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1 Introduction

Dynamic expression data, nowadays obtained using high-throughput RNA sequencing (RNA-seq), are essen-
tial to monitor transient gene expression changes and to study the dynamics of their transcriptional activity
in the cell or response to stimuli. FunPat is an R package designed to provide:

� a useful tool to analyze time series genomic data;

� a computational pipeline which integrates gene selection, clustering and functional annotations into a
single framework to identify the main temporal patterns associated to functional groups of differentially
expressed (DE) genes;

� an easy way to exploit different types of annotations from currently available databases (e.g. Gene
Ontology) to extract the most meaningful information characterizing the main expression dynamics;

� a user-friendly organization and visualization of the outcome, automatically linking the DE genes and
their temporal patterns to the functional information for an easy biological interpretation of the results.

1.1 Citation

> citation("FunPat")

Please cite package 'FunPat' in publications using:

Sanavia T, Finotello F and Di Camillo B (2015). FunPat:
function-based pattern analysis on RNA-seq time series data. BMC
Bioinformatics

A BibTeX entry for LaTeX users is

@Article{,
title = {FunPat: function-based pattern analysis on RNA-seq time series data},
author = {Tiziana Sanavia and Francesca Finotello and Barbara Di Camillo},
journal = {BMC Bioinformatics},
year = {2015},

}

Other publications illustrating the methods used in FunPat and possible applications are:

� Di Camillo B, Irving BA, Schimke J, Sanavia T, Toffolo G, Cobelli C, Nair KS. Function-based dis-
covery of significant transcriptional temporal patterns in insulin stimulated muscle cells. PLoS One,
7(3):e32391, 2012

� Di Camillo B, Toffolo G, Nair SK, Greenlund LJ, Cobelli C. Significance analysis of microarray tran-
script levels in time series experiments. BMC Bioinformatics, 8(Suppl 1):S10, 2007

1.2 How to get help

Most questions about FunPat will hopefully be answered by the documentation and the references. Ev-
ery function mentioned in this vignette has its own help page. For example, a detailed description of the
arguments and the output of the function PatternAnalysis can be read by typing ?PatternAnalysis or
help(PatternAnalysis) at the R prompt. We always appreciate receiving suggestions for possible improve-
ments of the package, as well as reports of bugs in the package functions or in the documentation. For
any questions, please contact us by sending an email to Tiziana Sanavia (tiziana.sanavia@dei.unipd.it) and
Barbara Di Camillo (barbara.dicamillo@dei.unipd.it).
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2 Installation

This software is written in R language, so it is necessary to have R installed on your computer. For more
information and download of R, please refer to http://www.r-project.org/. For more information about
the installation of R packages, please refer to http://cran.r-project.org/doc/manuals/R-admin.html#
Installing-packages. R version 3.0.3 or later is required to be able to install and run FunPat. This package
is dependent on Bioconductor package tseries.

To install FunPat and tseries from Bioconductor website, open an R session and type:

> source("http://bioconductor.org/biocLite.R")
> biocLite("tseries")
> biocLite("FunPat") # soon available

FunPat package can be also installed from a tar ball as follows:

> install.packages("path_to_FunPat/FunPat_0.99.0.tar.gz",
+ repos=NULL, type="source")

3 Getting started with FunPat

3.1 Overview

FunPat works with transcriptional expression data derived from experimental designs monitoring either two
experimental conditions (e.g. treatment vs. control) or a single condition vs. a baseline (Sections 3.2 for
an example and 5 for a detailed description). Starting from these data, FunPat offers the following types of
analysis:

� differential expression analysis of dynamic expression data (Section 3.3);

� model-based clustering of temporal expression profiles, without requiring the user to fix either a priori
or a posteriori the number of clusters (Section 3.4);

� if prior knowledge from databases (Section 3.5) or from custom-based annotations (Section 6) is avail-
able, an integrated selection-clustering analysis to identify DE genes which share common dynamic
expression profiles and annotations to a specific biological concept, e.g. a pathway or a Gene Ontology
(GO) term (Section 3.6).

Figure 1 gives a glance of what the user can obtain from the analyses:

� a list of genes ranked according to p-values representing their differential expression across time between
the experimental conditions (Figure 1-A);

� a set of clusters of DE genes (Figure 1-B), each characterized by a specific temporal pattern and, if
genes can be grouped into Gene Sets according to common biological annotations, by the most specific
biological information (e.g. clusters of genes annotated to the GO term ERK cascade);

� if available from annotations, a set of clusters of Gene Sets (Figure 1-C) with annotated genes charac-
terized by a common temporal pattern (e.g. the Main Pattern common to genes belonging to the GO
terms ERK cascade and RAS protein signal transduction).

FunPat allows a user-friendly organization of the outcome (Sections 3.7 and 3.8) and an advanced visualization
through HTML pages for an immediate interpretation of the results (see Section 4).
In the following, the application of FunPat functions to a toy example is presented, focusing on simulated
RNA-seq data. Since FunPat is not constrained by any specific statistical distributions, the same analysis
pipeline can be also applied to data from different technologies, such as microarrays, as well.

3

http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages


Figure 1: Description of FunPat output. Genes are first ranked according to a p-value assigned according
to the area bounded by the expression profiles in two experimental conditions, e.g. treatment vs. control (A).
If prior knowledge is available, genes are then organized into Gene Sets, e.g. genes annotated to common
GO terms. A model-based clustering is applied to obtain both Gene Set-specific temporal patterns (B),
characterizing clusters of genes (e.g. patterns 1 and 2 for the GO term ERK cascade), and Main Patterns
(C), characterizing clusters of Gene Sets (e.g. as for GO terms ERK cascade and RAS protein signal
transduction). If the prior knowledge is hierarchically structured as in GO, the analysis starts from the most
specific terms, removing the selected genes from the ancestor nodes to avoid redundancy of information.

3.2 Loading Data

To demonstrate the package functionality, FunPat provides a toy example of an RNA-seq study simulating an
experimental design where, for each gene, the dynamical response is measured in two conditions: treatment
vs. control (Figure 2). Data are characterized by N=1000 genes monitored across M=13 time samples1.
The dataset can be loaded by typing:

> library(FunPat)
> data(Simdata)

Simdata is a list containing three entries:

� ctrl, an N genes × M samples matrix of time series expression profiles at the control condition;

� treat, an N genes × M samples matrix of time series expression profiles at the treatment condition;

� replicates, a two-columns matrix containing the measurements of the available biological replicates.

