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While proton therapy offers an excellent dose conformity and sparing of organs at risk, this can be compromised
by uncertainties, e.g. organ motion. This study aimed to investigate the influence of cardiac motion on the
contoured oesophagus using electrocardiogram-triggered imaging and to assess the impact of this motion on the
robustness of proton therapy plans in oesophageal cancer patients. Limited cardiac-induced motion of the

oesophagus was observed with a negligible impact on the robustness of proton therapy plans. Therefore, our data
suggest that cardiac motion may be safely ignored in the robust optimisation strategy for proton planning in

oesophageal cancer.

1. Introduction

Neoadjuvant chemoradiotherapy (nCRT) followed by surgery is
considered standard of care in the treatment of locally advanced oeso-
phageal cancer [1,2]. However, this treatment strategy yields overall
disappointing outcomes with low survival and high morbidity rates
[3-6]. Because of radiotherapy-related toxicity, improving the dose
distribution by more advanced radiotherapy techniques, e.g. proton
therapy, is a key requirement to further ameliorate treatment outcome
for these patients. There is recent evidence that supports a clinical
benefit of proton therapy in oesophageal cancer, both with passive
scattering and pencil beam scanning [7-10].

Because of the central location of the oesophagus within the thorax,
radiotherapy for oesophageal cancer is challenging. In photon therapy,
geometrical and anatomical variations can be generally handled with
safety margins (planning target volume (PTV)) using well-known
margin recipes [11]. The picture is completely different for proton
therapy. Uncertainties related to organ motion (e.g. due to breathing),
setup (e.g. positioning of patients) and anatomical (e.g. shrinkage of the
tumour) variations greatly affect the position of the Bragg peak and thus
the dose distributions [12,13]. A robust optimisation is necessary for
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treatment planning to ensure that the delivered dose corresponds to the
planned dose considering the aforementioned treatment uncertainties
[14].

In literature, few studies investigated the cardiac-induced motion in
radiotherapy using time-dependent trajectory analysis. The motion
amplitude and motion range (2nd-98th percentile) of markers in/near
lung tumours and in lymph nodes caused by the heart beat was 1.0 to
4.0 mm and 1.0 to 6.0 mm respectively [15,16]. A recent study of
Hoffman et al. in 21 patients with oesophageal cancer, showed a mean
motion magnitude over 63 tumour markers of 1.0 to 1.5 mm for cardiac
motion using cone beam computed tomography (CT) projections [17].
One study used contrast-enhanced CT-based coronary angiography with
electrocardiogram-gating of randomly selected patients to calculate
more directly the oesophageal displacement caused by the heart [18].
Based on a deformable registration analysis, the mean motion of all
voxels varied between 1.0 and 3.0 mm and the largest motion was seen
in the distal oesophagus. To our knowledge, no study investigated the
impact of the cardiac-induced oesophageal motion on the target volume
coverage with proton therapy in oesophageal cancer.

The aim of this pilot study was to assess cardiac-induced motion of
the contoured oesophagus using electrocardiogram-triggered imaging
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and to evaluate its influence on the robustness of proton plans in oeso-
phageal cancer patients.

2. Material and methods

2.1. Cardiac-induced motion of oesophagus on electrocardiogram-gated
CT

Cardiac-induced motion of the oesophagus was assessed using
electrocardiogram-gated intravenous contrast (Ultravist 370 mg/ml)
enhanced CT scans (Lightspeed VCT Scanner, General Electric Health-
care, Waukesha, WI, USA) from eight non-cancer patients from the
University of Turin. The hospital authorised the retrospective use of the
anonymised image sets for the study purposes. To minimise breathing
motion a CT scan in breath-hold was performed. Simultaneously, the
patient’s electrocardiogram was recorded and images acquired across
different heartbeats created a heart phase-consistent sequence. Re-
constructions were performed in time steps of 11% of the heart cycle,
defined as the interval between the R waves (R-R interval) of the QRS
complex, leading to nine different datasets for each patient (phase 0% to
88%).

The electrocardiogram-gated CT scans were imported in our treat-
ment planning system (Eclipse, Varian Medical Systems, Palo Alto CA).
For every phase, four slices of the oesophagus were delineated at fixed
transversal levels with the intervertebral disc as anatomic surrogate
(Fig. 1). Level 1 is located in the distal part of the middle oesophagus
according to the Union for International Cancer Control (UICC) TNM
staging system (eighth edition) [19]; level 2, 3 and 4 in the distal
oesophagus. All delineations were done by one radiation oncologist in
training, specialised in oesophageal cancer.

The x- (left-right) and y- (anterior-posterior) coordinates of the
centre of mass (COM), the most anterior extension and the most poste-
rior extension of the oesophagus were computed in each slice for every
cardiac phase, resulting in 275 image slices to analyse. In one patient,
we have no images of level 4 in phase 33% of the cardiac cycle due to
technical issues by reconstructing the different phases of the
electrocardiogram-gated CT scans. Similarly, no images were available
of level 2, 3 and 4 in phase 88% in one patient, and of level 1 in all
cardiac phases in one patient. Changes of the coordinates between the
different cardiac phases provide us a measurement of the cardiac-related
movement of the oesophagus. The motion amplitude, its mean value and
standard deviation over all patients and transversal levels were calcu-
lated. It was not possible to compute the z-coordinates (cranio-caudal)
due to the lack of an anatomical surrogate in the oesophagus.

