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 41 

Abstract 42 

Capsule: During playback experiments, the distance from the surveyor to the call influences the chances of 43 

detection across nocturnal species in farmland and woodland habitats. 44 

 45 

Aim: To evaluate how distance affects surveyor detection capability, expressed as the probability of hearing 46 

broadcast calls and of estimating their distances correctly, in a nocturnal bird community. 47 

 48 

Methods: We conducted a playback field experiment in farmland and woodland areas within an agricultural 49 

landscape in winter and summer 2020. Recorded Vocalisations of five elusive species (Little Owl Athene 50 

noctua, Tawny Owl Strix aluco, Long-eared Owl Asio otus, Common Nightingale Luscinia megarhynchos, 51 

Water Rail Rallus acquaticus) were broadcast at various distances to a surveyor, who attempted to detect 52 

them and, if successful, to classify them into predefined distance zones. were broadcast to a surveyor who 53 

attempted to estimate the distance to each call. Binomial GLMMs were used to estimate detection 54 

probability as a function of distance, and the effects of habitat and season on this relationship. 55 

 56 

Results: The distance of the broadcast call from the surveyor had a significant effect on detection probability 57 

in both habitats. In woodland, the probability of hearing calls was significantly higher in winter, while 58 

estimating distances correctly was generally higher in summer. An increase in field experience improved our 59 

detection capability, mainly in terms of distance estimation, whose errors were mostly overestimations. 60 

Long-eared Owl was the only species for which estimates were consistently poor.  61 

 62 

Conclusions: The probability of hearing calls and distance estimation accuracy varied between species. While 63 

a 200 m radius around the surveyor fitted better for the Little and Tawny Owl, this was 100 m for the other 64 

species. Most Little Owl and Tawny Owl calls were detected within a 200 m radius of the surveyor, while this 65 

was 100 m for the other species. For a multi-species community-level study, playback surveys are thus likely 66 

to be most representative of a 200 m radius surrounding the surveyor where the probability of detection is 67 

highest, while estimates of distance from the observer are likely to be inaccurate in most cases. Field 68 

evaluations such as this should be implemented prior to actual playback surveys. 69 

 70 

 71 

 72 
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 80 

 81 
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Introduction 84 

 85 

Playback is commonly used to survey birds as it represents an efficient method to census elusive species thus 86 

by improving their detection probability (Hardy & Morrison 2000, Navarro et al. 2005, Stermin et al. 2017). 87 

This technique consists of broadcasting generally conspecific recorded calls in order to elicit their vocal reply 88 

(Johnson et al. 1981, Worthington-Hill & Conway 2017). This is particularly useful for those species that 89 

exhibit territorial behaviour because they will be more inclined to respond in order to defend their territories 90 

(Haug & Didiuk 1993, Pilla et al. 2018). Relying only on spontaneous vocalisations can be insufficient, because 91 

they may limit census performance may be insufficient, thus limiting census performance (Crowe & 92 

Longshore 2013). It is known that factors such as habitat, seasonality, time of day and weather can influence 93 

response rates during playback surveys (Hardy & Morrison 2000, Currie et al. 2002, Polak 2005, Braga et al. 94 

2009, Johnson et al. 2009).  In addition, more technical parameters such as sound amplitude level and 95 

surveyor detection ability or experience (Crowe & Longshore 2013, Zuberogoitia et al. 2020) are also 96 

fundamental as they enable a detectability radius to be defined, which is a threshold distance expressing at 97 

what scale bird distributions can be better estimated, i.e. a distance around playback points within which a 98 

surveyor has higher probabilities to detect birds. Usually, only responses detected at a distance within the 99 

radius are included in the analysis, since it provides some level of security, so that results include most 100 

individuals actually occupying a given area  which is the maximum distance around playback points that 101 

allows surveyors to hear and detect birds. Responses from an estimated distance greater than the selected 102 

radius are not considered reliable and are typically excluded from the analysis (Centili 2001, Johnson et al. 103 

2009, Bolboacă et al. 2015). Therefore, the detectability radius has a key role in minimizing biases. During 104 

aural surveys, distance estimation is clearly more difficult than for visual detections and making errors in 105 

estimation can consequently bias the results (Marques 2004).  106 

     Field evaluations prior to actual playback surveys therefore represent a useful step to adjust the method 107 

by setting a fixed distance (and so a radius) calibrated on the surveyor’s detection capability in the field 108 

(Esclarski & Cintra 2014), where radial distance is a function of the surveyor’s ability to estimate bird-surveyor 109 
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distance and to hear broadcast calls. Experimental trials of this kind can help researchers to conduct playback 110 

surveys as accurately as possible. From this perspective, we carried out a field experiment aimed to evaluate 111 

the effect of distance on detectability in different habitats within an agricultural landscape, by addressing the 112 

following questions:  113 

(i) Does distance influence the surveyor’s ability to hear playback calls and to estimate their 114 

distances correctly in farmland and woodland?  115 

 116 

(ii) Does the effect of distance in woodland have the same effect on detection probability in summer 117 

and winter? 118 

 119 

In this way, we aimed to understand at what scale nocturnal species detection and distribution can be 120 

estimated in this landscape. As target species, we used territorial playback songs/calls of Common 121 

Nightingale Luscinia megarhynchos, Little Owl Athene noctua, Tawny Owl Strix aluco, Long-eared Owl Asio 122 

otus and Water Rail Rallus acquaticus. Within our study region, these species form a common bird community 123 

with similar elusive habits. These birds are territorial, hard to see, and more active at night. For these reasons, 124 

they are frequently censused through playback, especially from dusk and at night (Zuberogoitia & Campos 125 

