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Abstract 

Biogenic volatile organic compounds (BVOCs) are metabolites that are emitted by living plants 

and have a fundamental ecological role since they influence atmospheric chemistry, plant 

communication and pollinator/herbivore behaviour, and, last but not least, human activities. 

Over the years, several strategies have been developed, to isolate and identify them, and take 

advantage of their activity. The main techniques used in the plant field, for in-vivo 

determination, are dynamic headspace (D-HS), static headspace (S-HS) and, more recently, 

direct contact (DC) methods in association with gas chromatography (GC) and mass 

spectrometry (MS). The aim of this review is to give an insight into the in-vivo characterisation 

of plant volatile emissions with a focus on sampling, analysis and possible applications. A 

critical discussion is first reported on the features and challenges of conventional approaches 

and current trends to highlight their limitations and advantages. In the following, the review 

describes the main applications to enhance the impact of in-vivo volatilomic studies on our 

knowledge of plants, including the effects of abiotic (damage, flooding…) and biotic (insect 

feeding…) stresses compared to the behaviour of undamaged plants. 
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1. Introduction 

All plants emit non-organic volatiles (CO2, O2) during photosynthesis and respiration, but most 

of them also produce many biogenic volatile organic compounds (BVOCs). These volatiles 

(chiefly terpenoids, fatty acid degradation products, phenylpropanoids and amino acid-derived 

products) are produced in different plant organs (leaves, flowers, fruits, but also roots). They 

are stored in specialised secretory structures, such as glandular trichomes and resin ducts, and 

are spontaneously released by the plants, even if their emission can vary depending on specific 

stress conditions. These analytes play a fundamental role in the defence mechanisms against 

herbivores and pathogens, in the attraction of pollinators and seed dispersers, and as signals in 

plant–plant communication. Besides their role for the plant, BVOCs can also have important 

ecological relevance (they can act as precursors of tropospheric phytotoxic compounds) and, 

last but not least, they present a wide range of biological activities also for humans, making 

them a sustainable and under-exploited source of bioactive compounds [1, 2]. 

The plant volatilome [2, 3], is made up of more than 1700 volatile compounds isolated from 

more than 90 plant families, and its study therefore requires a metabolomic approach [4]. In 

addition, it is important to avoid alterations to the metabolomic profile so that it can provide a 

true signature of the biochemical activity of the investigated biosystem. Specific in-vivo 

analytical strategies are required to prevent: i) the de-novo formation of compounds 

biosynthesised in response to any damage resulting from plant collection; ii) possible enzyme-

mediated metabolite conversion; and iii) chemical degradation of labile metabolites [5]. Sample 

preparation play a fundamental role in this respect and the development of static and dynamic 

techniques for the headspace collection of volatiles in combination with a suitable analytical 

platform (mainly gas chromatography–mass spectrometry (GC-MS)) has significantly 

contributed to the development of dedicated analytical strategies for the in-vivo investigation 

of the plant volatilome, thus improving the understanding of the biosynthesis and ecology of 

plant BVOC compounds [1, 2]. 
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In this article, we first provide a review of the main sampling and analytical approaches 

developed in the last twenty years for the in-vivo analysis of plant volatiles, with emphasis on 

some underestimated, but crucial, features of the analytical procedure, such as quantification. 

The second part of this work focuses on the impact of in-vivo volatilomic studies on our 

knowledge of plant behaviour, examining the spontaneous emission of BVOCs in healthy plants 

and how the plant volatilome can be affected by different abiotic and biotic stresses. 

 

2. Sampling strategies 

Research of proper analytical strategies to investigate the volatile profile of plants is 

fundamental to the correct characterisation of their metabolism and of their relationship with 

the ecosystem. As most biological systems are too complex for direct analysis [6], a sample 

preparation procedure is in general required. For this reason, the sampling step is a crucial point 

in the development of an analytical method [7, 8].  

The main challenge in the analysis of plant BVOC emissions is their complexity, in terms of 

the number of compounds and difference in relative abundances (as most of them are present 

at a trace level) [7, 9]. On account of these considerations, current efforts in volatilomics are 

directed towards easy, fast, sustainable and sensitive sampling methods. 

2.1 Techniques 

Conventional samples preparation methods for the analysis of plant emissions involves 

destructive and time-consuming approaches, such as solvent extraction and/or distillation. 

Moreover, harvesting single plant parts (flowers, leaves, fruits, etc.) can induce stress, and thus 

alter the BVOC profile [10, 11] On the other hand, the analysis of the living systems provides 

more representative BVOC emissions and reliable data, because it minimises the perturbation 

caused by external factors [1]. In-situ measurements should therefore be preferred, when 

possible, to laboratory-based experiments to avoid interference(s) on the plant natural emissions 

[7, 12].  
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Of the possible approaches for the in vivo collection of volatiles, the most common is headspace 

(HS) sampling, i.e. the analysis of the gaseous/vapour phase in equilibrium with the plant [1, 

13, 14]. The HS technique can be either in dynamic (D-HS) or static (S-HS) modes, depending 

on the instrumentation and procedures employed. It allows non-invasive sampling [1], although 

the enclosed system can create humidity and increases in temperature [1, 7, 12].  

A less widespread, but innovative, approach in BVOCs sampling is by direct contact between 

the extraction phase and the plant sample [7, 12, 15]. Its advantages also include good 

sensitivity for polar and semi-volatile compounds, which concurs to overcome some of the 

limitations of headspace sampling. Figure 1 shows an overview of the main techniques 

employed in BVOC sampling; they are described more in details in the following paragraphs, 

focusing on their advantages and limitations (Figure 2). 

2.1.1 Dynamic headspace 

The use of D-HS for plant volatile analysis dates back to the 1960s, when it was introduced by 

Wahlroos [16], and immediately applied by Herout to the sampling of flower volatiles [17]. D-

HS is nowadays one of the most heavily explored approaches in this research area [1, 14]. As 

shown in Figure 1A, its success is largely due to its versatility related to the possibility to choose 

different trapping system and materials that enables to recover the target analytes also in 

function of their chemical characteristics. In detail, a controlled and inert gas flow is passed 

through the plant sample and directed to a trapping system, where the volatiles are concentrated 

[1]. The desorption of the trapped volatiles is crucial and requires intense treatments, such as 

solvents or heat desorption, to ensure full compound release [18]. A proper D-HS set-up 

requires a relatively complex equipment and the standardisation of several parameters if a 

reliable in-vivo sampling is to be obtained [14]. In general, the whole plant or the living part(s) 

under investigation are placed in an enclosure system to facilitate the isolation of the volatiles. 

Depending on the material, volume and technology, several types of enclosure have been 

employed for plant BVOC analysis, including glass/plastic chambers [18-23] and gas exchange 



6 
 

cuvette systems [24-34], affording a quick monitoring of plant gaseous exchange of BVOCs, 

CO2 and H2O,. Figure 1A shows the configuration of the two most common cuvette enclosures; 

large and inflatable “bags” can be used for the detection of tree-branch emissions (Figure 3A), 

while the “sandwich” system is commonly used for leaf analysis [1]. 

