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Abstract. Recent literature on the diffusion of robots mostly ignores the regional dimension. The 
contribution of this paper at the debate on Industry 4.0 is twofold. First, IFR (2017) data on 
acquisitions of industrial robots in the five largest European economies are rescaled at regional 
levels to draw a first picture of winners and losers in the European race for advanced 
manufacturing. Second, using an unsupervised machine learning approach to classify regions 
based on their composition of industries. The paper provides novel evidence of the relationship 
between industry mix and the regional capability of adopting robots in the industrial processes.  
 

Keywords: Robots, Industry 4.0., Innovation, Industry Mix, Self-Organizing Maps  

 

JEL classification: E32, O33, R11, R12 

 
DISCLAIMER. An earlier version of this paper has been presented at the 59 ERSA conference 
in Lyon (27-30 August 2019) 
 
 
Correspondence to: 
 

Nuccio 
Massimiliano 

BLISS – Digital Impact Lab, Dept. of Management, Università 
Ca' Foscari Venezia 
San Giobbe, Cannaregio 873  
30121 Venice, Italy 

Phone: [+39] 041 234 6976 
E-mail: massimiliano.nuccio@unive.it 

 

  

Guerzoni Marco 

DESPINA Big Data Lab 
Department of Economics and 
Statistics Cognetti De Martiis 

University of Torino 
marco.guerzoni@unito.it 

Geuna Aldo 
Department of Culture, Politics and 

Society 
University of Torino 
aldo.geuna@unito.it 

Nuccio Massimiliano 
BLISS –  

Digital Impact Lab 
Department of Management 

University Ca’Foscari Venice  
massimiliano.nuccio@unive.it 

Cappelli Riccardo 
Department of Economics and 

Social Sciences 
Polytechnic University of Marche 

r.cappelli@univpm.it 

Electronic copy available at: https://ssrn.com/abstract=3655140



 

4 

Introduction 

Advanced manufacturing is likely to become a key competitive advantage for those cities and 

regions able to master the recombination of new digital technologies with traditional 

manufacturing capabilities shifting to a radically new system of production (Kagermann, 2015). 

Since buzzwords emerge faster than the innovation waves they describe, conceptualization of 

Industry 4.0 remains vague, although it can be considered the result of convergence of advances 

in several related information and communication technologies (ICTs), in computer science such 

as artificial intelligence (AI), cloud computing, the Internet of things (IoT) and industrial 

robotics. Beyond affecting the way things are produced and distributed, the so-called fourth 

industrial revolution will transform the dynamics of customer engagement, value creation, 

management and regulation (Schwab, 2017). 

There is a growing debate on the impact of robotics on jobs (among the others, see Acemoglu 

and Restrepo, 2018; MIT Work of the Future, 2019). As largely documented from former 

industrial revolutions (Mokyr et al., 2015, Woirol, 1996), the expected effect on employment is 

not straightforward. First, the manufacturing sector has already been affected by a first long 

wave of automation since the 1980s which heavily reduced the workforce employed in the 

industry. Thus, further reduction in the workforce requires complementary organizational 

changes and, in the short run, it is likely to meet institutional resistance and managerial 

challenges. Secondly, since automation in advance manufacturing is heavily related with ICT, its 

deployment, use, and maintenance require new competencies. Third, advance in ICT allows new 

forms of interaction between humans and machines, which might transform machineries into a 

labour augmenting- rather than a labour substituting technology. Finally, and most important, if 

advanced automation became a key advantage in increasing both product quality and 

productivity of an economy a possible negative direct effect on employment might be more than 

compensated by the indirect positive effect generated by the increased competitiveness.  

Differently from the above literature on technological unemployment, this paper looks at 

advanced automation as a key competitive advantage in the next future of industrial production. 

The emergence of new sectors and the adoption of new technologies do not appear in a vacuum, 

but they rest on the existing regional specialization. The aim of this paper is to identify the 

industrial antecedents of advanced manufacturing by associating the recent evolution in robot 

density at the regional level in the five biggest European countries (France, Germany, Italy, 

Spain and United Kingdom) with their corresponding industrial profiles before the 2008 financial 

crisis. In other words, we answer two main questions: What regions have accelerated in the race 

toward robot adoption? What profile of industrial specialization and/or diversification is paired 
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with this growth? We are interested in understanding which regional specific pattern of 

specialization can spur the change toward advance manufacturing and which, on the contrary, are 

on the verge of disruption.  

We assume that rather than observing a direct impact of automation on employment (Arntz et al., 

2016), we are experiencing a polarization between economies that grow because of the early 

adoption of automation (and associated organizational change) and economies that shrink 

because they were not able to catch up. These dynamics will happen more evidently at the 

regional level rather than at the country level. This idea is not simply inspired by the effect of 

digital transformation on manufacturing, but it is based on an empirical evidence of the growing 

polarization of both GDP and skills in Europe (Cirillo and Guarascio, 2015). Therefore, any 

consideration on the future of employment shall take a between- rather than within-region 

perspective and the pivotal research question concerns the ability of local economy to switch 

rapidly and adapt to the new mode of production.  

We also assume that the switch of a local economy to the new mode of production depends very 

much on its labour competencies. A large stream of literature on related variety (Frenken et al., 

2007) suggests that regional diversification has a positive impact on economic performances 

when new sectors maintain a large similarity in the input of production. The underlying idea is 

that diversification relies on existing competencies that are recombined into a new industry. 

Although our contribution is set among the research exploring the links between industry mix 

and innovation, we challenge the traditional definitions of related- and unrelated variety and we 

test a new operational definition of industrial relatedness being aware that “relatedness is not 

about over-specialization” but “about understanding the unique paths that lead to 

diversification” (Hidalgo et al., 2018, 454).  We apply unsupervised learning neural networks, 

namely Self-Organising Maps or SOM (Kohonen, 1990), to cluster local economies along their 

profile of specialization and/or diversification. The SOM algorithm allows classifying regions on 

the basis of non-linear interactions of features, which, in our case, are the employment share in 

different industrial sectors. With this methodology we are able to captures complementarities 

among industries and their pattern evolution over time (Carlei and Nuccio, 2014).  

Our framework has been inspired by the Atlas of Economic Complexity (Hausmann et al., 2014; 

Neffke et al., 2017), which is probably the most successful attempt to measure the progressive 

transformation of economies from low-tech industries into advanced manufactured. This 

approach shows both theoretically and empirically that global trend to diversification into new 

industries is not random but follows specific paths. While the Atlas of Complexity maps 

knowledge recombination highlighting network connections between industries and countries, 
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the SOM approach stresses similarities projecting the vector distance between regions on a 2-

dimensions topological grid.   