1998, Schmidt et al. 2006, Brambilla & Jenkins 2009, Seoane & Galvàn 2010, Stermin et al. 2017). Through 126 

our experiment, we attempted to provide a valid insight into the playback method in surveying our target 127 

species effectively.  128 

 129 

 130 

Methods 131 

Study area 132 

The study was carried out in the Piedmont Region, northern Italy. We conducted playback surveys in an 133 

agricultural landscape dominated by arable crops and interspersed with small woods, within the Natural Park 134 
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‘Parco del Po Vercellese-Alessandrino’, in the southern part of Vercelli Province. The first site consisted of a 135 

typical intensive agricultural landscape close to a wetland area (named ‘Riserva Naturale Speciale e Zona di 136 

Salvaguardia della Palude di San Genuario’, 8°10'54"E, 45°13'7"N) dominated by rice fields, the most 137 

important cultivation of the area. The second site was an oak‑hornbeam (Quercus and Populus Carpinus 138 

species) woodland area (named ‘Parco Naturale del Bosco delle Sorti della Partecipanza’, 8°16'1"E, 139 

45°13'50"N). Both sites are SCIs (Sites of Community Importance) and ZSPs (Zones of Special Protection under 140 

the Birds Directive). 141 

 142 

Field survey protocol 143 

 144 

We designed the playback field experiment as follows: in each habitat we established one transect with ten 145 

points, spaced 200 m apart, and each point was visited eight times (i.e. eight repetitions).  At each repetition, 146 

one researcher (the ‘broadcaster’) moved in to a random location around one single surveyor (the ‘observer’) 147 

and broadcastthe whole call sequence (noting the time of broadcast) of all five species. The surveyor stayed 148 

fixed at each point and (i) noted the time and species when a call was detected and (ii) estimated playback 149 

distances (assigning calls to distance classes of between 0-100 m, 100-200 m, 200-300 m, 300-400 m, 400-150 

500 m and >500 m). At each repetition, the surveyor did not know the location of the broadcaster. We used 151 

a handheld GPS (Garmin eTrex 10) to identify survey points and to note the location of each playback made 152 

by the broadcaster. We conducted one survey in farmland and one in woodland in winter (between the end 153 

of February and the beginning of March 2020); then we repeated a third survey only in woodland in summer 154 

(mid-July 2020) to test for a seasonal effect in this habitat. We performed all surveys in good weather 155 

conditions (i.e. not on rainy or windy days). Although the target species were nocturnal (Long-eared Owl, 156 

Tawny Owl), crepuscular, or more vocally active at night (Water Rail, Little Owl, Nightingale), we carried out 157 

the surveys in daylight, partly due to access restrictions, but also to minimise the potential confounding 158 

effects of real (rather than recorded broadcast) vocalizations.  159 
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     We delivered playback using a handheld Bluetooth wireless speaker (Tronsmart Element, T6 Mini) 160 

positioned at chest height (Pilla et al. 2018), c. 1.6 m above the ground. The device was designed to spread 161 

sound at 360° to ensure that vocalisations were broadcast in all directions. The call sequence consisted of 162 

territorial vocalisations of the five species, downloaded from the Xeno-canto website (www.xeno-canto.org), 163 

which were then uploaded to a smartphone and broadcast with the speaker via Bluetooth. We always 164 

maintained the following order for the sequence: Common Nightingale > Water Rail > Little Owl > Long-eared 165 

Owl > Tawny Owl.  For each species, broadcast calls lasted 30 seconds, without intervals between them. After 166 

the whole sequence had been completed, the broadcaster moved to another random location unknown to 167 

the surveyor and repeated it. This procedure was carried out eight times for each point (i.e. eight repetitions 168 

made in eight random locations for each of the ten points). The start and end of each repetition was notified 169 

to the surveyor by text message. Once all the repetitions for a point were completed, the surveyor moved to 170 

the next point along the transect.   171 

     We adjusted a fixed volume for all broadcasts at a level equivalent to the sound pressure level of natural 172 

vocalizations. We used a sound level meter (SLM Meterk MK 09) to set the volume in order to match natural 173 

levels: 81 ± 1 dB for Common Nightingale (Kiefer et al. 2011); 82 ± 1 dB for Little Owl (Jacobsen et al. 2013, 174 

Clewley et al. 2016); and, 83 ± 1 dB for Tawny Owl (Vrezec & Bertoncelj 2018). We were unable to find 175 

information on Water Rail and Long-eared Owl vocalizations, so we respectively set 80 ± 1 dB and 73 ± 1 dB, 176 

i.e. relatively low values matching our personal observations of these species relative to the others listed 177 

above. We obtained all dB values by positioning the SLM at a distance of 1 m. 178 

 179 

Data analysis 180 

 181 

We used Garmin BaseCamp software to download location data from the GPS and to calculate real distances 182 

between the surveyor and broadcaster. To evaluate the effect of distance on detection probability, we used 183 

a mixed modelling approach, fitting binomial generalized linear mixed models (GLMM) to explain the 184 

probability to of hearing playback calls (binomial response: 1 = calls heard; 0 = calls not heard) and the 185 

http://www.xeno-canto.org/
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probability of estimating distances of those calls that were detected correctly (binomial response: 1 = calls 186 

estimated in the correct distance class; 0 = calls not estimated in the correct distance class). Survey point 187 

identity was specified as a random effect in order to account for repeated observations from the same point, 188 

and real distances, habitat and species were specified as fixed effects. To test for a seasonal effect in 189 

woodland, we used the same approach and included season (winter or summer) and the interaction term 190 

between Real distance and season. Before modelling, the ‘Real distance’ variable was scaled. Models were 191 

validated using the Hosmer-Lemeshow goodness of fit test (Hosmer & Lemeshow 2000), where a significant 192 

test result (as measured by the chi-squared statistic) indicates poor model fit. When this occurred, we used 193 

