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Abstract

Raman spectroscopy has been used extensively to calculate CO2 fluid density in many geological 

environments, based on the measurement of the Fermi diad split (Δ; cm–1) in the CO2 spectrum. 

While recent research has allowed the calibration of several Raman CO2 densimeters, there is a 

limit to the inter-laboratory application of published equations. These calculate two classes of 

density values for the same measured Δ, with a deviation of 0.09 ± 0.02 g/cm3 on average. To 

elucidate the influence of experimental parameters on the calibration of Raman CO2 densimeters, 

we propose a bottom-up approach beginning with the calibration of a new equation, to evaluate a 

possible instrument-dependent variability induced by experimental conditions. Then, we develop 

bootstrapped confidence intervals for density estimate of existing equations to move the 

statistical analysis from a sample-specific to a population level. We find that Raman densimeter 

equations calibrated based on spectra acquired with similar spectral resolution calculate CO2 

density values lying within standard errors of equations and are suitable for the inter-laboratory 

application. The statistical analysis confirms that equations calibrated at similar spectral 

resolution calculate CO2 densities equivalent at 95% confidence, and each Raman densimeter 
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does have a limit of applicability, statistically defined by a minimum Δ value, below which the 

error in calculated CO2 densities is too high.

Keywords

Raman spectroscopy, carbon dioxide, Raman densimeter equation, carbon dioxide density, CO2 

Introduction

Raman spectroscopy represents an attractive and popular technique to characterize a range of 

chemical and physical properties of Earth’s fluids trapped as inclusions due to its nondestructive 

nature and high spatial resolution.1–3 In particular, the calculation of the density of CO2 fluids by 

Raman spectroscopy exploits the existing relation between the fluid density and the spectral 

position difference of the two main CO2 bands in the Raman spectrum (Fig. 1a).4–11

Due to its linear symmetry, the CO2 molecule is characterized by four vibrational modes: a 

symmetric stretching mode ν1, an asymmetric stretching mode ν3, and two bending modes 2v2a 

and 2v2b having the same vibrational frequencies. The symmetric stretching mode ν1 has nearly 

the same energy and symmetry of the two bending modes 2ν2. Thus, when activated, these 

become mutually repellent to one another and degenerate. This anharmonic coupling originates a 

vibrational resonance, known as “Fermi resonance” effect,12 which results in the splitting apart 

of two bands (ν1 – 2ν2, defined as “Fermi diad”; Fig.1a), having frequencies at 1388.2 (upper 

band) and 1285.4 cm–1 (lower band), respectively, at ambient conditions.13

[insert: Figure 1]

Raman CO2 densimeter equations formalize the linear relation between the Fermi diad 

split (Δ; cm–1) and CO2 density (d; g/cm3).11,14–19 These are empirically calibrated using CO2 

with known density calculated either by microthermometry of natural or synthetic fluid 

inclusions or using the equation of state (EOS) of CO2 in optical pressure cells. Each densimeter 

equation is represented by a polynomial function, where the degree of the best fitting curve has 

been chosen based on the calculation of the root mean square error.19,20 Although equations well 

fit descriptive statistics of data, published Raman densimeters calculate two distinct classes of 

density values for each Δ value measured in spectra, having a standard deviation of 0.09 ± 0.02 

g/cm3 on average (Fig. 1b). Each given CO2 density value corresponds to Fermi diad splits 

showing an average wavenumber discrepancy of 0.2 cm–1 between the two classes of 
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densimeters.14–19 As a result, the application of Raman CO2 densimeter equations to measure the 

density of CO2 fluids in inclusions is limited to single laboratories. This difficulty suggests an 

instrument-dependent source of variability and poses the question of the reliability of the 

equations.

In the present study, we calibrate a new equation using Raman spectra of CO2 inclusions 

in mantle rocks. The new equation calculates densities consistent with Kawakami et al.14 and 

Yamamoto and Kagi,15 revealing a critical influence of the experimental parameters on spectra 

graphical output. An advanced statistic algorithm based on bootstrap21 to calculate confidence 

interval is applied to evaluate the reliability of six CO2 Raman densimeter polynomial equations, 

including the present study. Unknown data distributions, such as the Δd values, need robust 

statistical methods to move the analysis from a sample-specific level to a population setting, 

allowing generalization. 

Present results demonstrate that densimeter equations calibrated applying a similar 

spectral resolution during Raman analysis calculate statistically equivalent density data at the 

95% confidence. The bootstrap analysis extends the applicability of the densimeter equations to 

inter-laboratory analysis by defining a set of rules guiding practitioners on how to choose and 

use published Raman densimeter equations to calculate CO2 fluid density in fluid inclusions.

Materials and Methods

To calibrate the Raman densimeter equation, we performed Raman and microthermometric 

analyses in pure CO2 fluid inclusions in olivine and orthopyroxene of peridotite xenoliths from 

El Hierro (Canary Islands).22 Inclusions are analyzed in double-polished rock sections of about 

150 µm thickness. 

Microthermometry 

Microthermometry of fluid inclusions has been performed with a Linkam THM 600 heating-

freezing stage system coupled with a Leitz petrographic microscope (40X objective) at the 

Università di Milano–Bicocca. The system has been daily calibrated based on the measurement 

of H2O and CO2 triple point temperatures (Tp), using synthetic fluid inclusion standards 

SYNFLINC, with an error of ± 0.1°C. The temperatures of CO2 phase transitions have been 

recorded through several freezing-heating cycles, with heating rates variable from 0.1 to 
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0.5°C/min in the temperature intervals close to phase transitions. Measured homogenization 

temperatures both to the liquid (ThL) and vapor phase (ThV) have been used to calculate 

densities with the CO2 equation of state proposed by Dusheck et al.,23 with a standard error of ± 

0.01 g/cm3.

Raman Spectroscopy

Raman analyses have been performed with the Horiba Jobin Yvon LabRam HRVIS Raman 

System at the Centro “G. Scansetti”, Dipartimento di Scienze della Terra, Università di Torino. 

The system is equipped with a Horiba Jobin Yvon HR800 spectrometer, connected to an air-

cooled 1024*256 px charge-coupled device (CCD) detector, and provided with a wheel of six 

filters for laser attenuation and an Olympus BX41 microscope for petrographic observations in 

transmitted and reflected light. CO2 spectra were recorded using a green Nd 532.06 nm laser 

source at 80 mW, with a 100X magnification. The experimental conditions consisted of a 

confocal hole of 200 µm, a slit width of 300 µm, and a 600 gr/mm grating, covering the spectral 

range between 105.35 and 1804.57 cm–1, which correspond to a spectral resolution per pixel of 

1.66 cm–1. The Raman system has been further equipped with a Linkam THM 600 heating–

freezing stage to analyze at a temperature (T) of 32<thinsp>°C (i.e., above the CO2 critical T at 

31.1<thinsp>°C) those inclusions characterized by the coexistence of vapor (V) and liquid (L) 

phases at room temperature (18<thinsp>°C). Inclusions’ spectra have been acquired through 

cycles of three accumulations, from 20 to 40 seconds each.

