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Abstract

Artificial neural networks perform state-of-the-art in an

ever-growing number of tasks, and nowadays they are used

to solve an incredibly large variety of tasks. There are prob-

lems, like the presence of biases in the training data, which

question the generalization capability of these models. In

this work we propose EnD, a regularization strategy whose

aim is to prevent deep models from learning unwanted bi-

ases. In particular, we insert an “information bottleneck”

at a certain point of the deep neural network, where we dis-

entangle the information about the bias, still letting the use-

ful information for the training task forward-propagating in

the rest of the model. One big advantage of EnD is that

it does not require additional training complexity (like de-

coders or extra layers in the model), since it is a regular-

izer directly applied on the trained model. Our experiments

show that EnD effectively improves the generalization on

unbiased test sets, and it can be effectively applied on real-

case scenarios, like removing hidden biases in the COVID-

19 detection from radiographic images.

1. Introduction

In the last two decades artificial neural network models

(ANNs) received huge interest from the research commu-

nity. Nowadays, complex and even ill-posed problems can

be tackled provided that one can train a deep enough ANN

model with a large enough dataset. Furthermore, they aim

to become a powerful tool helping us take a variety of de-

cisions: for example, AI is currently used for scouting and

hiring people [18]. These ANNs are trained to process a de-

sired output from some inputs. We have no clear idea how

the information is effectively processed inside. Recently,

AI trustworthiness has been recognized as major prereq-

uisite for people and societies to use and accept such sys-

tems [14, 43]. In April 2019, the High-Level Expert Group

on AI of the European Commission defined the three main

aspects of trustworthy AI [14]: it should be lawful, ethical

and robust. Providing a warranty on this topic is currently a

matter of study and discussion [26, 30, 34, 38].

Focusing on the concept of robustness for AI, Atten-

berg et al. discussed the problem of finding the so-called

“unknown unknowns” [3] in data. These unknown un-

knowns relate to the case when the deep model elaborates

information in an unintended way, but shows high confi-

dence on its predictions. Such behavior affected many re-

cent works proposing AI-based solutions on the COVID de-

tection from radiographic images. Unfortunately, the avail-

able datasets at the beginning of the pandemic were heavily

biased. This often resulted in models predicting COVID di-

agnosis with a high confidence, thanks to the presence of

unwanted biases, for example by detecting the presence of

catheters or medical devices for positive patients, their age

(at the beginning of the pandemic, most ill patients were el-

derly people), or even by recognizing the origin of the data

itself (when negative cases were augmented borrowing sam-

ples from other datasets) [2, 29, 31].

In this work we propose a regularization strategy which

Entangles the deep features extracted by patterns belong-

ing to the same target class and Disentangles the biased fea-

tures: we name it EnD, and with it we wish to put an end

to the bias propagation in any deep model. We assume we

know data might have some bias (like in the case of COVID,

the origin of data) but we ignore what it translates into (we

do not have a prior knowledge on whether the bias is the

presence of some color, a specific feature in the image or

anything else). EnD regularizes the output of some layer

Γ within the deep model in order to create an “information

bottleneck” where the regularizer:

• entangles the feature vectors extracted from data be-

longing to the same target class;

• disentangles the features extracted from data having

the same “bias label”.

Since the deep model is trained minimizing both the loss

and EnD, all the biased features are discouraged to be ex-

tracted in favor of the unbiased ones. Compared to other

de-biasing techniques, we have no training overhead: we

do not train extra models to perform gradient inversion on

the biased information or involve the use of GaNs, or even

de-bias the input data. EnD works directly on the target

model, and is minimized via standard back-propagation.
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Figure 1: Model overview. The features for EnD are ex-

tracted at the output of Γ , after a normalization layer per-

forming the operation as in (3).

In general, directly tackling the problem of mutual in-

formation’s minimization is hard, given both its non-

differentiability and the computational complexity in-

volved. Nonetheless, previous works have already shown

that adding further constraints to the learning problem could

be effective [33] as, typically, the trained ANN models are

over-sized and allows a large number of solutions to the

same learning task [32]. Our experiments show that EnD

effectively favors the choice of unbiased features over the

biased ones at training time, yielding competitive general-

ization capabilities compared to models trained with other

un-biasing techniques.

