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Abstract

DENDRO [1] is a collection of tools for solving Finite Element problems in parallel. This package is written

in C++ using the standard template library (STL) and uses the Message Passing (MPI) [2]. Dendro uses an

octree data-structure to solve image-registration problems using finite element techniques. For analyzing the

behavior of the package in terms of speed-up and scalability, it is important to know which part of the package

is consuming most of the execution-time. The single node performance and the overall performance of the

package is dependent on the code-organization and class-hierarchy. We used the PETSC [3] profiler to collect

the performance statistics and instrument the code to know which part of the code takes most of the time.

Along with the function-specific execution timings, PETSC profiler also provides the information regarding

how many floating point operations is being performed in total and on average (FLOP/second). PETSC

also provides information related to memory usage and number of MPI messages and reductions being

performed to execute that particular function. We have analyzed these performance-statistics to provide

some guidelines to how we can make Dendro more efficient by optimizing certain functions. We obtained

around 12X speedup over the performance of (default) Dendro by using compiler-provided optimizations

and achieved more than 65% speedup over compiler optimized performance (20X over the naive Dendro

performance) by manually tuning some-block of code along with the compiler-optimizations.
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Chapter 1

Introduction

Dendro is designed to solve image registration problems arise from medical applications. Image registra-

tion [4] is the process of transforming different sets of data into one coordinate system. Registration is

necessary in order to be able to compare or integrate the data obtained from these different measurements.

Registering and summing multiple exposures of the same scene improves signal to noise ratio, allowing to

see things previously impossible to see.

Medical image registration [4] (for data of the same patient taken at different points in time such as

change detection or tumor monitoring)) often additionally involves elastic (also known as nonrigid) registra-

tion to cope with deformation of the subject (due to breathing, anatomical changes, and so forth).

The Dendro package [1] is written to solve finite element problems. It has specific modules to improve

scalability. The package contains geometric multigrid solvers which solves elastic problems. Dendro also

contains some visualization modules. The elasticity solver reads or initializes input points and create an

octree using those points. Then, it balances the octree and solve it using PETSC.

1.1 Motivation

The objective of this work is to figure out the performance bottlenecks that affects the speedup and scalability

of the applications. More specifically finding the causes which impedes the scalability of a parallel solver in

Dendro and eradicate them to achieve better performance was the goal of this work. The project aims to

figure out some of the issues related to I/O which we observed as a serious problem to improve scalability.

The code is written in an Object-Oriented fashion. Dendro can be viewed from the top as a collection of

the following components:

• Source codes, libraries, header files and examples

• Data and scripts to run the package
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In order to extract the profiling informations for Dendro, the PETSC profiler has been used, as gprof and

other common profiling tools are difficult to use as the different modules of Dendro are parallel in nature

and uses message-passing to communicate between different processes. As different processes have separate

address space and they are working on different part of the memory (distributed memory), the conventional

profiling tools (for serial applications) is not suitable for profiling Dendro. Rather than looking at the

libraries in Dendro, a better approach can be looking at the overall (functional) organization of Dendro.

1.2 Organization of Dendro

Dendro is a parallel Geometric Multigrid-based finite element method solver [1]. It performs the following 4

operations in order to solve for the displacements at the non-hanging octree vertices.

1. Main Stage : Deals with the object creation and reading (or generating) input points.

2. Points to Octree Creation (P2O) : In this stage, the code creates the octree out of the points it

read or generated (using Gaussian Distribution).

3. Balance (Bal) : In this stage, the code performs 2:1 balancing [5].

4. Solve : This is the actual solver which calculates the displacements for the non-hanging nodes using

matrix-free method [6].