Most Raman spectra have been duplicated by setting a similar Raman analytical setup 

with the Horiba Jobin Yvon LabRAM HR Evolution Raman System, at the Dipartimento di 

Scienze dell’Ambiente e della Terra, Università di Milano–Bicocca. The system has a focal 

length of 800 mm, and it is connected to an air-cooled 1024*256 px CCD detector and a wheel 

of nine neutral density filters. An Olympus BXFM microscope allows analyses in transmitted 

and reflected light. CO2 spectra were recorded using a green Nd 532.06 nm laser source, 

powered at 150 mW by mean of the 50% neutral density filter, with a 100X magnification. The 

analytical set up consisted of a confocal hole of 100 µm and a 600 gr/mm grating, allowing the 

coverage of a spectral range between 101.35 and 1548.92 cm–1, corresponding to a spectral 

resolution of about 1.40 cm–1/px. Spectra have been acquired by one accumulation of 30 seconds 

each. 
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In both laboratories, analyses have been performed at constant room temperature (e.g., within 

1<thinsp>°C interval). The calibration of the two Raman systems has been daily performed to 

the zero line (the laser line emission) with a synthetic diamond standard vibrating at 1331.82 cm–

1, according to the ASTM 1840–96 normative.24,25 For the Raman system at the Università di 

Torino, the correction of the instrumental linearity19,26 has been performed by additionally 

checking the main band of the silicon standard at 520.70 cm–1. Measured drift between the 

silicon and diamond spectral region resulted in less than 1 cm–1, and has been corrected by the 

adjustment of the Koeff. parameter in the LabSpec 5 software, as recommended by Lamadrid et 

al.19 In the case of the spectrometers of the last generation, like the Raman system at the 

Università Milano–Bicocca, the correction of the instrumental linearity is automatically achieved 

by the automatic correction of the Koeff., by a sequential auto-calibration process to the zero line 

with the chosen standard in the CO2 region (i.e., diamond; 1331.82 cm–1). 

With both instruments, the accuracy of the central band position attributions to monitor 

the variation of the band positions in Raman spectra as a function of the analyzed phases’ 

physical–chemical characteristics, such as the fluid density, is in the order of 0.1 cm–1.27 For this 

reason, CO2 spectra have been treated with baseline correction and band fitting with a Pseudo 

Voight function28 by the freeware software Fityk 0.9.8.29 The fitting allows improving the 

measurement accuracy up to 30 times.15,30,31

Bootstrapped Confidence Intervals

Five published CO2 Raman densimeter polynomial equations14–18 and the one proposed in the 

present study have been statistically evaluated by the computation of 95% confidence intervals 

of the fitted densities via the bootstrap approach. The linear equations of Rosso and Bodnar and 

Lamadrid et al.11,19 have not been considered. The bootstrap algorithm, implemented in Rstudio 

3.5.3, allowed computing the assumptions free 95% confidence intervals on the density 

estimates, enabling the analysis of the estimation accuracy of the different empirical equations 

and the statistical comparison among them. 

The bootstrap21 is a general nonparametric approach to statistical inference that allows 

constructing confidence limits on parameter estimates without assuming an underlying 

distribution. Among the different forms of bootstrapping – percentile bootstrap, time-series 
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bootstrap, and regression bootstrap – we focused on regression bootstrap to construct confidence 

intervals on the dependent variable. In particular, given the following relation (Eq. 1):

𝑑𝑖 = β0 + β1Δ𝑖 + β2Δ2𝑖 + β3Δ3𝑖 + ε𝑖 #(1)

the 95% confidence intervals for the estimated  will be produced.𝑑
The literature recognizes two general approaches to bootstrap (Eq. 1) by considering the 

covariates as either random or fixed.32 The densities used in Eq. 1 are observed from the Δs 

computed by each equation. Being each equation specific for a certain set of , it is assumed that Δ
the s are fixed observations. At the same time, the response variable has a random component Δ
arising from the error associated with each equation. Being this the case, the 95% confidence 

intervals of the response variable will be constructed using the residual bootstrapping, described 

below:32

Estimate the regression coefficients , , , and  from the observed values and compute the β0 β1 β2 β3

fitted values and residuals defined as:

 𝑑𝑖 =  β0 + β1∆𝑖 + β2∆2𝑖 + β3∆3𝑖 𝜀𝑖 =  𝑑𝑖―  𝑑𝑖
Sample with replacement the residuals from the original regression and compute the 

bootstrapped values of the response variable: 

𝛆 ∗𝒃 = [ε ∗𝑏1, ε ∗𝑏1, …, ε ∗𝑏𝑛]′
Define , and compute 𝑑 ∗𝑏𝑖 =  𝑑𝑖 + ε ∗𝑏𝑖 𝒅 ∗𝒃 = [𝑑 ∗𝑏1, 𝑑 ∗𝑏2, …, 𝑑 ∗𝑏𝑛]′

Regress  on the fixed regressors, and obtain the bootstrapped regression coefficients: 𝒅 ∗𝒃
𝛃 ∗𝒃 = [β ∗𝑏0,  β ∗𝑏1, β ∗𝑏2, β ∗𝑏3]
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Points 1, 2, and 3 are repeated B times ( ) obtaining B coefficient estimates and, for 𝑏 ∈ [1;𝐵]
each observation i, B bootstrapped prediction errors. For the scope of the paper, we will focus 

only on the construction of the 95% confidence intervals of the response variable. Once the B 

bootstrapped prediction errors are obtained, the 95% confidence intervals of the predicted 

response variable are constructed by selecting the 0.025 and 0.095 percentiles of the 

bootstrapped prediction errors and by adding these lower and upper bounds to each .𝑑𝑖
The 95% confidence interval ( ) is defined as a range of values that have been calculated from 𝐶𝐼
the data that, 95% of the time, includes the true value of the parameter  which is going to be ,

estimated about the considered population.33 This means that the could be used to provide a 𝐶𝐼 
range of values that will contain the true population estimate.

In addition, a  gives an indication of how precise the estimate is likely to be, with the 𝐶𝐼
margin of error as a measure of precision. If the  is narrow, the margin of error is small; thus, 𝐶𝐼
the estimate is relatively precise; on the contrary, a wide  implies a large margin of error; thus, 𝐶𝐼
the estimate has low precision.33 Based on this, can be used to attribute the accuracy of the 𝐶𝐼 
estimated fitted values and/or regressors coefficients.

The confidence interval can also be adopted to compare the estimation and predictive 

ability of two models: if the s for two models significantly overlap, then it constitutes an 𝐶𝐼
indication of (statistical) equivalence, at a given significance level, between the two.34

Finally, it is essential to highlight that, if the regression bootstrap allows constructing s 𝐶𝐼
without assuming an underlying distribution of the dependent variable, by keeping the fixed, it Δ 

assumes that:

The error terms are independent and identically distributed (IID), and consequentially 

when resampling we have Eq. 2:35

(2)𝑃(ε ∗𝑏𝑖 = ε𝑖) =  
1𝑛,   ∀𝑛 = 1, …, 𝑛                           

which means that all the residuals have the same probability P to be randomly selected without 

any sampling biases.

The model in Eq. 1 is correctly specified.32

Results
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Calibration of the Raman CO2 Densimeter Equation

Selected CO2 inclusions for the calibration of the Raman densimeter equation have prismatic to 

rounded shapes, and sizes ranging from 2 to 20 µm in diameter or length (Fig.1c and d; Table S1, 

Supplemental Material). Some inclusions have elongated prismatic shapes with widths not 

exceeding 1–1.5 µm. Depths location within the rock sections range from 8 to 43 µm, with most 

of the inclusions observed at depths comprised between 15 and 25 µm from the sample surface 

(Table S1).