Row names of ctrl and treat matrices correspond to gene Entrez IDs, considering Homo sapiens as model
organism. The replicates matrix was built by setting in the first and second columns the expression values
of ctrl and treat at time 0, respectively, excluding genes with null expression in both conditions. For a
complete guideline on how organizing data and the biological replicates for FunPat, see Section 5.

1Expression data were simulated according to a Negative Binomial distribution, with dispersion parameter equal to 0.1. The
sequencing depths were sampled from a uniform distribution in the interval [106, 107]. Simulated count data were normalized
with an approach based on the trimmed mean of M values (TMM) method [1] and then log2-transformed. In particular, the
normalization factors were re-scaled by the median of the normalized library sizes. See [2] for further details.
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Figure 2: Simulated experimental design. The simulated data represent a typical example of experimen-
tal design in time series gene expression studies. Samples are collected from two cell cultures measured into
two different experimental conditions, in this case treatment vs. control. The small arrows indicate the time
points at which the gene expression is monitored. The big red arrow indicates when treatment is applied.

3.3 Detection of time-dependent differential expression

In order to rank the genes according to p-values representing their differential expression across time be-
tween the two experimental conditions, FunPat uses the function SEL.TS.AREA. This function calculates, for
each gene, the area A of the region bounded by the corresponding time series expression profiles in the two
conditions and a p-value is assigned by evaluating the statistical significance of A against a null hypothesis
distribution, based on a model describing the biological and technical variability derived from the experi-
mental replicates [3]. The method requires only at least two replicates for a single time point.
Starting from the loaded data ctrl, treat and replicates, a basic usage of SEL.TS.AREA is:

> replic<-Simdata$replicates
> nC<-Simdata$ctrl
> nD<-Simdata$treat
> rank.res<-SEL.TS.AREA(replicates=replic,data1=nC,data2=nD)

The user can specify the time grid at which data are sampled using the argument sampling.grid, which
must be a vector with lenght equal to the number of columns in data1 and data2. If not specified as above,
the time samples are considered equally spaced. It is worth noting that setting time samples with different
intervals can strongly affect the results, since larger intervals have a higher weight in the area calculation.
To avoid weighting too much some intervals of the time series, the user can keep the default. The simulated
data do not contain missing values, but SEL.TS.AREA can handle these cases by the argument NAcontrol,
representing the minimum number of non-missing values allowed for each time series (default=4).
The algorithm works interactively. First, SEL.TS.AREA allows the user to investigate whether there is an
expression-level dependency of the model error built from the replicates, as shown in Figure 3. In particular,
data from replicates are divided into bins, calculating the mean expression level (x-axis) and the variance of
the differences between the replicates (i.e. the difference between the two columns reported in replicates, y-
axis). By looking at the plot provided by SEL.TS.AREA, the user can choose either a constant or an expression
level-dependent model. If the latter is chosen, as in this tutorial, a spline fit is used to represent the model
error (black line in Figure 3). In order to achieve the best description of the variability characterizing the
experimental data, SEL.TS.AREA provides the following arguments:

� sp: the smoothing parameter used to fit the expression level-dependency of the experimental error;

� quantile_sampling and binsize: the former argument indicates whether using a fixed-size (default)
or a quantiles-based grid of intervals of gene expression levels to model the error variance; according to
quantile_sampling, binsize can indicate either the size of the intervals (default equal to 0.1) or the
proportion used to define the quantiles (e.g. binsize=0.01 to use the percentiles), respectively.

For a detailed description of SEL.TS.AREA input arguments, see the corresponding help page:

> help(SEL.TS.AREA)
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Figure 3: Average variance of differences between replicates at different expression levels. Dots
represent the variance of the deviation between replicates at different expression levels (in log2-scale), aver-
aged on intervals of constant size. The dashed red line indicates the maximum variance observed, and the
corresponding gene expression level is reported in the top-left side of the figure.

Once the error model is built, for each gene the bounded-area between the related time series in ctrl and
treat is calculated and compared to the empirical null hypothesis distribution, derived from the model de-
scribed above. Different models (Gamma, Log-normal, Weibull) can be used to describe the null distribution
(Figure 4). The related fit results are displayed in the command window:

GAMMA DISTRIBUTION MODEL - FIT RESULTS:

parameters (SHAPE, RATE): 19.85802 2.417127
Precision(SHAPE, RATE): 0.278507 0.03433118

Maximum number of iteration: 1000

Relative convergence tolerance: 1e-08

LOGNORMAL DISTRIBUTION MODEL - FIT RESULTS:

parameters (MEAN, SD): 2.080666 0.2280809
Precision(MEAN, SD): 0.002280809 0.00161285

Maximum number of iteration: 1000

Relative convergence tolerance: 1e-08

WEIBULL DISTRIBUTION MODEL - FIT RESULTS:

parameters (SHAPE, SCALE): 4.727832 8.94812
Precision(SHAPE, SCALE): 0.03455785 0.02003932

Maximum number of iteration: 1000

Relative convergence tolerance: 1e-08
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The estimates might slightly change since a Monte Carlo procedure is used to build the null hypothesis
distribution, generated from B=10000 (default) profiles derived from expression data in replicates, under the
hypothesis that the error at different time samples is independent and identically distributed [3]. According
to the available data, the user can increase the number of generated profiles by the argument B, but it is
worth noting that this choice increases the execution time too.

Figure 4: Fit of the null hypothesis distribution. Empirical null hypothesis distribution (in black)
fitted with a Gamma (upper panel) a Log-normal (central panel) and a Weibull distribution (lower panel).

The user can choose the best model among the ones fitting the null hypothesis distribution. Precision of
the estimates can help in the decision. Quantiles of the empirical distribution can be used as an alternative
to the above models. In this example, we chose the Gamma distribution since the plot shows a good fit at
the distribution tails with respect to the empirical distribution, allowing a better estimation of the p-values.
After choosing the best model, SEL.TS.AREA estimates the proportion of not differentially expressed genes
(P0) and uses this value to correct the p-values for multiple testing according to the False Discovery Rate
(FDR), i.e. the number of false positives divided by the number of selected genes [4]. The user can also
change the correction method using the argument adj.method.
SEL.TS.AREA returns a data frame reporting for each gene: the rank index related to decreasing areas, the
gene identifier, the area standardized according to the error variance, the p-value resulting from the statistics,
its adjustment according to the chosen correction method and the expected number of false positives:

> head(rank.res,5)

To save the results, the user can indicate an existing folder or automatically generate a new one using
the input argument mainDir. The default uses the current working directory. At the indicated directory,
SEL.TS.AREA generates a sub-folder named “Gene Ranking” containing two text files:

� “Gene Ranking.txt” reporting the data frame returned by the function.

