nodes will
recover and converge in an average of 52 rounds across
the 10 trials, and with K = 3 an average of 40 rounds.
The algorithm of Datta et al. (2011b) in Figure 5, takes



10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Fig. 5. Leader election by Datta in a randomized graph
under perturbations.

an average of 53 rounds: essentially the same as K = 2,
but slower than K = 3, and again with many more leaders
than even our K = 2 case. If these leaders take decisions
in real time then this can cause greater network disruption.

6. CONCLUSION

In this paper, we have introduced a resilient leader election
algorithm implemented using a feedback interconnection
of aggregate computing building blocks. This algorithm
assumes no prior knowledge about the network, and is
not only globally uniformly and asymptotically stable, but
also resilient to transient perturbations. The free design
parameter K can tune the convergence rate and resilience
rate, with the algorithm achieving a time complexity of
O(D) when K ≥ 2. Future work includes analysis of the
algorithm under more severe perturbations, optimization
of K, application to various distributed systems that make
use of leader election, and analysis of its compositional
properties within such systems.

REFERENCES
Aggarwal, S. and Kutten, S. (1993). Time optimal self-
stabilizing spanning tree algorithms. In International
Conference on Foundations of Software Technology and
Theoretical Computer Science, 400–410. Springer.

Altisen, K., Cournier, A., Devismes, S., Durand, A., and
Petit, F. (2017). Self-stabilizing leader election in
polynomial steps. Information and Computation, 254,
330–366.

Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B.,
and Varghese, G. (1993). Time optimal self-stabilizing
synchronization. In STOC, volume 93, 652–661.

Baillieul, J. and Suri, A. (2003). Information patterns
and hedging brockett’s theorem in controlling vehicle
formations. In 42nd IEEE International Conference
on Decision and Control (IEEE Cat. No. 03CH37475),
volume 1, 556–563. IEEE.

Beal, J., Pianini, D., and Viroli, M. (2015). Aggregate
programming for the internet of things. Computer,
48(9), 22–30.

Beal, J. and Viroli, M. (2014). Building blocks for
aggregate programming of self-organising applications.
In 2014 IEEE Eighth International Conference on Self-
Adaptive and Self-Organizing Systems Workshops, 8–13.

Burman, J. and Kutten, S. (2007). Time optimal asyn-
chronous self-stabilizing spanning tree. In International
Symposium on Distributed Computing, 92–107.

Cao, M., Morse, A.S., and Anderson, B.D.O. (2008).
Agreeing asynchronously. IEEE Transactions on Au-
tomatic Control, 53(8), 1826–1838.

Casteigts, A., Métivier, Y., Robson, J.M., and Zemmari,
A. (2016). Deterministic leader election in O(D + log
n) time with messages of size O(1). In International
Symposium on Distributed Computing, 16–28.

Dasgupta, S., Anderson, B.D.O., Yu, C., and Summers,
T.H. (2011). Controlling rectangular formations. In
2011 Australian Control Conference, 44–49. IEEE.

Datta, A.K., Larmore, L.L., and Vemula, P. (2011a).
An o (n)-time self-stabilizing leader election algorithm.
Journal of Parallel and Distributed Computing, 71(11),
1532–1544.

Datta, A.K., Larmore, L.L., and Vemula, P. (2011b).
Self-stabilizing leader election in optimal space under
an arbitrary scheduler. Theoretical Computer Science,
412(40), 5541–5561.

Fidan, B., Dasgupta, S., and Anderson, B.D.O. (2013).
Adaptive range-measurement-based target pursuit. In-
ternational Journal of Adaptive Control and Signal Pro-
cessing, 27(1-2), 66–81.

Gallager, R.G. (1977). Finding a leader in network with
O(E) +O(NlogN) messages. Unpublished note, MIT.

Kravchik, A. and Kutten, S. (2013). Time optimal syn-
chronous self stabilizing spanning tree. In International
Symposium on Distributed Computing, 91–105.

Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., and
Trehan, A. (2015). On the complexity of universal leader
election. Journal of the ACM (JACM), 62(1), 7.

Le Lann, G. (1977). Distributed systems-towards a formal
approach. In IFIP congress, volume 7, 155–160. Toronto.

Mo, Y., Dasgupta, S., and Beal, J. (2019). Robustness
of the adaptive bellman-ford algorithm: Global stability
and ultimate bounds. IEEE Transactions on Automatic
Control, 4121– 4136.

Olfati-Saber, R., Fax, J.A., and Murray, R.M. (2007).
Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE, 95(1), 215–233.

Peleg, D. (1990). Time-optimal leader election in general
networks. Journal of parallel and distributed computing,
8(1), 96–99.

Summers, T.H., Yu, C., Anderson, B.D.O., and Dasgupta,
S. (2009). Formation shape control: Global asymptotic
stability of a four-agent formation. In Proceedings of the
48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference,
3002–3007. IEEE.

Summers, T.H., Yu, C., Dasgupta, S., and Anderson,
B.D.O. (2011). Control of minimally persistent leader-
remote-follower and coleader formations in the plane.
IEEE Transactions on Automatic Control, 56(12), 2778–
2792.

Viroli, M., Audrito, G., Beal, J., Damiani, F., and Pianini,
D. (2018). Engineering resilient collective adaptive
systems by self-stabilisation. ACM Transactions on
Modelling and Computer Simulation (TOMACS), 28(2),
16:1–16:28.

Viroli, M. and Damiani, F. (2014). A calculus of self-
stabilising computational fields. In International Con-
ference on Coordination Languages and Models, 163–
178.