The rest of the work is structured as follows. In Sec. 2 we

review some works close to our problem. Then, in Sec. 3

we introduce EnD in detail providing intuitions on its effect.

Sec. 4 shows some empirical results and finally, in Sec. 5,

the conclusions are drawn.

2. Related works

In this section we review state-of-the-art techniques de-

signed to prevent models from learning biases. The tech-

niques can be grouped into (but not limited to) three main

approaches: direct data de-biasing from the source, use of

GANs/ensembling towards data de-biasing and direct learn-

ing the de-biasing within the trained model.

De-biasing from data source It is known that datasets

are typically affected by biases. In their work, Tor-

ralba and Efros [36] showed how biases affect some of the

most commonly used datasets, drawing considerations on

the generalization performance and classification capabil-

ity of the trained ANN models. Following a similar ap-

proach, Tommasi et al. [35] conducted experiments report-

ing differences between a number of datasets and verifying

how final performances vary when applying different de-

biasing strategies in order to balance data. Working at the

dataset level is in general a critical aspect, and greatly helps

in understanding the data and its structure [8]. The con-

cept of removing bias by using data borrowed by different

sources has been explored in a practical and empirical con-

text by Gupta et al. [11]. In particular, they have designed

a de-biasing strategy to minimize the effects of imperfect

execution and calibration errors by reducing the effect of

unbalanced data, showing improvements in the generaliza-

tion of the final model. Khosla et al. [16] propose an algo-

rithm based on max-margin learning (SVM), which explic-

itly models biases present in different datasets.

Adversarial and ensembling approaches. A possible ap-

proach is to use additional models to learn the biases in

data and use them to condition the primary model so that

it avoids them. Wang et al. [41] perform a thorough com-

parisong of existing debiasing techniques, and propose a

domain-independent techinque based on an ensemble of

classifiers. Kim et al. use adversarial learning and gra-

dient inversion to eliminate the information related to the

biases in the model [17]. Wang et al. [40] adopt an ad-

versarial approach to remove features corresponding to bias

information from intermediate representations in the deep

neural network. Xie et al. [42] propose an adversarial ap-

proach in order to obtain predictions which are invariant

to some intrinsic attribute of the data (e.g. bias features).

Another possibility is to use the gray-level co-occurence

matrix to extract unbiased features and to train the model,

as proposed by Wang et al. with HEX [39]. Alvi et al.

propose BlindEye [1], training a classifier on the extracted

deep features to retrieve information from biases. Then they

force the “bias classifier” to forget bias-related information.

Bahng et al. [4] develop an ensembling-based technique,

called ReBias. It consists in solving a min-max problem

where the target is to promote the independence between

the network prediction and all biased predictions. Identify-

ing the “known unknowns” [3] and optimize on those using

a neural networks ensemble is the approach proposed by

Nam et al. with their LfF [22]. A similar approach is fol-

lowed by Clark et al. in their LearnedMixin [6].

De-biasing within the deep model. Dataset de-biasing

helps in the learning process, as training is performed with

no biases; however, with such an approach we typically

have no direct control on the information we are removing

from the dataset itself, or we are including an extremely-

high computational complexity like when training GANs.

A context in which, on the contrary, we can have direct ac-

cess to these biases is presented by Hendricks et al. [13]. In

such a work it was possible to explicitly introduce a correc-

tive loss term (coherent with the formulation introduced by

Vinyals et al. [37]) with the aim to help the ANN model to

focus on the correct features. Similarly, Cadene et al. pro-

pose RUBi [5] where they use logit re-weighting to lower

the bias impact in the learning process, and Sagawa et al.,

with Group-DRO [25], avoid bias overfitting by defining

prior data sub-groups and controlling their generalization.