2.2. Robustness of proton therapy plans towards cardiac-induced motion

Afterwards, we evaluated the robustness of proton therapy plans
towards the worst-case scenario of the maximally observed cardiac-
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induced displacement. For five patients with oesophageal cancer, six
synthetic CT scans each simulating heart motion with the maximally
observed displacement in one of six directions (six displacement vectors:
anterior-posterior, posterior-anterior, superior-inferior, inferior-supe-
rior, left-right, right-left) were generated based on deformable image
registration in our proton therapy planning system (RayStation, Ray-
Search Laboratories). Multi-field optimised proton therapy plans (two
posterior beams with angles between 155° and 205°) prescribing 45.0
Gy in 25 fractions to the internal CTV (iCTV) were generated on the
average image of the four-dimensional (4D) planning CT (robustness
towards 7.0 mm setup and 3.0% range uncertainty) [20]. An IBA Pro-
teus Plus beam model with spot sizes of 6 = 6.4 mm at 70 MeV and ¢ =
3.2 mm at 225 MeV was used, together with hexagonal spot patterns, 5
mm spot spacing, no energy layer repainting, Monte Carlo dose calcu-
lation, 2.5 mm dose grid resolution and a relative biological effective-
ness (RBE) scale factor of 1.1. Plans were evaluated by recalculating the
dose in 28 scenarios simulating setup and range uncertainties (same as
for optimisation), on the planning CT and on each of the six synthetic
CTs. The minimum dose to 95% and 98% of the iCTV (D95% >95% and
D98% >90% robustness constraints) and the mean heart dose (MHD) of
each scenario were calculated.

3. Results

The motion amplitude of the COM, anterior and posterior part of the
oesophagus was on the four levels in the left-right and anterior-posterior
direction less than or equal to 2.0 mm throughout the cardiac cycle,
except for level 3 in the anterior-posterior direction in one patient (2.2
mm). The amplitude mean (standard deviation) was left-right 1.5 (0.4)
mm, 1.6 (0.4) mm, 1.5 (0.4) mm and 1.4 (0.4) mm for level 1, 2, 3 and 4
respectively; 1.5 (0.4) for all levels combined. Anterior-posterior, the
amplitude mean (standard deviation) was 1.5 (0.3) mm, 1.2 (0.4) mm,
1.3 (0.5) mm, 1.5 (0.3) mm for level 1, 2, 3 and 4; 1.4 (0.4) for all levels
combined.

As the maximally observed displacement (half of the amplitude) was
>1.0 mm and <2.0 mm, synthetic CTs simulating 2.0 mm heart dis-
placements were generated for every of the six directions. Robustness
evaluation of five proton therapy plans recalculated on the synthetic CTs
(168 scenarios) with respect to the planning CT (28 scenarios) resulted
in a minimal reduction of worst-case scenario dose to the iCTV by on
average 0.3% for D95 (range 0.1%-0.7%) and 0.9% for D98 (range
0.3%-1.9%). In four of the five patients, this worst case scenario was
associated with the synthetic CT mimicking a motion of the heart con-
tour in posterior direction (Fig. 2), while in one patient this was the
inferior direction. The worst case hotspot dose (maximal point dose)
increase due to cardiac motion was on average 1.4% (range 0.7-2.9%).
For MHD limited increases were observed by on average 0.6 Gy (range
0.4 Gy-0.7 Gy).

Fig. 1. Delineation of four slices of the oesophagus on fixed levels on the CT scans; from level 1 (most cranial part of the oesophagus) to level 4 (most caudal part of
the oesophagus). Left: Four slices of the oesophagus are delineated on the fixed levels on the CT scan (sagittal plane). Right: The delineation of level 3 is shown in the

transversal plane of the CT scan.
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Fig. 2. One example patient. Top: A two posterior
proton beam plan covering the internal clinical target
volume (iCTV) contour on the average planning image
(pCT) (left) and a dose recalculation on a synthetic
image generated from a worst-case 2 mm posterior
motion of the heart contour (AP 2 mm CT) (right).
Bottom: Dose volume histogram (DVH) comparison of
the example patient (pCT and AP 2 mm CT; dashed
line = nominal scenario) including uncertainty bands
reflecting robustness evaluation in 28 setup and range
error scenarios indicates that this motion has minimal
impact on iCTV coverage for a limited increase in
heart dose. RBE = relative biological effectiveness;
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4. Discussion

While proton therapy offers an excellent dose conformity and sparing
of organs at risk, this can be substantially compromised by uncertainties
such as motion. In this study we investigated the influence of cardiac
motion on the contoured oesophagus using electrocardiogram-triggered
imaging and assessed the impact of this observed motion on the accurate
proton therapy dose deposition in oesophageal cancer patients. Limited
cardiac-induced motion of the oesophagus was observed with a negli-
gible impact on the robustness of proton therapy plans.

