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We study the quaternionic Calabi–Yau problem in HyperKähler manifolds with torsion

geometry, introduced by Alesker and Verbitsky in [5], on eight-dimensional two-step

nilmanifolds M with an Abelian hypercomplex structure. We show that on these

manifolds the quaternionic Monge–Ampère equation can always be solved for any data

that are invariant under the action of a three-torus.

1 Introduction

Since Yau proved the Calabi–Yau conjecture in [28], other Calabi–Yau-type problems have

been introduced in various geometric contexts.

In the present paper, we focus on a generalization of the Calabi–Yau problem to

HyperKähler manifolds with torsion (HKT) geometry, which was introduced by Alesker

and Verbitsky in [5].

HKTs were introduced by Howe and Papadopoulos in [18] in the framework

known as ‘’geometries with torsion.” In a nutshell, they can be thought of as hyper-

complex manifolds admitting a special compatible Riemannian metric.
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2 G. Gentili and L. Vezzoni

A hypercomplex manifold is a 4n-dimensional real manifold M equipped with a

triple of complex structures J1, J2, J3 satisfying the quaternionic relations

J1J2 = −J2J1 = J3 . (1)

If g is a Riemannian metric on M that is compatible with J1, J2, J3, then

(M, J1, J2, J3, g) is usually called a hyperHermitian manifold. According to the classical

definition, a hyperHermitian manifold (M, J1, J2, J3, g) is said HKT, if there exists an

affine connection ∇ on M, which preserves the hyperHermitian structure and has totally

skew-symmetric torsion. If such ∇ exists, it is necessarily unique. The existence of ∇ can

be characterized in terms of the differential equation

∂� = 0 ,

where ∂ is taken with respect to J1 ,

� = ωJ2
+ iωJ3

,

and

ωJr
(·, ·) = g(Jr·, ·) .

In this context � is called the HKT form of the HKT structure, and one may think

of it as the analogue of the fundamental form in Kähler geometry. The hypercomplex

condition (1) implies that � is of type (2, 0) with respect to J1, and it satisfies

�(J2·, J2·) = �̄

and

�(X, J2X) > 0 for every nowhere vanishing real vector field X on M.

Moreover, � determines the metric g via the relation

g(X, Y) = Re �(X, J2Y) , for any real vector fields X, Y on M.

An HKT structure can then be defined alternatively, as a hypercomplex structure

together with an HKT form.
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HKT Calabi-Yau Equation on Tori Fibrations 3

In [5] the authors introduced the following Calabi–Yau-type problem in HKT

geometry. Let (M, J1, J2, J3, �) be a compact 4n-dimensional HKT manifold for which

the canonical bundle of (M, J1) is holomorphically trivial, and suppose F ∈ C∞(M) is a

function satisfying

∫
M

(eF − 1)�n ∧ �̄ = 0 , (2)

where � is a nonvanishing holomorphic (2n, 0)-form on (M, J1). The quaternionic

Calabi–Yau problem consists in finding an HKT form �̃ on (M, J1, J2, J3) such that

�̃n = eF�n . (3)

Just like the classical version, the quaternionic Calabi–Yau problem, too, can be

rewritten in the form of a Monge–Ampère equation. Indeed, results in [6] guarantee the

unknown HKT form �̃ can be written in terms of an HKT potential ϕ ∈ C∞(M) as follows

�̃ = � + ∂∂J2
ϕ .

Here ∂J2
is the so-called twisted Dolbeault operator

∂J2
= −J−1

2 ∂̄J2

and the complex structure J2 acts on k-forms α by

J2α(X1, . . . , Xk) = (−1)kα(J2X1, . . . , J2Xk) .

Equation (3) reads, in terms of ϕ and F,

(� + ∂∂J2
ϕ)n = eF�n . (4)

It has been conjectured in [5] that the above equation can always be solved

under assumption (2). The authors of the same paper propose the continuity method

as a natural approach to attack the problem, much in the same spirit of Yau’s proof of

the Calabi conjecture [28]. The hard part in this line of thought is to establish a priori

estimates. Alesker and Verbitsky [5] showed the solution is unique up to an additive

constant and proved a C0-estimate. The latter was later generalized by Alesker and

Shelukhin [3] and then by Sroka [19] in a more general setting. Alesker gave evidence
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4 G. Gentili and L. Vezzoni

for believing the conjecture in [2], where he proved that the quaternionic Monge–Ampère

equation has solutions if the manifold admits a flat hyperKähler metric compatible with

the underlying hypercomplex structure.

The research of the present paper moves from [10, 11, 15, 23, 24, 26], where it

is studied the symplectic Calabi-Yau conjecture [12, 27] on torus fibrations under some

symmetries on the data. In the same spirit, we study the quaternionic Monge–Ampère

equation on compact quotients of eight-dimensional nilpotent Lie groups endowed with

an Abelian HKT structure.

By a result of Dotti and Fino [13] the only non-Abelian eight-dimensional two-

step nilpotent Lie groups admitting an Abelian hypercomplex structure are

N1 = H1(2) × R
3 , N2 = H2(1) × R

2 , N3 = H3(1) × R ,

where Hi(n) denotes the real (i = 1), complex (i = 2), and quaternionic (i = 3) Heisenberg

group. Each Ni contains a canonical co-compact lattice �i, and the nilmanifold Mi =
�i\Ni, that is, the quotient of Ni by �i, inherits the structure of a principal T3-bundle

over a five-dimensional torus T5 and also an HKT structure (J1, J2, J3, g) (see section 2

for details). In view of [8] the nilmanifolds Mi are not Kählerian, since a compact

nilmanifold admits a Kähler metric if and only if it is a torus.

Moreover, the canonical bundle of (Mi, J1) is holomorphically trivial [7,Theorem

2.7] and Mi carries a left-invariant holomorphic volume form �. Hence, it is quite natural

to wonder whether the Alesker–Verbitsky conjecture might hold on these spaces.

Our main result is the following

Theorem 1.1 The quaternionic Monge–Ampère equation (4) on (Mi, J1, J2, J3, g) can be

solved for every T3-invariant map F ∈ C∞(Mi) satisfying (2).

Since we are assuming F is invariant under the action of the fibre T3, it can be

regarded as a smooth function on the base T5. Furthermore, condition (2) can be written

as ∫
T5

(eF − 1)dx1 · · · dx5 = 0 . (5)

By imposing the same invariance property on the HKT potential ϕ, we reduce the

quaternionic Monge–Ampère equation on (Mi, J1, J2, J3, g) to

(ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1) − ϕ2
15 − ϕ2

25 − ϕ2
35 − ϕ2

45 = eF , (6)
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HKT Calabi-Yau Equation on Tori Fibrations 5

where ϕrs denotes the second derivative of ϕ in the real coordinates xr, xs ∈ {x1, . . . , x5}
on T5. Then, we prove that equation (6) has a solution ϕ ∈ C∞(T5) whenever F satisfies

(5).

The strategy for proving Theorem 1 goes as follows: in section 3 we prove the C0-

estimate for our equation. Then in section 4 we deduce an a priori C0-estimate for the

Laplacian of a solution to our equation, and in section 5 we achieve the C2,α-estimate by

applying a general result of Alesker [2]. Eventually, we complete the proof in section 6

by applying the continuity method.