Cook’s distance (Cook 1979) to identify and remove potential outliers. 194 

     Since we always maintained the same order of species to broadcast calls, there was potential temporal 195 

autocorrelation in the probability of detecting a call between species, for both distance estimation and the 196 

resulting classification into distance classes, since the observer would have known that the whole broadcast 197 

came from the same location (i.e. at the same distance). In other words, after hearing the first call, the 198 

surveyor could have been more likely to detect subsequent calls in the sequence, as they would have known 199 

what came next. For this reason, GLMMs fitted to the ability to hear playback calls could potentially be 200 

affected by non-independence. Therefore, to verify their consistency, we also ran models based o generalized 201 

estimating equations (GEEs) that accounted for the potential non-independence by fitting broadcast call 202 

order as a temporal correlation structure and defining each broadcast of the five species within a playback 203 

repetition as a group that combined point identity and repetition number. 204 

     Statistical analyses were carried out using R software (v. 3.6.3; R Core Team 2020). GLMMs were fitted in 205 

the lme4 package (Bates et al. 2015) and their results visualised with ggplot2 (Wickham 2016). GEE models 206 

were fitted in the geepack package (Halekoh et al. 2006). 207 

 208 

 209 

Results 210 
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We carried out 1200 broadcasts in total: 400 in farmland (first survey) and 400 in woodland (second survey) 211 

in winter, and 400 in woodland in summer (third survey). Real distances ranged between 34.6 and 365.5 m 212 

and the number of broadcast calls, correct distance estimates and calls detected varied among distance 213 

classes. Estimating playback distances correctly (c. 28 % of broadcasts were estimated in the correct distance 214 

band) was more difficult than being able to hear broadcast calls (c. 78 % of calls were detected; Table 1). 215 

 216 

 217 

 218 

 219 

Effect of distance on detectability in both habitats in winter 220 

 221 

The ability to hear playback calls across all species declined significantly with distance (slope = -1.64 ± 0.17, z 222 

= -9.69, p < 0.001; Table S1a, Appendix). Predicted probabilities of hearing calls were often high at 200 m, 223 

especially in woodland, and the easiest species to hear was Little Owl (estimated probability = 0.97), followed 224 

by Tawny Owl (0.96), Common Nightingale (0.82), Water Rail (0.81) and Long-eared Owl (0.67; Figure 1). At 225 

a distance of 300 m, probabilities dropped, particularly for Long-eared Owl, Water Rail and Common 226 

Nightingale (respectively 0.14, 0.26 and 0.28 in woodland). Detection probabilities were always significantly 227 

higher in woodland than farmland (p < 0.001). The Hosmer-Lemeshow test showed a good model fit (χ2 = 228 

8.09, df = 8, p > 0.05). The GEE model supported the GLMM in that hearing playback calls declined with 229 

distance very similarly (slope = -1.61 ± 0.15, w = 110.96, p < 0.001; Table S1b, Appendix). The lack of any 230 

qualitative difference between the GLMM and GEE results thus suggests that potential temporal 231 

autocorrelation between the calls in a given sequence did not affect the conclusions regarding the estimates 232 

of probability of hearing calls in relation to distance. 233 

     The ability to estimate playback distances correctly for calls that were detected declined significantly with 234 

distance at greater distances to the broadcaster (slope = -1.39 ± 0.16, z = -8.56, p < 0.001; Table S1c, 235 

Appendix). Predicted probabilities of assigning distances to the correct distance band were low: all <18 % at 236 



 

10 
 

200 m and <3% at 300 m (Figure 2). In woodland at 200 m, the best estimates were associated with Common 237 

Nightingale (0.17) and the lowest with Long-eared Owl (0.04). Probabilities were significantly higher in 238 

woodland than farmland (p < 0.01). The Hosmer-Lemeshow test showed a good model fit (χ2 = 9.40, df = 8, p 239 

> 0.05).   240 

     For detected calls, in the first and second survey, distances estimated wrongly were all overestimation 241 

errors, i.e. the surveyor always placed estimates in a distance class further than the correct one. In total, 248 242 

overestimations were made in the first survey and 215 in the second (Table S2, Appendix). Errors decreased 243 

between the first to the second survey for each species The number of misclassifications declined in 244 

consecutive surveys for each species except for the Long-eared Owl (Table S3, Appendix).    245 

 246 

 247 

Seasonal variation in woodland 248 

 249 

The effect of distance on the ability to hear playback calls was significant (slope = -1.42 ± 0.19 , z = -7.67, p < 250 

0.001; Table S1d, Appendix), but did not change between the second and third survey, i.e. there was no 251 

difference in slope between winter and summer (parameter estimate = -0.16 ± 0.32, z = -0.5, p > 0.05). 252 

However, season was significant (p < 0.001) and predicted probabilities were higher in winter (Figure 3). Little 253 

Owl and Tawny Owl were the easiest species to detect, and Long-eared Owl the hardest (respectively 0.97, 254 

0.97 and 0.74 at 200 m in winter). At 200 m, probabilities were generally high, but at 300 m they were always 255 

less than 52 % in summer and 72% in winter. The Hosmer-Lemeshow test did not show a good model fit (χ2 256 

= 26.0, df = 8, p < 0.05). We investigated this poor model fit by looking for possible outliers i.e. the 257 

observations that mostly negatively influenced the model We used Cook’s distance approach (Cook 1979) 258 

and we dropped the observations (n = 6) which revealed the highest Cook’s distance values. This was the 259 

minimum number of observations that enabled an improvement in model fit (χ2 = 11.0, df = 8, p > 0.05). No 260 

qualitative differences were found in the model results (Table S1e, Appendix). 261 
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      Again, the GEE model did not show differences compared to the GLMM, neither in terms of the distance 262 

effect on the ability to hear calls (slope = -1.04 ± 0.24 , w = 19.19, p < 0.001; Table S1f, Appendix) nor in terms 263 

of difference in slope between seasons (parameter estimate = -0.45 ± 0.30, w = 2.20, p > 0.05). 264 

