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Simple Summary: Recently, in fruit orchards, some well-established Integrated Pest Management 

(IPM) programs are losing their effectiveness and may be compromised by chemicals required to 

control new invasive pests. In this contest, exclusion nets represent an alternative sustainable con-

trol strategy. The use of a photoselective exclusion net was investigated in semi-field conditions as 

a tool to protect nectarine orchards against different pests in NW Italy. The presence and the abun-

dance of key and new invasive pest populations, as well as the damage they caused on fruits, were 

evaluated. Moreover, any possible effect of the net on beneficial arthropods, postharvest rots and 

fruit quality and nutraceutical parameters were considered. The exclusion net significantly reduced 

pest populations allowing the production of healthier fruits due to a strong reduction of insecticide 

treatments. Moreover, no negative impact on postharvest rots, neither fruit quality nor nutraceutical 

properties were recorded. 

Abstract: Over the past few years, there has been an increasing interest in the development of alter-

native pest control strategies to reduce environmental impact. In this contest, exclusion nets have 

been evaluated as a sustainable alternative to pesticides. In this study, the use of a photoselective 

exclusion net was investigated in semi-field conditions as a potential strategy to protect nectarine 

orchards from different pests (i.e., fruit moths, Halyomorpha halys and Drosophila suzukii) in NW Italy. 

The presence and abundance of pest populations inside and outside the net, as well as the damage 

they caused on fruits, were evaluated. Moreover, any possible effects of the net on beneficial arthro-

pods, postharvest rots and fruit quality and nutraceutical parameters were considered. The exclu-

sion net significantly reduced pest populations. At harvest, fruit damage caused by Grapholita mo-

lesta and H. halys in netted plots was reduced up to 90% and to 78%, respectively, compared with 

insecticide-treated plots. The exclusion net allowed the production of healthier fruits with a strong 

reduction of insecticide treatments (up to seven less) and of their related costs without any negative 

impact on postharvest rots, neither fruit quality nor nutraceutical properties. 
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nutraceutical property 
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1. Introduction 

In peach orchards, the management of pests of greatest concern such as Grapholita 

molesta (Busck) (Lepidoptera: Tortricidae), Anarsia lineatella Zeller (Lepidoptera: Gelechi-

idae) and Myzus persicae (Sulzer) (Hemiptera: Aphididae) have influenced the crop pro-

tection guidelines for years. In particular, in temperate regions, G. molesta is the main pest 

of stone fruits, and chemical control played a key role in its management; however, fre-

quent insecticide treatments increased hazards for workers, consumers and the environ-

ment and often induced resistance in treated insect populations [1]. Resistance to 14 in-

secticides, including 10 organophosphates, was already developed in G. molesta in the ‘90s 

[2]. Therefore, alternative control methods with a reduction of the environmental impact 

compared with insecticides have been implemented in the last twenty years, mainly fo-

cusing on microbiological insecticides [3] and on mating disruption technique using syn-

thetic sex pheromones [4]. Moth populations have been successfully controlled by the use 

of sex pheromones for several years; however, damage to shoot tips and fruit has started 

to increase in the last decade in some growing areas. In the last five years, infestations 

were observed in Italy (Emilia Romagna Region), probably due to the fragmentation of 

the orchards that increased border areas, negatively affecting the efficacy of this tech-

nique. Although in Italy the damage was not economically significant, the possibility of 

an increasing problem is of great concern [5]. Instead, in Australia, severe damage was 

recorded, in particular on the border of peach blocks treated with mating disruption tech-

nique adjacent to fruit blocks where insecticide treatments were used [6]. Furthermore, 

insecticide applications to supplement this strategy under high pest densities [7] and the 

chemical management required to control new invasive pests, such as the brown marmo-

rated stink bug Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), nullified the estab-

lished Integrated Pest Management (IPM) programs making the mating disruption redun-

dant and an additional cost. As an alternative, the application of exclusion nets to contain 

different pests reduces farmer reliance on agrochemicals, making it an environmental-

friendly alternative to chemical pesticides [8] and a readily available tool for the manage-

ment of pests not effectively controlled by insecticide treatments [9,10]. 

The use of the exclusion net was mainly investigated and applied in apple orchards 

to control damage by Cydia pomonella L. (Lepidoptera: Tortricidae) [11,12], aphids [13] and 

H. halys [14,15]. Furthermore, it has already been proven that the net interferes with C. 

pomonella biology [11,16,17], while for other pests, only the exclusion mechanism is known 

at the moment [18]. For other agroecosystems, research mainly focused on the influence 

of the net on fruit quality, photosynthesis, vegetative and reproductive growth, while im-

plications on pest biology and exclusion mechanisms are still less investigated. To our 

knowledge, this is the first study assessing the exclusion net effectiveness in nectarine 

orchards in a multi-target approach. In our trials, different pest populations, fruit damage 

and the possible impact of the net on natural enemies, in particular predators, were mon-

itored during the growing season and at harvest. Moreover, any possible effects on fruit 

quality as well as on postharvest diseases, mostly brown rots, were evaluated at harvest 

and after the storage period. 