First, we identify nine patterns built on the regional industry mix during the positive economic 

cycle between 2001 and 2007 (Period I). Second, we analyse their different propensity to adopt 

robots in the recovery phase 2013-2015 (Period II) that follows the downturn 2008-2012. 

Patterns can classify remarkably well different areas according to their adoption of industrial 

robot, while other traditional measures of both innovative activities (patent, R&D spending, 

percentage of high skilled workers) and economic performance (GDP, employment) are not 

necessarily consistent with industrial transformation of regions. We portray the emergence of 

Industry 4.0 proxied by the adoption of industrial robots as a complex phenomenon which points 

at the inner composition of the local economy rather than at the performance of synthetic 

indicators.  

The paper is organised as follows. The next section presents how the notion of industry mix has 

been conceived and operationalized in the economic geography literature and how it can affect 

innovation processes. Section three presents the data and describes the adoption of robots in 

European regions. Section four applies our approach to cluster similar regions into patterns of 

macro-regions based on industrial mix and section five tests the relationship between this 

classification and the diffusion of robots. In conclusion we discuss implication for regional 

development and innovation policies.  

 

1. Regional industry mix and its relationship with innovation  

The industry profile of a region is the idiosyncratic result of a process of economic development 

which evolved overtime together with competences and skills of workers, socio-demographics 

characteristics, and institutions. In some cases, regional systems can facilitate the adoption of 

new technology or almost spontaneously branch new sectors, while in others which are locked-in 

the present economic activities, obstacles prevail and impede the structural change of the 

economy. 

The academic debate around the role of regional industry mix in explaining both innovative 

performance and economic growth has followed two complementary approaches. In the first 

approach, regional economic structure has been analysed in terms of distinctiveness of its 

industrial composition. Probably the most popular technique adopted to describe the dynamics of 

industry mix from a comparative perspective is the shift and share analysis, which decomposes 

differences between values of a chosen variable as observed at the regional and national level 

(Buck, 1970). Although its many limitations, this technique has been largely used in regional 
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studies since the 1960s and it has recently resurged in the analysis of industrial resilience (see for 

example Martin et al., 2016).  

The second approach is even older and draws on two recurrent and often overlapping topics in 

economics: spatial concentration and industrial specialization. Although different in nature, 

concentration and specialization are considered at the origin of positive externalities and, 

therefore, have always been studied as source of localized advantages since Smith (1776) and 

Marshall (1890). In both classical authors, we can find the idea that agglomeration and 

specialization go together since i) they rise productivity by sharing suppliers and labour market 

and ii) they generate knowledge spillovers speeding up innovation and growth. Unlike the 

economic literature, Jacobs (1961) suggested that density and diversity of human activities are 

the engine of the rapid growth of cities. According to Jacobs (1961: 145), cities are “natural 

generators of diversity and prolific incubators of new enterprises” because they are dense and, 

therefore, offer “small manufacturers” a wider variety in commerce, services and entertainment. 

Beginning with Glaeser et al. (1992) and Duranton and Puga (2001), a large body of empirical 

research tried to compare the effect of MAR vs Jacobs externalities with inconclusive results (de 

Groot, Poot, & Smit, 2016). The seminal contribution by Frenken et al. (2007) on related variety 

(RV) and unrelated variety (UV) can be considered an extension and a specification of the work 

on urban agglomeration by Jacobs (1961). In order for advantages of diversity to fully display, 

Frenken et al. (2007) argue that not only spatial concentration matters, but also knowledge 

produced and exchanged at the local level has to be related somehow.  

Although Content and Frenken (2016) argue that the RV thesis holds, they also warn of 

inconsistency in the use of dependent variables that include employment growth, productivity 

growth and GDP growth and suggest exploring new relationships between the advantages of 

diversification and respectively, innovation, knowledge and entrepreneurship. Among the latest 

papers testing the effect of RV and UV, we can recognise two main research areas which our 

paper contributes to. A first stream of literature investigates the effect of RV on innovation, 

typically measured in terms of patents. For example, Boschma and Capone (2015) and Castaldi 

et al. (2015) find that it is not clear which relatedness has stronger effect on innovation although 

they suggest RV favouring incremental innovation and UV being a more fertile environment for 

radical innovation.  

A second promising approach has concentrated on the effect on regional and industrial resilience. 

According to Cortinovis & van Oort (2015) RV is limited within specific sectors and, therefore, 

regions with a higher UV are more resilient to shock because they can rely on a sort of portfolio 

effect. In a recent paper, Xiao et al. (2018) find that both RV and UV are crucial to explain 
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resilience in the short term. Although in this paper we do not draw inference between the two 

aspects, we are able to describe those pre-crisis patterns of economic activities where robotics 

has found a fertile background to expand.  

From an empirical perspective, Content and Frenken (2016) also wonder what the best method to 

capture RV is and what other dimensions could contribute to grasp relatedness. Usually, 

industrial proximity among the underlying structure of “shared or complementary competences” 

(Boshma and Iammarino, 2009) has been measured in terms of input similarity, co-occurrences 

of trade activities or skill-relatedness. Instead, we focus on the employment composition of the 

economy as a proxy for human capital, assuming that the number of employees in one sector 

implicitly accounts for set of competences and capabilities. In particular, we apply a pattern 

recognition technique (Carlei and Nuccio, 2014) to find spatial similarities based on the regional 

distribution of the industrial employment. This approach is built on Self-Organizing Maps or 

SOM (Kohonen, 1990), which are among the most important and widely used neural network 

architectures and allow to reveal spatial similarity by exploiting regional variation in the 

distribution of local employment over different industries.  

The output of the SOM is not a single measure, such as for relatedness concepts, but a map 

which classifies regions and provides the underlying profile of specialization which characterizes 

each cluster. In this way, this approach is much more similar to the complexity approach by 

Hidalgo et al. (2018), which reveals a structure, while the RV and UV concept only summarize 

it. 

This approach does not only overcome some of the limitations of the variety measures, but it 

seems more consistent with a policy perspective because SOM measures relatedness indirectly 

through the regional similarity and derive industrial mix ex-post from data. Accordingly, 

Pagliacci et al. (2019) show that a clustering approach aimed to identify macro-regions can be 

very effective for designing and implementing innovation policies and for greater cohesion and 

competitiveness across larger EU spaces. Such a meso-level allows to address common 

challenges and strengthen complementarities within neighbouring regions in different countries, 

but also overcomes the dichotomy specialization vs diversification (Caragliu et al., 2016). We 

are able to show that the diffusion of Industry 4.0, as proxied by the adoption of industrial robots, 

started with but it is not limited to regions specialised in advanced manufacturing. To this respect 

we argue that the RV/UV approach cannot reveal the structural features which led regions on 

different adoption path. 