The solver workflow has been shown in the Figure 1.1 The solver starts with reading and splitting up

the points to be used by each processor. The points then converted into the octree in a linearised form to

improve cache performance. The octree is balanced in 2:1 ratio as described by Sundar et al [5].
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Figure 1.1: Workflow of Dendro
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Chapter 2

Related Work

Performance optimization and modeling [7] for different well-known, popular packages throw various new

challenges to the developers. Understanding and enhancing the performance of large-scale scientific applica-

tions is a crucial component of the high-performance computing. One of the major problem in modeling such

complex softwares lies in identifying the costly (time-consuming) modules and the dependencies correctly

and efficiently. Memory hierarchy and cache behavior [8] makes the performance analysis more complicated.

Using sophisticated data-structures the memory access overheads can be reduced significantly. Brodal,

G. described [9] data structures that automatically apply to multi-level memory hierarchies to become cache-

oblivious. Dendro [1] is used for solving medical image registration problems. Brown L. described a broad

range of techniques [10] that have been developed for various types of registration techniques which can most

appropriately be applied. She categorized the the variations in three major types. The first type are the

variations due to the differences in acquisition which cause the images to be misaligned. To register images,

a spatial transformation is found which will remove these variations. The class of transformations which

must be searched to find the optimal transformation is determined by knowledge about the variations of this

type. The transformation class in turn influences the general technique that should be taken. The second

type of variations are those which are also due to differences in acquisition, but cannot be modeled easily

such as lighting and atmospheric conditions. This type usually effects intensity values, but they may also be

spatial, such as perspective distortions. The third type of variations are differences in the images that are of

interest such as object movements, growths, or other scene changes. Variations of the second and third type

are not directly removed by registration, but they make registration more difficult since an exact match is

no longer possible. In particular, it is critical that variations of the third type are not removed. Knowledge

about the characteristics of each type of variation effect the choice of feature space, similarity measure,

search space, and search strategy which will make up the final technique. She also mentioned that [10] all

registration techniques can be viewed as different combinations of these choices. This framework is useful for

understanding the merits and relationships between the wide variety of existing techniques and for assisting

in the selection of the most suitable technique for a specific problem.
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Schumacher et al presented [11] a novel method for iterative reconstruction of high resolution images.

The method is based on the observation that constant regions in an image can be represented at much lower

resolution than region with fine details and combined adaptive refinement based on quadtrees with iterative

reconstruction to reduce the computational costs. They have got a speed up factor of approximately two

compared to a standard multi-level method.

Haber et al introduced [12] the concept of octrees for registration which drastically reduces the number

of processed data and thus the computational costs. They showed how to map the registration problem

onto an octree and presented a suitable optimization technique. Furthermore, we demonstrated that the

performance (computational time) can be improved by a factor of 10 compared with standard approaches.

In 2007 Haber et al [13] come up with an adaptive mesh refinement approach using discretization of the

variational form which significantly reduce the problem size and thereby reduce the computational time by

a factor of 10 or so compared to the non-adaptive approach.

Modeling the performance and enhancing it on high-end computing systems at an enormous scale, in-

creasing architectural complexity, and increasing application complexity is non-trivial. There are models

like LogP [14], LogGP [15] which address the communication overhead associated with parallel softwares,

but, none of them capture the overlapping effects of computation and communication as well as the synchro-

nization overheads. The LogGP model [15] is an extension of the LogP model [14] for parallel computation

which abstracts the communication of fixed-sized short messages through the use of four parameters: the

communication latency (L), overhead (o), bandwidth (g), and the number of processors (P). The LogP model

can accurately predict communication performance when only short messages are sent. However, many ex-

isting parallel machines have special support for long messages and achieve a much higher bandwidth for

long messages compared to short messages. Hoefler et al [16] developed a new low-overhead measurement

method which also assesses protocol changes in the underlying transport layers. They used the gathered

parameters to simulate LogGP models of collective operations and demonstrate the errors in common bench-

marking methods for collective operations. The simulations provide new insight into the nature of collective

algorithms and their pipelining properties. They showed that the error of conventional benchmark methods

can grow linearly with the system size. An ambitious research plan can include encompassing performance

modeling and prediction, automatic performance optimization and performance engineering of high profile

applications. The principal new component is a research activity [17] in automatic tuning software, which

is spurred by the strong user preference for automatic tools.