2. Materials and Methods 

2.1. Experimental Sites 

In 2016 and 2017, trials were carried out in two nectarine orchards (13 years old) lo-

cated in Savigliano (Province of Cuneo, 44°37′19.5″ N, 7°37′32.6″ E, 321 m a.s.l., NW Italy) 

planted with the cultivars Amiga* (0.6 ha) and Fire Top® (0.6 ha). In both orchards, the 

peach trees were arranged with a planting pattern of 1.2 × 4 m, and orchards were 

equipped with an anti-hail netting system. Trials were sorted in a randomized complete 

block design with three replicates for each of the following treatments: (i) netted plots (N), 

(ii) un-netted control plots (C), and (iii) un-netted plots treated with insecticides following 

the farmer’s schedule (I) (Figure 1). Un-netted insecticide-treated plots were included to 
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evaluate the effectiveness of the net in comparison with the insecticide treatments in re-

ducing pest fruit damage at harvest. 

 

Figure 1. Experimental design in the two nectarine orchards (16 plants in each plot). 

In each orchard, nine plots of 16 neighboring trees in a row were selected. The three 

netted plots were covered with the pearl anti-hail photoselective net Tenax Iridium (mesh 

2.4 × 4.8 mm) (AGRINTECH S.r.l., Eboli (SA), Italy) set up by hooking the upper side to 

the anti-hail net support and fixing the lower side to the ground with metal pegs. The net 

was placed at the petal fall (17 May in 2016 and 21 April in 2017) and removed after har-

vesting. A knockdown treatment with the pyrethroid deltamethrin (Decis® Jet, Bayer 

CropScience AG, Monheim am Rhein, Germany; 120 mL hL−1) was performed immedi-

ately after closing the net to eliminate pest populations. Later in the trials, no insecticides 

were applied in netted plots and un-netted control plots, while fungicides were applied 

in the same way in netted plots (directly through the net coverage) and in both un-netted 

plots, including control and insecticide-treated ones. The schedule for all pesticide treat-

ments is reported in Table 1.  



Insects 2021, 12, 210 4 of 15 
 

 

Table 1. Insecticidal and fungicidal treatments applied in both orchards from the net setting-up until harvest in 2016 and 2017 (N = 

netted plots, C = un-netted control plots, I = un-netted plots treated with insecticides). 

Target Applied on Active Ingredient Trade Name Year No. of Treatments 

Grapholita molesta I Chlorpyrifos methyl ReldanTM 2016 1 

 I Etofenprox Trebon® UP 2016 1 

 I Phosmet Spada® 2017 1 

 I Chlorpyrifos methyl Pyrinex® 2017 2▲ 

 I Etofenprox Trebon® UP 2017 2 

 I Chlorpyrifos methyl Runner® LO 2017 1 

Halyomorpha halys I Deltamethrin Decis® 2017 1 

Monilia spp. N, C, I Sulfur Tiovit® 2016 1 

 N, C, I Tebuconazole, sulfur Tebusip® 2016 2 

 N, C, I Tebuconazole, sulfur Tebusip® 2017 1 

 N, C, I Tebuconazole 
Dedalus® 25 

WDG 
2017 1 

Monilia spp., 

Podosphaera pannosa 
N, C, I Sulfur Tiovit® 2017 2 

▲
 Insecticide treatment applied to the alternate row. 

2.2. Pest and Beneficial Insect Monitoring 

Pest populations, as well as beneficial arthropods, were monitored using traps and 

visual inspection every 10 days from the setting up of the nets until harvest. In particular, 

different pests, the peach moths G. molesta and A. lineatella, the brown marmorated stink 

bug H. halys and the fruit fly Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) 

were specifically sampled. 

2.2.1. Fruit Moths 

Grapholita molesta and A. lineatella were sampled using sticky delta traps baited with 

sex pheromones (CSALOMON®, Budapest, Hungary). In each orchard, a trap for G. mo-

lesta and another one for A. lineatella were placed in each netted (N) and un-netted control 

plot (C). Sex pheromones were replaced every four weeks to ensure their consistent effec-

tiveness. Caught adults were transferred to the laboratory, where they were identified by 

morphological analysis of the aedeagus shape following dichotomous keys [19] and 

counted. Moreover, to evaluate any possible damage on shoots caused by G. molesta and 

A. lineatella, 30 shoots (10 shoots from three randomly selected trees) were checked in each 

N and C plot every 10 days from the setting-up of the nets until harvest. 