 

2. The regional map of industrial robots in major European countries 
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Although industrial robots have been employed for decades in European manufacturing activity, 

they are at the moment tightly interlinked with the spread of Industry 4.0 (Bahrin et al., 2016, 

Lee et al., 2014). The production and use of highly autonomous robots require de facto the 

development of complementary solutions in sensors, cloud storing, analytics and computing 

power. 

Estolatan et al. (2018) show that the robotics landscape in Europe remains uneven. On the one 

hand, Germany and Italy (together with Japan and US) lead the world-wide market for industrial 

automation, on the other France and UK have been facing opposition stemming from the 

potential displacement of labour force (William, 2016). As a reference, outside Europe the most 

important hubs for industrial robotics are Japan, industry leader, and the U.S., where there are no 

companies among the market leaders in the production and most firms are robot system 

integrator (IFR, 2017).  

Our empirical analysis draws from two data sources. The IFR (2017) database provides industry 

disaggregated data on the annual number of robots delivered to countries from 1993 to 2015, 

where robots are defined according to the International Organization for Standardization (ISO). 

The EUROSTAT SBS database provides us with yearly data on regional number of employees 

and firms by industry over 20 years (1995-2015). Data on the regional number of firms1 is used 

to calculate the regional robot density index. Data on the number of employees used to build the 

industry mix is reliable only starting from 2001 and changes in in NACE classification do not 

allow a full data crosswalk before and after 2008.  

As IFR and EUROSTAT data use different industry classifications, to allocate robots to region 

we had to harmonize the various sources of data.2 Out of the 18 IFR industries, we are able to 

match the following 16:3 mining and quarrying, all manufacturing industries (11 industries), 

utilities, construction, “P-Education/research/development” and “90-All other non-

manufacturing branches”. The last two industries are aggregated under the service industry 

giving 15 sectors in total for the analysis. The adopted correspondence table is shown in the 

Appendix (Table A1). 

 
1 EUROSTAT SBS provides data on the number of local units. Following EUROSTAT SBS definition of local unit 
(EUROSTAT SBS – METADATA), we use the terms firm and local unit interchangeably. 
2 More details are available in the Appendix 
3 The two IFR industries excluded are “A-B-Agriculture, forestry, fishing” and “99-Unspecified”. On average, these 
two industries account for 7.6% of annual delivered robots. 
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We focus on 137 NUTS 2 regions (Eurostat, 2011) of five European countries,4 i.e. France, 

Germany, Italy, Spain and UK. After matching the two databases, we compute the annual stock 

of robots using the perpetual inventory method (PIM) on robot deliveries data, assuming a 

depreciation rate of 10%. We use the IFR’s estimated value of the robot stock for the 1993 as the 

initial value of the stock in our PIM (Graetz and Michaels, 2018). The 15 annual country 

aggregated stocks of robots (i.e. one for each of the 15 considered industries) are allocated to the 

137 regions using the number of firms per industry as in the following equation: 

 

𝑅𝑜𝑏𝑜𝑡 𝑠𝑡𝑜𝑐𝑘௜,௧ = ∑
ே௢ ி௜௥௠ೕ,೔,೟

ே௔௧௜௢௡௔௟ ே௢ ி௜௥௠ೕ,೔,೟

ଵହ
௝ୀଵ    ∗  𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑜𝑏𝑜𝑡 𝑠𝑡𝑜𝑐𝑘௝,௜,௧            [1]  

 

where 𝑅𝑜𝑏𝑜𝑡 𝑠𝑡𝑜𝑐𝑘௜,௧  is the stock of robots in region i at year t;  𝑁𝑜 𝐹𝑖𝑟𝑚௝,௜,௧  and 

𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑜 𝐹𝑖𝑟𝑚௝,௜,௧ are, respectively, the regional and national number of firms in industry j 

in region i at year t ; and   𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑜𝑏𝑜𝑡 𝑠𝑡𝑜𝑐𝑘௝,௜,௧ is the national stock of robots in industry j 

in region i at year t.5 The regional indexes of robot density used in the following analysis are 

computed as the ratio between the stocks of robots and population (thousands of inhabitants).6 

In 2015 the five countries considered in this report account for 75% of the European robot 

acquisition although this figure was 10% higher in the years before the economic crisis (Table 

1). Germany alone retains 42% of the whole European robot stock. While Germany and Spain 

have maintained their market shares over time, Italian, France and especially the UK have shown 

much lower growth rates and reduced their shares. Even at the regional level concentration is 

remarkable (Table 2) Top 20 regions absorb almost 50% of continental stock and 13 of them are 

in Germany, 4 in Italy, 2 in France, 1 in Spain and none in the UK. 

 

Table 1. Stock of robots adoption in the five major European countries  
 

 
4 141 NUTS 2 regions are distributed by country in the following way: 26 French, 38 German, 19 Spanish, 21 
Italian, and 37 UK regions. Because of lack of data we excluded the 4 extra European French regions in South 
America, so the analysis is based on 137 regions. 
5 Our measure of robot stock might be affected by cross-regional differences in firm characteristics such as firm size 
and firm technologies. To account for these differences, we compute an additional measure of robot stock using data 
on regional value added. The availability of data (from national statistical offices) on regional industry valued 
added, especially for manufacturing industries, limit our analysis to Italy and UK. So, the annual industry stock of 
robots at country level for these two countries are attributed to regions according to regional value-added shares 
instead of the regional firm shares. The correlation between the regional robot stocks computed using the two types 
of data is very high (about 0.86), and there are no statistical differences between the mean values of the two 
measures of regional robot stocks. Based on these descriptive statistics, we can safely assume that the robot stocks 
computed using data on the regional number of firms are not severely affected by cross-regional differences in firm 
characteristics. 
6 Data on annual regional population are provided by EUROSTAT. 
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 2001  2007  2015  Growth rate 
2001-2015 

DE-Germany 99195 43% 139980 43% 182632 42% 46% 
ES-Spain 16378 7% 27473 8% 29718 7% 45% 

FR-France 22753 10% 33462 10% 32161 7% 29% 
IT-Italy 43911 19% 61589 19% 61282 14% 28% 