2 Preliminaries

Let G be an eight-dimensional Lie group with a left-invariant hypercomplex structure

(J1, J2, J3) (every complex structure Ji is left-invariant). Assume that J1 is Abelian,

meaning

[J1X, J1Y] = [X, Y], for every X, Y ∈ g ,

where g is the Lie algebra of G. Recall that this is equivalent to requiring that the

Lie algebra g1,0 of left-invariant vector fields of type (1, 0) on (G, J1) is Abelian. It also

implies that any left-invariant (p, 0)-form on (G, J1) is ∂-closed. If g is a left-invariant

Riemannian metric on G compatible with (J1, J2, J3), the hyperHermitian structure

(J1, J2, J3, g) is HKT because the corresponding form � is ∂-closed.

As we mentioned in the introduction, by [13] the only eight-dimensional nilpo-

tent, non-Abelian, Lie groups carrying a left-invariant HKT structure (J1, J2, J3, g) such

that every Ji is Abelian are

N1 = H1(2) × R
3 , N2 = H2(1) × R

2 , N3 = H3(1) × R ,

where

H1(2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 x1 x4 y1

0 1 0 x3

0 0 1 x2

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, H2(1) =

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

1 x1 + ix2 y3 + iy2

0 1 x4 + ix3

0 0 1

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ ,

H3(1) =

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

1 q h − 1
2qq̄

0 1 −q̄

0 0 1

⎞
⎟⎟⎠ | q = x1 + ix4 + jx3 + kx2, h = iy3 + jy2 + ky1

⎫⎪⎪⎬
⎪⎪⎭ .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab004/6178972 by U

niversity of Torino user on 18 August 2021



6 G. Gentili and L. Vezzoni

Above, x1, . . . , x4, y1, y2, y3 ∈ R and i, j, k are the familiar units of the skew field of

quaternions, which are known to obey the relations

i2 = j2 = k2 = −1 , ij = −ji = k.

Note that each group Ni is diffeomorphic to R
8, and there are global coordinates

N1 = H1(2)x1,...,x4,y1 × R
3
y2,y3,x5 , N2 = H2(1)x1,...,x4,y2,y3 × R

2
y1,x5 ,

N3 = H3(1)x1,...,x4,y1,y2,y3 × Rx5 .

The Lie algebras of the Ni can be characterized in terms of left-invariant frames

{e1, . . . , e8} satisfying the following structure equations:

N1: [e1, e2] = −[e3, e4] = e5, and all other brackets vanish;

N2: [e1, e3] = [e2, e4] = e6, [e1, e4] = −[e2, e3] = e7, and all other brackets vanish;

N3: [e1, e2] = −[e3, e4] = e5, [e1, e3] = [e2, e4] = e6, [e1, e4] = −[e2, e3] = e7, and all

other brackets vanish.

In each case, using the frame {e1, . . . , e8} we can define the left-invariant HKT

structure as consisting of the standard metric

g =
8∑

r=1

er ⊗ er

and the three complex structures (J1, J2, J3) defined by

Jr(e1) = er+1 , Jr(e5) = er+5 , r = 1, 2, 3 .

Let us fix co-compact lattices

�1 = Z
3 ×

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

1 a c

0 1 bt

0 0 1

⎞
⎟⎟⎠ | a, b ∈ Z

2, c ∈ Z

⎫⎪⎪⎬
⎪⎪⎭ ⊂ N1 ;

�2 = Z
2 ×

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

1 z u

0 1 w

0 0 1

⎞
⎟⎟⎠ | u, z, w ∈ Z + iZ

⎫⎪⎪⎬
⎪⎪⎭ ⊂ N2 ;
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HKT Calabi-Yau Equation on Tori Fibrations 7

�3 = Z ×

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

1 q h − 1
2qq̄

0 1 −q̄

0 0 1

⎞
⎟⎟⎠ | q ∈ Z + iZ + jZ + kZ , h ∈ iZ + jZ + kZ

⎫⎪⎪⎬
⎪⎪⎭ ⊂

N3 .

For r = 1, 2, 3 we denote by Mr = �r\Nr the compact nilmanifold obtained by

quotienting Nr by �r. The left-invariant quadruple (J1, J2, J3, g) on Nr induces an HKT

structure on Mr. Let {Z1, . . . , Z4} indicate the left-invariant (1, 0)-frame Zr = e2r−1 −
iJ1(e2r−1), r = 1, . . . , 4, and denote by {ζ 1, . . . , ζ 4} the dual (1, 0)-coframe. Taking in

account

∂J2
= −J−1

2 ∂̄J2 ,

we deduce the following identity, holding for every smooth real map ϕ on Mr:

∂∂J2
ϕ =∂J2∂̄ϕ = ∂J2

(
Z̄1(ϕ)ζ̄ 1 + Z̄2(ϕ)ζ̄ 2 + Z̄3(ϕ)ζ̄ 3 + Z̄4(ϕ)ζ̄ 4

)
=∂

(
Z̄1(ϕ)ζ 2 − Z̄2(ϕ)ζ 1 + Z̄3(ϕ)ζ 4 − Z̄4(ϕ)ζ 3

)
= (Z1Z̄1(ϕ) + Z2Z̄2(ϕ)

)
ζ 12 + (

Z3Z̄2(ϕ) − Z1Z̄4(ϕ)
)
ζ 13 + (

Z4Z̄2(ϕ) + Z1Z̄3(ϕ)
)
ζ 14

− (
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

)
ζ 23 + (

Z2Z̄3(ϕ) − Z4Z̄1(ϕ)
)
ζ 24 + (

Z3Z̄3(ϕ) + Z4Z̄4(ϕ)
)
ζ 34 .

Since

� = 2(ζ 12 + ζ 34) ,

it follows that

(� + ∂∂J2
ϕ)2 = 2

(
Z1Z̄1(ϕ) + Z2Z̄2(ϕ) + 2

) (
Z3Z̄3(ϕ) + Z4Z̄4(ϕ) + 2

)
ζ 1234

− 2
(
Z3Z̄2(ϕ) − Z1Z̄4(ϕ)

) (
Z2Z̄3(ϕ) − Z4Z̄1(ϕ)

)
ζ 1234

− 2
(
Z4Z̄2(ϕ) + Z1Z̄3(ϕ)

) (
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

)
ζ 1234 ,
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8 G. Gentili and L. Vezzoni

in other words

(� + ∂∂J2
ϕ)2 = 2

((
Z1Z̄1(ϕ) + Z2Z̄2(ϕ) + 2

) (
Z3Z̄3(ϕ) + Z4Z̄4(ϕ) + 2

)
− (

Z3Z̄2(ϕ) − Z1Z̄4(ϕ)
) (

Z2Z̄3(ϕ) − Z4Z̄1(ϕ)
)

− (
Z4Z̄2(ϕ) + Z1Z̄3(ϕ)

) (
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

))
ζ 1234 . (7)

Furthermore, every manifold Mi is naturally a principal T3-bundle over T5 with

projection

π : Mi → T5
x1...x5 .