As mentioned above, many variables must be considered when dealing with D-HS in-vivo 

systems. In particular, the enclosure may change the natural plant micro-ambient, meaning that 

several parameters must continuously be monitored during the analysis. An equilibrium time 

(12-48 h) before the beginning of sampling is usually necessary to minimise and stabilise the 

stresses generated by confinement [25, 32, 35-39]. The incoming air is usually purified with 

charcoal filters to eliminate external BVOCs [22, 25, 38-44] and the flow, which can reach 25 

L min-1, is controlled by a flowmeter/pump to limit water condensation and temperature 

increases, at the same time, avoiding losses of analytes from the trap during sampling (the so-

called breakthrough effect) [38]. In this regard, Balthussen et al. developed equilibrium sorptive 

enrichment (ESE) to concentrate volatile compounds from matrices more susceptible to the 

breakthrough effect [45]. ESE is a dynamic approach where the gas flow continues until the 

analytes reach the equilibrium with the sorbent material (in general PDMS beds), thus assuring 

accurate and sensitive sampling. However, the equilibrium in ESE requires that analytes 

concentration is constant over the whole sampling time, and this limits its application to the in-

vivo analysis of plants [45]. Other parameters to be considered are temperature, humidity and 

light [19, 25-27, 29, 30, 33, 39, 43, 46-50]. 

The trapping mechanism depends on the nature of the material that conditions its specific 

interactions with the analytes. PDMS and other inert and thermally stable sorbent polymers [18, 

20, 33, 38, 51], have recently been introduced in alternative to the widely used adsorption 

carbon-based (Carbotrap, Carbograph) and polymeric (Tenax, Porapak) materials [22, 30-32, 

34-36, 39, 40, 42-44, 46, 47, 50, 52, 53], limiting the presence of artefacts in the final profile 

[14]. The trapping step is often avoided when D-HS is coupled with a PTR-ToF MS detector, 
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where BVOCs are directly sent to the detector [19, 25, 28, 29, 48]. In D-HS-GC a pre-

concentration step of the analytes at the head of the GC column is generally necessary; only 

one application among those here quoted adopts the collection of the gaseous sample from the 

cuvette with a gas-tight syringe followed by the direct injection in the GC system without cryo-

cooling at the head of the column [24]. 

Either laboratory or greenhouse analyses are in general preferred when monitoring volatile 

emissions under stress factors, mainly because of the easier handling of the stress source, such 

as insect feeding, mechanical damage and micro/macro nutrient supplements [18, 19, 22, 25-

27, 29, 30, 33, 39, 47, 48, 50, 51]. On the other hand, field experiments (“in-situ”) are less 

invasive and more representative of real-world living systems, but they require to set up 

sampling systems (enclosure, gas tanks, pumps, traps, …) in the open field. The general 

approach to investigate the correlation between BVOC production and light/temperature 

changes consists of placing the enclosure around tree branches at specific heights [41, 53]. 

The analysis of BVOCs from living plants with D-HS has also taken advantage from the 

association with solid-phase microextraction (SPME) [21, 23, 37, 54-56] (for a full description 

of the SPME techniques in this field, see section 2.1.2). As represented in Figure 1A, the SPME 

fiber is exposed to the air flow circulating in the sampling chamber. In most examples, two 

measurements are performed simultaneously: i) the air flow passes through the 

enclosure/SPME system and is directly channelled to the PTR-MS detector, and ii) the SPME 

device is then introduced into the GC-MS system, thus obtaining a complete matrix profiling 

[23, 37, 54]. The complexity of the sampling procedure means that the extraction efficiency is 

affected by several variables and a careful optimisation is usually needed. The type of SPME 

fiber (PDMS or PDMS/DVB), the time of extraction and the reproducibility of the fiber 

recovery [37, 55], are among the main variables to be optimized. 

A pioneering study by Sandra and et al. on the development of an automatic dynamic sampling 

system via a sorption trapping is also worthy of mention [18]. The proposed approach involves 
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the on-line coupling in a single apparatus of the dynamic sampling step with the 

thermodesorption of the PDMS packed cartridges, and then of the GC-MS analysis, after 

cryotrapping of the desorbed analytes. In addition, two identical sampling chambers operating 

in parallel have been incorporated into the system, and are consecutively analysed to monitor a 

reference plant and a plant submitted to different stresses.  

 

2.1.2 Static-headspace (S-HS) 

In S-HS, a liquid or solid sample reaches the equilibrium with its vapour phase and the target 

analytes are transferred to the headspace, according to their partition coefficients [14]. In the 

original method, the gaseous phase was manually transferred to the GC using a gas-tight syringe 

but, over the years, different automatic systems have been developed to improve its reliability. 

The term “static” implies the absence of airflow in the sampling chamber making the headspace 

representative of the sample emissions [1, 14, 57]. S-HS therefore provides a picture of the 

volatile emission very close to reality. This “one-step gas-extraction” technique has given 

optimal results in the investigation of plant volatiles thanks to its simplicity, versatility and ease 

of automation. On the other hand, the absence of analyte enrichment or accumulation systems 

causes a limited sensitivity. To overcome this limit, high concentration capacity HS techniques 

(HCC-HS) have been developed since the 1990s. These implied that analytes are accumulated 

from a vapour in static equilibrium or a liquid phase on a stationary phase by sorption or 

adsorption [14]. A successful example of HCC-HS technique is HS-SPME [58], which has 

widely been employed in the analysis of volatiles as it provides good sensitivity in short 

sampling times. As shown in Figure 1B, the SPME device includes a fiber coated with a thin 

film of sorbent/adsorbent, that is exposed to the headspace of the plant sample. Two main 

equilibria affect the analyte recovery: i) the plant/HS equilibrium, and ii) the HS/fiber 

accumulation equilibrium. Therefore, the nature of the fiber coating is one of the key parameters 

to optimize the recovery of the compounds of interest [14, 59]. PDMS was reported as the most 
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effective and inert polymer in this respect, in particular for benzenoids, terpenes and fatty acid 

derivatives in plant analysis [60-67]. In addition, other SPME coatings have also been applied 

to this field, in particular CAR/PDMS [13, 68-70], and PDMS/DVB [71-76], while a few 

applications use the DVB/CAR/PDMS combination because of its lower inertness, despite of 

its high effectiveness [11, 77]. 

The plant sample to be analysed is normally enclosed in a customised “chamber” to isolate the 

sample and limit external interference, as it shown in Figure 3B. In most laboratory 

applications, a glass container (flask, vial, bottle, cage, etc.) is used [11, 13, 61-65, 68-71, 73, 

75, 76]. To avoid contamination from the container, Acaraz-Zini et al., have sampled the leaves 

of Eucalyptus citriodora Hook. in a silanised glass chamber and carried out daily checks to 

monitor possible artefact formation [73]. 

Extraction time is another parameter that must be carefully optimised and that depends mostly 

on the physicochemical characteristics of the compounds to be isolated, since the most volatile 

and low-molecular-weight compounds equilibrated more rapidly [60]. Extraction temperature 

is normally kept around 20-25°C, since the majority of studies should be carried out at ambient 

temperature to obtain representative results [61-65, 68-73, 75-77]. Fernandes et al. however 

successfully applied higher sampling temperatures (40-60 °C) to monitor the volatile emissions 

from Pieris brassicae L. larvae fed with Brassica oleracea var. acephala DC. plant [71]. 

Eilers et al. developed a novel static system to monitor the volatile emissions of Taraxacum 

sect. ruderalia, Kirschner, Øllgaard et Štěpánek roots. This particular set-up uses a customised 

glass vessel in which BVOCs passively concentrate onto PDMS tubes, without using air flow 

[78]. 

 

2.1.3 Direct contact 

Direct contact between the sampling device and the plant sample (see Figure 1C) is one of the 

most recent approaches to the in-vivo investigation of plant volatile emission. This approach 
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has mainly been used for the analysis of in-vivo emissions with the well-known direct 

immersion (DI)-SPME technique and less with the direct contact sorptive tape extraction (DC-

STE) [12]. 