UK-United Kingdom 13411 6% 15340 5% 17469 4% 23% 
5 countries 195648 84% 277844 84% 323262 75%  

EU-EUROPE 232603  328890  433303  46% 
Table 2. Stock of robots adoption in the top European regions  
 
 
   Region Average Stock 2013-2015 
1 DE DE11 Stuttgart 10160.64 
2 IT ITC4 Lombardia 9003.558 
3 DE DE21 Oberbayern 6800.09 
4 DE DEA1 Düsseldorf 6303.31 
5 DE DEG0 Thüringen 5698.031 
6 DE DEA5 Arnsberg 5526.81 
7 DE DE12 Karlsruhe 5477.54 
8 IT ITC1 Piemonte 5084.788 
9 DE DED2 Dresden 4922.9 
10 DE DEA2 Köln 4786.401 
11 IT ITH5 Emilia-Romagna 4466.516 
12 IT ITH3 Veneto 4455.11 
13 ES ES51 Cataluña 4360.845 
14 FR FR10 Île de France 4341.187 
15 DE DE71 Darmstadt 4237.546 
16 DE DE13 Freiburg 4130.455 
17 DE DE14 Tübingen 3940.298 
18 DE DE94 Weser-Ems 3690.593 
19 DE DE27 Schwaben 3386.578 
20 FR FR71 Rhône-Alpes 3168.091 
Tot 20 regions 49% 103941.3 
Tor 137 regions 100% 213765.4 
 

 

Robot density at the country level shows a typically negative relation between stock and growth 

which seems to suggest a possible long-term convergence in the adoption of automation 

technologies. Plotting robots for all 137 regions considered (Figure 1) confirms the negative 

relation between stock and growth and strong country effect. British regions are very 

concentrated in low-stock and low-growth area of the plot although Scotland has the two regions 

with the highest growth rate in the sample. Spanish regions are very dispersed: Navarra has very 

good stock and a strong growth rate while in the Canarias both indicators are low. Italy is 

relatively well equipped with robots but on the whole shows decreasing growth rates of adoption. 
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Germany has got the highest within-country heterogeneity. Some German regions like Dresden 

and Thüringen combine a good level of robot penetration with a sustained growth. Other regions 

like Stuttgart and Chemnitz are endowed with a very high stock but have not grown between the 

two periods. City-states like Berlin and Hamburg started from a very low stock and shows a 

moderate-high growth rate of robots. The within- and between country heterogeneity is more 

clearly visible in Figures 2 and Figures 3, which respectively plot the average robot stock and 

average growth between Period I and Period II in the different regions. These maps suggest two 

general results. First, despite heavy within-country disparities, regional economies are still 

heavily affected by national policies, which apply to both more- and less economically advanced 

regions. Robot stock is quite remarkable in the whole Germany and, to a lesser extent in some 

Italian regions, while growth rates tend to be higher again in Germany and in some Spanish and 

British regions, while very low in France and Italy. Second, we can easily group areas in 4 

classes. South-of-Germany and Northern Italy are the leaders in robot adoption, however while 

the former is staying-ahead, the latter is falling behind. There is a group of regions in Scotland, 

Spain and above all Eastern Germany which is catching-up, while French regions are staying-

behind. Despite some converging trends there is a strong regional variation to be addressed. In 

the remainder of the paper we link industry profile of regions with their performance in the 

adoption of robots. 

 

Figure 1. Robot adoption in selected European regions: average stock (Period II) and average 

growth rate between Period I and II  
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Source: author’s estimates on IFR data (2017) 
Figure 2a and 2b. Average robot stock in Period I and Period II in selected European Regions 
per 100k inhabitants 
 

 

Source: author’s estimates on IFR data (2017) 
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Figure 3. Robot Growth rate in selected European Regions (average growth per 100k inhabitants 
between Period I and II) 
 

   

Source: author’s estimates on IFR data (2017) 
 

3. Comparative approaches to the analysis of industry mix  

The paper compares two different approaches to measure industrial mix at the regional level: 1) 

RV and UV indicators are used to define similarity (diversity) across industries in the same 

region, while 2) pattern recognition based on SOM depicts similarity across regions considering 

all their industries. Following Caragliu et al., 2016 we use the available employment data to 

calculate RV and UV:  

 𝑈𝑉௥ =  ∑ 𝑃௚ logଶ
ଵ

௉೒

ீ
௚ୀଵ         [2] 

with Pg = share of employment in the 1-digit sector g and  

 

𝑅𝑉௥ =  ∑ 𝑃௚𝐻௚
ீ
௚ୀଵ  , where   𝐻௚ =  ∑  

𝑃௜
𝑃௚

൘ logଶ
ଵ

௉೔
௉೒

൘
      [3] 

with Pi = share of employment in the 2-digit sector i. 

 

RV is the weighted sum of the entropy indicator at the two-digit level within each one-digit 

class, while UV is the entropy of one-digit distribution. Our measure of RV assumes that two 

industries are more related to each other when both industries share the same one-digit class. For 

example, the “Manufacture of machinery and equipment industry” (NACE 2011: C28) is more 
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related to the “Manufacture of electrical equipment industry” (NACE 2011: C27) than to 

“Construction of buildings” industry (NACE 2011: F41). By contrast, UV measures the extent to 

which a region is diversified in different one-digit industries. From a dynamic point view, 

changes in the RV and UV are determined by variations in the total number of industries and/or 

in the relative weight of each industry. 

Comparing these two measures respectively in the Period I and II we observe that the UV has 

grown substantially and has particularly concentrated in a few regions (Figure 4a and 4b). 

While in Period I was quite uniformly distributed over European regions, in Period II we observe 

very high values in the UK and in the major metropolitan areas including all capital cities, but 

also in some Mediterranean regions of Italy, France and Spain. Although also RV has increased 

over time, the map of regions seems more stable and shows a lower variance of values (Figure 

5a and 5b). The upper range values are particularly concentrated in around the Alps, namely in 

Southern Germany, Northern and Central Italy, and to a lesser extend in a few regions in Eastern 

Spain, Northern France and Central England. 