     Overall, playback distances were estimated increasingly erroneously in more distant zones (slope = -0.76 265 

± 0.12, z = -6.14, p < 0.001; Table S1g, Appendix) and there was a significant seasonal variation (parameter 266 

estimate = -0.58 ± 0.23, z = -2.56, p < 0.05). Predicted probabilities were generally higher in summer than in 267 

winter (Figure 4) and higher at 200 m than 300 m for all species. Probabilities were quite high at 200 m for 268 

all species, but they dropped at 300 m. Higher probabilities were associated with Little Owl and Common 269 

Nightingale (both 0.32 at 200 m and 0.14 at 300 m in summer), while the Long-eared Owl remained the most 270 

difficult species to estimate (0.20 at 200 m and 0.08 at 300 m in summer). The Hosmer-Lemeshow test did 271 

not show a good model fit (χ2 = 29.0, df = 8, p < 0.05).  So, as before, we dropped the minimum number of 272 

observations (n = 20) with the highest Cook’s distance values which enabled to improve the model fit (χ2 = 273 

14.0, df = 8, p > 0.05). No qualitative differences were found in the model results, except for an increase in 274 

the significance of seasonal variation (parameter estimate = -0.89 ± 0.28, z = -3.16, p < 0.01; Table S1h, 275 

Appendix).    276 

     In the third survey, overestimations decreased (from 100 % in both the first and second survey to 64 % in 277 

the third), but there were also some underestimations (36 %) which occurred between 0-100 m and 100-200 278 

m. However, the surveyor made in total fewer wrong estimates (n = 139). In fact, no erroneous estimates 279 

were made in the two furthermost classes (Table S2, Appendix). In relation to species, errors decreased 280 

overall (Table S3, Appendix).   281 

 282 

 283 

Discussion 284 

Through this field evaluation, we investigated the effect of distance on surveyor detection capability, 285 

expressed in terms of being able to hear playback calls and estimating distances to the calls correctly and 286 
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estimating their distances in the correct distance class. Other studies have attempted to evaluate the 287 

response distance of elusive birds and the distance from the surveyor (Proudfoot et al. 2002, Flesch & Steidl 288 

2007, Bartolommei et al. 2012), because its measurement helps to improve detection and determine bird 289 

densities. Monitoring nocturnal birds, Puglisi & Bartolommei (2012) estimated the distance of detected birds 290 

from the surveyor, selecting four distance classes (<50, 50–100, 100–300 and >300 m). They always detected 291 

Long-eared Owl at distances less than 100 m, whereas Little Owl and Tawny Owl were detected across all 292 

classes. Such classes were considered by Bartolommei et al. (2012), who adopted a 300 m radius in their 293 

methods to investigate the presence and distribution of Little Owl and Tawny Owl according to land-use 294 

categories in an agricultural landscape of Central Italy. These estimates reflect our own investigation into 295 

surveyor’s estimation ability Instead, unlike Bartolommei et al. (2012), but in our experiment we specifically 296 

fitted models to evaluate separately the probability to detect calls and to estimate distances correctly in 297 

relation to distance, testing also a seasonal effect.  298 

     Some playback field experiments have already been conducted in forested habitats to evaluate distance 299 

estimates and their error structure for various songbirds, using known distances. Alldredge et al. (2007) used 300 

playback songs of several birds (Acadian Flycatcher Empidonax virescens, Black-and-white Warbler Mniotilta 301 

varia, Black-throated green Warbler Dendroica virens, Red-breasted Nuthatch Sitta canadensis, and Wood 302 

Thrush Hylocichla mustelina) and found that surveyors had difficulties to identify what was the distance to 303 

the bird song at distances beyond 65 m. and found that surveyors could not discriminate between songs at 304 

different distances beyond 65 m. They also pointed out that, after training, surveyors reduced distance 305 

estimation errors. In our approach, we instead used unknown distances, chosen randomly by the 306 

broadcaster, and the surveyor was unaware of their location. This had the objective of simulating real 307 

situations in the field, when surveyors have to census species that can be anywhere. Moreover, in our study, 308 

we considered detection both in terms of the ability to estimate distances and the ability to hear broadcast 309 

calls. 310 

 311 

The effect of distance on surveyor detection capability 312 
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 313 

Our results showed that detectability varied due to both species and distance. Our results showed marked 314 

variation in detectability as a function of distance between species. The decrease in detectability was 315 

especially marked in those species whose calls are low in acoustic intensity. In particular, this was the case 316 

for the Long-eared Owl, the hardest species to hear and to estimate distance. This was consistent with our 317 

expectations as its territorial call is not very loud. On the contrary, Little Owl and Tawny Owl were the easiest 318 

species to detect, thanks to their shrill and more acute vocalisations. Water Rail and Common Nightingale 319 

were challenging to detect, but not as difficult as Long-eared Owl, although during the summer survey, 320 

Common Nightingale showed estimates as high as those for Little Owl, and Water Rail as high as those for 321 

Tawny Owl. Detecting playback calls was less difficult than estimating their distances correctly, but we noted 322 

an improvement in both (respectively a c. 20 % and 28 % increase) between the first and the second survey. 323 