2.2.2. Halyomorpha halys 

Halyomorpha halys was monitored through DEAD-INN™ Stink Bug Traps (AgBio, 

Westminster, CO, USA) (high 121.92 cm), baited with the Xtra Combo lure provided with 

the trap as already described in Candian et al. [14]. A trap was placed in a netted (N) and 

in an un-netted control plot (C) in both cultivars from mid-June until harvest in 2016, and 

only in the cultivar where the major number of catches and fruit damage was recorded 

during the first year of the trial (i.e., Fire Top®) from early May until harvest in 2017. The 

lure was changed every four weeks according to the manufacturer’s instructions. The 

specimens collected into the traps during each survey were identified and counted. More-

over, in each N and C plot, five branches of three randomly selected trees were shaken on 

a beating sheet (1 × 1 m) to assess the presence and the abundance of the pest during the 

growing season. 

2.2.3. Drosophila suzukii 

Although D. suzukii is not a key pest in nectarine orchards, the abundance of this pest 

was monitored during the trials given its host potential, as reported by Bellamy et al. [20]. 



Insects 2021, 12, 210 5 of 15 
 

 

A trap filled with the feeding attractive Droskidrink (74.5% apple vinegar, 25% red wine 

and sugar) (Prantil, Priò di Vervò (TN), Italy) was hung in each netted (N) and un-netted 

control plot (C) at 1.50 m from the ground. It consisted of a 1.5 L transparent plastic bottle 

filled with 250 mL of Droskidrink and a drop of soap as a surfactant. The bottle was closed, 

and four holes were applied in its upper part in order to allow the insect entrance. At each 

survey, the collected D. suzukii adults were determined [21] and counted, and the attrac-

tive solution was replaced. 

2.2.4. Other Arthropods 

The abundance of beneficial arthropods was evaluated thanks to sticky traps. A Glu-

tor Yellow (25 × 20 cm) (BIOGARD® Division, Cesena (FC), Italy) sticky trap was placed 

in each netted (N) and un-netted control plot (C) and changed every 10 days. The collected 

specimens were examined under a stereomicroscope for their identification, and at the 

same time, the predators were separated and counted. 

2.3. Evaluation of Fruit Damage Caused by Pests 

Samples of fruits were inspected visually throughout the growing season and at har-

vest to evaluate the damage caused by G. molesta, A. lineatella and H. halys. Following the 

setting up of the net, 30 fruits in each netted (N) and un-netted control plot (C) (10 fruits 

on three randomly selected trees) were checked every 10 days to evaluate the damage 

during the growing season. Overall, 180 and 240 nectarines were observed in each repli-

cate in 2016 and in 2017, respectively. 

At harvest, 480 nectarines were picked in each N, C, and I plot per year, with a total 

of 8640 fruits harvested in a peach orchard in the two years. The number of fruits damaged 

by G. molesta and H. halys was recorded. According to Acebes-Doria et al. [22], nectarines 

were considered damaged by H. halys if punctures, dimples, gummosis, fruit defor-

mations, areas with superficial discoloration with or without depressions and areas with 

necrotic tissue after slicing the fruits were observed. 

2.4. Evaluation of Postharvest Rots 

In both years, samples of harvested nectarines were selected to evaluate the incidence 

of postharvest diseases after the storage period. For each treatment (N, C, I), 900 nectarines 

were collected in plastic boxes (50 fruits per box). Nectarines were stored in a normal at-

mosphere (0 °C, 90% RH) for 7 days. The incidence of postharvest rots was evaluated at 

harvest, after storage and after further 7 days of shelf life at 20 °C. Fungal isolation was 

performed from fruit showing disease symptoms. Pathogens were isolated by transferring 

small pieces of symptomatic fruit tissues, previously washed in 1% sodium hypochlorite 

and rinsed in sterile deionized water, onto potato dextrose agar (PDA, Merck, Darmstadt, 

Germany) plates amended with 25 mg L−1 streptomycin sulfate (Merck). A 7-day-old cul-

ture was used for observation of the fungal structures under an optical microscope. For 

Monilinia spp. isolates, molecular identification was performed by extracting DNA ac-

cording to Franco Ortega et al. [23] and multiplex PCR with specific primers, according to 

Côté et al. [24]. 

2.5. Fruit Quality and Nutraceutical Analyses 

Fruits were analyzed for the color index, firmness, total soluble solids and nutraceu-

tical parameters (total anthocyanins and total polyphenols) at harvest following protocols 

already described in Candian et al. [14]. Since the results obtained in 2016 were previously 

reported in Candian et al. [14], only the ones recorded in 2017 will be shown. In 2017, for 

each treatment (N, C, I) and for each orchard, 80 fruits were analyzed for the color index, 

firmness and total soluble solids. For the analysis of the total anthocyanin and the total 

phenol, the skin and the fruit pulp were mixed. Every sample came from 18 fruits ran-

domly selected per treatment and orchard. 
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2.6. Statistical Analyses 

The statistical analyses were performed using SPSS v24.0 (SPSS Inc., Chicago, IL, 

USA), and outcomes were considered significant at p < 0.05. The numbers of G. molesta, D. 

suzukii and predators collected with traps were compared using a t-test for two independ-

ent samples. The percentages of fruits damaged by G. molesta and H. halys at harvest were 

compared using a generalized linear mixed model (GLMM; random effect: plot; fixed ef-

fects: treatment, block) with a binary distribution and logit link and Bonferroni correction. 