 

 
 
Figure 4a and 4b. Unrelated Variety in Period I (left) and II (right) 
 

  
 
Source: Authors’ estimates on EUROSTAT SBS  
 
Figure 5a and 5b. Related Variety in Period I (left) and II (right) 
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Source: Authors’ estimates on EUROSTAT SBS  
 
It is relevant to mention that UV and RV show a moderate, but significant negative correlation 

(Table 3), which is not explained by a robust theoretical hypothesis. Depending strongly on pre-

given industrial classification tiers, RV is positively correlated with most of manufacturing 

sectors (section D in the NACE classification) while UV is mainly growing when advanced 

services grow. What can RV and UV respectively suggest about robot adoption? Not 

surprisingly, both measures are correlated to robot stock, although it is totally obscure the 

relationship with robot growth rate. Following the above bias, these indicators simply confirm 

that more manufacturing in a region attracts more robots, but nothing can be understood about 

the industry mix and the differences in robots between regions with same RV or UV.  

Table 3. Correlation table: RV, UV and Robots 
  
 
 RV13_15 UV13_15 RV01_02 UV01_02 rob stock 

Period II 
RV13_15      
UV13_15 -0.38****     
RV01_02  0.84**** -0.45****    
UV01_02 -0.37****  0.72**** -0.42****   
rob stock Period II  0.66**** -0.62****  0.55**** -0.55****  
rob growth Period I-II -0.08 0.03 -0.28***  -0.01 0.1 
 
p < .0001,****, < .001, *** , < .01, **  ", < .05, *    
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In the light of this unpromising approach, we offer a second method to detect differences in 

industrial mix. The following analysis based on SOM has two major advantages. First, it 

captures differences in RV and UV by combining the two indicators and freeing them from their 

dependence on tiers of industrial classification. Second, it is more effective than a mere regional 

classification to suggest which different industry profiles explain a different value of RV and UV 

and, therefore, allows for a sector specific analysis of patterns. 

The SOM represents a nonlinear transformation from a continuous input space to a spatially 

discrete output space: the feature map preserves the topological relationship that exists in the 

input space, but with a lower dimensionality. These dimensionality reduction techniques are also 

used to reduce two undesired characteristics in data namely noise (variance) and redundancy 

(highly correlated variables). The key element of a SOM network is the Kohonen Layer (KL), 

which is made up of spatially ordered neurons named Processing Elements (PEs), and evolves 

through a competitive learning process up to assign a representative industry pattern to each PE. 

The PE whose weight vector is most similar to the input is called the best matching unit (BMU). 

The weights Wv of the BMU and neurons close to it in the SOM grid (neighbourhood) are 

adjusted at the iteration s according to the following formula: 

 

𝑊௩(𝑠 + 1) = 𝑊௩(𝑠) + 𝜗 (𝑢, 𝑣, 𝑠) 𝛼 (𝑠) (𝐷(𝑡) −  𝑊௩(𝑠),     [4] 

 

where 𝜗 is neighbourhood function, 𝛼 is learning restraint due to iteration and  𝐷(𝑡) is the target 

input data vector. 

The dataset to train the SOM algorithm is obtained from a matrix X, whose entries xi,j are i-

samples (regions) and j-features (industries). Consistently with the available data, each scalar in 

our matrix Xi,j measures the number of employees in each i= 1…n of the 137 European regions 

(NUTS 2) per  j = 1…m  industries (2-digits). Although it would be possible to show the 

temporal evolution of the industry mix before and after the 2008 financial crisis, for the specific 

purpose of this paper we only run SOM in the Period I.  

According to equation [4], we trained a feature map (or SOM grid) composed of 9 different 

patterns (3*3 PEs)7 which have clustered all the 137 European regions (Figures 6). When 

plotting these patterns on a geographical map (Figures 7) we are not surprised to find a 

geographical contiguity of regions within the same pattern. Before any specific consideration on 

the nature of the patterns, this result highlights the effectiveness of the SOM approach to track 

 
7 The size of the final feature map is determined by a trade-off between compressing information into few patterns 
(clustering) and topological accuracy: larger map sizes result in more detailed patterns; smaller map sizes result in 
more general patterns.  
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the uneven, yet not random diffusion of industrial specialization since topological proximity on 

SOM grid mirrors spatial agglomeration of regional economic structures. Furthermore, the SOM 

approach allows an ex-post exploration of the factors that led to these patterns by analysing the 

relative importance of each industry8. 

Figure 6. Patterns of regions and Unified Distance Matrix in Period I  

  

 
 
 
Figure 7. Regions and industrial patterns in Period I 

 

 

 

 

 

 
 

 
8 For each industry j the SOM releases a codebook, i.e. the convergence value between 0 and 1 of the weight Wv, by 
which the SOM algorithm has reconstructed the relationships between the given industry and all the others. Figure 
A1 in the Appendix shows the relative importance of some features (industries) for each pattern. In order to select 
only those features which are relevant for each pattern, first, we extract those industries whose codebook variance is 
higher than the average value and, second, we choose the outlier values (see Table A2 in the Appendix) 
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In the following paragraphs we present a taxonomy of Europeans regions and some key traits of 

each pattern identified in Period I (Table 4). Beginning from the top-right of the feature map 

(Figure 6) we find macro-regional patterns based on different manufacturing mix (7, and 8). 

Predominately concentrated in Southern Germany, pattern 8 is built on a variety of purely 

manufacturing sectors (e.g. medical and electrical equipment, machineries, motor vehicles), 

while pattern 9 includes Northern Italy and North-West of France and is more specialized on 

labour intensive manufacturing like food and leather transformation.  

On the top-left side of the feature map we find two different urban-based models: pattern 4 

(capital cities and mostly South of England regions) thrives on pure professional and business 

services, while pattern 7 (Paris and the major German cities) has combined telecommunication 

with some strategic manufacturing, namely chemicals and motor vehicles. The bottom-right of 

the SOM grid identifies Mediterranean and Atlantic regions (pattern 6) and South of Spain 

(pattern 3). They are both characterized by low value added and local industries, mainly 

construction, mining and -particularly for pattern 6 the agri-food value chain. 

Both patterns in the bottom-left of the feature map (1 and 2) are tourism-based economies, but 

only the latter is specialised and covers the most popular European destinations from the 

Canarias Islands to Alps, while the latter include regions in marginal tourism areas, mostly in the 

rural UK. Eventually, in the middle of the SOM grid we find pattern 5 (East-Germany and 

English midlands) which balances somehow divergent urban, rural and manufacturing features 

and presents a specific sectoral strength in retail and utilities.  