Data Acquisition: Microthermometry and Raman Spectroscopy 

The CO2 melting temperatures (Tm) were recorded at –56.6 ± 0.1<thinsp>°C. Homogenization 

temperatures to the liquid phase (ThL) range from –32.5 to 31.0 ± 0.1<thinsp>°C. Two fluid 

inclusions homogenize to the vapor phase (ThV) at 30.5 ± 0.1 and 30.9 ± 0.1<thinsp>°C. 

Corresponding CO2 densities are calculated with the equation of state of Dusheck et al.23 and 

range from 0.37 to 1.08 ± 0.01 g/cm3 (Table S1, Supplemental Material). 

In Raman spectra of 40 pure fluid inclusions, CO2 upper bands’ central positions are 

distributed from 1386.42 to 1389.88 cm–1, and lower bands’ central positions between 1281.57 

and 1286.11 cm–1 (Table S2). Based on the fitted center positions of the upper and lower CO2 

bands of acquired spectra, measured Δs vary from 103.44 to 105.13 cm–1 on increasing fluid 

density. Intensities of CO2 upper bands are comprised between 110 and 9350 counts (in arbitrary 

units), with most values above 1000 counts. The lower band intensities are between 64 and 4688 

counts (in arbitrary units), also in this case, with most values above 1000 counts. The band full 

widths at half-maximum (FWHM) range from 2.00 to 5.06 cm–1 for the upper bands, and from 

2.20 to 4.80 cm–1 for the lower bands (Table S2).

For comparison, we measured the Fermi diad splits' distance in a few CO2 spectra 

collected with a higher spectral per pixel resolution (i.e., 1800 gr/mm grating). We note that 

measured Δs resulted in being about 0.2 cm–1 greater on average (Figure S1, Supplemental 

Material). 

Band Fitting Accuracy

The selection of CO2 Raman bands to calibrate a densimeter equation is generally based on a 

minimum intensity value, selected between 500 and 1000 counts by the different authors.14 The 
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accuracy of the central band position, however, is not only a function of band intensity (I) but 

also of its FWHM.2,28 Therefore, for the present study, spectra selection for band best-fit has also 

been performed by considering the ratio between FWHM and I in single bands, defined as “band 

shape factor” (BSF = FWHM/I).

Calculated BSFs show a strong anticorrelation between band intensity and FWHM and 

vary from 0.0003 to 0.0349 for the CO2 upper bands and from 0.0006 to 0.0545 for the lower 

bands (Table S2). The BSF plots relative to I (Figures 2a and b) graphically illustrate this 

relationship for the two CO2 bands forming the Fermi doublet. In both diagrams, data plots 

define hyperbolic distributions, suggesting a minimum I over which and maximum FWHM 

below which the bands can be selected for best fit. The threshold values have been set at the 

points where the hyperboles invert their slopes (crossing red lines in Fig. 2a and b). The data 

plotting below the threshold values correspond to CO2 upper bands (green field in Fig. 2a) 

having intensities ≥ 1000 counts and a BSF ≤ 0.004, and lower bands (green field in Fig. 2b) ≥ 

600 counts and BSF ≤ 0.006. At higher BSF values, band intensities exponentially decrease with 

increasing FWHM for both the upper and lower bands, inducing an increase of uncertainty in 

central position assignment. 

[insert: Figure 2]

It was expected that both the CO2 upper bands and lower bands in the same spectrum 

would have similar BSF. Based on this approach, we removed 13 spectra from the database 

(Table S2). Unconsidered spectra were collected in CO2 inclusions of density variable from 0.42 

to 1.02 g/cm3, excluding a correlation between BSF variability and fluid density. Conversely, 

these inclusions share several textural characteristics, including a location deeper than 25 µm 

within the sample, a size not exceeding 5 µm in length, and, often, an elongated shape (width of 

about 1–1.5 µm; Figs. 1c and d). Thus, one possible explanation is that confocal Raman 

spectroscopy analyses performed in tiny fluid inclusions located deep within the sample may 

have contributed to insufficient spectral output quality. The penetration profile for a laser source 

depends mainly on its wavelength, sample optical properties, and hole size,2,36 and it decreases 

with increasing depth. For this reason, a small volume of a fluid located deep within the sample 

will be excited by the laser only to a lesser extent compared to the surrounding host mineral. As 

a consequence, the graphical resolution of spectra acquired beyond a certain depth would rapidly 

decrease.27,30,36
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Calculation of CO2 Densimeter Equation

The interpolation of the selected measured Δs and corresponding microthermometric densities 

(Table I) allows formulating an empirical third-order polynomial equation for the calculation of 

the CO2 densities (Eq. 3): 

 (3)𝑑 =  ― 0.01472000Δ3 + 4.51148969Δ2 ― 460.27795107Δ +  15631.28847817

with trend analysis determination coefficient, R2, equal to 0.994. The resulting regression is 

shown in Fig. 3a.

[insert: Table I]

Equation 2 has been used to calculate the selected: for the considered Δ intervals, Raman 

densities resulted between 0.37 and 1.08 g/cm3. Calculated CO2 densities have an almost perfect 

positive correlation with microthermometric inclusions densities, with a mathematical expression 

(Eq. 4):

                                         (4)𝑑𝑚𝑖𝑐𝑟𝑜. =  1.0002(𝑑𝑅𝑑) + 0.0027

where dmicro. are CO2 densities derived from microthermometric measurements, and dRd those 

calculated using the Raman densimeter equation. The resulting regression is shown in Figure 3b, 

and it is characterized by a trend analysis determination coefficient equal to 0.994 and a standard 

error of ± 0.015 g/cm3. 

[insert: Figure 3]

As illustrated in Figure 3c, when plotted on a Δ versus d diagram, the present regression 

curve groups with Kawakami et al.14 and Yamamoto and Kagi15 ones, calculating CO2 density 

values lying within the standard errors of the equations (σ = ± 0.015 g/cm3) for density values 

equal or higher than 0.37 g/cm3. Compared to Kawakami et al.14 equation (K in Fig. 3c), it 

calculates densities that show a slight underestimation below 0.37 g/cm3 (Δs equal to 103.44 cm–

1, Fig.3c). The larger discrepancy is –0.03 g/cm3. This minimal difference progressively 

decreases and remains within an interval of 0.01 g/cm3 from 0.54 to 1.08 g/cm3 (Δ between 

103.76 and 105.13 cm–1; Fig. 3c). 

Again, when compared with the regression curve of Yamamoto and Kagi (Y in Fig. 3c),15 

the present equation shows the same slight density underestimation below 0.37 g/cm3 (Δs equal 
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to 103.44 cm–1); progressively, the density difference decreases crossing Yamamoto and Kagi15 

value at 0.59 g/cm3 (Δ of 103.86 cm–1; Fig. 3c). For higher densities, the present densimeter 

calculates density values lying within the analytical error of Yamamoto and Kagi15 equation. It 

reaches a maximum density difference of 0.03 g/cm3 at 0.80 g/cm3 (Δs equal to 104.33 cm–1). 

The trend is reversed at 0.98 g/cm3 (Δs equal to 104.81 cm–1), where the density difference is 

0.01 g/cm3 at 1.08 g/cm3 (Δs equal to 105.13 cm–1; Fig. 3c).

Conversely, a robust disagreement is observed with the other set of densimeter equations, 

i.e., by Song et al., Fall et al., and Wang et al.16–18 These equations calculate density values all 

lying well below those calculated by the present equation, with an average standard deviation of 

–0.09 ± 0.02 g/cm3 in the whole range of considered densities.