Various all-to-all personalized communication (AAPC) algorithms dominate the communication patterns

of the overall applications. Communication patterns affect the scalability and overall performance of an ap-
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plication. Shan H. et al [18] developed a sequence of performance models using a series of micro-benchmarks.

Multithreading can improve performance on a single SMP node [19], but the overall performance is dependent

on the communication patterns. Better computation-communication overlap can lead to better scalability

and performance of the application. They found that for SMP based systems the most important perfor-

mance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are

not possible without considering link contention. The best average model prediction error is very low on

SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized perfor-

mance can again be predicted within 8% in some cases. These excellent results across five different systems

indicate that this methodology for performance modeling can be applied to a large class of algorithms [18].

In Dendro, the octree-nodes are placed in linearized format to improve locality to achieve better per-

formance. The octree is balanced in 2:1 ratio as described by Sundar et al [5]. But as Campbell et al

demonstrated that [20] the ordering based on Hilbert Curves is preferred to the Morton ordering.
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Chapter 3

Experiments

We have performed experiments to determine which part of the software package is consuming most of the

time and resources. The PETSC profiler has been used to find which functions are taking how much time

and how frequently they are called. In the following sections, we have explained the experimental strategies

being adopted with the rationale of performing them to extract more detailed informations.

3.1 Experiment 1: Instrument the Code

We started with the example codes in the Dendro package. Dendro is designed to solve image-registration

problem by solving elastic problems. The elasticity solver has been instrumented with MPI Wtime to get

timing information. We have plotted the timing distribution for the 4 basic blocks in Figure 3.1 for running

it on varying number of processor while keeping the number of local points per processor equal to 1000.

We can see that the Solve part of the routing dominates the timing. To investigate the performance of

the solver (newElasSolver)the number of points local to each of the processor is being taken as an input

(weak-scalability approach). That is equivalent to provide same work-load on each of the processor.

We observe that, even with the increase in number of processors, of the number of local points to a

processor has been kept constant, then, the timing and the Flops does not vary much. From Figure 3.1, it

is evident that Solve (DAMGSolve in PETSC) takes most of the time. So, we went deeper into the modules

of the Multigrid Solver to find which functions contribute to most of the time. The issue is both time,

efficiency and scalability. The I/O overheads can be impediment to the scalability of any application. The

I/O overheads and parallel I/O issues has been analyzed in Section A.2 of the Appendix.

3.2 Experiment:2: Performance Statistics of Dendro

We have used the PETSC profiler output to analyze the performance statistics. By looking at Figure 3.1

we can say that the Solver takes most of the time.We have analyzed the performance statistics for Dendro

multigrid Solver and plotted them in Figure 3.2.
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Figure 3.1: Scalability Study of the Multigrid Solver of Dendro

Figure 3.2: Performance Statistics of the Multigrid Solver of Dendro

8



Figure 3.3: Breakdown of the timing and performance of the Multigrid Solver of Dendro

The units for each curve in the figure are not same. The legends in the plot signify how much each quantity

has been scaled to be put in the same graph for facilitating comparisons. Also, it will be interesting to know

which components of the Solver take more time. From Figure 3.3, we can definitely observe that, MatMult()

and KSPSolve() are taking most of the time. The performance statistics of the underlying functions also

need to be analyzed in this section. For convenience of analysis, We have classified the functions into

following 3 groups and plotted them separately.

1. Matrix functions

• MatMult

• elMultFinest

2. Vector functions

• VecDot

• VecAXPY

• VecAYPX

3. Krylov Solver

9



Figure 3.4: Performance Statistics for Matrix functions

• KSPSolve

• PCApply

We have plotted the Performance Statistics for Matrix Multiplication routines in Figure 3.4. One nice

thing to observe here is that the MatMult and elMultFinest have similar Flops and timing patterns, but,

there is a significant different in the number of reductions they perform. The elMultFinest is a part of

the MatMult operation being performed. In Figure 3.5, the performance statistics for Vector operations has

been performed with the required scaling to fit the data in the plot.