� “Excluded genes.txt” reporting, whether present, genes excluded from the analysis (e.g. genes with too
many missing values).
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3.4 Search for Temporal Patterns

SEL.TS.AREA provides a p-value enabling the user to set a threshold in order to identify the DE genes. In
order to identify the temporal patterns associated to these genes, a linear model-based clustering is provided
by FunPat [5], implemented by the function find.all.patterns. The model-based approach offers the ad-
vantage of automatically choosing the number of clusters without requiring the user to fix it a priori. Details
about the algorithm are reported in Appendix 8.
find.all.patterns works with the differential temporal profiles, e.g. the treatment-control time series. The
following code is an example of the application of find.all.patterns to the simulated data using the p-
values resulting from SEL.TS.AREA:

> sel.diff.data<-nD-nC
> colnames(sel.diff.data)<-colnames(nD)
> row.names(sel.diff.data)<-row.names(nD)

> ind<-order(as.numeric(rank.res$p_value)) # sorting according to the p-value
> rank.res<-rank.res[ind,]

> ind<-which(as.numeric(rank.res$adjusted_p_value)<=0.05)
> pval<-rank.res$p_value[ind]
> selected<-as.character(rank.res[ind,2])

> ind<-match(selected,row.names(sel.diff.data))
> sel.diff.data<-sel.diff.data[ind,]

> CLUSTERS<-find.all.patterns(DATA=sel.diff.data,seeds=selected,p.sel=pval,
+ sizecl=5,singletons=TRUE,Psign=FALSE)

In this example, a threshold equal to 0.05 is applied on p-values, controlling for the false discovery rate. The
p-values are then exploited by the clustering algorithm to prioritize the initialization of each cluster, starting
from the profile of the DE gene with the lowest p-value.
As for SEL.TS.AREA, find.all.patterns can handle data with missing values by NA.control. The user can
decide to be more or less stringent in the clustering changing the input arguments alphacorr and correction.
The former represents the threshold applied to the p-values resulting from a goodness of fit test (default
0.05) and the latter is the correction method used to adjust the p-values (default FDR).
According to the experimental design, the linear model used in the clustering algorithm can be also oppor-
tunely constrained by the user using the input arguments onlyK and Psign. A demonstration is provided in
Appendix 8. Moreover, the user can decide to fix a minimum cluster size by the argument sizecl (default
set to 3). If there are genes whose temporal profile is not highly correlated with any other genes, or clusters
with a number of genes less than sizecl, or with too many missing values, find.all.patterns classifies
them as singletons.
find.all.patterns provides as output a list where each element, representing a cluster, reports the associ-
ated temporal pattern, the related genes with the p-values from SEL.TS.AREA and the identified parameters
of the linear model. The user can decide to display also the singletons at the end of the output list by
setting to TRUE the input argument singletons. To obtain a more user-friendly organization of the results,
we suggest using the function resGSPatterns, which is deeply described in Section 3.7.

Further details about find.all.patterns are reported in the corresponding help page:

> help(find.all.patterns)
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3.5 Loading database annotations

Both functions SEL.TS.AREA and find.all.patterns can be applied when no prior knowledge on genes is
available. However, FunPat is able to exploit database annotations in order to improve both selection and
clustering steps through an integrative approach [2]. There are no constraints about the annotations used,
which can convey different types of information, e.g. Gene Ontology (GO) annotations [6] or pathways. This
prior knowledge is used by FunPat to group the genes into biologically relevant Gene Sets.
There are two types of information that FunPat can receive as input to codify the prior knowledge:

� Annotations of genes to the Gene Sets;

� Relationships between Gene Sets (optional), if the prior knowledge is organized according to a hierar-
chical structure (e.g. the directed acyclic graph defined by the GO database).

This information can be provided by the user either as lists or as data frames. As an example, we
use the GO information from category Molecular Function and available from two Bioconductor packages:
org.Hs.eg.db, which provides the list of GO annotations for Homo sapiens; GO.db, which provides the GO
directed acyclic graph (DAG) as a list of relationships between the GO terms:

> source("http://bioconductor.org/biocLite.R")
> biocLite("org.Hs.eg.db")
> biocLite("GO.db")

> library(org.Hs.eg.db)
> GOannot<-as.list(org.Hs.egGO2ALLEGS) # list of GO annotations

> library(GO.db)
> gt<-as.list(GOTERM) # list of the names of GO terms

> ontologylab<-unlist(lapply(gt,Ontology))
> ind<-which(ontologylab=="MF") # Molecular Function GO category
> GOterm<-lapply(gt[ind],Term)
> GOanc<-as.list(GOMFANCESTOR) # list of ancestor GO terms

> ind<-which(names(GOannot)%in%names(GOterm))
> GOannot<-GOannot[ind] # GO annotations filtered by GO terms of Molecular Function category

GOannot represents the mapping of the Entrez IDs to the GO terms. GOterm and GOanc are lists reporting
the names of the GO terms and the relationships of each GO term with the corresponding ancestor terms in
the DAG, respectively. Although the information on the relationships between Gene Sets, e.g. GO terms, is
not mandatory, we recommend to use it when available, since it is exploited by FunPat to prioritize the most
informative terms in the analysis.
All the prior information available on GO terms and their gene annotations is then organized by FunPat
using the function called TABpreprocessing:

> GSdata<-TABpreprocessing(TAB=GOannot,term=GOterm,TABgraph=GOanc,
+ root="GO:0003674", GraphType="Ancestors")

When no information on the relationships between Gene Sets is available, TABpreprocessing can be used
as well by setting only the input arguments TAB and terms. Otherwise, if this information is provided by
TABgraph, the user has to specify two additional arguments:

� root, indicating the identifier of the Gene Set associated to the root node in the hierarchical graph. In
this case, "GO:0003674" is the identifier of the GO term Molecular Function;

� GraphType, indicating the type of relationships set as input to TABgraph. In this case, since we are
using GOanc, GraphType is set to ”Ancestors”. As alternatives, information on parent or on child terms
can be provided as well, setting this argument to ”Parents” or ”Children”, respectively.
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The output of TABpreprocessing, GSdata, is a list of lists collecting all the available information to be
exploited by FunPat in the analysis presented in the next section. Further details on GSdata and how using
TABpreprocessing to organize custom-based annotations are explained in Section 6 and in the help page:

> help(TABpreprocessing)

3.6 Gene Set-based clustering and gene selection

As presented in [2], the integration of gene selection, clustering and functional analysis can address several
issues related to the independent application of these analysis steps, as decreasing the number of false nega-
tives which result from the multiple tests correction preserving the false discovery rate. This is accomplished
by the function PatternAnalysis, which exploits the p-values provided by SEL.TS.AREA, the model-based
clustering provided by find.all.patterns and the biological information contained in GSdata to search for
temporal patterns of DE genes associated to common specific Gene Sets.
Starting from the p-values of SEL.TS.AREA, two lists of genes are defined: the seeds, i.e. the DE genes
passing a user-defined threshold on p-values adjusted for multiple testing (e.g. FDR), and the candidates,
i.e. genes passing a soft-threshold applied to unadjusted p-values. Other p-value correction approaches to
define the seeds, such as Bonferroni correction, can be considered by the user as well. Then, as shown for
find.all.patterns, the differential temporal profiles are considered, but in this case the expression matrix
is extended also to the candidates, representing possible false negatives which can be reconsidered for the
selection by PatternAnalysis:

> sel.diff.data<-nD-nC
> colnames(sel.diff.data)<-colnames(nD)
> row.names(sel.diff.data)<-row.names(nD)

> ind<-order(as.numeric(rank.res$p_value)) # sorting according to the p-value
> rank.res<-rank.res[ind,]

> ind<-which(as.numeric(rank.res$adjusted_p_value)<=0.05)
> selected<-as.character(rank.res[ind,2]) # seed genes: FDR<=0.05

> ind<-which(as.numeric(rank.res$p_value)<=0.05)
> pval<-rank.res$p_value[ind]
> candidates<- as.character(rank.res[ind,2]) # candidate genes: p_value<=0.05

> ind<-match(candidates,row.names(sel.diff.data))
> sel.diff.data<-sel.diff.data[ind,]

> RES<-PatternAnalysis(DATA=sel.diff.data,p.sel=pval,seeds=selected,
+ GSdata=GSdata,sizecl=5)

Differently from find.all.patterns, PatternAnalysis requires as input the biological information organized
by TABpreprocessing, named GSdata, which allows the search of the Gene Set-specific temporal patterns.
When no information on relationships between the Gene Sets is available, each Gene Set is analyzed inde-
pendently. Otherwise, PatternAnalysis exploits the relationships between the Gene Sets in order to reduce
the redundancy of information which generally characterizes hierarchically structured databases such as GO.
In particular, PatternAnalysis assumes that the genes annotated to a Gene Set are also annotated to all its
ancestors and that the farther the Gene Set is from the root node in the graph, the more specific information
it conveys. Thus, to guarantee the association of the selected genes and temporal patterns to the most
specific biological information, the function:

� classifies the Gene Sets according to levels based on the maximum path from the root node;

� searches for temporal patterns starting from the highest level nodes, i.e. the most informative terms,
removing the annotations of the genes belonging to a significant pattern from the ancestor nodes [7].
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Another argument which is important to consider in PatternAnalysis is sizecl. Indeed, there is a trade-off
between the biological information provided by the selected Gene Sets and the number of Gene Set-specific
patterns. The Gene Sets associated to the most specific biological terms are usually poorly annotated, thus
setting a large minimum cluster size can lead to associate the significant patterns to less informative biological
functions; on the other hand, a small minimum cluster size might increase the number of selected Gene Sets,
spreading the associations between selected genes and Gene Sets.
As output, PatternAnalysis provides a list with two elements. The first element is a list named RES.PAT,
collecting the results of the function find.all.patterns for those Gene Sets characterized by at least one
significant pattern. The genes selected by PatternAnalysis are either seeds or candidates which share both
a significant temporal pattern and a common annotation to a Gene Set with at least one seed2. If there are
seeds excluded by the analysis, they are reported in the second element of the output list, named Singletons.
This element can be useful to understand if missing annotations are present in the prior knowledge used for
the analysis. Indeed, a seed can be excluded if either it is not associated to any significant temporal pattern
or it does not belong to any Gene Sets. For an exhaustive explanation of all the attributes of the output list,
see the corresponding help page:

> help(PatternAnalysis)

A more user-friendly organization of the results through tables is presented in the next section.

3.7 Displaying temporal patterns representing clusters of genes

As first result, the pattern analysis provides clusters of DE genes associated to Gene Set-specific temporal
patterns. They can be easily displayed using the function resGSPatterns, which receives as input the lists
provided by PatternAnalysis:

> mat.res<-resGSPatterns(RES,sampling.grid=0:12)
> head(mat.res,5)

The input argument sampling.grid indicates the time grid at which data are sampled (here 0-12 hours),
which here is used only to visualize the data. As output, resGSPatterns generates a data frame, whose
columns report: the information of the selected Gene Sets (columns GeneSet_ID, GeneSet_Term and Level);
the gene IDs of the corresponding selected gene (Element_ID); the significance of each gene given as input
to PatternAnalysis (in this case the p-value resulting from SEL.TS.AREA, column Score); the gene-specific
parameters K and Q estimated by the model-based clustering (see Appendix 8), and the identified patterns
(columns t0-t12 for this example). When present, the singletons are reported at the end of the data frame
naming the Gene Set identifiers and terms as “Singleton”. Not available information, such as the Gene Set
level, is set to NA.
resGSPatterns also generates a sub-folder named“Pattern Analysis Results” in the working directory (which
can be controlled by the user through the argument mainDir) containing three files:

� “GSPatterns.pdf”, reporting, for each selected Gene Set, the plot of the associated temporal patterns
(see Figure 5 as an example).

� “GSPatterns.txt”, reporting the data frame returned by the function, without singletons.