Confidence Intervals of Raman Densimeter Equations

A bootstrap analysis was used to estimate confidence intervals of the predictions of density 

values of the six Raman densimeter equations considered in the present paper. The calibration 

data were selected from the original Δ and density data used by the different authors to calibrate 

densimeters.

[insert: Table II]

The empirical equations used for the bootstrap approach fit orthogonal polynomials as 

opposed to raw polynomials to reduce possible problems arising from the correlation among the 

different covariates.

The bootstrap analysis allows constructing the 95% confidence intervals from which it is 

possible not only to compare the different equations found in the literature but also to define a 

limit of applicability to each empirical regression. The cut-off point has been defined where the 

relative distances (between lower and upper limits) of the computed CIs are below than 7.5%. 

Above this threshold, the fitted density values are assumed not reliable due to the high variability 

coupled with the observed exponential increase. Figure 4 shows the computed thresholds and the 

densities variability in % for the six regressions. For Kawakami et al. (K in Fig. 4a),14 Yamamoto 

and Kagi (Y in Fig. 4b),15 and the present study (R in Fig. 4c) equations, the thresholds are 

located at Δs equal to 103.59, 103.59, and 103.44 cm–1, respectively. These correspond to fitted 

densities of 0.46 g/cm3 for Kawakami et al. and Yamamoto and Kagi,14,15 and 0.37 cm3 for the 

present study (Figs. 4 a–c). Above these fitted density values, most relative distances for the 
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three considered equations are < 5%. In the case of the empirical regressions of Kawakami et al. 

and Yamamoto and Kagi,14,15 the calculated density variability below the threshold is above 30% 

(Fig. 4a and b). In the case of our equation, due to the considered dataset, no fitted densities fall 

above the threshold value (Fig. 4c).

[insert: Figure 4]

For the empirical regressions of Fall et al. (F in Figs. 4d), Wang et al. (W in Fig. 4e), and 

Song et al. (S in Fig. 4f),16–18 the 7.5% thresholds correspond to Δs equal to 103.33, 103.53, and 

103.45 cm–1, respectively. The relative density values are 0.24 g/cm3 for Fall et al., and 0.33 

g/cm3 for Wang et al. and Song et al.16–18 equations (Figs. 4d–f). The relative errors before the 

thresholds exponentially increase for all the new equations, reaching the maximum variation of 

about 90% for Fall et al. (Fig. 4d), 60% for Wang et al.  (Fig. 4e), and 15% for Song et al. (Fig. 

4f)16–18 equations.

Discussion

Influence of Experimental Procedure on the Calibration of Raman CO2 Densimeter Equations

The present densimeter equation shows an excellent correlation with equations proposed by 

Kawakami et al.14 and Yamamoto and Kagi (cf. Fig. 3c).15 Measured Δs calculate CO2 density 

values lying within the standard errors of the equations. 

In these three laboratories, Raman spectra were collected at similar spectral resolution: 

1.66 cm–1/px for the present study, and 1.50 cm–1/px for Kawakami et al. and Yamamoto and 

Kagi (cf., Table III).14,15 In addition, as summarized in Table III, the applied experimental 

conditions include very similar spectrometer characteristics (i.e., the spectrometer focal length), 

the same CCD detector (1024*256 px) and diffraction grating (600 gr/mm), and very close laser 

source wavelengths (i.e., 532 nm for the present study, and 514 nm).14,15 

We note that the spectral resolution applied to calibrate the other discrete group of Raman 

densimeter equations by Song et al., Fall et al., and Wang et al.16–18 is also similar, but 

considerably higher, between 0.30 and 0.43 cm–1/px. 

[insert Table III] 

In conclusion, we suggest that spectral resolution represents the prevailing experimental 

parameter affecting the Raman spectra of CO2 fluids having the same density and, consequently, 

the observed differences among the two groups of densimeters. 
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A similar observation is entirely consistent with the fundamentals of Raman 

spectroscopy. The spectral resolution determines the Raman spectrometer’s ability to measure, 

for example, the FWHM of a thin band or to discriminate between overlapping bands (e.g., 

number of points forming the bands).27,41 Five main parameters generally define it: (i) the 

spectrometer focal length, (ii) the number of the pixels in the detector, (iii) the laser wavelength, 

(iv) the slit width, and (v) the diffraction grating. Among these, the diffraction grating is the most 

relevant one: the higher the number of grooves of the grating per mm, the higher the spectral 

resolution. When the spectral resolution is changed, both the band FWHM and I vary,42 

reflecting on the center position of the band in the spectral graphical output. Thus, on fitting, 

bands obtained with a higher spectral resolution would show a lower shift of center positions 

than those obtained with a lower spectral resolution. Since the distance of band center positions 

depend on the spectra graphical output, the shift is constant for the all Δ values.

Statistical comparison of existing densimeters based on bootstrapped confidence intervals

The bootstrapping analysis predicts that Raman densimeter equations are not reliable to calculate 

CO2 densities in the intervals where the relative distances of predicted CI are higher than 7.5% 

due to lower precision of fit. We note a general trend for each Raman densimeter equation best-

fit dependent on the spectral resolution set to perform analyses. Predicted minimum density 

values to be considered reliable measurements are higher for those equations calibrated on 

Raman spectra acquired at medium spectral resolution conditions. Owing to this observation, we 

performed a statistical comparison of the new datasets independent regressions (cf. Confidence 

Intervals of Raman Densimeter Equations section above).34 The distances of the Fermi diad split 

measured by one group of authors have been used to calculate CO2 densities using the empirical 

regression estimated from the densities computed by another group of authors and successively 

compared with their CIs (Figs. 5 and 6). As an example, the Δs measured by Kawakami et al.14 

have been used to predict densities with the regression of Yamamoto and Kagi;15 the resulting 

fitted density regression curve has been plotted against the CIs of Kawakami et al. (Fig. 5b).14 If 

the fitted values fall inside the 95% confidence intervals, one can conclude that the two equations 

are statistically equivalent at 95% confidence. To test and evaluate the influence of the analytical 

conditions on the calibration of densimeter equations, the comparison was performed among 

equations resulting from Raman spectra collected with similar experimental conditions. 

[insert: Figure 5]

Page 14 of 39

Applied Spectroscopy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Author Accepted Manuscript



Peer Review
 Version

`The comparison between fitted densities and confidence intervals,34 shows an overlap of the 

95% CIs between Kawakami et al., Yamamoto and Kagi14–15 and the present study equations 

(Figs. 5a–c). This result indicates that these three “medium spectral resolution” equations are 

statistically equivalent at 95% of confidence. As illustrated in Fig. 5d, the statistical equivalence 

is limited to the range of the computed densities on which the equations are calibrated. Outside 

these ranges of density values, the proposed equations are no longer statistically equivalent.

[insert: Figure 6]

The comparison between Fall et al., Wang et al., and Song et al.16–18 calculated densities 

and CIs,34 shows at 95% confidence that also “high spectral resolution” equations are statistically 

equivalent in the density interval comprised between 0.33 and 1.00 g/cm3 (Figs. 6a–c). 

Conversely, the statistical analysis shows that equations calibrated using different Raman 

spectral resolutions, are not statistically equivalent (Figs. 6d–f). 