Ross et al. [23] re-weight the gradients based on anno-

tated input mask, forcing the model to focus on the right

input regions. Similarly, Selvajaru et al. [28] propose a loss

term which takes into account manual visual annotation and
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Figure 2: Toy example of EnD’s effect. Each arrow rep-

resents the feature vector associated with a sample. Biases

are represented by the three different colors (green, orange

and blue) while the target class is represented by the ar-

rows marker’s symbol (triangle, square and circle). While in

some un-regularized training the deep model strongly cor-

relates with the bias (a), using EnD we aim at enforcing the

choices of different features (b).

gradient-based explanations such as Grad-CAM [27]. EnD

belongs to this class of approaches, since we directly reg-

ularize the trained model, with no additional parameters to

be learned. In Sec. 3 we are going to describe in detail the

approach we take in order to EnD bias propagation in the

trained model.

3. Entangling and Disentangling deep repre-

sentations

In this section, after introducing the notation, we present

EnD, our proposed regularization term, whose aim is to reg-

ularize the deep features in order to discourage the deep

model to learn biases.

3.1. Preliminaries

In this section we first introduce the notation we are go-

ing to use for the rest of this work and we provide some

intuitions on how EnD is going to work. Let us assume we

focus our attention on some layer Γ , at the output of which

we are going to apply EnD. Let T be the cardinality of the

target classes of the learning problem and B the cardinality

of the bias classes in the dataset. We say the output of Γ

is y ∈ R
NΓ×M , where M is the batchsize and NΓ is the

output size of Γ . We also define:

• M t,b as the cardinality of the samples having the same

target t and the same bias b;

• M t,− as the cardinality of the samples having the same

target t regardless the biases;

• M−,b as the cardinality of the samples having the same

bias b regardless the target class;

• y
t,b as the subset of the features y belonging to the

inputs having the same target class t and showing the

same bias b;

• y
t,− as the subset of the features y belonging to the in-

puts having the same target class t regardless the bias;

• y
−,b as the subset of the features y belonging to the in-

puts having the same bias b regardless the target class;

• yi as the i-th sample in the minibatch;

• T (yi) extracts the target class of yi;

• B(yi) extracts the bias class of yi.

In our work, EnD sides the loss minimization, discouraging

the selection of biased deep features and encouraging the

unbiased ones at training time. Hence, the overall objective

function we aim to minimize is

J = L+R, (1)

where L is the loss function for the trained task and R is

our proposed EnD term, applied at the output of Γ . Fig. 1

provides the overall structure of the trained model.

Let us consider, as a toy example, some classification prob-

lem having three target classes, but as well three different

bias classes (Fig. 2 shows the extracted feature vectors at

Γ ). We encode the biases as three different colors (green,

orange and blue), while the target class is represented by

the arrows marker (triangle, square and circle). Typically,

training a deep model without taking biases into account

produces feature representations shown in Fig. 2a: here, the

loss on the target classes is minimized (three distinct groups

are formed depending on the arrow marker), but it is driven

by a heavy bias (the colors of the arrows). The purpose of

EnD is to disentangle the representations belonging to the

same bias class (color) and to entangle the representations

with the same target class (the arrow’s marker). Fig. 2b rep-

resents the effect of EnD on the deep representations: while

the disentangling term un-groups the biased example’s rep-

resentations, i.e. makes corresponding vectors almost or-

thogonal, the entangling one promotes correlations between

samples having the same target.

3.2. Data correlations

Our main goal is to train our model to correctly classify

the data into the T possible classes, preventing the use of

the bias features provided in the data. Towards this end, we

aim at inserting an information bottleneck: the information

related to these biases will be used as little as possible for

the target classification task.

We can build a similarity matrix G ∈ R
M×M :

G = (ỹ)
′
· ỹ, (2)
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where (·)′ indicates transposed matrix and ỹ indicates a per-

representation normalization

ỹi =
yi

‖yi‖2
∀i ∈ [1,M ]. (3)

Hence, every gi,j entry between two patterns i, j in G indi-

cates their correlation:

gi,j = (ỹi)
′
· ỹj . (4)

G is a special case of Gramian matrix, as any

gi,j ∈ [−1;+1] and indicates the difference in the direc-

tion between any two yi and yj . G has some properties:

• is a symmetric, positive semi-definite matrix;

• all the elements in the main diagonal are exactly 1 by

construction;

• if the subset of outputs ỹ forms an ortho-normal basis

(or G is full-rank), then G = I by definition.