Figure 3.6 contains the performance statistics for the KSPSolve and PCApply routine.

The KSPSolve and PCApply has almost similar characteristics as being shown in Figure 3.6.

Impact of the memory requirements of different functions on performance needs to be addressed to

optimize performance. In the next section we have studied the memory requirement for different modules

of Dendro.

10



Figure 3.5: Performance Statistics for Vector functions

Figure 3.6: Performance Statistics for Krylov Solver
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Figure 3.7: Memory Requirements for performing Mat

3.3 Experiment-3: Memory Requirements and Performance

Statistics

In this section, We have plotted the number of times the operations are being performed and the associated

memory-requirement for each of them. The operations being plotted are as follows:

1. Mat

2. Vec

3. Krylov Solver

We have plotted in Figure 3.7, the number of times the Creations/Destructions for Matrix (Mat) has been

performed with the required memory for performing that. We have plotted in Figure 3.8, the number of times

the Creations/Destructions for Vector (Vec) has been performed with the required memory for performing

that.

From the Figure 3.8, it is shown that as expected, the memory requirement for performing Vec grows

linearly with the problem-size. In Figure 3.9, we have plotted the count and memory requirement for

performing the Krylov Solve.

12



Figure 3.8: Memory Requirements for performing Vec

Figure 3.9: Memory Requirements for performing Krylov Solver
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But, here the memory requirement does not grow rapidly from problem-size (number of points local to

any processor) = 1000 to problem size = 1500.

3.4 Analyzing the Matrix-Vector Multiplication (Matrix-free)

From the experiments, it was clear that the KSPSolve is the solution module which takes most of the time and

the elMult and MatMult is taking the majority of the solution time. So, we analyzed the code, which performs

the elMult and MatMult. It is a small block of code (less than 50 lines) which is performing a matrix-vector

multiplication in a matrix-free fashion and being called hundreds of times for a reasonable problem-size per

processors. The elMult and MatMult is called 540 times for local number of points = 1000. The count of

elMult indicates how many times the the Matrix-Vector multiplication routine ElasticityMatMult() is

executed. If number of points = N, the approximated computation time is Θ(8N2). Thus, on a 2.3 GHZ

Power PC (assuming one operation per cycle), it should take

Time = 540×Θ(8N2)× 1
2.3

× 10−9seconds (3.1)

So, for a problem size (number of local points) of 1000, the time required will be

Time = 540× (8× 10002)× 1
2.3

× 10−9seconds = 1.878seconds (3.2)

With the default build parameters (no optimization), the elMult is taking 74.175 seconds. That means it

can be around 39 times faster. With compiler optimization (O3), for a problem size of 1000 (points per

processor), elMult takes around 5.575 seconds as shown in Figure 3.10. That means the code can still be

2.97 times faster for number of points per processor is 1000. Here, we neglect the memory access related

issues involved as the vectors need to be loaded and hence, cache-performance will affect the theoretically

achievable time. This analysis helps us to understand how much time such an operation should theoretically

take and from the experimental results determine if the performance achieved is reasonable.

14



Figure 3.10: Performance Improvement by using -O3 over default Dendro Elasticity Solver (newElasSolver)
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Chapter 4

Optimization Strategies

4.1 Performance Optimizations

Now from the analysis in the previous chapter we can say that, there is a significant order of difference in

the estimated and actual performance. Although default Dendro does not compile with -O3 option, but,

to provide a fair comparison, we compared the performance achieved using all the optimization strategies

against the performance of Dendro using -O3 compiler optimization. We optimized the performance by

adopting different strategies which will be elaborated in the following section with performance statistics.

1. Compiler directed unrolling of loops along with the -O3: Loop-unrolling should be able to provide

more scope of instruction rearrangement in order to fill the no-ops to reduce stalls in the CPU-cycle.

2. Compiler-directed prefetching of loop-array with loop-unrolling and the -O3.

3. Manually unroll loops along with compiler directed prefetching of loop-array, loop-unrolling and the

-O3.