Thus, the bootstrap analysis provides a guide to select a CO2 densimeter equation based 

on the applied experimental procedure. For spectra collected with a spectral resolution of 1.50 – 

1.66 cm–1/px, and for density values between 0.46 and 1.22 g/cm3 (Δ from 103.59 to 105.81 cm–

1), any equation among those of Kawakami et al., Yamamoto and Kagi14,15 and the present study 

could be used to calculate CO2 densities with a confidence of 95% that the fitted values will be 

statistically equivalent. Also, the equation proposed in the present study can be applied for the 

density interval between 0.37 and 1.08 g/cm3 (Δ from 103.44 to 105.13 cm–1). Conversely, when 

a spectral resolution of 0.30 – 0.43 cm–1/px is applied, Fall et al., Wang et al., and Song et al.16–18 

densimeter equations should be used to calculate CO2 densities with a confidence of 95% that the 

fitted values will be statistically equivalent. 

Applicability of Raman CO2 Densimeter Equations

The present results suggest no strong reason to avoid the inter-laboratory adoption of published 

Raman densimeter equations to calculate densities of CO2 fluid inclusions once the spectral 

resolution (cm–1/px) applied during analyses is considered. A firm agreement in calculated 

density values is observed within the two groups of equations, calibrated at high and medium 

spectral resolutions, and could be regarded as a reliable measurement for comparison. The 

statistical analysis further predicts that each Raman CO2 densimeter equation does have a limit of 

applicability, statistically defined by a minimum Δ value, below which the error in calculated 
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densities is too high. The minimum statistically accurate density values (< 7.5% CI) are different 

for each considered equation; they vary from 0.46 to 0.37 g/cm3, and from 0.33 to 0.24 g/cm3, 

depending on the spectral resolution applied and the interval of data considered (Fig. 4). The 

error exponentially increases at lower density values, standing above 20% at about 0.20 g/cm3 

for all equations (Fig. 4).

Minimum statistically accurate density values correspond to CO2 fluids homogenizing to 

the vapor phase (ThV; L+V V) at temperatures variable from 31.0 to 30.0<thinsp>°C, and 

29.6–24.8<thinsp>°C, close to the critical point of CO2 (P = 7.38 MPa; T = 31.1<thinsp>°C) 

(Figure S2). Therefore, the simulated increasing trend of error could reflect a considerably lower 

accuracy of ThV measurements performed to calibrate the equations.43 The “apparent 

homogenization phenomenon”, proposed by Sterner44 to highlight the underdetermination of 

phase transitions in fluid inclusions homogenizing by vapor expansion can induce an error as 

high as 0.10–0.30 g/cm3 in calculated CO2 densities. 

An applicability limit, however, also applies to those densimeter equations calibrated 

based on measurements in optical gas cells, where CO2 density is not determined by phase 

transitions.45 In addition, it is evident that “high spectral resolution” densimeter equations 

calculate minimum statistically reliable density values that are lower than those of “medium 

spectral resolution” ones. Thus, other factors affecting the calibration of densimeter equations 

should be considered. In Raman spectra of CO2, the position and width of the bands are a 

function of the molecular forces dominating the fluid volumes at different states and variable P–

T conditions.46–49 Consequently, not only the Fermi diad split (Δ) but also band intensity (I) and 

width (FWHMs) correlate with the fluid density.4–11 Band line shape is also essential but seldom 

discussed characteristics that could influence the determination of band intensity, central 

position, and area. Based on ab initio calculations, Cabaço et al.47 reported some discrepancies 

between observed and theoretically expected CO2 band central positions resulting from the 

variation of band profiles with fluid density. In the case of high-density liquid-like CO2 (e.g., d = 

1.2–0.5 g/cm3), authors reported a progressive symmetric broadening of the upper and lower 

bands with increasing fluid density, allowing the accurate measurement of CO2 bands’ central 

positions. Conversely, below the critical density, gas-like (d = 0.34 g/cm3) CO2 narrower bands 

showed progressively increasing asymmetric profiles, resulting in more challenging to obtain a 

sufficiently accurate fitting of central positions. Although further investigation is required, it is 
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probable that growing asymmetry of band profiles in spectra of low-density CO2 could affect the 

accuracy of the band fitting, and hence of the calculated density values.

Conclusion

The present study demonstrates the possibility of inter-laboratories application of Raman 

densimeter equations to calculate the CO2 density in fluid inclusions. A set of comments guiding 

the practitioners on how to choose and use a Raman densimeter equation to allow that the fitted 

values will be statistically equivalent at 95% confidence, includes: (i) The selected Raman CO2 

densimeter equation should be calibrated with the same (or similar) spectral resolution 

conditions. (ii) The selected Raman CO2 densimeter equation should be applied only within the 

range of the density dataset used to calibrate the equation. (iii) The selected Raman CO2 

densimeter equation should be further applied limited to the interval of CO2 density lying above 

a minimum reliable density value predicted by the bootstrapping, corresponding to a cut-off 

point where the relative distances of the computed CIs are lower than 7.5%.

One main consequence of present results is that the Raman densimeter method could 

potentially be applied to calculate CO2 densities near and above the critical density value, which 

encompass P–T conditions relevant for most geological processes in the crust and the mantle. 

We believe that this method could become a more widespread analytical tool in the study of 

Earth’s fluids in the near future and with the proposed improvements. On the contrary, the 

present results suggest caution in applying the Raman densimeters to CO2 mass calculation in 

shrinkage bubbles of melt inclusions. Here, CO2 has a considerably lower density, in the range 

from 0.02 to 0.30 g/cm3,50–53 in most cases below the minimum reliable density value predicted 

by our statistical analysis.
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Figure Captions

Fig. 1. (a) CO2 Raman spectrum of one fluid inclusion in a peridotite from El Hierro, Canary 

Islands. It is characterized by: the upper and lower bands, at 1384.93 cm–1 and 1279.76 cm–1, 

composing the “Fermi diad” (ν1–2ν2); the two hot bands arising from the transitions originated 

due to the thermal energy of the molecules, at 1406.78 cm–1 and 1260.81 cm–1; the 13CO2 peak at 

1367.45 cm–1. The Fermi diad frequencies are shifted compared to those at ambient conditions 

due to the higher density of the fluid analyzed from mantle depth. b) Graphical expression of 

Raman densimeter empirical equations on a Δ density plot. The linear equations of Rosso and 

Bodnar11 and Lamadrid et al.19 have been not considered since they are not comparable with all 

the other densimeter regressions. K = Kawakami et al.;14 Y = Yamamoto and Kagi;15 S = Song et 

al.;16 F = Fall et al.;17 W = Wang et al.;18 L = Lamadrid et al.19 (c–d) Microphotographs of 

selected CO2 fluid inclusions in orthopyroxene from spinel–harzburgite XML11. Black arrows 

indicate analyzed fluid inclusions. Δ = distance of the Fermi diad split in cm–1; d = density; Opx 

= orthopyroxene.

 Fig. 2. Intensities (I) versus band shape factors (BSF) of fitted CO2 (a) upper and (b) lower 

bands. The horizontal and vertical dotted red lines cross into the points where the hyperboles 

invert their slope and represent the threshold value for selecting accurate spectra.
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Fig. 3. Graphical expression of proposed densimeter equation. (a) Third order polynomial 

regression curve (orange) obtained by interpolating selected Δd relations. (b) Regression of 

“microthermometric” densities (dmicro) versus “Raman” densities (dRaman). The solid black line 

shows the correlation between the dmicro and dRaman. (c) Graphical comparison of present study, 

R, Kawakami et al., K,14 and Yamamoto and Kagi, Y,15 densimeter regressions on a Δd plot. Δ = 

distance of the Fermi diad split; d = density.