DI-SPME is a minimally invasive, solvent-free technique in which a fiber coated with a sorbent 

material is directly introduced into the plant [57, 79]. Originally developed for the analysis of 

environmental or clinical liquid samples, DI-SPME has also proven to be a promising method 

to analyze multicomponent biosystems, as it enables a more complete analyte coverage, also 

including also less volatile compounds i.e. difficult to transfer in the headspace [80]. However, 

the use of DI-SPME in complex matrices requires some precautions to avoid mechanical 

degradation of the fiber when introduced into the plant. To improve matrix-compatibility, 

specific SPME coatings have been developed over the years, including CAR/PDMS, 

DVB/CAR/PDMS [80] or coating with protective layers such as PDMS/DVB/PDMS [79]. 

Borsdorf et al., [81] have used a CAR/PDMS fiber to measure the uptake of the MTBE 

contaminant by a wetland plant under field and laboratory conditions. The fiber was wired to 

the plant stem at a specific height to facilitate the extraction. In this study, the authors observed 

that an in-situ analysis is preferable to avoid possible fiber damages when it is removed from 

the plant (and thereby loss of analytes). A similar approach was used to investigate the 

behaviour of different plant species treated with 1,8-cineole allelochemical solutions [82]. 

Sampling was by a 100 µm PDMS coating and the analysis was carried out in laboratory. Both 

examples implied the extraction of a target compound from a specific part of the plant in contact 

with the fiber, without considering its distribution in the other compartments. Besides the 

measurement of specific chemical up-take, DI-SPME was also employed to monitor the 

spontaneous volatile emissions by Malus domestica Borkh. fruits. The PDMS/DV/CAR fiber 

was inserted into apples at different maturity stages, perpendicularly to the fruit stem [5]. A 

comparison with the ex-vivo procedure underlined some differences in the metabolite 

fingerprint, and these differences were caused by enzymatic and oxidative degradation due to 
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sample preparation and harvesting. The in-vivo technique minimised the perturbations to the 

system and enabled to extract a profile closer to reality. 

A particular in-vivo DI-SPME application has to be remarked, Chen et al. monitored the 

accumulation and elimination of exogenous contaminants carried by multi-walled carbon 

nanotubes (MWCNTs) in Brassica juncea (L.) Czern plants. This direct sampling minimally 

perturbed the living system and provided an accurate analysis of the kinetic processes, showing 

to be very promising to study plant metabolism in-vivo [83].  

Sandra el al. successfully introduced DC-STE for sampling from living matrix [84, 85], in 

particular for the analysis of sebum on the surface of human skin [84]. DC-STE is a solvent-

free and easy-to-use technique consisting of a flexible thin PDMS tape that provides high 

analyte recoveries thanks to the wide exchange surface in contact with the sample [12, 15, 85]. 

Bicchi et al. [85] have illustrated the advantages of this innovative technique in the analysis of 

plant volatiles, nevertheless few applications to in-vivo plant sampling have been reported in 

the literature [12, 15, 86]. The PDMS tape is placed on the plant with a glass coverslip, which 

also avoids PDMS-air interactions. Analysis time is highly variable, ranging from 20 min to 24 

h, depending on the abundance of volatile to be studied and on their kinetics of formation [15, 

86]. In a study concerning the Lima bean/cotton leafworm interaction (see below), Boggia et 

al. (Figure 3C) have shown that the production of BVOCs is time-dependent, and that, after 

damage, green-leaf volatiles (GLVs) related to lipoxygenase are the first to be produced, while 

terpenes are released later [15]. The nature and amount of BVOCs that are biosynthesised by 

the plant are also influenced by the sampled organ portion and depend on both the anatomy of 

the tissue (such as density of glandular trichomes) and the extent of the damaged area. The 

nature of DC-STE also enables in-vivo and in-situ topographical studies to be performed to 

investigate BVOC emissions from different parts of the plant simultaneously [15, 86]. 

Moreover, the comparison with a conventional D-HS method has demonstrated that the DC-

STE approach has higher sensitivity, together with lower matrix interference because the direct-
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sorption mechanism eliminated the plant-air interaction equilibrium, reducing the number of 

phases involved [15, 86]. Last but not least, contamination from volatiles emitted by other 

plants is minimised in in-field experiments [12]. Similar direct contact experiments can also be 

carried out with with PDMS coated stir-bars (Twisters) (DC-SBSE), which however offers a 

lower contact surface (and thereby sensitivity) compared to PDMS tapes but they are simpler 

to be fixed on the vegetable surface because of the internal magnetic bars [12, 86]. 

 

2.2 Quantitation: a challenging task 

When dealing with solid matrices, the quantification of the extracted analytes is one of the main 

challenges, especially for the volatile fraction emitted from living plants. This is mainly because 

of their heterogeneous and complex compositions and the multiphase equilibria that occur when 

the analytes are released into the HS. For these reasons, semi-quantitative analyses that only 

consider the (change in) chromatographic-peak areas or percent areas are mostly carried out, as 

shown in Figure 4A [5, 7, 11, 12, 20, 23, 39, 52, 55, 60-65, 67, 69, 71, 73-77, 81, 86]. Moreover, 

when dealing with HCC techniques, the different partition coefficients of the analytes towards 

the extraction phase(s) strongly affect their relative response and quantitative determinations. 

A correct quantitative determination is however fundamental to measure the real amount of 

volatiles emitted by plants and, thereby, its biochemical behaviour. The adoption of proper 

quantification approaches compensates for the influence of the matrix effect and help to obtain 

reliable and reproducible results. They mostly involve the use of standards or analogues of the 

compound(s) of interest to calibrate the response of the analytical instrument [19, 21, 24, 26, 

31, 32, 35-37, 40, 44, 51, 53, 54, 56, 66, 68, 78, 82]. External calibration is less suitable for in-

vivo quantification because of the difficulties in replicating and mimicking the dynamic 

conditions of a living system in a blank sample [15, 25, 27, 28, 30, 46, 53, 68]. The addition of 

internal standards (IS) to the original sample before analysis, is the most commonly used 

technique in plant BVOC quantification (Figure 4A) [38, 40, 44, 50, 51, 56, 66, 70, 78]. 
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However, the distribution of IS within the matrix is not always homogeneous and repeatable, 

and the IS can physico-chemically and physically interact at the surface of the solid sample 

[87]. For example, Vereen et al., have investigated the insertion of an internal standard into the 

dynamic enclosure (a Tedlar bag) with living foliage, but did not obtain the expected results 

[60]. In this respect, internal standard can also be deuterium or C13 labelled derivatives (when 

available) of the target analyte(s), with the Stable Isotope Dilution Assay (SIDA) method, 

introduced by Schieberle and Grosch in 1987 for GC-MS analysis [88]. Moreno-Martin et al. 

have combined the use of isotope analogues as an IS with the standard in-fiber procedure [89] 

to quantify the volatile selenium derivatives released from different plants. The IS is loaded 

into the SPME coating and its isotopic nature assures similar characteristics to those of the 

target compounds, without being included in the sample [70], but making it easy to be 

discriminated by MS in both single or total ion modes. Multiple HS extraction (MHE) is another 

interesting quantitation technique especially reliable for in-equilibrium systems that can also be 

applied to HS-SPME. It consists in the consecutive extractions of the same sample, and the 

peak area sum of a suitable number of extractions enables to extrapolate the total area 

corresponding to the total amount of the analyte in the sample [87]. One of the possible 

limitations of this technique, when used on living plants, is that some BVOCs are continuously 

released into the HS by the plant or they are produced only after a local damage thus affecting 

their reliable quantitation. Nevertheless, this approach has been successfully used to determine 

BVOCs from Pelargonium × hortorum L.H. Bailey leaves quantitatively [13]. 