4. Manually unroll loops and use temporary variables to reduce memory-access along with compiler

directed prefetching of loop-array, loop-unrolling and the -O3.

5. Explicitly prefetch arrays and bind it to the cache-line, manually unroll loop and use temporary

variables to reduce memory-access along with compiler directed prefetching of loop-array, loop-unrolling

and the -O3.

For performing explicit prefetching of arrays we analyzed the appropriate location at which to call

builtin prefetch in order to minimize the cold-misses in the cache-line. The analysis has been provided

in Section 4.1.5.

From, Experiment A.2, it can be said that I/O can impede the scalability of the application. Parallel

I/O provided by MPI [2] can resolve the issue by concurrent access of the file. In Section A.3, we have

16



Figure 4.1: Performance Improvement by Adopting Optimization Strategy 1

explained the details about the performance improvements possible with relative merit and demerits and

system-requirements to leverage the parallel I/O in order to make effective use of parallel I/O in Dendro.

Currently, Dendro is developed based on PETSC 2.3.3. We made appropriate changes to make it com-

patible with the latest PETSC version (3.1). We listed some of the necessary changes in order to make it

compatible in the Appendix Section A.4.

4.1.1 Optimization Strategy 1: Compiler directed Loop-Unrolling

Modern compilers support loop-unrolling which provides more instructions to the compiler to optimize to

minimize stalls (no-ops) due to dependencies on data and operations, and thereby improve performance. In

Figure 4.1, we plotted the performance improvement we obtain using -funroll-loops compiler flag with

-O3. For number of points local to a processor equal to 1000 and 10000, we have obtained more than 17%

and 19% speedup for the elMult module which contributes to more than 13% and 17% speedup respectively.

4.1.2 Optimization Strategy 2: Compiler-directed prefetching with Strategy 2

Prefetching of arrays reduces the cold-miss at the cache and hence improve the cache-performance by increas-

ing cache hit/miss ratio. We tried compiler-supported prefetch support to prefetch the loop-arrays using

17



Figure 4.2: Performance Improvement by Adopting Optimization Strategy 2

the -fprefetch-loop-arrays flag to achieve better performance. In Figure 4.2, we present the experimen-

tal data showing the performance improvement we achieved. Although we obtained a modest performance

improvement (around 12% for 1000 points and around 16% for 10K points), by prefetching the loop-arrays,

it is not significantly better. This is because prefetching is a costly operation and in turn it removes some

cache-lines which may be used. Thus, the performance improvement by reducing cold-misses at cache has

been minimized by the extra misses that occur due to replacement of some cache-lines that may be used

in the future. Also, some arrays may not fit in the cache, and for such a complex scientific application

like Dendro that internally relies on the PETSC solver, it is difficult to avoid cold-misses. Thus, compiler

provided prefetching may not be significantly beneficial for the elasticity solver of Dendro.

4.1.3 Optimization Strategy 3: Manually unroll loop with Strategy 2

Along with the optimization achieved by the compiler, we unroll the inner loop performing the Matrix-vector

multiplication and rearrange the instructions in order to provide better locality. In Figure 4.3, the speedup

is presented. This optimization gives us more than 21% improvement for elMult for local points = 1000

with an overall speedup more than 14.5%. For 10K points, it achieves more than 22% overall speedup. As
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Figure 4.3: Performance Improvement by Adopting Optimization Strategy 3

complier is already doing the unrolling, this optimization is only important from the point of view of code

rearrangement so that we can provide a little better locality. More importantly, it leads to the possibility of

further optimization as depicted in Strategy 4 and 5.

4.1.4 Optimization Strategy 4: Use temporary variables to reduce

memory-access with Strategy 3

After we manually unroll, we reduce the memory access by using temporary variables instead of writing to

a particular location in array. After finishing the block, the temporary variable is written back to the array.