Block effect was used in order to assess if pests were more concentrated on the borders or 

in the middle of the orchards. Data on postharvest rots, quality and nutraceutical param-

eters of fruit at harvest were checked for homogeneity of variance (Levene test) and nor-

mality (Shapiro–Wilk test) and compared using one-way analysys of variance (ANOVA). 

In case of significant differences, means were separated by Tukey’s test. If the assumptions 

of ANOVA were not met, data were compared using the Kruskal–Wallis test, and means 

were separated with the Mann–Whitney U test. 

3. Results 

3.1. Monitoring of and Damage Caused by Grapholita molesta and Anarsia lineatella 

Grapholita molesta and A. lineatella were collected with pheromone traps in both years. 

Anarsia lineatella was never found under the net, while a few specimens were collected in 

un-netted control plots (C). In 2016, only one specimen was observed in both cultivars, 

while in 2017, four specimens were sampled in Fire Top®. No shoots and fruit damaged 

by this pest were observed in our trials. Grapholita molesta was collected in both netted (N) 

and un-netted control plots (C) with pheromone traps. It was detected under the exclusion 

net with average weekly catches exceeding 10 specimens (the threshold for the application 

of an insecticidal treatment in IPM program in NW Italy) only in 2017 and only the week 

before harvest (Amiga*: 28 specimens, Fire Top®: 26 specimens). Significant differences 

between the treatments were observed in 2016 (t-test = Amiga*: df = 4, t = 6.63, p = 0.003; 

Fire top®: df = 4, t = 7.78, p = 0.001) and in 2017 (t-test = Amiga*: df = 4, t = 8.27; p = 0.001; 

Fire Top®: df = 4, t = 4.42, p = 0.012) with higher catches always recorded in C (Table 2). 

Table 2. Cumulative number of Grapholita molesta per trap (mean ± SE) and percentages of nectar-

ines damaged by G. molesta (mean ± SE) on fruits sampled at harvest (N = netted plots, C = un-

netted control plots, I = un-netted plots treated with insecticides). For each cultivar and year, 

means followed by different letters are significantly different (traps: t-test, p < 0.05; damaged 

fruits: generalized linear mixed model (GLMM) analysis, Bonferroni correction, p < 0.05). 

Cultivar Treatment Grapholita molesta (no.) Damaged Nectarines (%) 

 2016 2017 2016 2017 

Amiga* 

N 5.0 ± 2.1 b 39.0 ± 9.2 b 0.4 ± 0.2 0.6 ± 0.3 c 

C 22.7 ± 1.7 a 160.3 ± 11.5 a 4.2 ± 0.8 9.4 ± 0.9 a 

I - - 2.1 ± 0.5 3.4 ± 0.6 b 

Fire Top® 

N 8.7 ± 3.3 b 39.0 ± 4.6 b 0.0 ± 0.0 0.4 ± 0.2 b 

C 38.3 ± 1.9 a 174.7 ± 30.4 a 0.1 ± 0.1 6.2 ± 0.9 a 

I - - 0.1 ± 0.1 4.1 ± 0.7 a 

The damage observed on shoots during the growing season was truly irrelevant: only 

three damaged shoots were observed in C and in N, respectively, in 2016. No fruits dam-

aged by G. molesta were observed by visual inspections until 10 days before harvest. How-

ever, at harvest, damaged fruits were recorded in all three treatments (N, C, I), although 

in an uneven pattern. In 2016, the damage caused by G. molesta was negligible in both 

orchards. Even though significant differences between the treatments were not found, 

lower damage (in Amiga*) or even the absence of damage (in Fire Top®) was recorded in 

N. In 2017, significant differences between the treatments were observed both in Amiga* 

(GLMM: df = 2, 10; F = 28.85, p = 0.000) and in Fire Top® (GLMM: df = 2, 10; F = 12.72, p = 
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0.000), with significantly lower damage in N (Table 2). Moreover, the GLMM was used to 

analyze the block effect in order to assess if the pest was more concentrated on the borders 

or in the middle of the orchards. Significant differences were recorded only in Amiga* in 

2016 (GLMM: df = 2, 10; F = 9.58, p = 0.005), with higher damage in the edge bordering 

alfalfa compared to the orchard center. 