� “Singletons.txt”, reporting all the information provided by PatternAnalysis about the seed genes
excluded from the analysis.

2Intuitively, if a gene characterized by a significant nominal p-value is excluded by the multiple tests correction, but it shares
the same temporal expression pattern and the same functional annotation with genes selected as differentially expressed, the
gene is likely to be a false negative. As a consequence, recovering it in the pool of DE genes might increase the recall without
negatively affecting the precision.
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Figure 5: Example of Gene Set-specific patterns. Each color-coded pattern represents a cluster of DE
genes selected in the same Gene Set. Note that a Gene Set can have more than one pattern.

The function resGSPatterns can also visualize the results from the function find.all.patterns. As an
example, try to type the following command:

> mat.res<-resGSPatterns(CLUSTERS,sampling.grid=0:12)
> head(mat.res,5)

Also in this case, the sub-folder ”Pattern Analysis Results” is created, generating the plots of each identi-
fied pattern (file ”Patterns.pdf”) and the information about the clusters and the singletons (files ”Patterns.txt”
and ”Singletons.txt”, respectively), which mat.res reports into a unique data frame.

3.8 Displaying main temporal patterns representing clusters of Gene Sets

resGSPatterns provides a description of the identified Gene Set-specific patterns. However, similar patterns
can be identified for different Gene Sets 3 and there could be singletons without annotations but characterized
by a temporal profile that is highly correlated to one of the identified Gene Set-specific patterns.
As a further result of the pattern analysis, FunPat allows the user to summarize the Gene Set-specific
patterns into Main Patterns characterizing clusters of Gene Sets. This is accomplished by the function
resMainPatterns, which applies the model-based clustering to the identified temporal patterns. If present,
singletons can be included into the analysis (using the argument keep_singletons, default = TRUE), in order
to test if there are seeds excluded by lack of annotation showing a similar temporal profile to some significant
Gene Set-specific pattern:

> mat.res.super<-resMainPatterns(mat.res,sampling.grid=0:12,sizecl=1,num_elem=5)
> head(mat.res.super,5)

3Note that the selected genes displayed in the data frame resulting from resGSPatterns can belong to multiple clusters, since
the clustering is Gene Set-specific and, even if a hierarchical prior information is available, the selected genes are removed from
the ancestor terms but not from possible siblings, which can convey different specific biological information.
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As in find.all.patterns and in PatternsAnalysis, the user can decide to fix a minimum cluster size by the
argument sizecl (default=3). However, note that in resMainPatterns the cluster size refers to the minimum
number of patterns (or singleton profiles) belonging to the same Main Pattern. Since the temporal patterns
represent groups of genes, the user can also set the minimum number of genes associated to each Main
Pattern using the argument num_elem (default=3). In the example above, a Main Pattern can represent
either multiple patterns or a single pattern identified by PatternAnalysis characterizing at least 5 genes
or, since keep_singletons=TRUE, a cluster with at least 5 singletons. resMainPatterns generates a data
frame that organizes the information obtained by resGSPatterns according to the resulting clusters of Gene
Sets (first column of mat.res.super), represented by the Main Patterns reported at the last columns of
the data frame. Gene Sets or singletons whose corresponding temporal pattern/profile does not generate a
new cluster according to the arguments specified in resMainPatterns are included at the end of the data
frame. In the following, we will refer to them as Single Patterns. All the results from resMainPatterns are
automatically saved into three files placed in a sub-folder of the main directory generated by the function
and named ”Pattern Analysis Results”:

� “MainPatterns.pdf”, reporting the plots of the identified Main Patterns (see Figure 6 as an example).

� “MainPatterns.txt”, reporting the data frame returned by the function, without Single Patterns.

� “SinglePatterns.txt”, reporting the Single Patterns.

Figure 6: Example of Main Pattern. The Main Pattern represents a cluster of Gene Sets characterized
by similar Gene Set-specific patterns identified in the previous analyses.

resMainPatterns can also allow the user to merge multiple results obtained by PatternAnalysis. Suppose
to have mat.res1 and mat.res2 representing the results from resGSPatterns of the pattern analysis performed
on two different types of annotations independently. Before merging the two tables, the user has only to
change the identifiers of the temporal patterns reported in the column “Cluster” in order to be unique:

> M<-max(as.numeric(mat.res1$Cluster))
> mat.res2$Cluster<-as.numeric(mat.res2$Cluster)+M
> mat.res<-rbind(mat.res1,mat.res2)
> mat.res.super<-resMainPatterns(mat.res,sampling.grid=0:12)
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4 Advanced visualization of results

FunPat also allows the user to easily visualize the results into HTML tables with sortable and filterable
columns, plots and hyperlinks to other data sources such as NCBI and Gene Ontology databases. To
generate HTML reports, Bioconductor packages ReportingTools, hwriter and Rgraphviz are required:

> source("http://bioconductor.org/biocLite.R")
> biocLite("ReportingTools")
> biocLite("hwriter")
> biocLite("Rgraphviz")

> library(ReportingTools)
> library(hwriter)
> library(Rgraphviz)

In the following, we review the additional input arguments which FunPat provides in the main functions to
generate HTML reports. For a correct visualization of the web pages, we recommend using web browsers
Google Chrome and Safari.
The function SEL.TS.AREA generates a report page named ”Gene Ranking report.html” using the following
input arguments:

> rank.res<-SEL.TS.AREA(replicates=replic,data1=nC,data2=nD,
+ htmlreport=TRUE,link_to_Entrez=NA,kplot=100)

htmlreport is a logical value enabling the function to generate the HTML report page in the sub-folder
“Gene Ranking”. link_to_Entrez is an optional argument which links the Entrez IDs to the corresponding
web pages of the NCBI database (http://www.ncbi.nlm.nih.gov/gene). If link_to_Entrez is set to NA,
it means that the gene IDs used in the analysis are already Entrez IDs. Otherwise, the Entrez IDs can
be provided with an additional data frame, loaded by the argument gene_info (see Section 6), linking the
Entrez IDs to the gene IDs used in the analysis. In this latter case, to link the Entrez IDs to the NCBI
database in the HTML report, link_to_Entrez=N must be specified, where N is an integer value indicating
the column index in the additional data frame corresponding to the Entrez IDs. kplot is an integer value k,
enabling the visualization in the HTML report of the temporal profiles of the top k genes, sorted according
to the resulting p-values. Figure 7 shows an example of the final HTML report page. Since the bounded-area
method calculates the area according to the argument sampling.grid, which can be set differently from the
original time grid to avoid weighting too much some intervals of the time series, to plot the time series with
the original time grid, the user can report it using the argument sampling.grid_view, which it is used only
for the visualization in the HTML report.
The function resGSPatterns generates the report on the Gene Set-specific clusters of DE genes, visualizing
the corresponding temporal patterns:

> mat.res<-resGSPatterns(RES,sampling.grid=0:12,htmlreport=TRUE,
+ link_to_Entrez=NA,link_to_GO=TRUE)

In this case, two HTML report pages named “GSPatterns report.html” and “Singletons report.html” are
generated in the sub-folder “Pattern Analysis Results”, displaying the results collected in the data frame
returned by the function but reporting the singletons, if present, in a separated HTML page. Figure 8
shows an example of the resulting “GSPatterns report.html”. Similar reports are created also for the results
obtained by find.all.patterns. If the Gene Sets represent Gene Ontology terms, the function also allows
linking each GO identifier to the corresponding AmiGO web page (http://amigo.geneontology.org/cgi-
bin/amigo/go.cgi) using the optional argument link_to_GO.
Similarly, a report of the Main Patterns is provided by the function resMainPatterns:

> mat.res.super<-resMainPatterns(mat.res,sampling.grid=0:12,sizecl=1,num_elem=5,
+ GraphPar=GSdata$GraphPar,htmlreport=TRUE,link_to_GO=TRUE)
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Also in this case, two HTML report pages named “MainPatterns report.html” and “SinglePatterns -
report.html” are generated in “Pattern Analysis Results”, displaying the main results collected in the data
frame returned by the function, reporting, if present, the Single Patterns in a separated HTML page. Figure
9 shows an example of the resulting “MainPatterns report.html”.
If the relationships between Gene Sets are provided, the user can visualize how the Gene Sets belonging to
the same Main Pattern are distributed in the hierarchical graph using the input argument GraphPar. This
argument receives as input the list of parent nodes automatically provided as output by TABpreprocessing.
The resulting plots display, for each Main Pattern, the minimum sub-graph including the Gene Sets belonging
to the related cluster (Figure 9).

Figure 7: HTML page generated by SEL.TS.AREA. For each element, the Entrez identifier is linked to
the corresponding NCBI web page and the plot of the related time series profiles in the two conditions is
displayed.
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Figure 8: HTML page generated by resGSPatterns. For each element, the GO term identifier is linked
to the corresponding AmiGO web page and the plot of the related temporal pattern is displayed.
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Figure 9: HTML page generated by resMainPatterns. For each element, the plots of the main pattern
and the sub-graph of the related Gene Sets are displayed. In the graph plot, red nodes indicate the selected
Gene Sets sharing the same main pattern, whereas the yellow nodes are the available nodes in the graph
used to connect all the selected Gene Sets belonging to the cluster.
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5 Organizing data according to the experimental design

Before giving some useful guidelines about the organization of the expression data, it is important to re-
member that the data must be normalized before using FunPat in order to remove systematic biases which
can compromise the correct estimation of the error variability.

Figure 10: FunPat input data organization according to different experimental designs. Starting
from the original normalized expression data matrix, three different matrices are required: data1, data2 and
replicates. Four different examples of experimental designs are displayed. For examples A, B and C two
conditions are monitored (e.g. samples C and T ) across different time points (e.g. C1 refers to the samples
in the first condition at time point 1) and biological replicates (e.g. a and b). Example D shows the data
organization when only one condition is monitored.
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Once data are normalized, FunPat requires as input both the expression matrices associated to two experi-
mental conditions, i.e. data1 and data2, and a matrix with the replicates to be compared to build the error
model, i.e. replicates. In particular, these input matrices are used by the function SEL.TS.AREA, which
assesses the differential expression from the null hypothesis distribution of the area bounded by the time
series in the two conditions, using the available biological replicates. It is worth highlighting that we consider
as ”biological replicates” only those replicates which represent both technical and biological variability of the
measurements. These input matrices can be prepared in multiple ways, allowing the user to organize the data
according to the specific experimental design. Figure 10 provides a general overview of data preparation,
addressing some typical examples. Let’s call xTij and xCij the expression measurements in treated (T) and
control (C) cultures, available for a generic gene i at time point tj . The replicates can be also available for
a subset of time samples, since the function requires at least two replicates from only one time point.
The example A shows the experimental design used for the simulated data. Expression data are splitted into
data1 and data2, reporting, for each time point, the expression values xCij and xTij corresponding to the con-
trol and treated cultures respectively (in the simulated data, i=1,...,n, with n=1000, and j=0,...,12h). Since
the area between the time series is considered, data1 and data2 are interchangeable, thus the expression
matrices of the treated and control cultures can be assigned also to data1 and data2, respectively, as well.
The available replicates used to model the biological variability are organized into the matrix replicates
which represents, at each row, pairs of replicates for a gene at a specific time point. In this example, since
the treatment is applied immediately after the time point 0, the samples T0 and C0 can be considered as
biological replicates and can be set as columns of replicates, as shown in Figure 10.
When there are other replicates available for some time points, as in the example B, data1 and data2 should
be prepared as before, chosing one of the replicates available. replicates should be organized in order to
have the maximum number of possible pair-wise comparisons between the replicates for achieving the best
description of the error variance. In this example, the best representation of the biological variability are the
pair-wise comparisons T0a vs. C0a and T0b vs. C0b. Since there are more than one pair-wise comparison,
these must be aligned in each column of the replicates matrix. According to the characteristics of the
experiment and how the cellular replicates a and b are prepared (e.g. independent replicates), comparisons
C0a vs. C0b, T0a vs. T0b, C1a vs. C1b, T1a vs. T1b can be included into replicates as well.
Example C shows an experimental design where there are two replicates for all the time points. In this
case we suggest using the mean expression in data1, data2 and replicates since the average provides more
robust expression values to test, thus a better estimation of the p-values for the gene ranking. As seen for
example A, for replicates the mean expression in T0 and C0 can be used. It is worth noting that, since
replicates is used to describe the variability of the differences observed between data1 and data2, whose
expression values are averaged across the replicates, it is important that the error variance estimated from
replicates reporting the averaged expression values of the replicates, otherwise the estimated variance tend
to be over-estimated. The over-estimation of the variance does not affect the gene ranking, but leads to
higher p-values thus a lower number of selected seeds. Whether it is not possible to organize replicates
with the mean expression values, we still suggest considering, if possible, the mean expression in data1 and
data2 and adopting strategies that can lead to a less stringent gene selection. Anyway, FunPat then allows
exploiting the clustering analysis and the functional annotations to recover significant genes lost in the dif-
ferential analysis performed by SEL.TS.AREA. When averaging is possible, remember that data1 and data2
must be averaged in each time point of the time series by the same number of replicates. If, as it often
happens in data-poor conditions, replicates are available only for a subset of time points, data1 and data2
are defined using only the replicates describing the entire time series, whereas the remaining ones can be
included into replicates considering all the possible pairwise combinations as seen in example B.
Finally, example D represents an experimental design monitoring only a single condition C. In this case,
it is possible to use a baseline. In the example there are two replicates available at C0, which can be used
in replicates. If the expression at C0 is chosen as baseline, as displayed in Figure 10, the user can define
data2 reporting for each gene i the expression values xCij of the entire time series (j=0,...,12), whereas data1
can be defined repeating across the time series the expression values of the replicate at C0 not used in data2.
When more replicates are available, the comments made for the previous examples still apply to this case.
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6 Dealing with custom Prior Knowledge