 

3. Overview of analytical platforms 

After sampling, the next fundamental step for the characterisation of the volatile profile of a 

plant sample is its analysis with the adoption of an appropriate analytical platform. When 

BVOCs are retained in a trapping system, two approaches to desorb the analytes can be adopted: 

i) solvent back-extraction (mainly with carbon disulfide, methylene chloride, hexane or 
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dichloromethane) [20, 38, 40, 44, 50-52] and ii) thermal treatment [15, 32-34, 37, 42, 43, 53, 

55, 61, 68, 75, 86]. Organic solvents can easily desorb the BVOCs from the trapping material, 

however, this approach often require long extraction times and/or large solvent volume thus 

affecting the enrichment factors obtained with sampling, and it is not environmentally friendly. 

Thermo-desorption has to be preferred because it assures higher sensitivity and avoids the use 

of harmful organic solvents, provided that the investigated BVOCs are not thermolabile and 

artefacts are not formed [18].  

Of the analytical platforms used to analyse the volatiles released from living plants, gas 

chromatography in combination with both mass spectrometry and flame ionisation detection 

(GC-MS/FID) is the most popular technique (see Tables 1 and 2 and Figure 4B) [14]. The 

FID/MS detection combination is complementary being MS usually necessary for a correct 

identification of the specific BVOCs, while FID detector can be advantageous for the 

quantification of both all and/or specific components or markers (sometimes expressed as total 

organic carbon) emitted by the plant [21, 22, 27, 31, 32, 35, 36, 46, 52, 76].  

Conventional GC stationary phases based on polydimethylsiloxane (PDMS) and polyethylene 

glycol (PEG) are commonly used but other stationary phases with different selectivities have 

also been adopted to separate pairs or groups of challenging compounds and/or to obtain more 

specific information. In particular, Yassaa et al. applied a cyclodextrin-based stationary phase 

to separate the enantiomers of monoterpenes emitted in-vivo by several plant species [52, 55], 

while Risticevic et al., have used an ionic liquid-based stationary phase for the separation of as 

many analytes as possible from the metabolome of apple by GC-ToF-MS [5].  

Proton-transfer-reaction MS (PTR-MS) has proven to be a valid system complementary to GC-

MS for the online monitoring of the volatiles emitted by living plants, and (often) not requiring 

specific sampling treatments [9, 19, 23, 25, 28-30, 33, 37, 47, 48, 54]. PTR ionization is based 

on the proton transfer processes from protonate water (H3O+), which selectively reacts with 

most BVOCs with a non-dissociative proton transfer. Only compounds with proton affinities 
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higher than that of water are ionised and detected by the MS spectrometer (for a full description 

of the technique see Ref. [25]). GC-MS analyses are in general time-consuming and therefore 

they do not allow to monitor dynamic changes in volatile emissions, while PTR-MS ensures 

rapid and on-line measurement of trace BVOCs belonging to different chemical groups [30, 

47]. This characteristic has therefore made PTR-MS platforms highly used to monitor the 

variations in BVOC emissions in plants subjected to abiotic and biotic stress, as shown in Table 

2 and Figure 4B. GC-MS is however still needed to confirm the volatile identity. One of the 

advantages of PTR-MS is the direct sample transfer that channels directly the sample into the 

detector (on-line analysis) [9]. In fact, several authors refrigerate the extraction device in the 

time-frame between sampling and GC-MS analysis to prevent degradation or loss of the 

analytes [37, 43, 44, 53, 73, 81]. At the same time, GC-MS requires a solvent/thermal treatment 

to release the volatiles from the trapping material with the concrete risk of artefact formation 

or irreversible adsorption (Carbonblack or Carbotrap). 

The combination of GC-MS and PTR-MS platforms has received much attention in the study 

of BVOC in-vivo emissions, due to the complementary combination of a technique to separate 

and identify the volatiles with a rapid and non-invasive monitoring of emission kinetic (see 

Tables 1 and 2). Moreover, in two studies on live vegetation, Bouvier-Brown et al., have 

demonstrated the agreement of GC-MS and PTR-MS results in terms of the total amount of 

terpenes detected [37, 54]. As already mentioned, S-HS-GC-MS also gives a realistic and 

reliable picture of the emitted volatile fraction of a plant provided that its sensitivity is 

compatible with the phenomenon to be investigated.  

Barrios-Collado et al. applied direct infusion high-resolution mass spectrometer (HRMS) with 

a secondary electrospray ionization source (SESI-Orbitrap-MS) for the real-time monitoring of 

more than 1200 BVOCs emitted by Begonia semperflorens Link & Otto, and validate the 

proposed method by characterizing some key components via tandem mass spectrometry 
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(MS/MS) with the above HRMS system and comparing the results to those obtained by GC-

MS [49].  

As mentioned above, a minimal sample perturbation is necessary to obtain an accurate picture 

of living plant volatile emissions. This goal can be achieved by the concurrent contribution of 

both the correct choice of the sampling technique (see section 2) and of the analytical platform. 

In this sense, portable systems enable i) to run full direct in-field analyses thanks to their 

miniaturized technology, ii) to save energy, and iii) to operate under normal atmospheric 

pressure and temperatures [39]. However, the number of applications of BVOCS plant analysis 

reported in literature with portable systems are relatively low because they are not always in-

line with the sophisticated technologies required in this field. [23, 36, 37, 39, 41, 54] (Figure 

4B). McCartney et al. proved that a portable GC with a differential mobility spectrometry 

(DMS) detector is a valid approach for the real-time diagnostic analysis of plant infections (the 

device is described elsewhere, Ref. [90]). The association of D-HS with this in field-deployable 

platform has highlighted some differences between the BVOC profiles of healthy and 

Candidatus-liberibacter-asiaticus (CLA)-infected Citrus spp. [39]. 

Barreira et al. measured the BVOCs at the SMEAR II Forestry Field station with a portable 

GC-MS, which consists of a low thermal mass capillary gas chromatograph and a miniature 

toroidal ion trap mass analyser. The results were compared to those of an on-line PTR-MS 

detector and conventional GC-MS, with good agreement [23].  

Bouvier-Brown et al. adopted a similar approach to compare the emission profiles of a 

coniferous forest, analysed using three different analytical platforms. The branch enclosure was 

directly connected to a PTR-MS system and a portable GC-FID for in-situ analyses, while the 

fraction collected with SPME fiber used for sampling was later analysed by GC-MS. Once 

again, good agreement was observed between the techniques also because the SPME fiber did 

not show losses of volatiles and the average analyte abundance with conventional GC-MS 

increased [37]. 
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The third, and not less important, step is the data elaboration. It is important to underline that 

the in-vivo analysis of complex biosystem leads to a numerous and complex chemical 

information, which, if not properly used, makes difficult to interpret the biological phenomena. 

In addition, the volatilome of a plant is closely connected to several biological processes, and 

appropriate statistical tools have to be adopted to correlate chemical and biological information. 

A detailed discussion of the approaches for the elaboration of the data obtained from the in-vivo 

analysis of volatiles is out of the scope of the present article because it would be too extended; 

the topic has been in depth and critically discussed by van Dam and Poppy [91].  

 

4. Applications 

BVOCs are spontaneously released by healthy plants, but their amounts can vary or de-novo 

compounds can be biosynthesised when the living system is subjected to an induced stress (e.g. 

mechanical or herbivore damage, lack or excess of specific nutrients, light variations or high or 

low temperatures) [92] (Figure 5). This section reports a critical description of the applications 

of the in-vivo analysis of volatiles on undamaged plants or in presence of specific biotic or 

abiotic stress; the text is organized on the basis of the biological and environmental status of 

the investigated plants. 