3.2. Monitoring of and Damage Caused by Halyomorpha halys 

This pest was captured by traps only during the first year of the trial in the un-netted 

control plot (C) (1 nymph and 1 adult in Amiga* and 8 nymphs and 1 adult in Fire Top®) 

as reported in Candian et al. [14] while, using the beating sheet, only one H. halys adult 

was collected in 2017 in one un-netted control plot (C) (Fire Top®) in June. Moreover, as 

already observed in the first year of the trial, during the growing season, a low number of 

damaged fruits was recorded by visual inspection in all the orchards in 2017. Out of 240 

checked fruits, no damaged fruits in N and six damaged fruits in C (0.83%) were observed 

in Amiga* while six damaged fruits (0.83%) and 46 (6.39%) were observed in Fire Top® in 

N and in C, respectively. 

The damage on fruits observed in each orchard at harvest is reported in Figure 2. In 

both orchards and in both years, the trees in N and C plots where the pheromone trap was 

placed (i.e., one of three plots per treatment and orchard) showed the highest fruit damage 

rate in the respective treatment. Significant differences between the three treatments (N, 

C, I) were observed both in 2016 (GLMM= Amiga*: df = 2, 10; F = 65.88, p = 0.024; Fire Top®: 

df = 2, 10; F = 7.74, p = 0.009) and in 2017 (GLMM= Amiga*: df = 2, 10; F = 32.96, p = 0.000; 

Fire Top®: df = 2, 10; F = 50.87, p = 0.000), with a significantly lower damage in N. Signifi-

cant differences between the blocks were recorded only in Amiga* in 2016 with a higher 

concentration on the borders as reported in Candian et al. [14]. 
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Figure 2. Percentages of nectarines damaged by Halyomorpha halys (mean ± SE) on fruits sampled at harvest in 2016 (a) and in 2017 

(b) (no. = 1140 fruits per treatment per year) (N = netted plots, C = un-netted control plots, I = un-netted plots treated with insecticides). 

For each cultivar, histograms with different letters are significantly different by the GLMM analysis (Bonferroni correction, p < 0.05). 

3.3. Monitoring of Drosophila suzukii 

The first specimens were collected in mid-June in 2016 and in early May in 2017. Dur-

ing the first year, in Amiga*, 21 and 182 D. suzukii were totally collected in netted (N) and 

un-netted control plots (C), respectively, while in Fire Top® 39 and 387 specimens were 

trapped in N and C, respectively. Significant differences between the treatments were rec-

orded both in Amiga* (t-test: df = 4, t = 15.21, p = 0.000) and in Fire Top® (t-test: df = 4, t = 

4.41, p = 0.012) (Table 3). In 2017, catches were slightly lower than the previous year, with 

21 specimens collected in N and 64 in C in Amiga* and 36 specimens trapped in N and 

101 in C in Fire Top®. Significant differences between the treatments were observed both 

in Amiga* (t-test: df = 4, t = 4.93, p = 0.008) and in Fire Top® (t-test: df = 4, t = 3.17, p = 0.034) 

(Table 3). 
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Table 3. Cumulative number of Drosophila suzukii (mean ± SE) and predators (mean ± SE) collected 

per trap in the nectarine orchards (N = netted plots, C = un-netted control plots). For each cultivar 

and year, means followed by different letters are significantly different (t-test, p < 0.05). 

Cultivar Treatment Drosophila suzukii (no.) Predators (no.) 

 2016 2017 2016 2017 

Amiga* 
N 7.0 ± 1.0 b 7.0 ± 2.3 b 1.7 ± 1.2 b 7.7 ± 2.0 b 

C 60.7 ± 3.4 a 21.3 ± 1.8 a 41.0 ± 3.0 a 74.0 ± 2.0 a 

Fire Top® 
N 13.0 ± 7.6 b 12.0 ± 2.5 b 1.0 ± 0.6 b 1.3 ± 0.3 b 

C 129.0 ± 25.2 a 33.7 ± 6.4 a 25.7 ± 1.7 a 58.7 ± 9.6 a 

3.4. Monitoring of Beneficial Insects 

In both orchards, specimens belonging to Anthocoridae, Chrysopidae, Staphylinidae, 

Coccinellidae and Syrphidae collected with yellow sticky traps were grouped and statis-

tically analyzed. Significant differences between the treatments were observed both in 

2016 (t-test = Amiga*: df = 4, t = 12.12, p = 0.000; Fire Top®: df = 4, t = 13.99, p = 0.000) and 

in 2017 (t-test = Amiga*: df = 4, t = 23.29, p = 0.000; Fire Top®: df = 4, t = 5.99, p = 0.004) 

(Table 3) with higher captures in un-netted controls (C). The percentages of specimens 

collected by traps and belonging to the different families are reported for each treatment 

and year in Figure 3. 

 

Figure 3. Percentages of specimens belonging to Anthocoridae, Chrysopidae, Staphylinidae, Coccinellidae and Syrphidae collected 

with yellow sticky traps (N = netted plots, C = un-netted control plots). 