This reduces memory motion and improves performance as less memory motion leads to fewer cache-line

replacement and less cache misses, thereby achieving better cache performance. In Figure 4.4, we observed

significant performance improvement over the compiler obtained speedups. The most important thing to

note here is the modification is made to less than 50 lines of code out of thousands lines of code in Dendro.

We achieved more than 71% speedup over the default Dendro elMult which results in more than 48% of

overall speedup for 1000 points and around 58% overall speedup for 10K points per processor. We achieve

19X speedup in Solve time compared to the default Dendro version.
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Figure 4.4: Performance Improvement by Adopting Optimization Strategy 4

4.1.5 Optimization Strategy 5:Explicitly prefetch arrays and bind it to the

cache-line with Strategy 4

We have observed that compiler directed prefetching is not suitable for Dendro. However prefetching of

arrays should improve performance. On top of all the optimizations, we analyzed the code to see when we

should call the prefetch functions so that we can make sure that it is present exactly when it is needed.

Although it is difficult to predict the exact times (or number of clock-cycles)at which to prefetch. The

obvious question to ask here is

1. When (and where) someone should call prefetching?

2. How to make sure that the prefetched cache-lines will not be removed before their use?

When to call prefetching?

We have used the following instructions (supported in gcc 4.4.4) to prefetch the two array inArr (the array

from which the values will be read) and the outArr (the array to which the values will be written to).

builtin prefetch (inArr,0, 3);
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Figure 4.5: Performance Improvement by Adopting Optimization Strategy 5

builtin prefetch (outArr,1, 3);

The memory prefetch time is almost equal to the time required to fetch a particular block from memory to

cache-line and is approximately 50 to 100 cycles. Thus, we call builtin prefetch() around 100 cycles

before memory is used.

How to preserve the prefetched data?

builtin prefetch() is used to prefetch the inArr (for reading) and the outArr arrays (for writing to)

from memory. We used 3 as the third parameter to builtin prefetch() to denote that the data has a

high degree of temporal locality and should be left in all levels of cache if possible.

Performance Improvement for Optimization Strategy 5

The performance improvement has been plotted in Figure 4.5. We achieved 72% speedup relative to -

O3 in elMult time and more than 48.8% speedup in Solve time for number of points = 1000. Also, we

achieved more than 79% speedup in elMult time and more than 65% speedup in overall execution time for

10000 points. One crucial point to note here is that optimization strategy 5 provides better performance as

compared to that achieved by optimization strategy 4. It will be important to compare the impact of the
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Figure 4.6: Comparing Performance Improvement by Different Optimization Strategies

different optimization strategies.

4.2 Comparing Different Optimization Strategies

In this section, we compared the performance improvement possible for number of local points to a processor

equal to 1000. In Figure 4.6, we plotted the performance improvement data for the Dendro elasticity solver

newElasSolver. We observed that it is possible (by strategy 5) to achieve more than 32% additional

speedup over the best-possible compiler assisted speedup (as described in Optimization strategy 2). Using

optimization strategy 5, we have achieved a 1.7236 times speedup for elMult for problem size which is 58%

of the estimated available speedup as described in Section 3.4.
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Chapter 5

Conclusions and Future Work

From the performance statistics, it was clear that the Solve part of the code takes most of the time (around

98%), out of which the matrix-vector multiplication takes around 95% of the total execution time. The

Balancing and Points to octree creation takes insignificant time compared to Solve. By improving the time

required for matrix-vector multiplication, the performance has been greatly improved. The discrepancy

between theoretically achievable speedup and the speedup achieved by optimizing the code may be due to

cache-behavior or communication patterns (use of blocking/non-blocking calls, collective communications)

which impacts the performance. For number of local points per processor = 10000, optimization strategy

5 gives more than 79% speedup which contributes to an overall 65% speedup in the execution time. We

achieved 58% of the estimated speedup for local number of points = 1000. To improve performance further

and to achieve better performance for strong scalability, a more detailed analysis of the communication

patterns of Dendro must be done. The analysis on computation and communication will help figure out the

bottlenecks to achieve better scalability of the code. Incorporating parallel I/O improve the scalability of

Dendro.