 

4.1 Spontaneous emissions 

Several BVOCs are spontaneously biosynthesised and released by plants in the absence of 

induced stress. Table 1 reports the main articles dealing with the analysis of these compounds 

from undamaged living plants published after 2000. The main aim of these studies is to 

investigate either parts of, or entire plants and to collect the largest number of BVOC naturally 

released into the surrounding environment. Several studies investigate the overall 

phytochemical pattern of the species of interest [5, 13, 63, 64], often, with a special focus on 

the compounds responsible for the scent that may be involved in the attraction of pollinators 
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(e.g., [40, 55]). Other important researches are addressed to the investigation of compounds 

involved in the production of ozone or secondary organic aerosols (SOA) (e.g. [38, 55]). The 

investigated plants can be grown under laboratory conditions or directly in the field and 

different types of volatiles can be isolated with appropriate sampling and trapping system. 

Moreover, the aerial parts (the whole plant or isolated parts) are those usually under 

investigation, with the exception of the roots analysed by Eilers et al., [50]. 

Several studies aimed to analyse the BVOCs that contribute to the scent of a plant [40, 62]. The 

plants subjected to scent analysis belonged to the Magnoliophyta division and the sampling is 

usually performed on parts of the living plant, mainly the flowers. They are generally sampled 

using static HS-SPME from small devices (e.g. conical flasks, chambers, funnels, bottle, mostly 

made of glass) to gather the head space. Stashenko et al., [74] used a transparent (polyacrylic) 

cylinder with a side arm to support a SPME device for the analysis of living flowers from 

Aristolochia ringens Vahl.  

Some studies compared the volatiles emitted by living plants to the related essential oil, 

showing, as expected, important quali-quantitative differences with the two sampling methods 

[61, 63-65, 67]. Flamini et al. and Maccioni et al., reported that SPME afforded to sample small 

and distinctive parts of the plant considered (e.g., a whole flower can be separated into parts, 

like the petals and sepals, the single bracts and the leaves) with results more representative of 

the volatiles emitted by the plant, and complementary to those of the essential oil. Some 

research works evaluated the chemical differences between the results of in-vivo sampling and 

those from excised parts [11, 20, 62, 69, 74]. In a study on the volatile fingerprinting of orchids 

[11], Manzo et al. confirmed that the results of the analysis of collected plants differs from 

those obtained by HS-SPME of living samples, probably in consequences of the mechanical 

damage caused by excision. Moreover, an analysis of in-vivo samples allowed to evaluate the 

temporal variations in volatile emissions [44]. Some authors integrated the in-vivo analysis of 
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the volatiles responsible for flower scent with biomolecular analyses to understand their 

biosynthetic pathway [40, 44, 62, 75]. 

Another interesting application of the in-vivo analysis of plant volatiles is the investigation of 

BVOCs that are emitted into the atmosphere, which are potentially involved in alterations of 

the oxidative capacity of the troposphere due to their rapid interaction with ozone and alcohols, 

giving rise to specific oxidation products. These volatiles mainly included terpenoids (e.g., 

isoprene, monoterpenes, sesquiterpenes) that are released spontaneously by the plant. Their 

emission pattern is species-specific and influenced by plant phenology and environmental 

factors, especially temperature and photosynthetically active radiation (PAR) [24, 54]. Table 1 

shows that, except some studies [34, 52], the majority of the plants analysed in this respect 

belonged to the Pynophyta division. In-vivo and in-situ experiments are important to identify 

the compounds really emitted into the air. A review by Ortega et al. [93] reports all variables 

that should be considered for experiments on this topic and provides useful information on 

techniques and devices, taking into account that these species are usually large trees, whose 

sampling is often difficult and requires specific adaptations [94]. The review is integrated by a 

complementary experimental paper on the analysis of BVOCs from different plant species. The 

most adopted sampling technique is D-HS which provides more realistic results since the S-HS 

results in no air flow and therefore the results can be affected by unstable CO2 concentration 

and temperature increase [94]. The enclosures used in the selected works were cuvettes or bags 

made of different materials (e.g., Teflon, acrylic plastic with a quartz glass cover, PTFE, 

Tedlar). Contrary the aforementioned experiments on the analysis of small plant parts, glass is 

usually avoided because its weight and fragility makes its use difficult when building large 

enclosures and when performing in-field experiments [94]. The investigated plant parts are 

usually branches [32, 34, 36-38, 54, 55]. Baker et al. performed an analysis of a whole tree with 

a large 100 L Tedlar bag [21], while Berreira et al. used a soil chamber for the analysis of the 
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forest floor, and to monitor the BVOCs emitted not only by the forest trees, but also by the 

understory vegetation [23].  

 

4.2. Emissions under stress or changes in environmental factors  

The importance of investigating and monitoring the BVOCs emitted by plants in response to 

stressors or changes in environmental factors is supported by the high number of studies 

published in the literature on this topic (see Table 2). This is related to the great influence that 

these volatiles exert on atmospheric chemistry (and thereby on all living systems), neighbouring 

plants, pollinators and herbivores [30]. Several stresses can affect the volatile pattern released 

by living plants and/or induce de-novo emissions. Stresses are usually classified as abiotic 

(mechanical wounding, environmental factors variation…) and biotic (herbivore, pathogen 

attack). 

Light and temperature variations are the main environmental factors influencing BVOC 

emission rates in living plants [95]. Monitoring and analysis of these emissions are frequently 

associated to specific algorithms to predict/estimate the dependence of BVOCs to light and 

temperature variations [96]. These models however exclude other important factors (e.g., 

physiological growth) that may influence volatile emission in relation to seasonal light and 

temperature changes [36], however some studies reported a good agreement between the results 

of field analyses and algorithm estimations [31, 46, 53],  

In general, these measures are carried out in a forest and plants are monitored during the 

summer-autumn period [27, 31, 35-37, 43, 46, 53] or in a laboratory/greenhouse [22, 27, 76, 

97]. The general trend shows an increase of terpene emissions during summer, followed by a 

reduction in the autumn [36, 46]. In particular, some volatiles are comparably influenced by 

temperature and light [35], while others give different responses to these parameters [27, 31, 

42], or even, the emission profile is species-specific [43]. 
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Environmental conditions other than light/dark experiments have been investigated. Holzinger 

et al. simulated a flooding by covering the topsoil of a monitored plant with tap water and 

registered an increase in the emissions of ethanol and acetaldehyde, i.e. volatiles usually 

associated with anoxic conditions [25]. Beauchamp et al exposed a Nicotiana tabacum L. plant 

to O3 flow under lamp illumination to stimulate stomata opening, since O3 exposure is a good 

model practice to induce stress responses in plants. The results indicated that the response of 

the plants to O3 stress is highly variable and it can be influenced by other environmental 

variations [19].  

The production of BVOCs by plants is also related to their ability of phytovolatilisation, i.e. to 

take elements from the soil and transform them in volatile species. This phenomenon is in 

particular important for the degradation of toxic compounds in polluted sites 

(phytoremediation). Meija et al. and Moreno-Martin et al. in two separate studies investigated 

the phytoremediation to selenium (typical of arid regions and released into the environment by 

industrial activities) by suppling the plants with Se-enriched hydroponic solutions; the result 

was that several Se-volatile species were detected in the headspace of the treated plants [68, 

70]. Kreuzwieser et al., studied the variations of the BVOC profiles depending on the plant 

nutrient composition by suppling a Venus flytrap plant (Dionaea muscipula J. Ellis) with insect 

powder to understand whether the emission of specific BVOCs released to attract the pray, was 

affected by the plant’s state of nutrition. Although the feeding changed the BVOC emission, 

the attraction of the insects was not influenced [33]. 

Many external substances can be absorbed and accumulated by plants, and some of these are 

volatile or can be chemically transformed into volatile compounds; their monitoring is 

important in view of their possible impact on humans and the environment. In this context, 

macrophyte plants present an extensive aerenchyma where volatile pollutants and toxic 

derivates can concentrate [81]. On the other hand, the in-vivo allelochemical uptake is also 
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worthy to be evaluated since it can alter the volatile emission of plants [82]. DI-SPME (see 

section 2.1.3) proved to be a suitable technique for these investigations. 