3.5. Postharvest Rots 

At harvest, nectarines from both cultivars and both years did not show any rot (data 

not shown). After storage for 7 days at 0 °C, no significant differences were observed be-

tween the three treatments (N, C, I) in 2016 and in 2017, except for the nectarines Fire Top® 

harvested in 2017 (ANOVA: df = 2, 6; F = 8.67, p = 0.017). In this case, fruits from un-netted 
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plots treated with insecticides (I) showed a significantly higher incidence of brown rots at 

harvest (Table 4). After shelf life at 20 °C, significant differences between the three treat-

ments were observed for postharvest rots on nectarines both in 2016 (one-way ANOVA= 

Amiga*: df = 2, F = 9.51, p = 0.005; Fire Top®: df = 2, F = 3.96, p = 0.037) and in 2017 (one-

way ANOVA = Amiga*: df = 2, F = 8.49, p = 0.018; Fire Top®: df = 2, F = 4.53, p = 0.046) with 

lowest incidence of postharvest rots after shelf life recorded in netted plots (N) (Table 4). 

A significantly higher incidence of postharvest rots in shelf life was recorded in C com-

pared to N. No differences were observed between I and N, except for nectarines Fire 

Top® harvested in 2016. Most rots were brown rots, caused by Monilinia fructicola. Only in 

nectarines Fire Top® harvested in 2017, a low percentage (14%) of postharvest rots was 

caused by Rhizopus stolonifera, while the rest was due to M. fructicola. 

Table 4. Percentages of postharvest rots (mean ± SE) on nectarines after storage and after shelf life. 

Fruits were harvested in 2016 and in 2017 (no. = 900 fruits per treatment per year) (N = netted 

plots, C = un-netted control plots, I = un-netted plots treated with insecticides). For each cultivar 

and year, means followed by different letters are significantly different (Tukey’s Test, p < 0.05). 

Cultivar Treatment Postharvest Rots Incidence (%) 

 
After Storage After Shelf Life 

2016 2017 2016 2017 

Amiga* 

N 0.4 ± 0.3 0.0 ± 0.0 4.9 ± 1.6 b 4.2 ± 1.9 b 

C 0.4 ± 0.5 0.6 ± 1.0 11.0 ± 4.2 a 14.3 ± 2.5 a 

I 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 1.8 b 6.8 ± 4.4 ab 

Fire Top® 

N 0.7 ± 0.9 2.2 ± 1.3 b 15.9 ± 7.2 b 14.1 ± 8.9 b 

C 4.0 ± 1.8 0.7 ± 1.3 b 28.6 ± 8.4 a 37.6 ± 2.3 a 

I 1.6 ± 0.9 10.0 ± 4.8 a 26.7 ± 11.3 a 33.6 ± 15.2 ab 

3.6. Fruit Quality and Nutraceutical Analyses 

Significant differences between the three treatments (N, C, I) were observed for the fruit 

quality only in 2017. The highest values for the total soluble solids in Amiga* (one-way 

ANOVA: df = 2, 227; F = 4.58, p = 0.011), and for the color index (one-way ANOVA: df = 2, 

227; F = 11.09, p = 0.000) and the total solid soluble (Kruskal–Wallis test: df = 2, χ2 = 31.28, 

p = 0.000) in Fire Top® were recorded in C and I plots (Table 5). No significant differences 

were found between the three treatments for the anthocyanin and polyphenol content. 

However, a higher concentration of total polyphenols was observed in N plots in both 

cultivars (Table 5). 

Table 5. Color index, firmness, total soluble solids, total polyphenols and total anthocyanins (mean ± SE) of the nectarines harvested 

in 2017 (N = netted plots, C = un-netted control plots, I = un-netted plots treated with insecticides). In each column for each cultivar, 

means followed by different letters are significantly different (Amiga* total solid soluble and Fire Top® color index: Tukey’s test, p < 

0.05; Fire Top® total solid soluble: Mann–Whitney U test, p < 0.05). 

Cultivar Treatment Color Index 
Firmness 

(g cm−2) 

Total Soluble Solids 

(°Brix) 

Total Polyphenols 

(mgGAE 100 g−1) 

Total Anthocyanins 

(mgC3G 100 g−1) 

Amiga* 

N 30.8 ± 1.0 4.9 ± 0.1 8.2 ± 0.1 b 33.8 ± 2.4 7.4 ± 2.0 

C 30.8 ± 1.2 4.9 ± 0.1 8.6 ± 0.1 a 31.1 ± 1.9 12.3 ± 1.8 

I 27.8 ± 1.1 5.2 ± 0.1 8.4 ± 0.1 ab 29.0 ± 2.3 9.5 ± 2.2 

Fire Top® 

N 36.7 ± 1.9 b 4.2 ± 0.1 8.3 ± 0.1 c 65.4 ± 6.9 9.7 ± 2.0 

C 44.9 ± 1.6 a 4.2 ± 0.1 8.7 ± 0.1 b 51.5 ± 3.7 11.0 ± 2.3 

I 38.0 ± 1.6 b 4.1 ± 0.1 8.9 ± 0.1 a 47.9 ± 2.0 13.3 ± 2.6 
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4. Discussion 