A smooth function on Mi is invariant under the action of the principal fibre T3 if and

only if it depends only on the five coordinates {x1, . . . , x5}. What is more, T3-invariant

functions on Mi are naturally identified with functions on T5. As mentioned in the

introduction, for a T3-invariant real map F condition (2) becomes (5). Further assuming

that the HKT potential ϕ is T3-invariant, equation (4) can be written as (6) on T5.

Remark. The Lie algebras of the two-step nilpotent Lie groups Ni all have four-

dimensional centre z = {e5, e6, e7, e8}. Therefore, the nilmanifolds Mi can be regarded

in a natural way as principal T4-bundles over a torus T4 if we project onto the first

four coordinates {x1, . . . , x4}. From this point of view, requiring all data to be invariant

under the action of the fibre T4 implies that the resulting equation can be written as the

following Poisson equation on the base T4

�ϕ = ϕ11 + ϕ22 + ϕ33 + ϕ44 = eF − 1 .

And this can be solved using standard techniques.

From this point on we shall focus on equation (6). In order to simplify the

notation let us set

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + 1 .

Lemma 2.1. If ϕ ∈ C2(T5) is a solution to (6), then A > 0, B > 0 and

0 < 2eF/2 ≤ �ϕ + 2 . (8)
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HKT Calabi-Yau Equation on Tori Fibrations 9

Proof. From equation (6) we infer AB ≥ eF > 0. Hence, A and B have the same sign. At

a point p0 where ϕ attains its minimum we must have ϕ55(p0) ≥ 0. This implies B > 0

and then A > 0. Finally, by using A2 + B2 ≥ 2AB we obtain

(�ϕ + 2)2 = (A + B)2 ≥ 4AB ≥ 4eF > 0 .

Taking the square root produces (8). �

Proposition 2.2. Equation (6) is elliptic. More precisely, if ϕ ∈ C2(T5) denotes a

solution to (6) then

Aξ2
5 + B(ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4 ) − 2

4∑
i=1

ϕi5ξiξ5 ≥ λ(ϕ)(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 + ξ2
5 ) (9)

for every (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ R
5, where

λ(ϕ) = 1

2

(
A + B −

√
(A + B)2 − 4eF

)
.

Proof. The principal symbol of the linearized equation at a solution ϕ equals

Aξ2
5 + B(ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4 ) − 2ϕ15ξ1ξ5 − 2ϕ25ξ2ξ5 − 2ϕ35ξ3ξ5 − 2ϕ45ξ4ξ5

and the corresponding matrix is

P(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B 0 0 0 −ϕ15

0 B 0 0 −ϕ25

0 0 B 0 −ϕ35

0 0 0 B −ϕ45

−ϕ15 −ϕ25 −ϕ35 −ϕ45 A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since, by (6),

det(P(ϕ) − λI) = (B − λ)3
(
(A − λ)(B − λ) − (ϕ2

15 + ϕ2
25 + ϕ2

35 + ϕ2
45)
)

= (B − λ)3
(
λ2 − (A + B)λ + eF

)
,
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10 G. Gentili and L. Vezzoni

the eigenvalues are λ = B and

λ± = 1

2

(
A + B ±

√
(A + B)2 − 4eF

)
.

Now (A + B)2 − 4eF ≥ (A − B)2 = ((A + B) − 2A)2 = ((A + B) − 2B)2, so that

0 < λ− ≤ B ≤ λ+ .

This proves the claim. �

3 C0-Estimate

Although the a priori C0-estimate for equation (6) can be deduced from the C0-estimate

of the quaternionic Monge–Ampère equation, as shown in [3, 5, 19], we shall prove this

fact using an argument that is specific to our setup.

Call BR(x0) the open ball in R
N centred at x0 and of radius R > 0. We need to

recall the following results:

Theorem 3.1. Weak Harnack Estimate, Theorem 8.18 in [16]

Consider 1 ≤ p < N/(N − 2), and q > N, where N > 2 is an integer. For every

R > 0, there exists a positive constant C = C(N, R, p, q) such that

r−N/p‖u‖Lp(B2r(x0)) ≤ C
(

inf
x∈Br(x0)

u(x) + r2−2N/q‖f ‖Lq/2(BR(x0))

)
,

for any x0 ∈ R
N , 0 < r < R/4, f ∈ C0(RN), and any u ∈ C2(RN) that is non-negative on

BR(x0) and such that �u(x) ≤ f (x) for all x ∈ BR(x0).

Theorem 3.2 Székelyhidi, [20]

Consider a map u ∈ C2(RN) and assume there exist a point x0 ∈ R
N and numbers

R > 0 and ε > 0, such that min|x−x0|≤R u(x) = u(x0), and

u(x0) + 2Rε ≤ min|x−x0|=R
u(x) .

Then,

εN ≤ 2N∣∣BR(0)
∣∣
∫

�ε

det(D2u) ,
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HKT Calabi-Yau Equation on Tori Fibrations 11

where

�ε =
{
x ∈ BR(x0) | u(y) ≥ u(x) + ∇u(x) · (y − x), ∀y ∈ BR(x0), |∇u(x)| <

ε

2

}
.

Now, let us identify functions on T5 with functions ϕ : R5 → R that are periodic

in each variable. Denote by Cn(T5) the Banach space of functions ϕ : T5 → R with Cn-

norm

‖ϕ‖Cn = max|I|≤n
sup
x∈R5

∣∣∣∂ Iϕ(x)

∣∣∣
where I = {i1, . . . , i5}. We are adopting the multi-index notation ∂ I = ∂

i1
1 ∂

i2
2 ∂

i3
3 ∂

i4
4 ∂

i5
5 with

|I| = i1 + i2 + i3 + i4 + i5. For α ∈ (0, 1) we also consider the Banach space Cn,α(T5) of

functions ϕ ∈ Cn(T5) with Hölder-continuous derivatives of order n:

‖ϕ‖Cn,α = max{‖ϕ‖Cn , |ϕ|Cn,α } < ∞ ,

where

|ϕ|Cn,α = max|I|=n
sup
x∈R3

sup
0<|h|≤1

∣∣∂ Iϕ(x + h) − ∂ Iϕ(x)
∣∣

|h|α .

Set

Ck∗(T5) =
{
ϕ ∈ Ck(T5) |

∫
K

ϕ = 0
}

where

K =
[
−1

2
,

1

2

]5

.

Theorem 3.4. Assume that F ∈ C0(T5) satisfies (5). Let ϕ ∈ C2∗(T5) be a solution to (6).

Then, there is a positive constant C0, depending on ‖F‖C0 only, such that

‖ϕ‖C0 ≤ C0 . (10)

Proof. Let x0 ∈ R
5 be a point where ϕ attains its minimum on K. Fix ε > 0 and define

u(x) = ϕ(x) − max
K

ϕ + 4ε
∣∣x − x0

∣∣2 . (11)
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12 G. Gentili and L. Vezzoni

Then,

u(x0) + ε = ϕ(x0) − max
K

ϕ + ε ≤ min|x−x0|=1/2
ϕ(x) − max

K
ϕ + ε = min|x−x0|=1/2

u(x)

and by Theorem 3, with R = 1/2, we have

ε5 ≤ 25∣∣∣B1/2(0)

∣∣∣
∫

�ε

det(D2u) . (12)

Differentiating (11) twice gives D2u = D2ϕ + 8εI. Hence, we may rewrite equation (6) as

(u11 + u22 + u33 + u44 − 32ε + 1)(u55 − 8ε + 1) − u2
15 − u2

25 − u2
35 − u2

45 = eF . (13)

Now, on �ε the function u is convex; therefore, the Hessian matrix D2u(x) is non-

negative for all x ∈ �ε. In particular uii(x) ≥ 0 for all i = 1, . . . , 5 and every x ∈ �ε.