In woodland, detectability was higher overall. This is a surprising result as we did not expect such a striking 324 

difference compared to farmland. Nevertheless, the latter habitat, being an open environment, could have 325 

been more influenced by potential background noise (e.g. from roads nearby), which may explain this 326 

divergence. Though, we suggest caution in interpreting this difference and more field trials would be useful 327 

to better assess this aspect.  328 

     The ability to hear playback calls in woodland did not improve during the third survey in summer. The 329 

probability of hearing broadcast calls was significantly inferior lower in summer than winter (p < 0.001). This 330 

can be explained by the likely blocking effect of the dense vegetative structure characterizing woodland in 331 

this season. Moreover, in summer this habitat is more disturbed in terms of background sounds: Throughout 332 

the summer survey, there was a continuous noise, represented especially by the singing of grasshoppers and 333 

Common Blackbirds Turdus merula. Together with the thick foliage, sound diffusion was hampered. 334 

Therefore, in summer woodland can act as a natural “acoustic barrier”, limiting the surveyor’s ability to hear 335 

bird calls (Figure 5). Conversely, in winter, there was less acoustic disturbance.   336 

     Despite the dense vegetation and background noise, the effect of distance on the ability to estimate 337 

playback distances improved significantly in summer, during the last survey. improved in the last survey and 338 
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varied significantly with season. This fact is likely due to an increase in our field experience. After the first 339 

survey, we were able to better calibrate estimates and reduce errors, in particular in terms of overestimated 340 

distances. For detected calls, distance estimate errors decreased by 8.3 % between the first and second 341 

survey and by 19 % between the second and the third. Surveyor experience has already been demonstrated 342 

to be a relevant factor affecting bird detection probabilities (Booms et al. 2010, Jiguet & Williamson 2010, 343 

Johnston et al. 2018), including nocturnal species (Zuberogoitia et al. 2020). A radial distance of about 200 344 

m, at which playback could be heard, has previously been adopted to census Tawny Owls (Appleby et al. 345 

1999). In another case, a distance of 300 m was used for Tawny Owl and Little Owl (Bartolommei et al. 2012) 346 

as it proved to be the best estimated distance for both species. Detection radius is not a constant value and 347 

it varies across studies, because it changes according to target species, habitat and surveyor detection 348 

capability (Centili 2001, Esclarski & Cintra 2014, Menq & Anjos 2015, Zuberogoitia et al. 2020). Therefore, 349 

given these sources of variation, tests like ours should be made before playback surveys. 350 

     Based on our results, at 300 m we found that the detection capability was quite weak overall, mainly in 351 

terms of the ability to estimate distances correctly. Therefore, we suggest that a 200 m detectability radius 352 

should be set as maximum threshold. In our study any inference from playback can only be reliably related 353 

to this radial distance around the surveyor, i.e. inferences about our target species should be limited to 200 354 

m because most of the detected calls will be within that distance. For Common Nightingale, Water Rail and 355 

Long-eared Owl, which were generally more difficult to detect than Little Owl and Tawny Owl, a radius of 100 356 

m could certainly be a good option. However, for a multi-species community level study, a common cut-off 357 

can ease the comparison of results at the same scale among all species. In this case, a 200 m limit would be 358 

a reasonable alternative. Distance estimates were, however, generally poor, and for most species the 359 

probability of accurately estimating distance was greater than 0.50 only at distances of 100 m or less. 360 

Therefore, in our study, distance estimates are inappropriate for the use of distance sampling techniques 361 

(e.g. Buckland et al. 1993, Neubauer & Sikora 2020), as they are not accurate enough to estimate species 362 

density. Distance sampling methodology is an appropriate tool to estimate density when distances to species 363 

are known, but it assumes distances to be estimated without errors (Buckland et al. 1993), which was not 364 
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the case in our study. Indeed, errors occur even with wide distance classes and experienced observers 365 

(Neubauer & Sikora 2020). We should stress that density estimation was not the purpose of our study. 366 

Instead, our goal was an attempt to understand at what scale detection and distribution could be estimated 367 

for our target species, which is likely a 200 m radius. At greater distances, detection probabilities became 368 

very low. 369 

     Based on different study objectives, researchers could carry out field experiments like this for their species 370 

of interest, identifying a suitable detectability radius through the evaluation of the two detectability 371 

components analysed prior to the actual surveys of the species. We recommend that our methods should be 372 

generally considered with more caution for Long-eared Owl, Common Nightingale and Water Rail. We 373 

particularly acknowledge that in our study, the component related to distance estimation could not be 374 

carried out accurately for these three species without training.  375 

 376 

Field experiment timing and potential bias 377 

 378 

As we described in methods, we maintained the same order of species calls during the experiment, 379 

potentially leading to a non-independence bias among subsequent calls of different species among species. 380 

However, our results showed that this methodological choice unlikely affected GLMM outcomes. Estimates 381 

relative to the effect of distance on detectability did not differ substantially between GLMM and GEE 382 

approaches, and the significance levels of variables did not change. This suggests consistency between the 383 

two modelling approaches, hence we are confident that this kind of bias did not affect the validity of our 384 

analysis regarding the surveyor’s ability to hear broadcast calls. 385 

     Although the focus of this study was on crepuscular and nocturnal species, the playback experiment was 386 

carried out during daytime in daylight. This was partly due to access restrictions in some parts of the study 387 

area (particularly in rice fields), but also in order to avoid confounding real vocal responses from the study 388 

species. Similarly, the experiments started in late winter, when some of our target species are not vocally 389 

active or had not yet returned from their wintering areas (in particular Little Owl, Water Rail and Common 390 
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Nightingale). In order to make use of these results to inform methods for playback surveys of the target 391 

species, the underlying assumption that the performance of the surveyor is not affected by time of day and 392 

season needs to be addressed. In terms of the former, we would expect that background noise is likely to be 393 

higher in the daytime, both from natural and anthropogenic sources, hence we can consider our estimates 394 

to be appropriately conservative (i.e. we expect that performance would be higher at night). In terms of the 395 

latter, we did find evidence of seasonal effects in woodland, although these were inconsistent between 396 

probability of detection (which was marginally greater in winter) and probability of correct distance 397 

estimation (which increased in summer). However, the latter results did not change our overall conclusions 398 

regarding methodological recommendations, i.e. that playback surveys are likely to be most representative 399 

of a 200 m radius surrounding the surveyor where the probability of detection is highest, while estimates of 400 

distance from the observer are likely to be inaccurate in most cases. 401 

 402 
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Appendix 555 

 556 

Table S1: model outputs parameter estimates from the binomial GLMM/GEE explaining the ability to hear 557 
playback calls and estimate distances correctly 558 
 559 
 560 
Table S1a. Ability to hear playback calls in farmland and woodland in relation  561 
to distance. 562 