The displacement of the oesophagus during the cardiac cycle on the
four studied levels was limited in the eight patients in our study. In
literature, there are only a few studies reporting on the influence of
cardiac motion on the oesophagus. One study investigated the cardiac-
induced motion indirectly by analysing the displacement of oesopha-
geal tumour markers [17]. The cardiac motion was small and the mean
motion magnitude was in the same range as our study. We did not
observe a larger motion in one of the four levels of the contoured
oesophagus. However, all levels were located in the distal oesophagus,
except level 1 which was located in the distal part of the middle
oesophagus. One other study used retrospective electrocardiogram-
gated contrast-enhanced CT and found that the mean cardiac-induced
motion of the oesophagus was up to 3.0 mm [18]. The oesophageal
motion amplitude was larger than in our study (up to 10.0 mm) and they
stated that the magnitude of cardiac-induced oesophageal motion was
similar to other sources of motion, such as respiratory motion. These
higher numbers were likely due to their analysis of average voxel-wise
displacements based on non-rigid registrations. Our data reported the
COM and the cranial and caudal oesophagus extension displacements
based on manual contours, which are relevant metrics for the simulation
of dose deposition.

iCTV = internal clinical target volume; pCT = plan-
ning CT image; AP 2 mm CT = synthetic image
generated from worst-case 2 mm posterior motion of
heart contour; DVH = dose volume histogram.
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To our knowledge, the impact of the cardiac-induced oesophageal
motion on the radiation target volume coverage with proton therapy in
oesophageal cancer has not been investigated. Nevertheless, the impact
of a minor movement on a proton plan quality could be detrimental as
the CTV position and the tissue density along the beam path can change,
thereby affecting the planned dose distribution (Bragg peak). The
limited impact of cardiac deformation on the dose volume histograms of
the heart and the target volumes observed in our study can partially be
explained by the posterior beam setup which are frequently used in
proton therapy for oesophageal cancer [7,21]. In all the studied cardiac
deformation scenarios, even in the one with maximal impact on D98 of
the iCTV (1.9% reduction), our D98 and D95 constraints on the iCTV
were met. We did not investigate the interplay effects between pencil
beam scanning delivery and the cardiac motion phase. The interaction
between pencil beam scanning and breathing motion was studied pre-
viously in patients with oesophageal and lung cancer, resulting in a
limited impact on the prescription dose [22-24]. Given the small
displacement of the heart compared to breathing motion, the influence
of interplay effects for cardiac motion is probably even more limited.

A first limitation of the study is that we do not have a planning CT in
radiation position of the eight patients with an electrocardiogram-gated
scan. The scans were taken in non-cancer patients with a field of view
limited to the heart and the mediastinum. However, we did not expect a
difference in cardiac-induced oesophageal motion in patients with and
without oesophageal cancer. The robustness analyses incorporating
cardiac deformation were therefore calculated on proton plans of five
patients with oesophageal cancer, which were treated with photons in
our institution. An advantage of this strategy is that these five patients
had a 4D planning CT which accounts for respiratory motion, which is
currently the state of the art for treatment planning in oesophageal
cancer (in contrast to the electrocardiogram-gated CTs in breath hold)
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[2,25-27]. We used the average image to optimise plans robustly
covering the iCTV. Cardiac-induced motion was then simulated based on
this reference average image. Secondly, we acknowledge that the mo-
tion of the heart is more complex than the vector-based simulations used
in our robustness evaluation. However, the worst-case scenario of the
maximum observed displacement of the heart in all directions was used,
so probably the impact on the proton plan is overestimated and our
conclusions on plan robustness are valid for potentially larger cardiac
motion undetected in our patient sample. In this study, we could not
investigate the cardiac-inducted motion on the oesophagus in the
cranio-caudal direction due to the lack of an anatomical surrogate in the
oesophagus. However, we added these vectors (superior-inferior,
inferior-superior) into the simulation of the proton therapy dose de-
livery. Thirdly, our conclusions are valid for the planning strategy that
was used to optimise the proton plans (beam angles). The influence on
the robustness of the proton plans is therefore not just applicable to
other planning specifications (other spot size, etc.). Lastly, the influence
of the cardiac motion on the robustness of a proton plan could be more
relevant at the level of a cardiac substructure, such as the circumflex
artery [28].

We conclude that, based on the results of this pilot study, the impact
of the motion of the heart on the robustness of a proton therapy plan of
oesophageal cancer patients is limited. Therefore, we believe cardiac
motion could be safely disregarded in the robust optimisation strategy
for proton planning in oesophageal cancer. Research and development
efforts should of course continue to incorporate other sources of un-
certainties, like respiratory motion and anatomical changes during the
course of treatment.
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