In addition,

uii(x)u55(x) − u2
i5(x) ≥ 0, for all i = 1, . . . , 5, and every x ∈ �ε . (14)

Set ε = ε0 = 1/48, so that from (14) and (13) we obtain, for every x ∈ �ε0
,

�u(x)

5
≤ 5

6
(u11(x) + u22(x) + u33(x) + u44(x)) + 1

3
u55(x)

≤
(

u11(x) + u22(x) + u33(x) + u44(x) + 1

3

)(
u55(x) + 5

6

)
−

4∑
i=1

u2
i5(x) − 5

18

= eF(x) − 5

18
≤ emaxK F .

Using again the fact that D2u is non-negative on �ε, the arithmetic–geometric mean

inequality forces

det(D2u(x)) ≤
(

�u(x)

5

)5

≤ e5 maxK F , for every x ∈ �ε0
. (15)

At last, (12) and (15) imply

(
1

48

)5
∣∣∣B1/2(0)

∣∣∣
25 ≤

∫
�ε0

det(D2u) ≤ e5 maxK Fmeas(�ε0
) ,
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HKT Calabi-Yau Equation on Tori Fibrations 13

that is,

meas(�ε0
) ≥

∣∣∣B1/2(0)

∣∣∣ (e− maxK F

96

)5

=: C . (16)

Now observe that

u(x) ≤ u(x0) − ∇u(x) · (x0 − x) ≤ u(x0) + ε0

4
, for every x ∈ �ε0

,

that is,

ϕ(x) − max
K

ϕ + 4ε0 |x − x0|2 ≤ ϕ(x0) − max
K

ϕ + ε0

4
= min

K
ϕ − max

K
ϕ + ε0

4
, for every x ∈ �ε0 .

This implies

max
K

ϕ − min
K

ϕ ≤ max
K

ϕ − ϕ(x) + 1 , for every x ∈ �ε0
.

It follows that for every p ≥ 1

(
max

K
ϕ − min

K
ϕ

) (
meas(�ε0)

)1/p ≤
(∫

�ε0

(
max

K
ϕ − ϕ + 1

)p
)1/p

=
∥∥∥∥max

K
ϕ − ϕ + 1

∥∥∥∥
Lp(�ε0 )

,

and since �ε0
⊆ B1/2(x0) ⊆ K + x0, we have

∥∥∥∥max
K

ϕ − ϕ + 1

∥∥∥∥
Lp(�ε0 )

≤
∥∥∥∥max

K
ϕ − ϕ + 1

∥∥∥∥
Lp(K)

.

Therefore, since
∫

K ϕ = 0, we have ‖ϕ‖C0 ≤ maxK ϕ − minK ϕ. Then, (16) implies

‖ϕ‖C0 ≤ max
K

ϕ − min
K

ϕ ≤ C−1/p

(∥∥∥∥max
K

ϕ − ϕ

∥∥∥∥
Lp(K)

+ 1

)
, ∀p ≥ 1 . (17)

By (8) we see that �(maxK ϕ − ϕ) ≤ 2, and since maxK ϕ − ϕ ≥ 0 we can apply Theorem

3.2 with maxK ϕ −ϕ in place of u, N = 5, p = 4/3, q = 6, x0 ∈ K such that ϕ(x0) = maxK ϕ,

r = 1/2 and R = 3. This eventually shows there exists a positive constant C′ satisfying

∥∥∥∥max
K

ϕ − ϕ

∥∥∥∥
L4/3(K)

≤ C′
(

inf
K

(
max

K
ϕ − ϕ

)
+ ‖2‖L3(K)

)
= 2C′ . (18)

Estimate (10) now follows from (17) with p = 4/3 and (18). �
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14 G. Gentili and L. Vezzoni

4 C0-estimate for the Laplacian

In this section we shall prove a C0-estimate for the Laplacian of ϕ. The technique we

employ is an adaptation of that found in [11].

Lemma 4.1. Let ϕ be a C2 function on the n-torus Tn, fix μ ∈ R and pick a point p0

where � = (�ϕ + 2)e−μϕ attains its maximum value. Define

ηij = μ(�ϕ + 2)(ϕij + μϕiϕj) − �ϕij , i, j = 1, . . . , n .

Then,

ηii(p0) ≥ 0 , and
√

ηiiηjj ≥ |ηij| at p0 ,

for every i, j = 1, . . . , n.

Proof. We begin by recalling the standard formulas

∇� = e−μϕ (∇�ϕ − μ(�ϕ + 2)∇ϕ)

and

(∇ ⊗ ∇)� = − μe−μϕ
(∇ϕ ⊗ ∇�ϕ + ∇�ϕ ⊗ ∇ϕ

)+ μ2e−μϕ
(
(�ϕ + 2)∇ϕ ⊗ ∇ϕ

)
+ e−μϕ

(
(∇ ⊗ ∇)�ϕ − μ(�ϕ + 2)(∇ ⊗ ∇)ϕ

)
.

Since

∇� = 0 , (∇ ⊗ ∇)� ≤ 0 at p0 ,

we infer

∇�ϕ = μ(�ϕ + 2)∇ϕ at p0 (19)

and

(∇ ⊗ ∇)�ϕ ≤ μ(�ϕ + 2)((∇ ⊗ ∇)ϕ + μ∇ϕ ⊗ ∇ϕ) at p0 .
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HKT Calabi-Yau Equation on Tori Fibrations 15

In particular

(
μ(�ϕ + 2)(ϕij + μϕiϕj) − �ϕij

)2

≤
(
μ(�ϕ + 2)(ϕii + μϕ2

i ) − �ϕii

) (
μ(�ϕ + 2)(ϕjj + μϕ2

j ) − �ϕjj

)
at p0, for every 1 ≤ i, j ≤ n, and also

μ(�ϕ + 2)(ϕii + μϕiϕi) − �ϕii ≥ 0 at p0 , i = 1, . . . , n.

Hence, the claim follows. �

Proposition 4.2. Let F ∈ C2(T5) satisfy (5). There exists a positive constant C1,

depending on ‖F‖C2 only, such that

‖�ϕ‖C0 ≤ C1(1 + ‖ϕ‖C1) (20)

for any solution ϕ ∈ C4∗(T5) to (6).