As previously reported, the volatile patterns of plants can also be modified by anoxic conditions, 

causing an increase in ethanol and acetaldehyde emissions [28, 29]. The use of online high 

resolution trace gas detectors (PTR-ToF-MS and laser photoacoustic) enabled to monitor the 

BVOC variation during anaerobic (dark chamber and N2 flow) and post-anaerobic conditions 

[28].  

The ability of plants to biosynthesise a variety of volatiles to defend it against herbivore attack 

is widely known and studied [92]. These herbivore-induced plant volatiles (HIPVs) are emitted 

after herbivore damage and act both as a direct defence, and as attractant for the natural enemies 

of predator herbivores (indirect protection). This defensive system involves the activation of 

complex mechanisms, including gene expression, the triggering of enzymes and the mediation 

of specific hormones, such as jasmonic acid [47, 71]. One of the most interesting aspect is that 

the release of BVOCs is not strictly limited to the region object of the attack, but it is a systemic 

response, especially when reproductive parts (e.g., flowers, seeds) are affected [30, 51, 92].  

The first in-vivo studies on this topic were run by inflicting the damage to the living plant 

mechanically mimicking the herbivore feeding, with a simple method not requiring insects [60, 

66, 73]. Subsequent studies however showed that the volatile emission is also significantly 

affected by the biological interaction induced by the attack [15].  

The literature reports several examples of investigations concerning the volatile emissions of 

living plants under insect attack [12, 30, 47, 48, 51, 71-73, 77, 86], despite the complexity of 

the interactions between two different living systems. In general, the larvae of the insect are 

placed in contact with a target part of the plant, mainly flowers [48, 51] or leaves [30, 48, 71, 

86] where they feed, thus inducing the plant response. An innovative experimental set-up 

proposed by Crespo et al. [47] focused on the monitoring of belowground fly larvae feeding on 

Brassica nigra roots. The PTR-MS detector enabled to observe the progression of larvae 
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feeding by monitoring the emission of sulfur compounds and other glucosinolate breakdown 

products from the roots. 

Other BVOCs undergoing a considerable variation after herbivore attack are terpenoids [30, 51, 

71, 86], methanol [30], and green-leaf volatiles (GLVs) (C6 alcohols, aldehydes, acetates…); 

these plant specialized metabolites form rapidly under abiotic/biotic stresses [15, 71].  

DC-STE proved to be a valid sampling technique to monitor the volatiles related to herbivore-

plant interactions [12, 15], and it has also exploited to investigate plant response to abiotic 

stress, such as mechanical damage [15] and hormone treatment [12]. In particular, Boggia et al. 

successfully used DC-STE characteristics to carry out a topographical evaluation of plant 

response to herbivore feeding and mechanical damage. The results demonstrated that the model 

plant (lima bean, Phaseolus lunatus) differently responded to cotton leafworm attack 

(Spodoptera littoralis) and mechanical stress, while the addition of insect oral secretions to 

mechanical damage stimulated an emission more similar to that of the leafworm attack. 

Moreover, the biomolecular analysis of the leaves showed that some HIVPs were influenced in 

their own gene expression in distant tissue while other volatiles are biosynthesized only near to 

the wounded area [15].  

Caceres et al. have also investigated the relationship between volatile emissions and BVOC 

gene expression. In this case, an Arabidopsis thaliana L. Heynh. plant was genetically modified 

to overexpress the CCD1 gene, which is related to the transformation of carotenoids into 

volatile apocarotenoids, which are important compounds for plant communication. The 

transgenic plant and the wild type presented similar volatile profiles except for β-ionone, an 

apocarotenoid which had a repellent effect against herbivores [50]. 

The response of living plants to insect stress varies according to a variety of stimuli. Farré-

Armengol et al. conducted a double experiment where a Diplotaxis erucoides (L.) DC. plant 

was subjected to flower and leaf herbivory (i.e. “folivory” and “florivory”) by Pieris brassicae 

larvae. The results highlighted that folivory did not lead to a significative increase of the 
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emission rates of floral BVOCs, while the association of folivory and florivory highly 

intensified the chemical defensive response. This may suggest that plants take advantage from 

widespread degree of infestation by increasing their defence compared to when the damages 

are limited and localized [48]. Different BVOC profiles were also reported when single and 

multiple pest infestations occur. Moreover, DC-SBSE with Twisters (see section 2.1.3) allowed 

to monitor the adaxial and abaxial leaf epidermis simultaneously, showing different emissions 

of specific classes of BVOC [86].  

Most studies consider the insect-plant system as a whole and are unable to distinguish between 

the volatiles emitted by herbivores and plants. To overcome this limit, Fernandes et al. have 

monitored the interaction between Pieris brassicae and a kale plant with a different approach, 

i.e. by sampling the larvae fed with kale, both separately to the host plant and in conjunction. 

The analysis of the isolated larvae highlighted the presence of some compounds that were not 

detected in the kale volatilome, showing that the insects contribute to the volatile background 

[71]. Similarly, Vercammen et al. analysed individually the insect and its excrement to verify 

the specificity of the BVOCs that were detected in the headspace of the plants. The use of a 

specific D-HS set-up with two enclosures (see above), with the whole plants placed in a glass 

bulb, allowed to carry out differential stress experiments by D-HS and to obtain highly reliable 

results because of the presence of the reference plant in the analysis system. Besides insect 

feeding, the leaf of the plant was wounded with endoscopic pliers and deprived of light by 

covering the sampling bulb with aluminium foil [18]. Other studies have included different 

plant stressors, such as mechanical damage or/and hormone exposure, in addition to insect 

feeding [72, 77].  

Cordero et al. applied HS-SPME combined with comprehensive two-dimensional GC-

quadrupole-MS (GC×GC-qMS) with dedicated comparative data elaboration to discriminate 

chemical fingerprinting resulting from the interaction between some Mentha species and the 

herbivore Chrysolina herbacea, also known as the mint bug. C. herbacea was fed on different 
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living Mentha species (M. spicata L., M. × piperita L. and M. longifolia L.), producing frass 

(faeces) with a diagnostic volatile fraction. The advanced fingerprinting analysis of the frass 

volatile fraction indicated the presence of: i) several hydroxy-1,8-cineoles derived from 1,8-

cineole, a component of the leaves of the investigated Mentha species, ii) several unknown 

oxidized monoterpenes, iii) a p-menthane diol, and iv) three unknown phenylpropanoids. The 

resistance of M. longifolia to the attack with insect death was associated to the presence of 

piperitenone oxide [98]. 

The in-vivo investigation of the volatile response of living plants to pathogens, which is 

considered to be a biotic stress, has been less thoroughly explored. These investigations are 

useful to develop rapid and sensitive techniques to monitor plant-health status in agricultural 

procedures without damaging the plant, especially for highly harmful infections. McCartny et 

al. demonstrated that healthy and infected Citrus spp. trees present different BVOC profiles 

after sampling with non-invasive dynamic sampling [39].  

 

5. Conclusions and future trends 

The in-vivo analysis of the volatiles emitted by a plant is a fundamental step to clarify its 

behaviour when it is submitted to a stress or a multitrophic interaction. The correct choice of 

the sampling approach in combination with a compatible analytical platform is essential to 

obtain meaningful information about the plant metabolome but it requires the development of 

dedicated analytical tools. 