Fig. 4. Plots of the percent variation (%Variation) of fitted densities (Fitted d) versus Δ values, 

obtained after the residual bootstrapping for the equations of K, Y, and R (Figs. 4a–c; cf., Fig. 

1b) and F, W, and S (Figs. 4d–f; cf. Fig. 1b). The red dotted lines represent the Δ density 

threshold values above which the relative error of the fitted density values is lower than 7.5%; 

the red fields correspond to those Δ densities below the minimum reliable values defined by the 

statistic thresholds. Δ = distance of the Fermi diad split.

Fig. 5. Statistical comparison of the dataset independent new empirical regressions, obtained 

after the residual bootstrapping for the “medium spectral resolution” equations (K, Y, and R). Δs 

measured by Y are used to calculate fitted densities (Fitted d) with K equation (a) and compared 

with Y’s confidence intervals (CIs). Δs measured by K are used to calculate Fitted d with Y (b) 

and R (d) new equations and compared with K’s CIs. Δs measured by R are used to calculate 

Fitted d with K equation (c) and compared with R’s CIs. Red dotted line and red field as in Fig. 

4; Δ = distance of the Fermi diad split. Abbreviations as in Fig. 1b.

Fig. 6. Statistical comparison of the dataset independent new empirical regressions, obtained 

after the residual bootstrapping for the “high spectral resolution” equations (F, W, and S; Fig. 6–

c) and the “medium and the high spectral resolution” equations (Y, F, W, and S; Fig.6 d, e and f). 

Δs measured by (a) W and (b) S are used to calculate fitted densities (Fitted d) with F new 

equation and compared with the confidence intervals (CIs) of W and S, respectively. Δs 

measured by W are used to calculate Fitted d by S new equation (c) and compared with Ws CIs. 

Δs measured by (d) F, (e) W, and (f) S  are used to calculate fitted densities (Fitted d) with Y 

new equation and, then, compared with the CI of F, W, and S, respectively. Red dotted line and 

red field as in Figs. 4; Δ = distance of the Fermi diad split. Abbreviations as in Fig. 1b.
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Tables

Table I. Summary of the independently calculated densities (d) and Δ values of the 27 selected 

fluid inclusions. Homogenization temperatures (Th) are also reported.

Host FI n° d (g/cm3) Th (°C) Δ (cm–1)

Opx XML3B_120 0.37 30.5 V 103.44

Opx XML3B_125 0.47 30.95 L 103.62

Opx XML3B_122 0.62 29.2 L 103.97

Opx XML3B_128 0.64 28.5 L 103.99

Ol XML4B_112 0.68 26.5 L 104.07

Ol XML4B_111 0.71 24.9 L 104.13

Ol XML4B_102 0.71 24.9 L 104.07

Ol XML4B_101 0.73 23.8 L 104.15

Ol XML4B_109 0.73 23.6 L 104.17

Ol XML4B_113 0.73 23.6 L 104.11

Ol XML4B_100 0.73 23.6 L 104.12

Ol XML4B_116 0.73 23.5 L 104.13

Ol XML4B_110 0.76 23.2 L 104.23

Opx XML3B_24 0.90 3.9 L 104.52

Opx XML3B_26 0.92 2.1 L 104.65

Opx XML3B_25 0.92 0.9 L 104.74

Ol XML4B_16 0.94 –2.0 L 104.67

Opx XML3B_28 0.94 –2.5 L 104.63

Opx XML3B_23 0.95 –3.4 L 104.74

Ol XML4B_12 0.95 –4.0 L 104.68

Opx XML3B_27 1.02 –17.0 L 104.85

Ol XML10C_8 1.04 –21.9 L 105.04

Ol XML10C_13 1.05 –23.5 L 105.05

Ol XML10C_10 1.05 –24.5 L 105.06

Opx XML11B_6 1.06 –25.9 L 105.07

Opx XML8A_19 1.07 –29.4 L 105.07

Opx XML8A_17 1.08 –30.5 L 105.13

FI = Fluid inclusion; n° = number; Opx = orthopyroxene; Ol = olivine; V = vapor; L = liquid; Δ 

= distance of the Fermi diad split.
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Table II. Empirical equations (orthogonal polynomial) used for residual bootstrapping.

Equation Dataset independent new equations
Std. Error 

(g/cm3)
Adj. R2 

Kawakami et al.14 –0.118963Δ3 –0.241733Δ2 +2.359035Δ 
+0.727095

0.02 0.998

Yamamoto and Kagi15 –0.12567Δ3 –0.448236Δ2 +2.762602Δ 
+0.846051

0.02 0.998

Song et al.16 –0.022998Δ3 –0.040964Δ2 +1.260887Δ +0.662 0.01 0.998

Fall et al.17 –0.097391Δ3 –0.183873Δ2 +2.990265Δ 
+0.686497

0.01 0.999

Wang et al.18 –0.09871Δ3 –0.13213Δ2 +2.71578Δ +0.54435 0.01 0.998

Present study
0.031447Δ3 –0.105221Δ2 +1.014913Δ 

+0.844902
0.02 0.985

Δ = distance between the Fermi diad split; Std. Error = standard error; Adj. R2 = adjusted R2.

Table III. Review of the analytical conditions adopted by different authors to calibrate Raman 

densimeter equations.

Densime

ter 

equation

Rosso and 
Bodnar11

Kawakam
i et al.14

Yamamot
o and 
Kagi15

Song et 
al.16

Fall et 
al.17

Wang et 
al.18

Lamadrid 
et al.19

Present 
study

Polynom

ial 

regressio

n

Linear Cubic Cubic Cubic Cubic Cubic Linear Cubic

Fluid 

inclusion

s

Synthetic 
H2O–CO2

Natural 
and 

synthetic 
pure CO2

Natural 
and 

synthetic 
pure CO2

Synthetic 
nearly 

pure CO2

Synthetic 
H2O–
CO2, 

variable 
salinity

Synthetic 
pure CO2

Optical 
cell pure 

CO2

Natural 
pure CO2

Δ range 

(cm–1)
102.60–105.20

102.71–
105.81

102.71–
106.10

102.82–
105.22

102.65–
105.47

102.83–
105.16

102.64–
103.23

103.44–
105.13

d range 

(g/cm3)
0.03–1.00 0.10–1.22

0.10 –
1.24

0.06–1.05
0.001–
1.08

0.05–1.00
0.001–
0.21

0.37–1.07

Equatio

n of state

Sterner and 
Bodnar37

Pitzner 
and 

Sterner38

Pitzner 
and 

Sterner38

Angus et 
al.39

Span and 
Wagner40

Span and 
Wagner40

Span and 
Wagner40

Dusheck 
et al.23

Spectro

meter
Dilor XY 

Chromex 
250is

Chromex 
250is

Horiba 
HR

Horiba 
HR

Horiba 
HR

Horiba 
HR

Horiba 
HR
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Laser 

(nm)
514.5 514.5 514.5 532.06 514.5 532.06 514.5 532.06

Slit (µm) 100 – – – 150 – – 300

Dispersi

on 

grating 

(gr/mm)

1200 600 600 1800 2400 1800 1800 600

CCD 1024*256 1024*256 1024*256 1024*256 1024*256 1024*256 1024*256 1024*256
Spectral 

resolutio

n (cm–

1/px)