Proof. For starters,

�eF = �AB + A�B + 2∇A · ∇B − 2
4∑

i=1

(∣∣∇ϕi5

∣∣2 + ϕi5�ϕi5

)
. (21)

Let p0 and ηij be as in Lemma 2 with

μ = ε

max(�ϕ + 2)

and ε ∈ (0, 1) to be determined later. Then, by using (9) with

ξi = sgn(ϕi5)
√

ηii, i = 1, . . . , 4 , ξ5 = √
η55 ,

we find

μ(�ϕ + 2)

⎛
⎝A(ϕ55 + μϕ2

5) + B
4∑

i=1

(ϕii + μϕ2
i )

⎞
⎠− A �ϕ55︸ ︷︷ ︸

�B

−B
4∑

i=1

�ϕii

︸ ︷︷ ︸
�A

−2
4∑

i=1

ϕi5ξiξ5 ≥ 0 .

at p0. Lemma 2 now implies

ϕi5ξiξ5 = ∣∣ϕi5

∣∣√ηii
√

η55 ≥ ϕi5ηi5 , at p0 ,
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16 G. Gentili and L. Vezzoni

that is,

ϕi5ξiξ5 ≥ ϕi5

(
μ(�ϕ + 2)(ϕi5 + μϕiϕ5) − �ϕi5

)
at p0 .

Therefore, we obtain

μ(�ϕ + 2)

⎛
⎝A(ϕ55 + μϕ2

5) + B
4∑

i=1

(ϕii + μϕ2
i )

⎞
⎠− 2

4∑
i=1

ϕi5
(
μ(�ϕ + 2)(ϕi5 + μϕiϕ5)

)

≥ A�B + B�A − 2
4∑

i=1

ϕi5�ϕi5 , at p0 .

By (21), and the definition of A, B, at the point p0 we have

�eF ≤μ(�ϕ + 2) (A(B − 1) + B(A − 1)) + 2∇A · ∇B

+ μ2(�ϕ + 2)

⎛
⎝Aϕ2

5 + B
4∑

i=1

ϕ2
i

⎞
⎠− 2μ(�ϕ + 2)

4∑
i=1

(
ϕ2

i5 + μϕi5ϕiϕ5

)

=2μ(�ϕ + 2)

⎛
⎝AB −

4∑
i=1

ϕ2
i5

⎞
⎠− μ(�ϕ + 2)(A + B) + 2∇A · ∇B

+ μ2(�ϕ + 2)

⎛
⎝Aϕ2

5 + B(ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4) − 2
4∑

i=1

ϕi5ϕiϕ5

⎞
⎠

≤2μ(�ϕ + 2)eF − μ(�ϕ + 2)2 + 2∇A · ∇B + 2μ2(�ϕ + 2)
(
Aϕ2

5 + B(ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4)
)

.

Observe that in the last inequality we used (9) with ξi = ϕi(p0) for i = 1, . . . , 4 and

ξ5 = −ϕ5(p0).

By (19) we then have

μ2(�ϕ + 2)2 |∇ϕ|2 = |∇�ϕ|2 = |∇(A + B)|2 = |∇A|2 + |∇B|2 + 2∇A · ∇B ≥ 2∇A · ∇B , at p0 ,

and with the help of

Aϕ2
5 + B(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4) ≤ A |∇ϕ|2 + B |∇ϕ|2 = (�ϕ + 2) |∇ϕ|2

we deduce

μ(�ϕ(p0) + 2)2 ≤ −�eF (p0) + 2μ(�ϕ(p0) + 2)eF(p0) + 3μ2(�ϕ(p0) + 2)2 |∇ϕ(p0)|2 . (22)

Let us set

m = �ϕ(p0) + 2 , ϕ0 = ϕ(p0) .

Since p0 is a maximum point for �, clearly

max � = me−μϕ0 .
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HKT Calabi-Yau Equation on Tori Fibrations 17

From (22) we obtain

μm2 ≤
∥∥∥�eF

∥∥∥
C0

+ 2μm
∥∥∥eF

∥∥∥
C0

+ 3μ2m2 ‖∇ϕ‖2
C0 . (23)

Now fix a point p1 where �ϕ + 2 reaches its maximum, and call ϕ1 = ϕ(p1). Then

m ≤ max(�ϕ + 2) = eμϕ1� ≤ meμ(ϕ1−ϕ0) ≤ me2μ‖ϕ‖C0 . (24)

By the definition of μ and inequality (8), we have

2μ = 2

max(�ϕ + 2)
ε ≤ 1

emin(F/2)
ε ≤ e− min(F/2) ,

hence by (24)

ε exp
(
−e− min(F/2) ‖ϕ‖C0

)
≤ εe−2μ‖ϕ‖C0 = μ max(�ϕ + 2)e−2μ‖ϕ‖C0 ≤ μm

and also

exp
(
−e− min(F/2) ‖ϕ‖C0

)
max(�ϕ + 2) ≤ e−2μ‖ϕ‖C0 max(�ϕ + 2) ≤ m .

Next, we multiply the last two inequalities and use (23), recalling that μm ≤ ε, to the

effect that

ε exp
(
−2e− min(F/2) ‖ϕ‖C0

)
max(�ϕ + 2) ≤

∥∥∥�eF
∥∥∥

C0
+ 2ε

∥∥∥eF
∥∥∥

C0
+ 3ε2 ‖∇ϕ‖2

C0 .

Put otherwise,

‖�ϕ‖C0 ≤ exp
(
2e− min(F/2) ‖ϕ‖C0

)(1

ε

∥∥∥�eF
∥∥∥

C0
+ 2

∥∥∥eF
∥∥∥

C0
+ 3ε ‖∇ϕ‖2

C0

)
,

and by choosing

ε = 1

1 + ‖∇ϕ‖C0

the claim is straighforward. �

The next theorem will provide us with an a priori C1-estimate for ϕ. Together

with Proposition 2, it will give an a priori C0-bound for �ϕ.
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18 G. Gentili and L. Vezzoni

Theorem 4.3. For all solutions ϕ ∈ C4∗(T5) of equation (6) with F ∈ C2(T5) satisfying (5)

there exists a positive constant C2, depending on ‖F‖C2 only, such that

‖ϕ‖C1 ≤ C2. (25)

Proof. Fix 0 < α < 1 and p = 3
1−α

> 3. Morrey’s inequality says

‖ϕ‖C1,α ≤ C ‖ϕ‖W2,p

for some positive constant C depending only on α. Elliptic Lp-estimates for the Laplacian

also generate another constant C′, still depending on α only, such that

‖ϕ‖W2,p ≤ C′ (‖ϕ‖Lp + ‖�u‖Lp

)
.

If ϕ ∈ C2(T5), the C0-estimate (10) for ϕ and bound (20) for �ϕ imply

‖ϕ‖Lp + ‖�ϕ‖Lp ≤ ‖ϕ‖C0
+ ‖�ϕ‖C0 ≤ C0 + C1(1 + ‖ϕ‖C1) .

Using standard interpolation theory (see [16,section 6.8]), for any ε > 0 there is

a constant Pε > 0, such that

‖ϕ‖C1 ≤ Pε ‖ϕ‖C0 + ε ‖ϕ‖C1,α , for every ϕ ∈ C1,α(T5) .

Putting all this together, we obtain

‖ϕ‖C1 ≤ PεC0 + εK0

(
C0 + C1(1 + ‖ϕ‖C1)

) = PεC0 + εK0(C0 + C1) + εK0C1 ‖ϕ‖C1 ,

for some positive constant K0, again depending on α only. This produces (25) once we

choose

ε <
1

K0C1
.