 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 

Model outcome showing fixed effects. Model formula: Regis heard    ̴SReal 574 
distance + Habitat + Species + (1|Point), where Regis heard stands for  575 
surveyor ability to have heard or not playback calls and Real distance was  576 
scaled (S). The reference level (Intercept) is represented by ‘Farmland’ for  577 
Habitat and ‘Common Nightingale’ for Species. Random effect variance: 0.8 ± 0.9. 578 
 579 
 580 
 581 
Table S1b. Ability to hear playback calls in farmland and woodland in relation  582 
to distance (GEE model). 583 

Variable Estimate 
Standard 
error 

w value P value 

Intercept 1.297 0.272 22.679 1.9e-06 

SReal distance -1.613 0.153 110.959 < 2e-16 

Habitat (Woodland) 1.466 0.316 21.463 3.6e-06 

Species (Little Owl) 1.896 0.416 20.730 5.3e-06 

Species (Long-eared Owl) -0.784 0.296 7.032 0.008 

Species (Tawny Owl)   1.576 0.410 14.763 0.0001 

Species (Water Rail)   -0.053 0.261 0.040 0.841 

Model outcome showing fixed effects. The model was fitted with the command  584 
geeglm (geepack package) with the formula: Regis heard    ̴SReal distance +  585 
Habitat + Species, where Regis heard stands for surveyor ability to have heard  586 
or not playback calls and Real distance was scaled (S). The model accounted  587 
for the potential non-independence of observations specifying in the formula:  588 
id = Group, waves = Time order, corstr = “unstructured”. Group identifies species  589 
broadcasts within a playback repetition (each group combined point identity  590 
and repetition number); Time order identifies the order of observations  591 
(broadcast calls) and corstr = “unstructured” specifies the correlation structure.  592 
The reference level (Intercept) is represented by ‘Farmland’ for Habitat and  593 
‘Common Nightingale’ for Species. Model alpha parameter: 1.2 ± 0.1. 594 
 595 
 596 

Variable Estimate 
Standard 
error 

Z value P value 

Intercept 1.399 0.398 3.511 0.0004 

SReal distance -1.636 0.169 -9.696 < 2e-16 

Habitat (Woodland) 1.859 0.513 3.627 0.0003 

Species (Little Owl) 2.089 0.458  4.562 5.1e-06 

Species (Long-eared Owl) -0.897 0.351 -2.561 0.010 

Species (Tawny Owl)   1.720 0.430 4.001 6.3e-05 

Species (Water Rail)   -0.065 0.358 -0.181 0.856 
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 597 
Table S1c. Ability to estimate playback distances correctly in farmland and   598 
woodland in relation to distance.  599 

Variable Estimate 
Standard 
error 

Z value P value 

Intercept -2.516 0.482 -5.220 1.7e-07 

SReal distance -1.393 0.163 -8.560 < 2e-16 

Habitat (Woodland) 1.888 0.585 3.230 0.001 

Species (Little Owl) -0.290 0.309 -0.940 0.348 

Species (Long-eared Owl) -1.593 0.355 -4.490 7.0e-06 

Species (Tawny Owl)   -0.441 0.312 -1.410 0.157 

Species (Water Rail)   -0.241 0.308 -0.780 0.435 

Model outcome showing fixed effects. Model formula: Estimate correct    ̴ 600 
SReal distance + Habitat + Species + (1|Point), where Estimate correct stands  601 
for surveyor ability to have estimated playback distances correctly or not and  602 
Real distance was scaled (S). The reference level (Intercept) is represented by  603 
‘Farmland’ for Habitat and ‘Common Nightingale’ for Species. Random effect variance: 1.3 ± 1.2. 604 
 605 
 606 
 607 
Table S1d. Ability to hear playback calls in woodland in relation to distance  608 
and season. 609 

Variable Estimate 
Standard 
error 

Z value P value 

Intercept 0.916 0.419 2.190 0.029 

SReal distance -1.419 0.185 -7.670 1.8e-14 

Season (Winter) 1.601 0.299 5.350 8.8e-08 

Species (Little Owl) 2.335 0.452 5.160 2.5e-07 

Species (Long-eared Owl) -0.105 0.323 -0.320 0.746 

Species (Tawny Owl)   2.335 0.452 5.160 2.5e-07 

Species (Water Rail)   0.107 0.327 0.330 0.742 

SReal distance:Season (Winter) -0.161 0.322 -0.500 0.617 

Model outcome showing fixed effects. Model formula: Regis heard    ̴SReal 610 
distance*Season + Species + (1|Point). The expression in the formula SReal 611 
distance*Season and in the output SReal distance:Season indicates the  612 
interaction between distance and season and Real distance was scaled (S).  613 
The reference level (Intercept) is represented by ‘Summer’ for Season and  614 
‘Common Nightingale’ for Species. Random effect variance: 1.1 ± 1. 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
 627 
 628 
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 629 
Table S1e. Ability to hear playback calls in woodland in relation to distance 630 
and season (without outliers). 631 