From the analytical point of view, the in-vivo collection of plant volatiles has required a great 

deal of effort to develop suitable sample-preparation systems, mainly based on either D-HS or 

S-HS sampling approaches. In this respect, devices that are based on direct contact sampling 

are a valid tool, not only to obtain appropriate analyte enrichment, but also to perform in-situ 

topographical studies. In addition to the choice of the sample-preparation technique, the 

adoption of the appropriate quantification method is a further crucial point to obtain reliable 
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results. Meanwhile, it has to be remarked that only a few examples with in-situ-analysis have 

been reported, mainly with GC, even though in-field GC with portable instruments would 

provide analysis immediately after (or on-line to) in-field sampling, and markedly reduce 

experimental time. Micro-GCs, and, in particular, those based on microelectromechanical-

system (MEMS) technology, are a valid future perspective for this field and worthy of further 

investigation [99]. 

The metabolomics related to the BVOC emission is extremely widespread and complex, and its 

exploration has just started. In particular, investigations are under way on the biosynthetic 

pathway of these metabolites, starting from the genes involved in their biosynthesis and their 

expression, to the factors inducing their formation. In this regard, a great deal of effort is 

currently directed to the investigation of plant-insect (or animal, in general) and plant-plant 

interactions. However, special attention should also be paid to plant-pathogen interactions not 

only to monitor the plant-health status, but also the changes in the plant volatilome that can 

alter their biological properties, in particular for those used in the food and health field. 
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Figure 1. Most representative examples of in-vivo BVOC sampling techniques from living 

plants: A) Dynamic-headspace (D-HS), B) Satic-HS (S-HS) and C) Direct contact (DC) 

sampling. Black and white figure for the printed version. 
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Figure 2. Advantages and disadvantages of the main sampling techniques employed for the in-

vivo characterisation of BVOCs in living plants. Black and white figure for the printed version. 
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Figure 3. Examples of BVOC sampling from living plants: A) Teflon bag dynamic enclosure, 

adapted from Ref. [38] with permission from Elsevier; B) Static HS-SPME, adapted from Ref. 

[70], with permission from Elsevier; C) DC-SE with PDMS tape, adapted from Ref. [15] with 

permission from Springer Nature. Black and white figure for the printed version. 
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Figure 4. Percentage share of A) Methods for BVOCs quantification and B) Analytical 

platforms employed for in-vivo evaluation of plant emission. Black and white figure for the 

printed version. 
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Figure 5. Main applications of volatilomic studies in living plants. Black and white figure for 

the printed version. 
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Table 1. In-vivo studies on spontaneous emissions by living plants: plant(s) and analytes investigated and sampling techniques, sorbent devices 

and analytical techniques applied 

Plant(s) Analytes Sampling technique Sorbent device Analytical 
technique 

Ref. 

49 plants spp. from Central 
India 

Monoterpenes, isoprene D-HS enclosure 100/200 mg 
TA/Carbosieve II 

GC-FID [34] 

Abies alba Mill. Monoterpenes, isoprene D-HS enclosure 60/80 mg Tenax TA 
mesh 

GC-FID/MS [32] 

Arabidopsis thaliana (L.) 
Heynh. 

Terpenes D-HS enclosure 1.5 mg charcoal  GC-MS [40] 

Aristolochia ringens Vahl Terpenes, aldehydes, 
carboxylic acids 

SPME 65 µm, PDMS/DVB GC-MS [74] 

Brunfelsia calycina Benth. Terpenes, 
phenylpropanoids 

SPME 65 µm, PDMS/DVB GC-MS [75] 

Cedrus atlantica (Endl.) 
Manetti ex Carrière, 
Calycolpus moritzianus 
(O.Berg) Burret 

Terpenes D-HS enclosure 
coupled with SPME 

Tenax 
TA/Carbotrap, 
Tenax 
GR/Carbograph 

GC×GC-MS [56] 

Cistus albidus L. Sesquiterpenes, 
monoterpenes 

SPME 100 µm PDMS GC-MS [65] 

Citrus paradisi Macfad. Terpenes SPME NA GC-MS [67] 
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Cryptomeria japonica (Thunb. 
ex L.f.) D.Don, 
Chamaecyparis obtusa 
(Siebold & Zucc.) Endl. 

Terpenes D-HS enclosure 60 mg HayeSep Q GC-MS [38] 

Eucalyptus globulus Labill., 
Pinus halepensis Mill., Cedrus 
atlantica (Endl.) Manetti ex 
Carrière 

Monoterpenes D-HS enclosure 100/50 mg of 20/40 
mesh charcoal 
coconut shells 

GC-FID/MS [52] 

Lamium spp. Terpenes, alcohols, 
aldehydes 

SPME 100 µm PDMS GC-MS [64] 

Malus domestica Borkh. Esters, 
phenylpropanoids, 
hexanal 

DI-SPME 50/30 µm 
PDMS/DVB/CAR 

GC×GC-MS [5,7] 

Mirabilis jalapa L. Terpenes, benzenoids D-HS enclosure 100 mg Super-Q GC-MS [20] 

Myrtus communis L. Terpenes, aldehydes, 
esters 

SPME 100 µm PDMS GC-MS [63] 

Narcissus tazetta L. Terpenes, esters, alcohols SPME 85 µm, PDMS/CAR GC-MS [69] 

Ophyris spp., Neotinea 
tridentata (Scop.) 
R.M.Bateman, Pridgeon & 
M.W.Chase 

Terpenes, aldehydes, 
esters, alcohols, phenols 

SPME 50/30 µm 
PDMS/DVB/CAR 

GC-MS [11] 

Pelargonium hortorum L.H. 
Bailey 

Terpenes, benzenoids, 
fatty acid derivatives 

SPME 75 µM, PDMS/CAR GC-MS [13] 
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Petunia hybrida Vilm. Benzenoids, aldehydes, 
terpenes, fatty acid 
derivatives 

SPME 100 µm PDMS GC-MS [62] 

Pinus ponderosa Douglas ex 
C.Lawson 

Sesquiterpenes, methyl 
chavicol 

D-HS enclosure 
coupled with SPME 

65 µm, PDMS/DVB GC-MS/PTR-MS [54] 

Pinus sabiniana Douglas, 
Pinus ponderosa Douglas ex 
C.Lawson 

Sesquiterpenes D-HS enclosure 
coupled with SPME 

100 µm PDMS GC-FID/MS [21] 

Pinus sylvestris L. Monoterpenes D-HS enclosure 
coupled with SPME 

65 µm, PDMS/DVB GC-MS [55] 

Pinus sylvestris L. Monoterpenes, aldehydes D-HS enclosure 
coupled with SPME 

65 µm, PDMS/DVB GC-MS/PTR-MS [23] 

Quercus alba L. Isoprene D-HS enclosure / GC-FID [24] 

Taraxacum sect. ruderalia, 
Kirschner, Øllgaard et 
Štěpánek 

Terpenes, ketones, 
aldehydes 

S-HS PDMS GC-MS [78] 

Temnadenia odorifera (Vell.) 
J.F.Morales 

Terpenes, benzenoids, 
phenylpropanoids 

D-HS enclosure 3 mg Porapak Q 
80/100 mesh 

GC-MS [44] 

Viola etrusca Erben Terpenes, alcohols, 
aldehydes, esters  

SPME 100 µm PDMS GC-MS [61] 

NA, data not available 
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Table 2. In-vivo studies of volatiles emitted by plants submitted to different stress and environmental factors: plant(s) and analytes investigated, stress 

source, sampling techniques, sorbent devices and analytical techniques applied. 

 
Plant(s) Analytes Stressor / 

Environmental factor 
Sampling 
technique 

Sorbent device Analytical 
technique 

Ref. 