�

Corollary 4.4. Assume that F ∈ C2(T5) satisfies (5) and let ϕ ∈ C4∗(T5) be a solution to

(6). Then, there exists a positive constant C3, depending on ‖F‖C2 only, such that

‖�ϕ‖C0 ≤ C3 .
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HKT Calabi-Yau Equation on Tori Fibrations 19

5 C2,α-estimate

The C2,α-estimate for our equation (6) can be deduced directly from the general result

of Alesker, which we state next. It holds for compact hypercomplex manifolds that are

locally flat, in the sense that they are locally isomorphic to H
n.

Theorem 5.1. Theorem 4.1 in [2]

Let M be a 4n-dimensional compact HKT manifold whose underlying hypercom-

plex structure is locally flat. Suppose ϕ ∈ C2(M) is a solution to the quaternionic Monge–

Ampère equation (4). Then,

‖ϕ‖C2,α ≤ C

for some α ∈ (0, 1) and a positive constant C, both depending on M, �, ‖F‖C2 , ‖ϕ‖C0
and

‖�̃ϕ‖C0 , where

�̃ϕ = ∂∂J2
ϕ ∧ �n−1

�n

and � is the HKT form.

The HKT structures we are considering on Mr are flat for the Obata connection

[13,Proposition 6.1]. Hence the underlying hypercomplex structure is locally flat.

Moreover, for T3-invariant functions the operator �̃ acts as a multiple of the Laplace

operator, hence Theorem 6 and Corollary 1 imply

Proposition 5.2. Assume F ∈ C2(T5) satisfies (5). For every solution ϕ ∈ C4∗(T5) to

equation (6), there exist α ∈ (0, 1) and a positive constant C4, depending on ‖F‖C2 , ‖ϕ‖C0

only, such that

‖ϕ‖C2,α ≤ C4 .

6 Proof of Theorem 1

In this section we shall use the previously established a priori estimates in order to

prove the following result. This will then imply Theorem 1.

Theorem 6.1. Let F ∈ C∞(T5) satisfy (5). Then, equation (6) admits a solution ϕ ∈
C∞∗ (T5).
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20 G. Gentili and L. Vezzoni

Proof. For t ∈ [0, 1], we define

Ft = log(1 − t + teF)

and set

St =
{
ϕ ∈ C∞∗ (T5) | (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1) − ϕ2

15 − ϕ2
25 − ϕ2

35 − ϕ2
45 = eFt

}
,

and S = ⋃
t∈[0,1] St. Clearly 0 ∈ S0, and S1 is the set of smooth solutions of (6). We thus

need to show that S1 �= ∅. For any t ∈ [0, 1] the map Ft satisfies (5) and

max
t∈[0,1]

∥∥Ft

∥∥
C2 < ∞ .

Proposition 3. therefore implies there exists α ∈ (0, 1) such that

sup
ϕ∈S

‖ϕ‖C2,α < ∞ . (26)

Let

τ = sup{t ∈ [0, 1] | St �= ∅} .

We claim that Sτ �= ∅ and τ = 1.

Sτ �= ∅. Let {tk} ⊆ [0, 1] be an increasing sequence converging to τ , and for any k ∈ N

we fix ϕk ∈ Stk
. Condition (26) implies that {ϕk} is a sequence in C2,α∗ (T5), so

by the Ascoli–Arzelà theorem there exists a subsequence {ϕkj
} converging to

some ψ in C2,α/2∗ (T5). The function ψ satisfies

(ψ11 + ψ22 + ψ33 + ψ44 + 1)(ψ55 + 1) − ψ2
15 − ψ2

25 − ψ2
35 − ψ2

45 = eFτ .

In view of Proposition 1, equation (6) is elliptic, and elliptic regularity (see

e.g., [21,Theorem 4.8, Chapter 14]) implies that ψ is in fact C∞. Therefore,

Sτ �= ∅, as required.

τ = 1. Assume that, by contradiction, τ < 1, and consider the nonlinear operator

T : C2,α∗ (T5) × [0, 1] → C0,α∗ (T5)
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HKT Calabi-Yau Equation on Tori Fibrations 21

defined by

T(ϕ, t) = (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1) − ϕ2
15 − ϕ2

25 − ϕ2
35 − ϕ2

45 − eFt .

Since Sτ �= ∅, there exists ψ ∈ C∞∗ (T5) such that T(ψ , τ) = 0. Let L : C2,α∗ (T5) →
C0,α∗ (T5) be the first variation of T with respect to the first variable. Then,

Lu = Au55 + B(u11 + u22 + u33 + u44) − 2C1u15 − 2C2u25 − 2C3u35 − 2C4u45

where

A = (ψ11 + ψ22 + ψ33 + ψ44 + 1) , B = (ψ55 + 1) , Ci = ψi5 ,

which implies that L is elliptic since ψ ∈ Sτ . The strong maximum principle

guarantees L is injective because Lϕ = 0 forces ϕ to be constant. Fur-

thermore, ellipticity implies that L has closed range, and Schauder theory

together with the method of continuity (see [16,Theorem 5.2]) ensures L is

surjective. Hence, by the Implicit Function theorem there exists ε > 0, such

that for every fixed t ∈ (τ − ε, τ + ε), equation

T(ϕ, t) = 0

has a solution ϕ, which is additionally smooth by elliptic regularity. There-

fore, St �= ∅ for every t ∈ (τ , τ + ε), which contradicts the maximality of

τ . �

7 Further Developments

As a follow-up to the present work, we plan to study the quaternionic Monge–Ampère

equation on other homogeneous spaces.

The manifold M2, for instance, can be regarded as a T2-bundle over T6, so it

is quite natural to wonder whether Theorem 1 might extend to T2-invariant functions

(instead of T3-invariant). We shall next describe this setup for M2 and point out the

differences from the T3-invariant setting considered in Theorem 1.

From (7) the quaternionic Monge–Ampère equation (4) on (M2, J1, J2, J3, g)

reduces to the following partial differential equation (PDE) on the six-dimensional
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22 G. Gentili and L. Vezzoni

base T6 when the map F is T2-invariant

(ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + ϕ66 + 1)

− (ϕ35 − ϕ26)2 − (ϕ45 − ϕ16)2 − (ϕ46 + ϕ15)2 − (ϕ36 + ϕ25)2 = eF , (27)

where ϕ is an unknown function in C∞(T6). By calling

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + ϕ66 + 1

and

a1 = ϕ35 − ϕ26 , a2 = ϕ45 − ϕ16 , a3 = ϕ46 + ϕ15 , a4 = ϕ36 + ϕ25 ,

we may rewrite (27) as

AB −
4∑

i=1

a2
i = eF . (28)

The above is elliptic and

B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 ) + A(ξ2
5 + ξ2

6 ) − 2a1(ξ3ξ5 − ξ2ξ6) − 2a2(ξ4ξ5 − ξ1ξ6)

− 2a3(ξ4ξ6 + ξ1ξ5) − 2a4(ξ3ξ6 + ξ2ξ5) > 0, (29)

for every ξ ∈ R
6, ξ �= 0.