0.84 1.5 1.5 0.3 0.3 0.43 0.575 1.66

Calibrati

on 

standard

Ne lines
Naphtale

ne
Naphtale

ne
Diamond Ne lines

Diamond 
and 

benzonitri
le

Ne lines Diamond

d error 

(g/cm3)
±0.02 ±0.02 ±0.02 ±0.03 ±0.035 ±0.011 ±0.0034 ±0.015

Δ = distance of the Fermi diad split; d = density; – means not reported; CCD = charge-coupled 

device.
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Fig.1 a) CO2 Raman spectrum of one fluid inclusion in a peridotite from El Hierro, Canary Islands. It is 

characterized by: the upper and lower bands, at 1384.93 cm-1 and 1279.76 cm-1, composing the “Fermi 

diad” (ν1-2ν2); the two hot bands arising from the transitions originated due to the thermal energy of the 

molecules, at 1406.78 cm-1 and 1260.81 cm-1; the 13CO2 peak at 1367.45 cm-1. The Fermi diad 

frequencies are shifted compared to those at ambient conditions due to the higher density of the fluid 

analyzed from mantle depth. b) Graphical expression of Raman densimeter empirical equations on a Δ – 

density plot. The linear equations of Rosso and Bodnar (1995) 11 and Lamadrid et al. (2017) 19 have been 

not considered since they are not comparable with all the other densimeter regressions. K = Kawakami et 

al. (2003) 14; Y = Yamamoto and Kagi (2006) 15; S = Song et al. (2009) 16; F = Fall et al. (2011) 17; W = 

Wang et al. (2011)18; L = Lamadrid et al. (2017) 19. c) and d) Microphotographs of selected CO2 fluid 

inclusions in orthopyroxene from spinel-harzburgite XML11. Black arrows indicate analysed fluid inclusions. 

Δ = distance of the Fermi diad split in cm-1; I = intensity in arbitrary units (a.u.); d = density; Opx = 

orthopyroxene. 
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Fig.2 Intensities (I) versus band shape factors (BSF) of fitted CO2 upper (a) and lower bands (b). The 

horizontal and vertical dotted red lines cross into the points where the hyperboles invert their slopes and 

represent the threshold value for selecting accurate spectra. 
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Supplementary Material

Table S1. Summary of the main characteristics of seventy-two selected fluid inclusions. 

Host FI n.°
Size 

(µm)

Depth 

(µm)
Tm (°C) Th (°C) d (g/cm3)

Opx XML3B_120 8 43 -56.6 30.5 V 0.37

Opx XML3B_121 7 40 -56.6 30.92 V 0.42

Opx XML3B_125 6 33 -56.6 30.95 L 0.47

Opx XML3B_122 4 43 -56.6 29.2 L 0.62

Opx XML3B_124 4 42 -56.6 29.1 L 0.63

Opx XML3B_128 9 35 -56.6 28.5 L 0.64

Ol XML4B_112 8 32 -56.6 26.5 L 0.68

Ol XML4B_111 8 32 -56.6 24.9 L 0.71

Ol XML4B_102 6 26 -56.6 24.9 L 0.71

Ol XML4B_101 12 27 -56.6 23.8 L 0.73

Ol XML4B_100 10 31 -56.6 23.6 L 0.73

Ol XML4B_116 8 17 -56.6 23.5 L 0.73

Ol XML4B_113 7 32 -56.6 23.6 L 0.73

Ol XML4B_109 6 33 -56.6 23.6 L 0.73

Ol XML4B_110 8 32 -56.6 23.2 L 0.76

Opx XML8C_29 4 26 -56.6 13.0 L 0.84

Opx XML8C_26 4 27 -56.6 8.3 L 0.87

Opx XML8C_30 10 24 -56.6 8.9 L 0.87

Opx XML8C_23 6 27 -56.6 7.4 L 0.88

Opx XML8C_28 14 23 -56.6 7.8 L 0.88

Opx XML8C_25 5 25 -56.6 5.6 L 0.89

Opx XML8C_24 5 23 -56.6 5.6 L 0.89

Opx XML3B_24 2 25 -56.6 3.9 L 0.90

Opx XML3B_41 2 25 -56.6 2.0 L 0.92

Opx XML3B_26 2.5 26 -56.6 2.1 L 0.92

Opx XML8C_27 4 30 -56.6 0.6 L 0.92

Opx XML3B_39 4 30 -56.6 1.0 L 0.92

Ol XML3B_25 3.5 26 -56.6 0.9 L 0.92

Ol XML3B_28 3 25 -56.6 -2.5 L 0.94

Opx XML4B_16 5 39 -56.6 -2.0 L 0.94

Opx XML4B_12 4 10 -56.6 -4.0 L 0.95

Opx XML3B_23 2.5 23.5 -56.6 -3.4 L 0.95

Opx XML3B_27 4 30 -56.6 -17.0 L 1.02

Opx XML3B_42 2.5 26 -56.6 -17.1 L 1.02

Ol XML10C_8 4 15 -56.6 -21.9 L 1.04

Ol XML10C_13 5 13 -56.6 -23.5 L 1.05

Ol XML10C_16 3 17 -56.6 -24.5 L 1.05

Opx XML11B_6 6 20 -56.6 -25.9 L 1.06

Opx XML8A_19 20 14 -56.6 -29.4 L 1.07
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Opx XML8A_17 7 14 -56.6 -30.5 L 1.08

Ol XML11B_7 4 18 -56.7 13.0 L 0.84

Ol XML3B_31 5 40 -56.7 8.7 L 0.87

Opx XML11B_11 5 15 -56.9 7.5 L 0.88

Ol XML11B_12 3.5 17.5 -56.6 5.7 L 0.89

Ol XML4B_15 2.5 12.5 -56.6 -3.8 L 0.95

Opx XML3A_34 3 24 -57.1 -5.5 L 0.96

Ol XML4B_13 8 10 -56.6 -5.4 L 0.96

Ol XML4B_14 2 16 -56.7 -7.0 L 0.97

Opx XML3A_35 5 26 -57.0 -11.5 L 0.99

Opx XML10C_7 4 20 -56.6 -13.0 L 1.00

Ol XML3A_33 3.5 22 -56.9 -15.5 L 1.01

Ol XML10C_5 3 17 -56.6 -18.3 L 1.02

Ol XML10C_1 5 21 -56.8 -23.7 L 1.05

Ol XML10C_3 4 21 -56.6 -24.2 L 1.05

Opx XML11B_14 6 15 -56.6 -24.3 L 1.05

Opx XML11B_15 6.5 8 -56.6 -24.6 L 1.05

Opx XML10C_2 3 22 -56.7 -26.2 L 1.06

Opx XML10C_38 4 26 -56.6 -16.5 L 1.02

Ol XML10C_10 3 17 -56.6 -16.5 L 1.02

Opx XML10C_1b 5 21 -56.6 -24.0 L 1.05

Opx XML10C_3b 4 21 -56.6 -24.0 L 1.05

Ol XML4B_17 4.5 33 -56.6 -11.9 L 0.99

Opx XML10C_2b 3 22 -56.6 -25.0 L 1.05

Opx XML10C_11b 3 27 -56.6 -20.3 L 1.03

Ol XML4B_13 8 10 -56.6 -10.0 L 1.05

Ol XML4B_115 6 14.5 -56.6 25.2 L 0.71

Ol XML4B_117 10 23 -56.6 21.4 L 0.76

Opx XML11B_3 5 15 -56.6 -32.5 L 1.09

Opx XML11B_1 4 10 -56.6 -32.1 L 1.08

Opx XML11B_4 5 9 -56.6 12.1 L 0.85

Opx XML4B_115b 5 14.5 -56.6 25.2 L 0.71

Opx XML4B_117b 10 23 -56.6 21.4 L 0.76

Reported densities (d) are calculated based on recorded fluid inclusions’ homogenization temperatures 

(Th), measured by microthermometry. Final melting temperatures are also reported (Tm). FI = fluid 

inclusion; n° = number; Opx = orthopyroxene; Ol = olivine; V = vapor; L = liquid.
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Table S2. Summary of the parameters (position, intensity and full width at half maximum) of the CO2 

Fermi diads measured after the fitting of collected CO2 Raman spectra, and band shape factors 

calculated for the upper (BSF+) and the lower (BSF-) bands. CO2 density (d) is also reported.

