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Integrating Open-ended Learning and Planning
for Long-Term Autonomy

Gabriele Sartor1

Abstract. Classical planning is still a powerful tool able to per-
form rather complex reasoning on domains defined by a high-level
representation. However, its main problem is the lack of flexibil-
ity in the definition of the domain. Once the representation of the
world is defined by the expert, the capabilities of the agent are fixed
and, consequently, also its potentially achievable goals. For this rea-
son, many researchers have shifted their attention on developing sys-
tems able to produce autonomously a high-level representation of the
world, resulting from the experience gathered during the interaction
with the surrounding environment. IMPACT (Intrinsically Motivated
Planning Architecture Curiosity-driven roboTs)2 has been our first
attempt to implement a software architecture using high-level plan-
ning and able to extend its operational capabilities.

1 INTRODUCTION
In the last decades, traditional planning robotic systems have been
developed providing the agent the knowledge necessary to perform
tasks defined at design time. However, in some cases, particularly in
space exploration missions [6], the agent could need to deal with un-
foreseeable situations or simply detect a variation in the environment
dynamics without the human intervention.

Consequently, many researchers have started to study new meth-
ods to abstract knowledge learned during the interaction with real
world in order to encapsulate the complexity under an easier rep-
resentation, suitable for performing high-level planning. Recently,
some methods have been proposed to translate the agent’s experi-
ence in PDDL representation [7]. For example, it has been proposed
an algorithm translating low-level information about the initial and
final states of each action, called options, into a fully working propo-
sitional symbolic planning domain [5]. Some works have also started
to reconcile deep learning with more abstract representations [4]. For
instance, a system demonstrated the possibility to autonomously gen-
erate a first-order logic (FOL) representation compatible with sym-
bolic classical planning, using neural networks [1]. In this case, the
most important element developed has been a particular autoencoder,
able to transform the feature vectors of the objects visualized in im-
ages into a FOL description, and vice versa.

The project IMPACT [9, 8] has extended the previous work creat-
ing an open-ended learning system [3] able to learn new capabilities
interacting with a simulated environment, abstract this knowledge
into propositional PDDL as in [5] and plan on it.
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2 CURRENT RESEARCH
In the last years, the importance of space missions is increasing. In
particular, the next most challenging missions are focusing on the ex-
ploration of Mars. The robots designated to perform the experiments
on-site will have to be equipped with all the knowledge necessary to
deal with their duties with a high degree of autonomy because of the
latency of communications between the Earth and Mars. For this rea-
son, it is important to build systems as autonomous as possible, but
also able to extend their operational capabilities on-site in order to
face changes in the environment, unforeseeable events and increase
the utility of the mission discovering new aspects of the world and
achieve goals unknown at design time. IMPACT has been our first
try to develop such software architecture.

This system is implemented as a three-layered architecture inte-
grating the following main modules:

1. Planning, reasoning on the initial knowledge of the world and op-
erational capabilities included in the agent at design time used to
reach the mission goals;

2. Abstraction, translating the low-level data gathered during the
mission into a propositional domain of the environment;

3. Learning, responsible for learning new skills, triggered by the
robot’s curiosity [10].

Figure 1. IMPACT high-level software architecture.

In figure 1 it is shown the architecture of our software system,
divided in three layers. The lower one, the Functional layer, con-
tains the modules dealing with the low-level information of the en-
vironment. It implements the controller of the robot and the learning
ability integrating the GRAIL system [10], an intrinsically motivated
reinforcement learning (IM-RL) component able to extend the com-
petences of the agent. This component can autonomously discover
interesting states of the environment and, using a competence-based
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IM-RL algorithm, acquires a new skill to reach that significant con-
figuration.

Instead, the Executive layer is a mapping level in which (i) the
high-level planning operators are translated into commands for the
controllers and (ii) low-level information is transformed into a PDDL
representation of the world [5], suitable for planning. In particular,
the abstraction of the low-level information is crucial for such sys-
tems, because it defines the type of representation and, consequently,
the limitations of the higher level. For example, despite its simplic-
ity, the propositional representation can limit the expressiveness of
the higher level, given that it is not possible to generalize similar ac-
tions and features.

The high-level planning domain and the planning system, imple-
mented using the ROSPlan framework [2], are included inside the
Decisional layer. This level is responsible for deciding how the high-
level goals have to be achieved and controlling the execution feed-
backs received from the lower layers, in order to potentially replan
its activities. The top layer has also to decide the schedule of the goals
to be achieved. For this purpose, it has been developed also a simple
component called Long-Term-Autonomy Module (LTA-M). The idea
of such component is to create a decisional module selecting the next
tasks to be performed in the future, in order to increase as much as
possible its satisfaction in terms of mission goals and extension of
operational capabilities. In other words, it implements strategies to
alternate the achievement of intrinsic and extrinsic goals.

The system described in this paper has been tested in two different
space exploration scenarios. In particular, we simulated a scenario in
which a robotic arm is sent to Mars in order to pickup some stone
samples necessary for its experiments [8]. In the simulation, we as-
sume that the robot is designated to explore two interesting valleys
in which the scientists of the mission control center want to perform
analysis of the ground. In the first valley, the agent is able to pickup
samples of stones without any difficulty, while in the second one the
stones have a particular concave shape. During its activities, the agent
tries to pickup a vase-shaped stone in the second valley, discovering
that it is not able to grasp with its current capabilities because of
its dimensions, failing to reach its high-level goal. The failure trig-
gers its curiosity towards the unexpected situation and tries to learn a
new way to grasp the unknown object. The intrinsic motivated com-
ponent GRAIL [10] detects a curious state and stores it as intrinsic
goal. When the agent decides to focus on that interesting state, it will
try to reach again that situation with a high level of confidence. Af-
ter several attempts, the system learns to grasp the new object and,
exploiting the execution layer, to abstract this new discovered aspect
of world creating a new symbol and operator to deal with it. In this
way, it has been demonstrated that the architecture has been able to
extend its operational capabilities and the potential of this system.

3 FUTURE WORKS

The architecture presented in the paper could be still improved in dif-
ferent aspects. One of the most important limitations of the system is
the use of a high-level planning propositional representation. This ap-
proach is not effective in terms of scalability, because each aspect of
the world has to be represented with a specific symbol. Instead, first-
order logic representation can use parametrized symbols and opera-
tors to generalize some aspects in a more compact description. Given
the potential of the autoencoders in generating a representation from
the world [4], we will examine the possibility of combining them
with open-ended learning to deal with such limitation.

Another component to be examined in depth is the LTA-M [6],

which still presents a simple form. We will examine the possible
strategies to manage the long-term needs of the agent based on the
goal required by the user and its curiosity. A possible extension could
be exploiting the high-level planning to reach less explored states in
order to increase the possibility of encountering new intrinsic goals
and, consequently, learning new aspects of the world. Lastly, our in-
tention is to generalize this architecture in order to extend the range
of applicability of this methodology.

4 CONCLUSION
We proposed an open-ended learning architecture able to learn new
competences, abstract this knowledge and reasoning over this new
representation extending its operational capabilities. Robotics system
autonomy is a branch of research of increasing importance. However,
in this field, autonomy and interpretability seem to be two orthogo-
nal aspects[1]. We think that an abstract representation of the domain
will be fundamental for keeping track of the agent’s improvement
caused by its learning components. Consequently, we intend to im-
prove the robustness of this architecture and generalize it for a wider
range of applications.
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