If the available annotations are not organized according to lists as shown in Section 3.5 or the user has to
define custom annotations, the function TABpreprocessing is able to handle also prior information organized
according to data frames. As an example, FunPat provides the GO information organized into data frames.
To load it, just type:

> data(FunInfo)

FunInfo contains:

� GOannot: a two-column data frame reporting the mapping between the GO term identifiers (first col-
umn) and the annotated genes (Entrez IDs reported in the second column), using a delimiter character
to separate multiple entries.

� GOchild; GOpar; GOanc: two-column data frames reporting in the first column the GO term identifiers
and in the second column the associated child (GOchild), parent (GOpar) or ancestor (GOanc) term
identifiers, using a delimiter character to separate multiple entries.

� GOterm: a two-column data frame reporting in the first column the GO term identifiers and in the
second column the associated name or term description.

� geneinfo: additional information related to the genes (e.g. Gene Name, Gene Symbols); it is an N×P
data frame, where N indicates the number of genes and P the number of additional categories included.
The first column reports the gene identifiers used for the analysis.

These simple data frames can be generated from many other types of annotation retrieved from other
databases (e.g. Biomart, KEGG). TABpreprocessing directly processes them to organize the input data
required by PatternAnalysis:

> GSdata<-TABpreprocessing(TAB=FunInfo$GOannot,delimiterTAB=" /// ",TABgraph=FunInfo$GOanc,
+ delimiterTABgraph=" /// ",root="GO:0003674",term=FunInfo$GOterm,
+ GraphType="Ancestors",extend=FALSE)

delimiterTAB and delimiterTABgraph indicate the delimiter characters used to separate multiple entries.
FunInfo provides all the possible types of information to describe the GO graph (GOchild, GOpar and GOanc);
however, as stated before, only one type is necessary. You can try to apply TABpreprocessing using also
GOpar and GOchild as input for the argument TABgraph, and setting the argument GraphType as ”Parents”
and ”Children”, respectively. Another input argument is extend, which is important to consider when the
relationships between Gene Sets are included. This is a logical value indicating if the annotations should
be extended across the ancestor terms, so that the genes annotated to a Gene Set are also annotated to
all its ancestor terms in the graph. In the example above, the GO annotations are already extended, thus
the default value (FALSE) is used. However, for Gene Ontology terms, several databases report the gene
annotations only for the most specific nodes. For a correct usage of PatternAnalysis, we suggest to set
extend to TRUE when this happens. As output, TABpreprocessing provides a list of five attributes:

� Annot: annotation list with the mapping between genes and Gene Sets that they are associated with.

� GraphAnc: ancestor list describing associations between Gene Sets and their ancestors in the graph.

� GraphPar: parent list, describing associations between Gene Sets and their parents in the graph.

� Graph.levels: a vector describing the maximum path from the root node to each node representing a
Gene Set. Levels are calculated to prioritize the node visiting order according to the graph structure.

� Terms: name list, associating the full name to each Gene Set identifier.

If no information is provided on the graph or the Gene Sets, the related attributes are empty lists.
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Finally, FunInfo provides the data frame geneinfo, representing other additional information on genes which
the user can find useful to display at the end of the analysis. geneinfo can be used directly as input argu-
ment in the functions SEL.TS.AREA and resGSPatterns. The columns of this data frame will be included in
the corresponding final tables. For a correct usage, it is important to report in the first column the gene
identifiers used to perform the analysis. As an example, let’s try to include this type of information in
SEL.TS.AREA:

> rank.res<-SEL.TS.AREA(replicates=replic,data1=nC,data2=nD,gene_info=FunInfo$geneinfo)
> head(rank.res,5)

If htmlreport is TRUE, the information provided by geneinfo are displayed also in the resulting HTML
reports.

7 Setup

This analysis was conducted on:

> sessionInfo()

R version 3.0.3 (2014-03-06)
Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:
[1] LC_COLLATE=Italian_Italy.1252 LC_CTYPE=Italian_Italy.1252
[3] LC_MONETARY=Italian_Italy.1252 LC_NUMERIC=C
[5] LC_TIME=Italian_Italy.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
[1] tools_3.0.3
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8 Appendix: Model-based clustering algorithm