In Dendro, the octants of the octree needs to be sorted frequently. Improving the performance by adopting

a new sorting technique may improve performance. For balancing the octree, an ordering based on Hilbert

Curves is preferred to the Morton ordering [20]. So, performance can be improved by using Hilbert Curve

ordering as it assures better the data-locality.
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Appendix A

A.1 Software Release and Project Website

The default Dendro v-1.0 was compatible with petsc-2.3.3. We modified Dendro to make it compati-

ble with petsc-3.x versions and the latest releases (say petsc-3.1-p2). The source code (Dendro-1.0.3.1)

and patches have been posted on our website (https://netfiles.uiuc.edu/mukherj4/www/) in the Softwares

(https://netfiles.uiuc.edu/mukherj4/www/software.html) section.

A.1.1 Dendro-1.0.3.1

Users can download the source code od the updated package (Dendro-1.0.3.1) or you can download the

patch for Dendro v1.0 (from the Dendro website http://www.cc.gatech.edu/csela/dendro/html/index.html)

and apply the patches. For installing and using Dendro and Petsc, MPICH 2 should be installed on your

system.

Dendro Version Download Url Description

Dendro v1.0.3.1 $SOFTWARE/Dendro-1.0.3.1.tar.gz Compatible with PETSC-3.x

Patch for Dendro v1.0 $SOFTWARE/patch-Dendro-1.0.3.1.txt Using diff -Naru

Patch for Dendro v1.0 $SOFTWARE/patch2-Dendro-1.0.3.1.txt Using diff -rau
Note: $SOFTWARE = https://netfiles.uiuc.edu/mukherj4/www/softwares as shown in the Table

above.

Please contact us at mukherj4@illinois.edu or at wgropp@illinois.edu if you have any questions or com-

ments.

A.2 Experiment: Analyzing I/O Overheads

In Dendro, they use a serial code called splitPoints to split the points and store them in different files.

They assign names for files make it ready for the parallel processing. The runScal code takes those file and
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Figure A.1: Time to generate input files as the number of processors are getting increased

generate files with points required for the balancing operation on octrees. So, for doing a parallel balancing,

the points need to be stored in files corresponding to the rank of each process. This provides scaling (strong)

to the the Balancing and Points to Octree creation. From Figure A.1, it is evident that as the number of

processors is getting increased, the time to generate the input files is also increasing. To see the timing

requirements for number of processors less than or equal to 1024 (210), we have plotted Figure A.2 to focus

on the time required to split files for lesser number of processors. From the experiments we found that for

an input size per processor (number of local points) equal to 1000 and number of processors equal to 1024,

the splitPoints takes around 5 seconds to read generate the (binary and text) files. As we have seen from

the elasticity solver newElasSolver of Dendro takes around 77 seconds to solve and less than a second to

do convert the points to octree and balance them. An I/O time of 5 seconds is a significant overhead. So,

the weak-scalability will be hugely affected by the current I/O procedure. Not only, that, the files are not

auto-removed after use. So, after every run one needs to clean them.

A.3 Parallel I/O

In the Experiment A.2, the timing mentioned is for reading one binary file and writing to one binary and one

text file per processor. Outputting the text file is not a part of the Dendro splitPoints program. Here, we

compared our implementation with the Dendro provided splitPoints program. We used MPI File open

to open the file by all the processes, then, provide an appropriate view (location in the file from which

individual process has to read) by using MPI File set view for all the processes. We used the collective
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Figure A.2: System time and User time to generate input files for different process

read (MPI File read at all) to facilitate concurrent reading of the file. In Figure A.3, we compared the

splitPoints program with a parallel I/O based application that uses two different approaches to provide

atomic access to the file:

1. Using MPI File set atomicity()

2. Using MPI File sync()

In Figure A.3, we compare the read-time for the parallel I/O based splitPoint with the total time (read

and write time) of the serial application, because if someone is adopting parallel I/O, they do not need to

write it to any files to be read by some process later. So, once it is read, the process is all set to proceed.