FI n.° d (g/cm3)
Band+ 

(cm-1)

 Band- 

(cm-1)
I+ I- FWHM+ FWHM- BSF+ BSF-

XML3B_120 0.37 1389.41 1285.97 3208 1623 2.00 2.40 0.0006 0.0015

XML3B_121 0.42 1389.39 1285.98 799 434 2.33 2.50 0.0029 0.0058

XML3B_125 0.47 1389.73 1286.11 1734 931 2.00 2.20 0.0012 0.0024

XML3B_122 0.62 1388.80 1284.83 1314 792 2.22 2.22 0.0017 0.0028

XML3B_124 0.63 1389.15 1285.25 841 463 2.45 2.50 0.0029 0.0054

XML3B_128 0.64 1389.04 1285.05 2911 1705 2.40 2.40 0.0008 0.0014

XML4B_112 0.68 1388.31 1284.20 4576 2367 2.30 2.50 0.0005 0.0011

XML4B_111 0.71 1388.32 1284.11 4821 2477 2.35 2.30 0.0005 0.0009

XML4B_102 0.71 1388.44 1284.37 6449 3551 2.20 2.40 0.0003 0.0007

XML4B_101 0.73 1388.56 1284.38 6781 3692 2.37 2.25 0.0003 0.0006

XML4B_100 0.73 1387.99 1283.88 7156 3984 2.37 2.50 0.0003 0.0006

XML4B_116 0.73 1388.43 1284.31 6336 3406 2.37 2.40 0.0004 0.0007

XML4B_113 0.73 1388.30 1284.16 4878 2600 2.36 2.50 0.0005 0.0010

XML4B_109 0.73 1388.26 1284.09 5098 2736 2.00 2.30 0.0004 0.0008

XML4B_110 0.76 1388.16 1283.93 3902 2169 2.39 2.56 0.0006 0.0012

XML8C_29 0.84 1389.79 1285.34 276 136 3.92 4.08 0.0142 0.0301

XML8C_26 0.87 1389.60 1285.10 110 64 3.84 3.50 0.0349 0.0545

XML8C_30 0.87 1389.79 1285.24 303 144 3.60 3.86 0.0119 0.0268

XML8C_23 0.88 1389.35 1284.83 274 143 4.26 4.54 0.0155 0.0319

XML8C_28 0.88 1389.69 1285.16 347 174 3.76 3.86 0.0108 0.0222

XML8C_25 0.89 1389.45 1284.86 196 105 4.34 4.40 0.0221 0.0419

XML8C_24 0.89 1389.35 1284.75 163 89 3.64 4.16 0.0223 0.0467

XML3B_24 0.90 1386.95 1282.43 1798 888 4.06 4.56 0.0023 0.0051

XML3B_41 0.92 1389.75 1285.16 439 229 3.84 3.90 0.0088 0.0170

XML3B_26 0.92 1387.02 1282.40 1166 576 4.48 4.74 0.0038 0.0082

XML8C_27 0.92 1389.59 1284.96 272 134 3.78 3.88 0.0139 0.0290

XML3B_39 0.92 1389.88 1285.18 194 110 3.78 4.04 0.0195 0.0367

XML3B_25 0.92 1386.76 1282.03 2371 1196 4.29 4.56 0.0018 0.0038

XML3B_28 0.94 1386.77 1282.14 2869 1401 4.22 4.70 0.0015 0.0034

XML4B_16 0.94 1387.46 1282.79 1486 820 4.70 4.50 0.0032 0.0055

XML4B_12 0.95 1387.07 1282.39 5159 2724 5.06 4.80 0.0010 0.0018

XML3B_23 0.95 1386.73 1281.99 1655 901 4.50 4.60 0.0027 0.0051

XML3B_27 1.02 1386.42 1281.57 1605 849 4.70 4.60 0.0029 0.0054

XML3B_42 1.02 1389.70 1284.84 380 206 4.10 3.90 0.0108 0.0189

XML10C_8 1.04 1386.80 1281.77 9350 4688 4.40 4.52 0.0005 0.0010

XML10C_13 1.05 1387.30 1282.25 4314 2186 4.92 4.80 0.0011 0.0022

XML10C_10 1.05 1386.82 1281.76 5827 3024 4.20 4.72 0.0007 0.0016

XML11B_6 1.06 1387.98 1282.91 2669 1342 2.16 2.20 0.0008 0.0016
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XML8A_19 1.07 1389.17 1284.10 1194 596 3.92 4.16 0.0033 0.0070

XML8A_17 1.08 1389.07 1283.94 1510 758 4.28 4.24 0.0028 0.0056

Red values correspond to the spectra which are not considered accurate based on the intensity and the 

band shape factor thresholds. FI = fluid inclusion; n° number; Band+ = upper band position; Band- = 

lower band position; I+ = upper band intensity; I- = lower band intensity; FWHM+ = upper band full 

width at half maximum; FWHM- = upper band full width at half maximum.
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Figure S1

Fig. S1. Figure showing the difference between the spectra acquired with the 600 (orange) and the 

1800 (blue) gr/mm grating of one CO2 fluid inclusions of the dataset, having density of 1.07 g/cm-1 

(F.i. n° XML8A_19). Spectra have been acquired in the Raman laboratory at the Università of Milano 

– Bicocca. Panel a) shows the F.i. spectrum acquired with the 600 gr/mm grating, with the upper and 

lower bands positions (1280.21 and 1385.43 cm-1, respectively) corresponding to a distance of the 

Fermi diad split (Δ) of 105.22 cm-1. Panel b), instead, shows the same F.i. spectrum acquired with the 

1800 gr/mm grating. The upper and lower bands central positions are 1385.73 and 1280.30 cm-1, 

respectively, corresponding to a Δ value of 105.43 cm-1. 

Figure S2
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Fig. S2. CO2 density (d) versus homogenization temperature (Th) plot (modified after Van den Kerkhof 

and Thiery, 2001).1 The blue dotted lines correspond to the highest and the lowest threshold densities 

(i.e, 0.46 g/cm3, and 0.24 g/cm3, respectively) set after the residual bootstrapping. These define the Th 

– d interval (blue solid curve) comprising the thresholds set for all the other equations, corresponding 

to CO2 fluids homogenizing to the vapor phase. The red dot corresponds to the CO2 critical point (Cp, d 

= 0.466 g/cm3 at 31.1 °C). The solid black curve defines the Th – d interval where CO2 homogenizes to 

the liquid phase, while the red one the interval where CO2 homogenizes to the vapor phase, below the 

threshold densities.
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