The search for patterns is performed using a linear model-based clustering [5], implemented by the function
find.all.patterns. This function requires as input a set of gene expression profiles, the error matrix E, a
set of seed genes and, if available, the scores resulting from the bounded-area method. The method searches
for subsets of genes, whose time series expression profile xi =< xi(1), ..., xi(M) > can be modeled according
to the equation (1), by iteratively performing a gene-specific parameter identification step (M step) and
a temporal pattern search (E step), using an Expectation-Maximization approach. A pseudocode of the
algorithm is illustrated in Figure 11. At the first iteration, the temporal pattern P is initialized with the
time series expression profile of a seed gene given as input. If a ranking score is available, the seed with
the most significant score (e.g. the lowest p-value resulting from SEL.TS.AREA) is considered to initialize P.
Given the gene expression data X and the pattern P, in the M step the parameters k and q are identified
for each gene using weighted least squares method, defining the cluster C of genes fitting the pattern P. The
membership of a gene in a cluster C is based on: 1) a goodness of fit test to P by applying a runs test and
a chi-square test to the residuals, 2) a statistical assessment in comparison to a flat profile. The user can fix
a significance level α for the tests and only genes with significant p-values are kept in the cluster. In the E
step, P is identified at each sampling time, applying again the weighted least squares, using the parameters k
and q of the genes belonging to C and estimated at the M step. All the analyzed genes go again through the
M step, so to update the estimation of the parameters k and q and re-define the cluster membership based
on the newly estimated pattern P. The algorithm re-iterates all the steps until the genes belonging to C do
not change or a maximum number of iterations is reached. Finally, the mean pattern Pm representing the
average time series expression profile across all genes joining the cluster C is defined using the parameters
km and qm estimated at the last iteration:

Pm = km · P + qm (1)

with

km =
k∑r

i=1 ki
, qm = −

∑r
i=1 qi∑r
i=1 ki

· k + q (2)

where
∑r

i=1 ki and
∑r

i=1 qi indicating the mean k and q across the r genes belonging to C. After identifying
a pattern and a cluster of genes, these are removed and the entire procedure is repeated again on the remain-
ing genes, until the number of genes is no sufficient to create a new cluster or no other significant patterns
can be discovered. At the end, the algorithm returns the sets of genes belonging to each cluster, the set of
identified patterns and the estimated model parameters. If available, the related ranking scores used for the
initialization of the patterns are also returned.
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Figure 11: Pseudocode description of the model-based clustering approach. The algorithm iter-
atively searches the main characteristic patterns starting from a set of N gene profiles and a set of seed
genes provided as input. The function indentifies a list of clusters ?GSP, each characterized by a pattern
Pm by updating the set of genes which do not fit any pattern (¬GSP). If the size of ¬GSP is greater than a
minimum cluster size ϕ fixed by the user AND there is at least a seed gene available to initialize a pattern P,
the algorithm searches for new patterns. The M step identifies the fitting parameters k and q and, if there
are at least two genes with a p-value lower then a fixed significance threshold α, the E step is performed
updating the pattern P. The two steps are re-iterated until the set of genes does not change or a maximum
number of iterations (max.it) is reached, defining the cluster C, the mean pattern Pm and the parameters km
and qm. ¬GSP is updated and the entire procedure is then applied again to ¬GSP, until it does not contain
a sufficient number of genes or no other significant patterns can be discovered. The algorithm returns the
set of genes belonging to each cluster ?GSP, the set of identified patterns GS Pm and the estimated model
parameters GS km and GS qm. If available, the related ranking scores used for the initialization of the
patterns are also returned.
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According to the experimental design and the available data, it is possible to constrain the clustering
algorithm using the input arguments onlyK and Psign. The former limits the linear model to the identification
of only the gene-specific parameter k, whereas the latter constrains the clustering algorithm to group only
temporal profiles characterized by differential expression values with the same sign in all (or almost all) the
time points. To better explain how these two arguments affect the clustering results, let’s generate a simple
expression matrix with 5 time series:

> t<-0:10
> y<-(2*sin(t/6))-3
> sel.diff.data<-matrix(,5,length(t))
> sel.diff.data[1,]<-y+8
> sel.diff.data[2,]<-y+4
> sel.diff.data[3,]<-y+2.9
> sel.diff.data[4,]<-y
> sel.diff.data[5,]<-y*3
> row.names(sel.diff.data)<-seeds<-c("a","b","c","d","e")

sel.diff.data represents different linear transformations of the variable y. In particular, in rows “a”, “b”
and “c” different constants are added to y so that the corresponding time series can either have all the time
points with the same sign (“a” and “b”) or one time point with different sign (“c”). Row “e” reports instead an
amplification of the time series represented by y (reported in row “d”). Figure 12 shows the results obtained
by the clustering algorithm using four diffent combinations of onlyK and Psign::

> pval<-rep(0.01,5) # p.values
> clust<-find.all.patterns(sel.diff.data,seeds=seeds,p.sel=pval,
+ singletons=TRUE,sizecl=2) # A
> clust<-find.all.patterns(sel.diff.data,seeds=seeds,p.sel=pval,
+ onlyK=TRUE,singletons=TRUE,sizecl=2) # B
> clust<-find.all.patterns(sel.diff.data,seeds=seeds,p.sel=pval,
+ Psign=0,singletons=TRUE,sizecl=2) # C
> clust<-find.all.patterns(sel.diff.data,seeds=seeds,p.sel=pval,
+ Psign=1,singletons=TRUE,sizecl=2) # D
> mat.res<-resGSPatterns(clust) # to visualize the results

The example A reports the default options, where both the gene-specific model parameters are identified
and no restrictions on the sign of the time series are applied. In this case, the clustering algorithm allows
the identification of a unique pattern grouping all the profiles reported in sel.diff.data. In the example B,
the argument onlyK is set to TRUE and, as reported in Figure 12, the algorithm clusters together only y and
its amplified version (profile “e”), since the gene-specific parameter q is not accounted for. In the example
C the argument onlyK is FALSE and Psign is set equal to 0, which means that only genes with correlated
temporal patterns according to the linear model and showing the same sign across all the time points can be
included into the same cluster. This option might be useful when genes which show at the same time point
differential expressions between the two conditions with opposite sign should be kept separated even if they
share a common temporal pattern, since they could represent completely different processes. In this case,
the algorithm clusters together only the profiles “e” and “d” (Pattern 1) and the profiles “a” and “b” (Pattern
2). The profile “c” results as singleton since the differential expression at the first time point is negative, thus
it can not be associated to Pattern 2. It is possible to be less stringent by allowing a minimum number of
time points with different sign. If Psign is set equal to 1, as in example D, the clustering includes into the
same cluster the profiles showing a different sign in at most one time point and the profile “c” is associated
to Pattern 2.
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Figure 12: Clustering examples with different input arguments. Four different examples of results
provided by the function find.all.pattern starting from the same data set but using different conmbinations
of the input areguments onlyK and Psign

.
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