In order to show that (27) can be solved, we need only prove an a priori C0-

estimate for the Laplacian of the solutions to (27). The natural approach consists in

adapting the proof of Proposition 2 by mixing Lemma 7 with the ellipticity of the

equation. In this case, however, it seems that condition (29) should be replaced with

a stronger assumption, one implied by the estimate

2(
∣∣a2a3

∣∣+ ∣∣a1a4

∣∣) < eF . (30)

Applying the Laplacian operator to both sides of (28) we get

B�A + A�B + 2∇A·∇B − 2
4∑

k=1

(∣∣∇ak

∣∣2 + ak�ak

)
= �eF ,
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which readily implies

�eF ≤ B�A + A�B + 2∇A·∇B − 2
4∑

k=1

ak�ak . (31)

Let p0 be a maximum point for (�ϕ + 2)e−μϕ , as in Lemma 7, and

μ = 1

max(�ϕ + 2)

1

1 + ‖∇ϕ‖C0
.

Using (19), we see that the following relation holds at p0

μ2(�ϕ + 2)2 |∇ϕ|2 = |∇�ϕ|2 = |∇(A + B)|2 = |∇A|2 + |∇B|2 + 2∇A · ∇B ≥ 2∇A · ∇B ,

that is,

2∇A · ∇B ≤ μ2(�ϕ + 2)2 |∇ϕ|2 . (32)

To produce an upper bound for B�A+A�B−2
∑4

k=1 ak�ak, we consider ηij as in Lemma 2

and

ξi = √
ηii .

Then, at p0 we have

ξiξj ≥ |ηij| .

Moreover,

|a1|(ξ3ξ5 + ξ2ξ6) ≥ |a1|
{
|μ(�ϕ + 2)(ϕ35 + μϕ3ϕ5) − �ϕ35| + |μ(�ϕ + 2)(ϕ26 + μϕ2ϕ6) − �ϕ26|

}
≥ a1

{
μ(�ϕ + 2)(ϕ35 + μϕ3ϕ5) − �ϕ35 − μ(�ϕ + 2)(ϕ26 + μϕ2ϕ6) + �ϕ26

}
= μ(�ϕ + 2)(a2

1 + a1μ(ϕ3ϕ5 − ϕ2ϕ6)) − a1�a1

at p0, that is,

|a1|(ξ3ξ5 + ξ2ξ6) ≥ μ(�ϕ + 2)(a2
1 + μa1(ϕ3ϕ5 − ϕ2ϕ6)) − a1�a1
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at p0. Similarly,

∣∣a2

∣∣ (ξ4ξ5 + ξ1ξ6) ≥ μ(�ϕ + 2)(a2
2 + μa2(ϕ4ϕ5 − ϕ1ϕ6)) − a2�a2 ,∣∣a3

∣∣ (ξ4ξ6 + ξ1ξ5) ≥ μ(�ϕ + 2)(a2
3 + μa3(ϕ4ϕ6 + ϕ1ϕ5)) − a3�a3 ,∣∣a4

∣∣ (ξ3ξ6 + ξ2ξ5) ≥ μ(�ϕ + 2)(a2
4 + μa4(ϕ3ϕ6 + ϕ2ϕ5)) − a4�a4 ,

at p0. If we add up the last four inequalities and use (29) with ξk = ϕk for k = 1, . . . , 4

and ξ5 = −ϕ5, ξ6 = −ϕ6, we end up with

2|a1|(ξ3ξ5 + ξ2ξ6) + 2
∣∣a2

∣∣ (ξ4ξ5 + ξ1ξ6) + 2
∣∣a3

∣∣ (ξ4ξ6 + ξ1ξ5) + 2
∣∣a4

∣∣ (ξ3ξ6 + ξ2ξ5) ≥

μ(�ϕ + 2)

(
4∑

k=1

(2a2
k − μBϕ2

k) − μA(ϕ2
5 + ϕ2

6)

)
− 2

4∑
k=1

ak�ak

at p0.

To handle the last inequality, we need the following estimate

B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 ) + A(ξ2
5 + ξ2

6 ) ≥
2|a1|(ξ3ξ5 + ξ2ξ6) + 2

∣∣a2

∣∣ (ξ4ξ5 + ξ1ξ6) + 2
∣∣a3

∣∣ (ξ4ξ6 + ξ1ξ5) + 2
∣∣a4

∣∣ (ξ3ξ6 + ξ2ξ5). (33)

Notice this is stronger than (29).

In fact, if we assume (33), then

B
4∑

k=1

ξ2
k + A(ξ2

5 + ξ2
6 ) ≥ μ(�ϕ + 2)

(
4∑

k=1

(2a2
k − μBϕ2

k) − μA(ϕ2
5 + ϕ2

6)

)
− 2

4∑
k=1

ak�ak

at p0 and, keeping in mind the definition of ξk,

B
4∑

k=1

ξ2
k +A(ξ2

5 + ξ2
6 ) = μ(�ϕ +2)

(
A

6∑
k=5

(ϕkk + μϕ2
k) + B

4∑
k=1

(ϕkk + μϕ2
k)

)
−A�B−B�A ,

at p0.
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Therefore,

μ(�ϕ + 2)

(
A

6∑
k=5

(ϕkk + μϕ2
k) + B

4∑
k=1

(ϕkk + μϕ2
k)

)
− A�B − B�A ≥

μ(�ϕ + 2)

(
4∑

k=1

(2a2
k − μBϕ2

k) − μA(ϕ2
5 + ϕ2

6)

)
− 2

4∑
k=1

ak�ak ,

at p0, which implies

A�B + B�A − 2
4∑

k=1

ak�ak ≤

≤ μ(�ϕ + 2)

(
A

6∑
k=5

(ϕkk + 2μϕ2
k) + B

4∑
k=1

(ϕkk + 2μϕ2
k) − 2

4∑
k=1

a2
k

)

≤ μ(�ϕ + 2)

(
2AB − (A + B) + 2μ(A + B) |∇ϕ|2 − 2

4∑
k=1

a2
k

)

= μ(�ϕ + 2)
(
2eF − (�ϕ + 2) + 2μ(�ϕ + 2) |∇ϕ|2

)
,

at p0. In other terms,

A�B + B�A − 2
4∑

k=1

ak�ak ≤ μ(�ϕ + 2)
(
2eF − (�ϕ + 2) + 2μ(�ϕ + 2) |∇ϕ|2

)
(34)

at p0. From (31), (32), and (34) we finally deduce

μ(�ϕ + 2)2 ≤ −�eF + 2μ(�ϕ + 2)eF + 3μ2(�ϕ + 2)2 |∇ϕ|2 ,

at p0. At this juncture the a priori C0-estimate for �ϕ can be obtained as we did in the

second part of Section 4.