To compare the results obtained from the two methods of measurement of industrial mix and 

assess their relative strengths, we plot UV and RV on the SOM map (Figure 8). UV is high in 

regions specialized in sectors based on local resources such as tourism (pattern 1 and 2). This 

does not come with a surprise since the random distribution of natural resources is independent 

by the specialization in other sectors. It is less obvious that UV does not characterize large cities 

and capitals (pattern 7 and 4), in which, based on Jacob’s externalities, should exhibit a large 

unrelatedness. On the contrary, RV is particularly high in the right-upper side of the feature map, 

namely the two manufacturing-oriented patterns in Germany, Italy and France (8 and 9). 
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Table 4. A taxonomy of European Regions in Period I 
 

SOM 
2001-07 

MACRO- 
REGIONS 

SOM DISTINCTIVE INDUSTRIES SOM OUTLIERS INDUSTRY MIX 

1 Rural UK Hotels and restaurants; Retail - 
Mass Services, Small tourism;  

Low Variety 

2 
Advanced 

tourism 
regions 

Construction; Hotels and restaurants 
Hotels and restaurants, Manufacture of radio, 

television and communication equipment Water 
transport 

Pure tourism-related activities 

3 Spanish core Construction 
Computer and related activities Construction; 

Manufacture of radio, television and communication 
equipment and apparatus; Mining of metal ores 

Mining; Construction 

4 Capital Cities Computer programming; Other Businesses 
Activities auxiliary to financial intermediation 
Computer and related activities; Other business 

activities; Research and development 

KIBS, no manufacturing; 
Very high Variety 

5 
Eastern 

Germany and 
England 

Retail Collection, purification and distribution of water 
Mass Services;  

No specialization 

6 
Mediterranean 

& Atlantic 
regions 

Food and beverage; Construction of buildings 
Mining of metal ores 

Mining of uranium and thorium ores 
Food and Beverage;  

Construction 

7 
German cities, 

Paris 

Post and Telecommunications; Other Businesses 
Computer programming; Manufacture of 

chemicals and chemical products; Manufacture of 
motor vehicles 

Computer and related activities; Manufacture of 
chemicals and chemical products 

Post and telecommunications; Supporting and 
auxiliary transport activities; activities of travel 

agencies 

KIBS; Specialized manufacturing; 
Very high Variety 

8 
Southern 
German 

manufacturing 

Manufacture of fabricated metal products; 
Manufacture of electrical equipment 

Manufacture of machinery and equipment; 
Manufacture of motor vehicles 

Manufacture of basic metals 
Manufacture of electrical machinery and 

apparatus; Manufacture of machinery and 
equipment; 

Manufacture of medical, precision and optical 
instruments, watches and clocks; Manufacture of 

motor vehicles, trailers and semi-trailers 

Pure Manufacturing 

9 
French & 

Italian 
Manufacturing 

Manufacture of food products; Manufacture of 
fabricated metal products; Manufacture of 

machinery and equipment 

Manufacture of fabricated metal products; 
Tanning and dressing of leather; manufacture of 

luggage, handbags, saddlery, harness and footwear 
Labour Intensive Manufacturing 
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Figure 8. Distribution of Unrelated and Related Variety on the SOM map (Period I) 
 

       

 

From a methodological perspective, the distribution of UV and RV over the SOM map suggests 

that although these indicators tend to mirror different geographies, they are not totally specular 

and can even overlap. In fact, both RV and UV can be very high (or very low) in relatively 

different combinations of industrial mix: not all cities have a strong UV and not all 

manufacturing regions have a strong RV; in other words, the synthetic nature of these indexes 

may harm the analysis. We have for instance a very low UV in pattern 7 (urban), pattern 9 

(manufacturing) and pattern 3 (construction). On this basis, nothing can be said about the role of 

UR or RV as antecedent of industrial development, as in this case, robot adoption. Therefore, in 

order to overcome the limits of the overly synthetic nature of UR and RV, we show how the 

SOM classification can be interpreted to reveal the organization of industries at the regional 

level. Finally, we adopt the SOM classification to explore the industrial antecedents of robot 

adoption.  

 

4. The diffusion of Industrial Robots in European macro-regions: absorptive capacity and 

economic performance 

After classifying European regions in patterns of macro-regions and exploring their difference in 

term of variety of their industrial composition, we can eventually evaluate the extent to which the 

industry mix captured by the SOM is an antecedent to the penetration of industrial robots. Robot 

stock and robot growth is therefore associated respectively with measures of innovation capacity 

and indicators of economic performance over time.  

The capacity of regions to adopt robots might be affected by their knowledge and technological 

characteristics. The existing literature argue that human capital (Benhabib & Spiegel, 1994; 

Nelson & Phelps, 1966) and R&D investments (Cohen and Levinthal, 1990; Griffith et al., 2004) 

are important channels in facilitating technology adoption at firm and aggregated level. To 

measure the  regions’ absorptive capacity to adopt robots, we use three variables: the shares of 
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high skilled people, i.e. the shares of population aged 25-64 with a tertiary education9 (High 

skilled share); the R&D per capita expenditures (Euros per thousand inhabitants) (R&D per 

capita); the number of EPO patents per capita10 (patents per thousand inhabitants) (Patent per 

capita).11  

Table 5 compares the yearly average values in the period I of these three variables with yearly 

average values of robot stocks (Robot stock) in the period II across the different SOM patterns. It 

emerges that the endowment of a high skilled capital is not crucial in explaining the robot stock 

of regions. Indeed, regions with the higher shares of high skilled workers in period I, i.e. patterns 

1 and 4, are also the regions with the lower stock of robots in period II (Robot stock). Moreover, 

although pattern 8 (German core) holds the highest stock of robots, it is also among those with 

the lower share of high skilled workers.12 As a further confirmation, we observe a non-

statistically significant correlation (r= -0.08, p-value<0.38) between regional stock of robots and 

regional average share of high skilled workers. A similar picture emerges looking at the data on 

R&D per capita, i.e. patterns with the higher (lower) robot stocks are not necessarily those with 

the higher (lower) levels of R&D per capita and vice-versa (see, again, patterns 1 and 4 versus 

pattern 8),13 and the correlation between the two variables is non-statistically significant. 

However, we observe a strong positive and significant correlation between robots and patents per 

capita (r=0.60, p-value<0.00), possibly explained by a higher concentration of patents in German 

regions.14 These descriptive statistics highlight a non-linear relationship between the knowledge 

or technological level and the robot stock of regions and, more in general, support the mismatch 

between R&D capabilities and regional industrial structure (David et al., 2009). This non-

linearity may be caused by several factors, which may vary between regions. Robot adoption 

may be, for example, affected by the local strength of labour unions, by government policies 

(Baldwin and Lin, 2002) and by local managerial resources (Graetz and Michaels, 2018). 