Parallel I/O will not only save the time or improve scalability, but also, it helps to keep the disk clean by not

creating so many files. Also, it helps to avoid ambiguity between different prefixes assigned to the generated

file (by splitPoint) which will be later used by some process.

A.4 Changes to make Dendro Compatible with PETSC 3.1

Change the Makefile:

include $PETSC DIR/$PETSC ARCH/conf/petscvariables

include $PETSC DIR/conf/variables

Include 0 as the fourth parameter in the method KSPSetConvergenceTest() as shown below:

ierr = KSPSetConvergenceTest(damg[0]→ksp, KSPSkipConverged, PETSC NULL,0);
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Figure A.3: Timing for Parallel I/O for Dendro

Positive-definite systems need to be taken care of as follows:

PCFactorSetShiftType(ipc,MAT SHIFT POSITIVE DEFINITE)

In $DENDRO DIR/src/omg/omg.C, we have modified the following functions

1. PC KSP Shell SetUp()

• For PETSC-2.3.3

PetscErrorCode PC KSP Shell SetUp(void* ctx)

• For PETSC-3.1-p2

PetscErrorCode PC KSP Shell SetUp(PC pc)

2. PC KSP Shell Apply()

• For PETSC-2.3.3

PetscErrorCode PC KSP Shell Apply(void* ctx, Vec rhs, Vec sol)

• For PETSC-3.1-p2

PetscErrorCode PC KSP Shell Apply(PC pc, Vec rhs, Vec sol)

3. PC KSP Shell Destroy()

27



• For PETSC-2.3.3

PetscErrorCode PC KSP Shell Destroy(void* ctx)

• For PETSC-3.1-p2

PetscErrorCode PC KSP Shell Destroy(PC pc)

For all the above methods instead of passing context, get the context using PCShellGetContext(pc,&ctx)

as shown below.

ierr = PCShellGetContext(pc,&ctx);

• In the following files

$DENDRO DIR/examples/src/drivers/tstRipple.C, $DENDRO DIR/examples/src/drivers/runScal.C,

$DENDRO DIR/examples/src/drivers/testConAndBal.C, $DENDRO DIR/examples/src/drivers/rippleBal.C,

$DENDRO DIR/examples/src/drivers/testConAndBal.C and $DENDRO DIR/examples/src/drivers/justBal.C

made the some changes similar to the following

• For PETSC-2.3.3

int stages[5];

PetscLogStageRegister(&stages[0],"P2O.");

PetscLogStageRegister(&stages[1],"Bal");

PetscLogStageRegister(&stages[2],"Solve");

PetscLogStageRegister(&stages[3],"ODACreate");

PetscLogStageRegister(&stages[4],"MatVec");

• For PETSC-3.1-p2

PetscLogStage stages[5];

PetscLogStageRegister("P2O",&stages[0]);

PetscLogStageRegister("Bal", &stages[1]);

PetscLogStageRegister("Solve", &stages[2]);

PetscLogStageRegister("ODACreate", &stages[3]);

PetscLogStageRegister("MatVec", &stages[4]);

and included ”petscsys.h” and ”petsclog.h” to all the files mentioned above.

In $DENDRO DIR/examples/src/drivers/tstMatVec.C we made the some changes similar to the following

• For PETSC-2.3.3

PetscLogEventRegister(&Jac1DiagEvent,

"ODAmatDiag",PETSC VIEWER COOKIE);

PetscLogEventRegister(&Jac1MultEvent,

"ODAmatMult",PETSC VIEWER COOKIE);
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• For PETSC-3.1-p2

PetscLogEventRegister("ODAmatDiag",

PETSC VIEWER COOKIE, &Jac1DiagEvent);

PetscLogEventRegister("ODAmatMult",

PETSC VIEWER COOKIE, &Jac1MultEvent );

and included "petscsys.h" and "petsclog.h" instead of using petsc.h from petsc-2.3.3.
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