Let us point out that requiring (33) for every ξ ∈ R
6 is equivalent to (30). Indeed

the quadratic form

Q(ξ) = B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 ) + A(ξ2
5 + ξ2

6 )

−2|a1|(ξ3ξ5 + ξ2ξ6) − 2
∣∣a2

∣∣ (ξ4ξ5 + ξ1ξ6) − 2
∣∣a3

∣∣ (ξ4ξ6 + ξ1ξ5) − 2
∣∣a4

∣∣ (ξ3ξ6 + ξ2ξ5)
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has matrix ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B 0 0 0 − ∣∣a3

∣∣ − ∣∣a2

∣∣
0 B 0 0 − ∣∣a4

∣∣ − ∣∣a1

∣∣
0 0 B 0 − ∣∣a1

∣∣ − ∣∣a4

∣∣
0 0 0 B − ∣∣a2

∣∣ − ∣∣a3

∣∣
− ∣∣a3

∣∣ − ∣∣a4

∣∣ − ∣∣a1

∣∣ − ∣∣a2

∣∣ A 0

− ∣∣a2

∣∣ − ∣∣a1

∣∣ − ∣∣a4

∣∣ − ∣∣a3

∣∣ 0 A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is positive definite if and only if

B4

⎛
⎝(A − B−1

4∑
k=1

a2
k

)2

− 4B−2 (∣∣a2a3

∣∣+ ∣∣a1a4

∣∣)2
⎞
⎠ > 0

since B > 0. A direct computation tells that the last condition is equivalent to

2(
∣∣a2a3

∣∣+ ∣∣a1a4

∣∣) < eF .

In analogy to the above discussion, the manifold M1 arises as an S1-bundle over

a T7-torus, and the function F may be chosen to be S1-invariant. If so, the quaternionic

Monge–Ampère equation (4) reads

(ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + ϕ66 + ϕ77 + 1)

−(ϕ45 − ϕ16 − ϕ27)2 − (ϕ35 + ϕ17 − ϕ26)2

−(ϕ36 + ϕ47 + ϕ25)2 − (ϕ46 − ϕ37 + ϕ15)2 = eF ,

where ϕ is an unknown function in C∞(T7).

Setting

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + ϕ66 + ϕ77 + 1

and

a1 = ϕ45 − ϕ16 − ϕ27 , a2 = ϕ35 + ϕ17 − ϕ26 ,

a3 = ϕ36 + ϕ47 + ϕ25 , a4 = ϕ46 − ϕ37 + ϕ15 ,
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the equation turns into

AB −
4∑

i=1

a2
i = eF . (35)

The above is elliptic and

B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 ) + A(ξ2
5 + ξ2

6 + ξ2
7 ) − 2a1(ξ4ξ5 − ξ1ξ6 − ξ2ξ7) (36)

−2a2(ξ3ξ5 + ξ1ξ7 − ξ2ξ6) − 2a3(ξ3ξ6 + ξ4ξ7 + ξ2ξ5) − 2a4(ξ4ξ6 − ξ3ξ7 + ξ1ξ5) > 0 ,

for every ξ ∈ R
7, ξ �= 0.

We proceed as in the previous case, and choose p0 and ηij as in Lemma 2 and

μ = 1

max(�ϕ + 2)

1

1 + ‖∇ϕ‖C0
,

resulting in

�eF ≤ B�A + A�B + μ2(�ϕ + 2)2 |∇ϕ|2 − 2
4∑

k=1

ak�ak , at p0 .

Set ξi = √
ηii and apply Lemma 2 to obtain

|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

≥|a1|
{∣∣μ(�ϕ + 2)(ϕ45 + μϕ4ϕ5) − �ϕ45

∣∣+ ∣∣μ(�ϕ + 2)(ϕ16 + μϕ1ϕ6) − �ϕ16

∣∣
+ ∣∣μ(�ϕ + 2)(ϕ27 + μϕ2ϕ7) − �ϕ27

∣∣}
≥a1

{
μ(�ϕ + 2)(ϕ45 + μϕ4ϕ5) − �ϕ45 − μ(�ϕ + 2)(ϕ16 + μϕ1ϕ6) + �ϕ16

− μ(�ϕ + 2)(ϕ27 + μϕ2ϕ7) + �ϕ27

}
=μ(�ϕ + 2)(a2

1 + a1μ(ϕ4ϕ5 − ϕ1ϕ6 − ϕ2ϕ7)) − a1�a1

at p0, that is,

|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7) ≥ μ(�ϕ + 2)(a2
1 + μa1(ϕ4ϕ5 − ϕ1ϕ6 − ϕ2ϕ7)) − a1�a1
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at p0. From that we deduce

∣∣a2

∣∣ (ξ3ξ5 + ξ1ξ7 + ξ2ξ6) ≥ μ(�ϕ + 2)(a2
2 + μa2(ϕ3ϕ5 + ϕ1ϕ7 − ϕ2ϕ6)) − a2�a2 ,∣∣a3

∣∣ (ξ3ξ6 + ξ4ξ7 + ξ2ξ5) ≥ μ(�ϕ + 2)(a2
3 + μa3(ϕ3ϕ6 + ϕ4ϕ7 + ϕ2ϕ5)) − a3�a3 ,∣∣a4

∣∣ (ξ4ξ6 + ξ3ξ7 + ξ1ξ5) ≥ μ(�ϕ + 2)(a2
4 + μa4(ϕ4ϕ6 − ϕ3ϕ7 + ϕ1ϕ5)) − a4�a4 ,

at p0. The sum of the previous four inequalities, together with (36), yields

2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7) + 2
∣∣a2

∣∣ (ξ3ξ5 + ξ1ξ7 + ξ2ξ6)

+ 2
∣∣a3

∣∣ (ξ3ξ6 + ξ4ξ7 + ξ2ξ5) + 2
∣∣a4

∣∣ (ξ4ξ6 + ξ3ξ7 + ξ1ξ5) ≥

μ(�ϕ + 2)

(
4∑

k=1

(2a2
k − μBϕ2

k) − μA
7∑

k=5

ϕ2
k

)
− 2

4∑
k=1

ak�ak

at p0.

We need the following estimate

B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 ) + A(ξ2
5 + ξ2

6 + ξ2
7 ) − 2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7) (37)

−2|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6) − 2|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5) − 2|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5) > 0 ,

at p0, which is stronger than (36). Once this has been established, the result follows.

To prove (38) one has to show that the quadratic form

Q(ξ) = B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 ) + A(ξ2
5 + ξ2

6 + ξ2
7 ) − 2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

−2|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6) − 2|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5) − 2|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5)

on R
7 is positive-definite. This is equivalent to demanding two things:

e2F − 4(
∣∣a2a3

∣∣+ ∣∣a1a4

∣∣)2 > 0 ,

e3F − 4eF
((∣∣a2a3

∣∣+ ∣∣a1a4

∣∣)2 + (∣∣a1a3

∣∣+ ∣∣a2a4

∣∣)2 + (∣∣a1a2

∣∣+ ∣∣a3a4

∣∣)2)
− 16

(∣∣a2a3

∣∣+ ∣∣a1a4

∣∣) (∣∣a1a3

∣∣+ ∣∣a2a4

∣∣) (∣∣a1a2

∣∣+ ∣∣a3a4

∣∣) > 0 .

We wrap up this overview of our future plans by observing that there exist torus

fibrations whose hypercomplex structure is not locally trivial. On these spaces Alesker’s

theorem cannot be applied, so once the C0-estimate of the Laplacian is at hand one needs

to prove the C2,α-estimate by alternative arguments.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab004/6178972 by U

niversity of Torino user on 18 August 2021



HKT Calabi-Yau Equation on Tori Fibrations 29

We expect that the study of the equation on these explicit examples will give

new insight for the handling of the general case.
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