In the last years, the use of the nets in stone fruit orchards was mainly evaluated as 

an anti-hail device [10,18] in relation to the qualitative and quantitative impact on fruit 

production [25–32] and/or in relation to plant physiology [26,31]. This study deals with 

the application of the net in a multidisciplinary approach focusing on pest and disease 

management and on qualitative–quantitative aspects in fruit production. Recently, in-

deed, the efficacy of well-established IPM procedures against the nectarine key pest G. 

molesta started to fail. This pest has been successfully controlled by the mating disruption 

for several years; however, in small and fragmented peach and nectarine orchards, signif-

icant fruit damage was recorded under this pest control strategy [5,6]. Therefore, in the 

perspective of a multidisciplinary and multi-target approach, it is necessary to investigate 

the exclusion net effectiveness also against this key pest. The exclusion net used in our 

trials proved to be a promising exclusion system that can prevent the attack of more than 

one insect pest at a time without any impact on the occurrence of some physiological dis-

orders and diseases and preserving the production of healthier fruits with a strong reduc-

tion of insecticide treatments (in our trial, up to seven fewer) and their associated costs. It 

should be taken into account that in our trials, the exclusion net was applied in small plots 

and not in a row-by-row or in a single plot exclusion-net system as in a real field situation. 

However, the promising results give good prospects for a successful large-scale field ap-

plication in commercial orchards. 

In our trials, the pearl anti-hail photoselective net drastically reduced both G. molesta 

and H. halys populations and their damage on fruit in comparison with insecticide-treated 

plots. The exclusion net not only acts as a physical barrier against G. molesta but also may 

interfere with its biology. Although for G. molesta, this aspect has not yet been investigated 

in detail and it was not the purpose of our research, it is reasonable to assume that delay 

in adult development, difficulty in locate calling females, interference of the approaching 

phase in courtship and mating as well as visual disturbances of the searching males may 

occur under the net coverage as already proved for C. pomonella [11,17]. Catches under the 

exclusion net may be due to specimens that have passed through the net or developed 

from eggs laid through the net mesh. Moreover, it is important to note that our experi-

mental condition was extreme since the pheromone trap for the pest monitoring was set 

up under the net coverage and may have strongly attracted the specimens under the net, 

a situation that would not occur in commercial orchards. Under the exclusion net, the 

damage on fruits caused by G. molesta was reduced up to 90% compared with insecticidal 

treatments. 

As we already reported in Candian et al. [14], catches of H. halys obtained with the 

monitoring techniques used did not reflect the real abundance of the pest in the field. In 

the light of recent evidence [33], the low attractiveness obtained in the present study is 

more reasonably due to the inefficacy of the used lure formulation rather than to H. halys 

haplotypes present in our area as previously supposed in Candian et al. [14]. Moreover, a 

greater attractiveness of kairomones emitted by plants could affect the pest response to 

the pheromone. In fact, the area of arrestment may be larger for the plant volatiles com-

pared with the aggregation pheromone increasing the possibility that H. halys remains 

outside the pheromone trap capture range [34]. In our trials, even though catches were 

almost nil or very low, the best evidence for the effectiveness of the net against this pest 

comes from the assessment of damaged fruits at harvest. In netted plots, the damage was 

reduced up to 78% compared with insecticidal treatments. Only in Fire Top® in 2017, 

higher damage (up to 38.5%), compared with the one recorded in the previous year, was 

observed in netted plots although still significantly lower than in un-netted plots (C, I). 

The higher pressure of this pest in the field, compared with the one recorded in the first 

year of the trials, and the contact of the net with the vegetation due to the great vegetative 

growth rate of the cultivar may have influenced the net physical barrier proprieties. More-

over, Chouinard et al. [18] reported that the second-stage nymphs could pass through nets 

with a mesh even smaller than the one we used (2.2 × 2.2 mm); therefore, juvenile stages 
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could have passed the net and damaged the fruits. Significant differences for the block 

effect were recorded only in Amiga* in 2016, but in general, the damage was higher on 

netted and un-netted trees closer to the orchard edges, as already observed by Leskey et 

al. [35]. 