Abies fraseri (Pursh) Poir. Terpenes Mechanical damage SPME 100 µm PDMS GC-MS [60] 

Achillea collina Becker ex 
Rchb, Pisum sativum L., 
Prunus persica (L.) Batsch 

Terpenes, alcohols, esters Insect feeding, 
Mechanical damage, 
Chemical 

SPME 50/30 µm 
PDMS/DVB/CAR 

GC-MS [77] 

Arabidopsis thaliana (L.) 
Heynh. 

Terpenes, apocarotenoids Gene overexpression D-HS 
enclosure 

Poropak GC-MS [50] 

Begonia semperflorens Link 
& Otto 

Terpenes Light, Mechanical 
damage 

D-HS 
enclosure 

/ GC-MS/SESI-MSa [49] 

Betula nana L., Salix 
arctophila Cockerell, Salix 
glauca L., Empetrum 
hermaphroditum Hagerup 

Terpenes, isoprene, esters Light, Temperature D-HS 
enclosure 

150/200 mg Tenax 
TA/Carbograph 

GC-MS [43] 

Brassica juncea (L.) Czern. Selenium, sulfur species Micro/macro-nutrient 
composition 

SPME 75 µM, PDMS/CAR GC- ICPMSb [68] 

Brassica nigra (L.) K.Koch Sulfur compounds, 
glucosinolate breakdown 
products 

Insect feeding D-HS 
enclosure 

150/150 mg Tenax 
TA/Carbopack B 

GC-MS/PTR-MS [47] 
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Brassica oleracea L. var. 
acephala + Pieris brassicae 
(L.) larvae 

Terpenes, alcohols, 
aldehydes, ketones 

Insect feeding  SPME 65 µm, PDMS/DVB GC-MS [71] 

Calocedrus macrolepis Kurz Terpenes Light SPME 65 µm, PDMS/DVB GC-FID/MS [76] 

Centaurea spp. Sesquiterpenes  Mechanical damage SPME 100 µm PDMS GC-MS [66] 

Citrus spp. Terpenes CLasc pathogen D-HS 
enclosure 

Carbopack X/B GC-DMSd [39] 

Cryptomeria japonica 
(Thunb. ex L.f.) D.Don 

Terpenes, esters Light, Temperature D-HS 
enclosure 

200 mg Tenax TA 
60/80 mesh 

GC-MS [42] 

Dionaea muscipula J.Ellis Terpenes, benzenoids, 
alcohols, esters 

Micro/macro-nutrient 
composition 

D-HS 
enclosure 

PDMS GC-MS/PTR-MS [33] 

Diplotaxis erucoides (L.) DC. MeOH, 3-butenenitrile, 
ethyl acetate 

Inset feeding D-HS 
enclosure 

/ PTR-MS [48] 

Eucalyptus citriodora Hook. Terpenes Mechanical damage SPME 65 µm, PDMS/DVB GC-MS [73] 

Fagus sylvatica L. Monoterpenes Light, Temperature D-HS 
enclosure 

Tenax TA/ 
Carbotrap,Carbograp
h 1/5 

GC-FID/MS [46] 

Fagus sylvatica L. Monoterpenes Light, Temperature D-HS 
enclosure 

130/130 mg 
Carbograph 1/5 

GC-FID/MS [31] 

Gossypium hirsutum L. Terpenes Insect feeding D-HS 
enclosure 

50 mg SuperQ GC-MS [51] 
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Hedera helix L., Jasminum 
polyanthum Franch., 
Lycopersicon esculentum 
Mill. 

Terpenes, benzyl acetate Light, Insect feeding, 
Mechanical damage 

D-HS 
enclosure 

300 mg PDMS GC-MS [18] 

Lycopersicon esculentum 
Mill., Artemisia annuifolia L., 
Portulaca oleracea L. 

1,8-cineole Chemical DI-SPME 100 µm PDMS GC-MS [82] 

Mediterranean spp. Isoprene, monoterpenes Light, Temperature D-HS 
enclosure 

Multilayer 
cartridges/Cryotrap 

GC-FID/MS [27] 

Mentha spp. 1,8-cineole, 
monoterpenes, 
phenylpropanoids 

Insect feeding SPME 50/30 µm 
PDMS/DVB/CAR 

GC×GC-MS [98] 

Nicotiana tabacum L. C6 compounds Light, O3 emission D-HS 
enclosure 

/ GC-MS/PTR-MS [19] 

Phaseolus lunatus L. Terpenes, aldehydes, 
alcohols, acetates 

Insect feeding, 
Mechanical damage 

DC-STE 33 mg PDMS GC-MS [15] 

Phragmites australis (Cav.) 
Trin. ex Steud. 

MTBEe Chemical DI-SPME 85 µm PDMS/CAR GC-MS [81] 

Picea abies (L.) H.Karst. Terpenes Insect feeding, 
Chemical 

SPME 65 µm, PDMS/DVB GC-MS [72] 

Pinus ponderosa Douglas ex 
C.Lawson, Arctostaphylos 
spp., Ceanothus cordulatus 
Kellogg 

Sesquiterpenes, methyl 
chavicol 

Light, Temperature D-HS 
enclosure 
coupled 
with SPME 

65 µm, PDMS/DVB GC-FID/MS/PTR-
MS 

[37] 
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Pinus spp. Sesquiterpenes, 
monoterpenes 

Light, Temperature D-HS 
enclosure 

Tenax GR GC-FID/MS [36] 

Pinus sylvestris L. Monoterpenes, 
sesquiterpenes 

Light, Temperature D-HS 
enclosure 

Tenax TA, 
Carbopack B 

GC-MS [53] 

Pinus taeda L. Monoterpenes, 
sesquiterpenes 

Light, Temperature D-HS 
enclosure 

Tenax TA/GR, 
Carbotrap C 

GC-FID/MS [35] 

Populus x canescens (Aiton) 
Sm. 

Acetaldehyde, isoprene, 
C6 compounds   

Light, Anaerobic 
condition 

D-HS 
enclosure 

/ PTR-MS [29] 

Pseudotsuga menziesii 
(Mirb.) Franco, Tsuga 
heterophylla (Raf.) Sarg. 

Monoterpenes Light, Temperature D-HS 
enclosure  

Cryotrap GC-FID [41] 

Quercus coccifera L. Terpenes Light, Temperature D-HS 
enclosure 

200 mg Tenax TA GC-FID/MS [22] 

Quercus ilex L. Monoterpenes, MeOH, 
EtOH, acetaldehyde 

Light, Flooding D-HS 
enclosure 

/ PTR-MS [25] 

Quercus macrocarpa Michx. Isoprene Temperature D-HS 
enclosure 

60/80 mesh glass 
beads (cryotrap) 

GC-FID [26] 

Raphanus sativus L., 
Brassica juncea (L.) Czern. 

Se species Micro/macro-nutrient 
composition 

SPME 75 µm, PDMS/CAR GC-MS [70] 

Rice plant (spp. NA) Aldehydes, EtOH  Anaerobic conditions D-HS 
enclosure 

/ PTR-MS/CO laser-
based detector 

[28] 
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Solanum lycopersicum L. Terpenes Insect feeding, 
Chemical 

DC-SBSE PDMS GC-MS [86] 

Succisa pratensis Moench Acetaldehydes, EtOH, 
terpenes, MeOH 

Insect feeding D-HS 
enclosure 

300/200/125 mg 
Carbotrap 
B/C/Carbosieve S III 

GC-MS/PTR-MS [30] 

Tea plant (spp. NA) Terpenes, alcohols, 
acetaldehyde 

Insect feeding, 
Chemical 

DC-SBSE PDMS GC-MS [12] 

NA, data not available 
a Electrospray ionization source coupled to a mass analyser 
b Inductively coupled plasma mass spectrometry  
c Candidatus Liberibacter asiaticus 
d Differential mobility spectrometry 
e Methyl-tert-butyl ether 