Variable Estimate 
Standard 
error 

Z value P value 

Intercept 0.975 0.543 1.790 0.073 

SReal distance -1.646 0.208 -7.930 2.2e-15 

Season (Winter) 1.953 0.339 5.740 9.2e-09 

Species (Little Owl) 2.563 0.479 5.350 8.7e-08 

Species (Long-eared Owl) -0.003 0.343 -0.010 0.994 

Species (Tawny Owl)   2.715 0.494 5.490 4.0e-08 

Species (Water Rail)   0.179 0.347 0.520 0.605 

SReal distance:Season (Winter) -0.139 0.369 -0.380 0.707 

Model outcome obtained removing the outliers. Model formula: Regis heard    ̴632 
SReal distance*Season + Species + (1|Point). The expression in the formula  633 
SReal distance*Season and in the output SReal distance:Season indicates  634 
the interaction between distance and season and Real distance was scaled (S).  635 
The reference level (Intercept) is represented by ‘Summer’ for Season and  636 
‘Common Nightingale’ for Species. Random effect variance: 2.2 ± 1.5. 637 
 638 
 639 
 640 
Table S1f. Ability to hear playback calls in woodland in relation to distance 641 
and season (GEE model). 642 

Variable Estimate 
Standard 
error 

w value P value 

Intercept 0.760 0.255 8.870 0.003 

SReal distance -1.038 0.237 19.190 1.2e-05 

Season (Winter) 1.364 0.320 18.180 2.0e-05 

Species (Little Owl) 1.987 0.391 25.860 3.7e-07 

Species (Long-eared Owl) -0.091 0.255 0.130 0.722 

Species (Tawny Owl)   1.981 0.395 25.200 5.2e-07 

Species (Water Rail)   0.083 0.226 0.130 0.715 

SReal distance:Season (Winter) -0.448 0.302 2.200 0.138 

Model outcome obtained removing the outliers. The model was fitted with the  643 
command geeglm (geepack package) with the formula: Regis heard   S̴Real  644 
distance*Season + Species. The expression in the formula SReal distance* 645 
Season and in the output SReal distance:Season indicates the interaction  646 
between distance and season and Real distance was scaled (S). The model  647 
accounted for the potential non-independence of observations specifying in  648 
the formula: id = Group, waves = Time order, corstr = “unstructured”. Group  649 
identifies species broadcasts within a playback repetition (each group combined  650 
point identity and repetition number); Time order identifies the order of  651 
observations (broadcast calls) and corstr = “unstructured” specifies the  652 
correlation structure. The reference level (Intercept)is represented by ‘Summer’  653 
for Season and ‘Common Nightingale’ for Species. Model alpha parameter: 0.3 ± 0.2. 654 
 655 
 656 
 657 
 658 
 659 
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 660 
Table S1g. Ability to estimate playback distances correctly in woodland in  661 
relation to distance and season.  662 

Variable Estimate 
Standard 
error 

Z value P value 

Intercept -0.239 0.269 -0.890 0.374 

SReal distance -0.756 0.123 -6.140 8.4e-10 

Season (Winter) -0.619 0.188 -3.300 0.0009 

Species (Little Owl) -0.032 0.253 -0.130 0.899 

Species (Long-eared Owl) -0.676 0.262 -2.580 0.009 

Species (Tawny Owl)   -0.162 0.254 -0.640 0.525 

Species (Water Rail)   -0.162 0.254 -0.640 0.525 

SReal distance:Season (Winter) -0.582 0.227 -2.560 0.010 

Model outcome showing fixed effects. Model formula: Estimate correct    ̴ 663 
SReal distance *Season + Species + (1|Point). The expression in the formula  664 
SReal distance*Season and in the output SReal distance:Season indicates  665 
the interaction between distance and season and Real distance was scaled (S).  666 
The reference level (Intercept)is represented by ‘Summer’ for Season and  667 
‘Common Nightingale’ for Species. Random effect variance: 0.3 ± 0.6. 668 
 669 
 670 
 671 
Table S1h. Ability to estimate playback distances correctly in woodland in  672 
relation to distance and season (without outliers). 673 

Variable Estimate 
Standard 
error 

Z value P value 

Intercept -0.344 0.292 -1.180 0.238 

SReal distance -1.010 0.141 -7.150 8.5e-13 

Season (Winter) -0.875 0.223 -3.920 8.9e-05 

Species (Little Owl) -0.036 0.269 -0.130 0.893 

Species (Long-eared Owl) -0.923 0.285 -3.240 0.001 

Species (Tawny Owl)   -0.183 0.270 -0.680 0.499 

Species (Water Rail)   -0.216 0.271 -0.800 0.426 

SReal distance:Season (Winter) -0.888 0.281 -3.160 0.0016 

Model outcome obtained removing the outliers. Model formula: Estimate 674 
correct   S̴Real distance*Season + Species + (1|Point). The expression in the  675 
formula SReal distance*Season and in the output SReal distance:Season  676 
indicates the interaction between distance and season and Real distance was  677 
scaled (S). The reference level (Intercept) is represented by ‘Summer’ for  678 
Season and ‘Common Nightingale’ for Species. Random effect variance: 0.4 ± 0.6. 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
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 691 
Tables S2-S3: errors in distance estimation  692 
 693 

 694 

Table S2. Errors in distance estimation made by the surveyor across surveys. The total number of broadcast 695 

calls is 400 in each survey. 696 

 
Distance  
class (m) 

 
Survey 

 
Number of 
detected 
broadcasts 

 
Number of 
wrong  
estimates  
 

 
Percentage of 
wrong 
estimates (%) 

 
Number  
of OE 

 
Percentage  
of OE (%) 