 
9 Tertiary education is defined according to the International Standard Classification of Education (ISCED) levels 5, 
6, 7 and 8 (short-cycle tertiary education, bachelor's or equivalent level, master's or equivalent level, doctoral or 
equivalent level). 
10 Patents are assigned to regions using the inventors’ addresses (see e.g.: Cappelli and Montobbio, 2016). 
11 To construct these variables, we use EUROSTAT REGIO data, with the exception of patent data for which we 
rely on ICRIOS-PATSTAT database on EPO patent applications (Coffano and Tarasconi, 2014). 
12 To give an example, some UK regions in pattern 4 like Berkshire, Buckinghamshire and Oxfordshire (UKJ1) and 
Inner London (UKI1) show a high share of high-skilled (last quantile of the distribution) and a low stock of robots 
(last quintile) and, on the opposite, some German regions in pattern 8 like Oberpfalz (DE23) and Saarland (DEC0) 
show a low of high-skilled (first quintile) and a high share of stock of robots (last quintile). 
13 Regions with a low level of R&D per capita are mainly located in South Italy and South-West Spain, while 
regions with a high level of R&D per capita are mainly located in North Italy, South Germany, South France and 
South UK. 
14 If we exclude the German regions from the sample, the correlation drastically decreases and becomes not-
significant (r=0.06; p-value=0.58). 
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We also consider the relationships between economic performance and robot adoption. The 

economic performance of regions are measured by the following three variables: growth rates (in 

percentage) between the yearly average values in the period I and the yearly average values in 

the period II15; the GDP per capita growth (Euros per thousand inhabitants) the employment rate 

of the age group 15-64 (Employment ); the unemployment rate (of the age group 15-74, as 

percentage) (Unemployment rate). Table 5 compares the growth rates of these three variables 

with the growth rates of robot stock (Robot stock growth) across the different SOM patterns. 

Again, we do not observe a univocal relation between robot stock growth and GDP per capita 

growth16 (see for example, pattern 3 vs pattern 8) and the same picture emerges from the data on 

employment and unemployment rate growth. Interestingly, the pattern with the lowest robot 

stock growth (pattern 9) does not show the lowest employment rate growth and/or the highest 

unemployment rate growth, confirming that, at least at the descriptive level, there is not a clear 

negative relationship between robot adoption and employment. On the contrary, if we compare 

robot diffusion in the highly successful manufacturing core respectively in Italy and Germany, 

we can appreciate that while Southern Germany (pattern 8) associates a positive growth in robots 

with a good performance in the labour market, Northern Italy (pattern 9) exhibits both a poor 

performance of the labour market and a decline in the diffusion of industrial robots. In general, 

regional robot stock growth rates are non-significantly correlated with regional employment 

growth rates (r= 0.04, p-value=0.65) and with regional unemployment growth rates (r= 0.05, p-

value=0.57). 

 

 
15 These variables are constructed using EUROSTAT REGIO data. 
16 The correlation between regional robot stock and regional GDP per capita is 0.24 (p-value=0.00). 
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Table 5. Knowledge and innovation indicators, economic performance indicators and robot 
adoption - mean values by SOM patterns 
 
 

SOM 
(Period I) 

Antecedents of Robots Adoption Effects of Robots Adoption 

High-skilled 
share 

(Period I) 

R&D per 
capita 

(Period I) 

Patent per 
capita (Period 

I) 

Robot 
stock 

(Period II) 

GDP per 
capita growth 
% (Period I – 

II) 

Employment 
growth% 

(Period I – II) 

Unemployment 
growth % 

(Period I-II)  

Robot growth % 
(Period I-II) 

1 27.36 0.23 0.06 14.33 1.87 2.15 22.59 64.58 

2 17.20 0.12 0.04 20.10 -1.11 -0.50 98.10 164.26 

3 23.80 0.10 0.01 18.45 -2.36 -8.46 137.00 159.35 

4 32.70 0.66 0.15 14.78 3.19 1.81 21.99 110.91 

5 24.52 0.31 0.11 49.89 7.43 7.27 -6.12 76.61 

6 18.97 0.23 0.05 36.71 -2.90 -2.79 59.50 45.01 

7 24.96 0.58 0.31 67.59 7.32 8.26 -28.93 66.37 

8 21.83 0.35 0.34 135.14 13.30 9.97 -46.13 50.00 

9 17.74 0.30 0.11 57.61 -3.75 -1.46 65.84 -3.47 
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The analysis based on pattern recognition allows to prompt some relevant implication also for 

innovation policies. First, from an industrial perspective, although the distribution of robots 

initially rewarded the strictly manufacturing regions, a convergence process has affected many 

regions with heterogenous industrial mix including business services, tourism and construction. 

Second, from a geographical perspective, the process of progressive adoption of advance 

manufacturing, on the one hand, follows macro-regional logics, on the other, still seems to be 

influenced by national fixed effects. Both of these aspects impose reconsider the scale of 

regional innovation systems and to implement smart specialization policies that do not focus 

only on leading knowledge regions, but also include diversified urban centres and intermediate 

and smaller urban-rural regions (Mcxann and Ortega-Argiles, 2015). 

 

5. Conclusion 

Building on the Industry 4.0 paradigm, this paper describes the regional diffusion of industrial 

robots in the five largest European economies and explores the industrial antecedents of 

advanced manufacturing associated with robot adoption. Not surprisingly, the regional map of 

robots penetration in Europe shows a stunning concentration of stock in the core manufacturing 

regions of Germany and Italy, while positive growth rates reward only Germany and some more 

peripherical European regions, thou excluding the traditional manufacturing clusters in Italy, 

France and UK.  

Although there is a consensus on the intrinsic relationship between regional industrial mix and 

economic performances, economists and policy makers debate on the degree of industrial 

relatedness that can generate higher growth rates. Even less explored is the relationship between 

industry mix and innovation for example in the form of propensity to shift towards industry 4.0.  

We test a new measure of industrial relatedness based on unsupervised neural networks (SOM) 

and we compare it with the widely adopted measure of related and unrelated variety proposed by 

Frenken et al. (2007). While the traditional approach behind industrial relatedness is based on the 

concentration of employment over a top-down classification of industries, the underlying 

principle of SOM algorithm is similarity across employment vectors of each region. In fact, 

SOM patterns are not biased by a pre-given hierarchical classification (e.g. NACE) since each 

region in the input is defined by its overall distribution of employment irrespective of the digits 

considered. We claim that our approach allows a full exploration of regional industrial 

interdependence and not simply the analysis of a higher or lower concentration of one industry 

compared to the others. 
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In the pre-crisis European countries considered we are able to identify nine different macro-

regional patterns. Three of them are based on different combination of manufacturing industries 

and are located respectively in Southern Germany; Centre-Northern Italy and North-Eastern 

France; Eastern Germany and English Midlands. Two metropolitan patterns focus respectively 

on advanced services and on a mix of services and strategic manufacturing. Two further patterns 

covering most of Mediterranean and Atlantic regions share a common strength in the 

construction industry and the agri-food value chain. The remaining two patterns rely respectively 

on a more- and less advanced form of tourism industries. 