Although the main objective of this research was not to investigate the net effective-

ness specifically on D. suzukii, this pest population was significantly reduced under the 

net, probably due to the optical properties of the used photoselective net as we already 

observed in apple orchards [15]. At the same time, the pearl net could affect aphid infes-

tations [36] even if, in our trials, aphids were never observed, probably due to the late start 

of monitoring. The influence of the exclusion nets on aphid populations is still unclear 

and is largely influenced by the net effects on their predators and parasitoids [10,13]. It 

has been reported that using photoselective nets, the optical disruption caused by the re-

flected light may interfere with distant host finding by the pests and the light inside the 

net, containing less UV light or higher levels of reflected/scattered sunlight, could deter 

the pest landing [37]. This light disruption may affect beneficial insects too. Possible effects 

on predators were evaluated all along the trials with yellow sticky traps. Generally, the 

net mesh was large enough to allow tiny beneficial insects to pass through (mainly Stetorus 

spp. (Coccinellidae), Anthocoridae and Staphylinidae). Larger-size insects such as Chrys-

opidae and Syrphidae were collected only in the first weeks after the setting up of the net, 

probably for the presence of some individuals (e.g., eggs and/or juvenile stages) on the 

plants before the net installation. Predators belonging to the different families (mainly 

Coccinellidae) were recorded in different percentages in N and C plots, although in an 

uneven pattern. In agreement with Dib et al. [13] and Romet et al. [38], a significantly 

lower number of predators was collected under the net in all the orchards. However, dur-

ing the first year of the trials, the predator abundance was also evaluated after the harvest 

with a knockdown treatment (pyrethroid deltamethrin), and it was not negatively influ-

enced by the net [14]. It is probable that the yellow sticky traps lose their attractiveness 

under photoselective nets or the light modification altered both flight activity and behav-

ior of beneficial insects, as already observed for some insects [37,39–41]. 

The mesh size is a critical issue for not only the exclusion effectiveness but also re-

garding its influence on the microclimate under the net, the incidence of diseases and the 

fruit quality and yield. In our trials, the temperature and relative humidity inside and 

outside the net coverage was recorded, but no differences were observed (data not 

shown). The lack of differences in microclimatic conditions did not favor the development 

of fungal pathogens in fruits from netted plots, as already demonstrated in other experi-

ences performed with nets on stone fruit [42,43]. No differences among the treatments (N, 

C, I) were observed on the incidence of postharvest rots at harvest or after storage, except 

for the trial performed on Fire Top® in 2017. In contrast, significant differences could be 

observed on both cultivars and years after shelf life: in fruits coming from netted plots, 

the rot incidence was always lower than in fruit from un-netted plots and even lower than 

in fruits from un-netted plots treated with insecticides, as previously shown on peach by 

Salvador and Fideghelli [44]. This latter information could greatly favor the development 

of anti-insect nets as an alternative treatment not only for insect control but also for the 

reduction of postharvest rots [45]. The lower rot incidence on fruits from netted plots 

could be related to the lower number of damage and wounds created by insects on the 

fruits. Insect wounds could represent one of the main entrances for postharvest rots [46]. 

Several authors already reported the positive effects of photoselective nets on stone fruit 

quality [25,27,30]. In our trial, significant differences between the treatments (N, C, I) were 

observed at harvest in 2017 but not in 2016 [14]. These differences, even if minimal, are 

probably due more to the timing of harvest than to the net influence. Nutraceutical pa-

rameters were never negatively influenced by the net coverage. 

Nowadays, climate change and global warming are the most pressing issues. Shifting 

in global temperature and humidity is producing rapid evolutionary changes in many 
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animal species, including agricultural pests and disease vectors [47], also influencing in-

sect migration. Climate-induced early emergence, altered distribution and shifting tem-

poral abundance on a large number of insects have already been confirmed [48–54]. In 

this scenario, the perspectives and effectiveness of the use of exclusion nets in fruit or-

chards could be enhanced. Currently, considering the particular attention to safeguarding 

the environment, one of the main concerns surrounding the application of plastic netting 

regards their end-of-life disposal. However, the use of biopolymers is a potential alterna-

tive that combines the benefits of two eco-friendly technologies (biopolymers and exclu-

sion netting) to create a more sustainable alternative to pesticides [55]. 

5. Conclusions 

The obtained results refer to a specific geographical area (NW Italy) and pest popu-

lation densities; however, they are a useful starting point for applying them also on a 

large-scale (e.g., row-by-row, single plot exclusion-net) and in other areas characterized 

by different climatic conditions. In our trials, the pearl photoselective net proved to be 

effective in controlling more than one pest species at a time and the damage they cause to 

fruit, not only for the exclusion function but also for the optical effects, representing a very 

promising and sustainable tool for IPM orchards. In parallel, this net allowed the produc-

tion of healthier fruits due to a strong reduction of insecticide treatments and of their re-

lated costs without any negative impacts on postharvest rots, neither on fruit quality nor 

on nutraceutical properties. In the context of global warming, which favors the increasing 

occurrence of exotic pests, the presence of exclusion nets can represent a “ready-to-use” 

tool against new invasive pests. 
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