 
Number  
of UE 

 
Percentage  
of UE(%) 

0-100   0 0 0 0 0 0 

100-200   36 14.5 36 14.5 0 0 

200-300   61 24.6 61 24.6 0 0 

300-400 First 288 67 27.0 67 27.0 0 0 

400-500   46 18.6 46 18.6 0 0 

>500   38 15.3 38 15.3 0 0 

Total    248 100 248 100 0 0 

         

0-100   0 0 0 0 0 0 

100-200   46 21.4 46 21.4 0 0 

200-300 Second 366 107 49.8 107 49.8 0 0 

300-400   48 22.3 48 22.3 0 0 

400-500   10 4.7 10 4.7 0 0 

>500   4 1.9 4 1.9 0 0 

Total   215 100 215 100 0 0 

         

0-100   33 23.7 0 0 33 66.0 

100-200   44 31.7 27 30.3 17 34.0 

200-300 Third 289 39 28.1 39 43.8 0 0 

300-400   23 16.6 23 25.8 0 0 

400-500   0 0 0 0 0 0 

>500   0 0 0 0 0 0 

Total   139 100 89 100 50 100 

Number and percentages of wrong distance estimates (for the calls that have been detected) per distance 697 

class made by the surveyor. Overestimates (OE) consist in estimates made in a class further than the correct 698 

one (i.e. further from the surveyor position), while underestimates (UE) consist in estimates made in a class 699 

prior than the correct one (i.e. closer to the surveyor position). Distances estimated wrongly declined across 700 

surveys, with underestimates placed only in the first two distance classes of the last survey. The first column 701 

indicates all the possible distance classes planned for the experiment, in which the surveyor could assign 702 

playback calls. Unlike Table 1, which provides real distance classes (i.e. those where the broadcaster actually 703 

stationed at), here there are also ‘400 - 500 m’ and ‘> 500 m’ because the surveyor, being unaware of the 704 

broadcaster’s position, could assign calls in these two classes too. 705 

 706 

  707 
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Table S3. Errors in distance estimation made by the surveyor across the surveys in relation to species. The 708 

total number of broadcast calls is 400 in each survey. 709 

 
Species 

 
Survey 

 
Number of 
detected 
broadcasts 

 
Number of 
wrong  
estimates  
 

 
Percentage 
of wrong 
estimates (%) 

 
Number  
of OE 

 
Percentage  
of OE (%) 

 
Number  
of UE 

 
Percentage  
of UE (%) 

Common 
Nightingale 

  44 17.7 44 17.7 0 0 

Water Rail   44 17.7 44 17.7 0 0 

Little Owl First 288 62 25.0 62 25.0 0 0 

Long-eared  
Owl 

  39 15.7 39 15.7 0 0 

Tawny Owl   59 23.8 59 23.8 0 0 

Total   248 100 248 100 0 0 

         

Common 
Nightingale 

  33 15.4 33 15.4 0 0 

Water Rail   37 17.2 37 17.2 0 0 

Little Owl Second 366 45 20.9 45 20.9 0 0 

Long-eared  
Owl 

  51 23.7 51 23.7 0 0 

Tawny Owl   49 22.8 49 22.8 0 0 

Total   215 100 215 100 0 0 

         

Common 
Nightingale 

  19 13.7 10 11.2 9 18.0 

Water Rail   23 16.5 13 14.6 10 20.0 

Little Owl Third 289 39 28.1 28 31.5 11 22.0 

Long-eared  
Owl 

  19 13.7 10 11.2 9 18.0 

Tawny Owl   39 28.1 28 31.5 11 22.0 

Total   139 100 89 100 50 100 

Number and percentages of wrong distance estimates (for the calls that have been detected) per distance 710 

class made by the surveyor. The table reflects Table S2, but here over- (OE) and underestimates (UE) are 711 

referred to species. Generally, most distances estimated wrongly are associated with owls. 712 

 713 

  714 



 

26 
 

Tables 715 

Table 1. Summary of the values obtained during the field experiment. 716 

Number and percentage of broadcast calls, correct distance estimates and calls detected according to 717 
distance classes. 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

  742 

Distance 
class (m) 

Number of 
broadcast 
calls  

Percentage of 
broadcast calls 
(%) 

Number of 
correct distance 
estimates 

Percentage of 
correct distance 
estimates (%) 

Number 
of calls 
detected 

Percentage of 
calls detected 
(%) 

0-100  315 26.3  148 46.9  312 99.1  

100-200  615 51.3  148 24.1  490 79.7  

200-300  240 20.0  36 25.7  132 55.0  

300-400  30 2.5  5 16.7  9 30.0  

Total 1200 100 337 28.1  943 78.6  
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Legends to figures 743 

 744 

Figure 1: Binomial GLMM showing the predicted probabilities of hearing playback calls in farmland (n = 745 

400) and woodland (n = 400) in relation to distance. 746 

Figure 2: Binomial GLMM showing the predicted probabilities of estimating distances correctly in farmland 747 

(n = 400) and woodland (n = 400) in relation to distance. 748 

Figure 3: Binomial GLMM showing the predicted probabilities of hearing playback calls in woodland in 749 

relation to distance and season (n = 400 in winter and n = 400 in summer). 750 

 751 

Figure 4: Binomial GLMM showing the predicted probabilities of estimating distances correctly in woodland 752 

in relation to distance and season (n = 400 in winter and n = 400 in summer). 753 

 754 

Figure 5: Pictures taken in woodland at the same point in winter and summer to show the difference in terms 755 

of vegetation structure, which can act as a natural “acoustic barrier”. 756 
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Figures 776 

 777 

Figure 1 778 
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Figure 2 781 
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Figure 3 787 

 788 

Figure 4 789 
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Figure 5 791 
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