The merging of the maps of robots with the industrial patterns highlights some major finding. 

The only macro-region very well-equipped with advanced automation and on a pattern of growth 

is Southern Germany with its variety of integrated manufacturing industries. Northern Italy had 

accumulated a good robot stock, but shows a declining growth rate, while manufacturing French 

regions appear to lack stock and not to increasing the existing levels. We find three industrial 

patterns on a good path of robot growth: the manufacturing regions in the English Midlands and 

Eastern Germany, the capital cities-regions and some sparse regions in Spain, Italy and Scotland, 

which yet started from a very low provision of robots. 

Innovation indicators and regional economic performances provide some further insights on the 

relationships between industrial patterns and robot penetration. We do not find a straightforward 

association between robot adoption and knowledge capital and/or technological levels of regions. 

For example, high endowment of human capital and R&D do not necessarily characterize 

regions rich robots nor those on the path of a rapid adoption, while regions high in stock are 

associated with higher patenting capacity. 

Secondly, we find that a large manufacturing base is undoubtedly an advantage for substantial 

adoption of robot, but it is not a sufficient condition, nor a necessary one as proven by 

counterexamples. Preliminary evidence suggests exploring further the idea, that if any, there is a 

positive correlation between employment growth and development of advanced manufacturing, 

which is pushing many underperforming regions to adopt robots to a faster pace. However, any 

empirical exercise should take into account the idiosyncratic nature of regional systems, which 

do not represent simply different starting conditions, but they hide profound differences in the 

mechanisms at work.   
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Appendix A  
 
Data crosswalk 
IFR uses industry codes in accordance with ISIC Rev. 4., while EUROSTAT SBS uses NACE 
Rev. 1.1 from 1995 to 2007 and NACE Rev.2 beginning from 2008. We first convert the NACE 
Rev. 1.1 data to NACE Rev. 2 using the approximate correspondence table provided by OECD 
(2012). Then, to match the EUROSTAT SBS and IFR data we use a conversion matrix 
constructed using the two-digit level of the NACE Rev. 2 and ISIC Rev. 4 industry 
classifications (at two-digit level, these two classifications coincide). For some of the 18 
industries, IFR provides data at a more disaggregated level than two-digit. However, for these 
industries, EUROSTAT SBS only provides data at two-digit level. 
 
Table A1. Correspondence table - NB: we use 15 industries (first column) and the last three 
columns show the correspondence between these 15 industries and the other industries 
classifications  
 
CGGN 
CODE 

Description ISIC Rev. 4 code (IFR) NACE 
Rev. 1 
(SBS) 

NACE Rev.2 
(SBS) 

1 Mining and quarrying C-Mining and quarrying C B 
2 Food and beverages 10-12-Food and beverages DA15 C10+C11+C

12 
3 Textiles 13-15-Textiles DB+DC C13+C14+C

15 
4 Wood and furniture 16-Wood and furniture DD C16 
5 Paper 17-18-Paper DE C17+C18 
6 Plastic and chemical 

products 
19-22-Plastic and chemical 
products 

DF+DG+
DH 

C19+C20+C
21+C22 

7 Glass, ceramics, stone, 
mineral products (non-
auto 

23-Glass, ceramics, stone, mineral 
products (non-auto 

DI C23 

8 Metal 24-28-Metal DJ+DK C24+C25+C
28 

9 Electrical/electronics 26-27-Electrical/electronics DL C26+C27 
10 Automotive 29-Automotive DM34 C29 
11 Other vehicles 30-Other vehicles DM35 C30 
12 All other 

manufacturing 
branches 

91-All other manufacturing 
branches 

DN C31+C32+C
33 

13 Electricity, gas, water 
supply 

E-Electricity, gas, water supply E D+E 

14 Construction F-Construction F F 
15 Services  P-Education/ research/ 

development + 90-All other non-
manufacturing branches 

G+H+I+K G+H+I+J+L
+M+N 
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Table A2. Cookbook values for featured industries whose SOM cookbook variance is higher 

than the avarage 

 
 
Nace code NACE description 1 2 3 4 5 6 7 8 9 

DA15 Manufacture of food products and beverages 0.031 0.032 0.035 0.013 0.032 0.048 0.025 0.024 0.044 
DG24 Manufacture of chemicals and chemical products 0.012 0.005 0.007 0.014 0.013 0.010 0.036 0.016 0.019 
DJ28 Manufacture of fabricated metal products, except 

machinery and equipment 
0.020 0.018 0.027 0.012 0.030 0.032 0.022 0.047 0.056 

DK29 Manufacture of machinery and equipment n.e.c. 0.017 0.013 0.011 0.015 0.031 0.018 0.033 0.077 0.042 
DL31 Manufacture of electrical machinery and 

apparatus n.e.c. 
0.009 0.003 0.004 0.008 0.012 0.010 0.014 0.035 0.016 

DM34 Manufacture of motor vehicles, trailers and semi-
trailers 

0.009 0.003 0.006 0.007 0.015 0.019 0.037 0.053 0.019 

F45 Construction 0.091 0.180 0.301 0.074 0.074 0.156 0.042 0.042 0.116 
G52 Retail trade, except of motor vehicles and 

motorcycles; repair of personal and household 
goods 

0.196 0.143 0.131 0.158 0.173 0.149 0.122 0.141 0.113 

H55 Hotels and restaurants 0.131 0.187 0.083 0.094 0.085 0.072 0.060 0.056 0.057 
I64 Post and telecommunications 0.023 0.012 0.004 0.028 0.019 0.013 0.049 0.014 0.010 
K72 Computer and related activities 0.017 0.015 0.004 0.041 0.017 0.013 0.025 0.017 0.014 
K74 Other business activities 0.137 0.098 0.097 0.220 0.149 0.117 0.199 0.137 0.112 
 
  

Electronic copy available at: https://ssrn.com/abstract=3655140



 

 
 

33

Figure A1.  SOM feature map for 4 industries  
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