Handling these relations, we are going to build our regular-

ization strategy, which consists in two terms:

• a disentangling term, whose task is to try to de-

correlate as much as possible all the patterns belonging

to the same bias class b;

• an entangling term, which attempts to force correla-

tions between data from different bias classes but hav-

ing the same target class t.

3.3. The EnD regularizer

The regularization R we propose blends the disentan-

gling R⊥ and entangling R‖ terms by setting

R = αR⊥ + βR‖, (5)

where α and β are proper multipliers. In the following, we

are going to describe in detail the disentangling and the en-

tangling terms.

Disentangling term. In order to disentangle biased repre-

sentations, at training time, we select the patterns belonging

to a bias class b and build the corresponding Gramian matrix

G−,b =
(

ỹ
−,b

)′

· ỹ−,b. (6)

Then, we enforce de-correlation between the features be-

longing to the same class: ideally, we would like to get

G−,b → I ∀ b. To this end, we introduce the regularization

term

R⊥ =
1

B

B
∑

b=1

1

(M−,b)
2

∑

i,j

∣

∣

∣
g
−,b
i,j

∣

∣

∣
(7)

that promotes minimization of the off-diagonal elements in

G−,b, ∀b.

Entangling term. While R⊥ discourages the model to

learn biases, the model should also build strong correlations

between patterns belonging to different bias classes, but to

the same target class t. With an orthogonal approach to the

one used to derive (6), we compute the Gramian matrix for

the patterns belong to the same target class t:

Gt,− =
(

ỹ
t,−

)′
· ỹt,−. (8)

Let us focus, now, on the vector g
t,−
i , extracted from the i-th

column of Gt,−: it expresses how the i-th pattern correlates

to all the other patterns which will be grouped to the same

t-th target class. As a first option, we might ask the model

to correlate the i-th pattern to all the other patterns having

the same target class t, deriving the pattern entangling rule

as the opposite of the disentangling rule in (7):

R̂‖ = 1−
1

T

T
∑

t=1

1

(M t,−)
2

∑

i,j

g
t,−
i,j (9)

In this formulation we are asking all the g
t,−
i,j → 1, corre-

lating the features as much as possible. However, (9) has

a major shortcoming: it simply forces again correlations

according to the target class t regardless the bias informa-

tion, which might be re-introduced. This is already done

at a more general level by the loss function minimization as

in (1): it is desirable to have a term which entangles features

having the same target class, but belonging to different bias

classes. Towards this end, we can re-write (9) maximizing

the correlations between each single example yi and every

other example yj such that T (yi) = T (yj) but, at the same

time, B(yi) 6= B(yj). Hence, our entangling term reads

R‖ = 1−
1

M

M
∑

i=1

1
∑

b 6=B(y
i
)

MT (y
i
),b

·

·
∑

j

δ̄
[

B(yi),B(yj)
]

· g
T (y

i
),−

i,j , (10)

where

δ̄(a, b) =

{

0 a = b

1 a 6= b
. (11)

4. Experiments

In the experiments we present in this section, we aim to

remove different types of biases such as color, age, gen-

der which can have a high impact on classification perfor-

mance when recognizing, for example, attributes such as

hair color and presence of makeup on facial images. Ad-

ditionally, we also show how this technique can help in

sensitive tasks such as in the medical field, specifically in

COVID-19 detection from CXR images. In all the results

tables, the best results are denoted as boldface, the second
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Figure 3: Biased MNIST by Bahng et al. [4], where the

background colors highly correlate with the digit classes.

Method
ρ values

0.999 0.997 0.995 0.990

Vanilla 10.4 33.4 72.1 89.1

HEX [39] 10.8 16.6 19.7 24.7

LearnedMixin [6] 12.1 50.2 78.2 88.3

RUBi [5] 13.7 43.0 90.4 93.6

ReBias [4] 22.7 64.2 76.0 88.1

EnD 52.30 83.70 93.92 96.02

± 2.39 ± 1.03 ± 0.35 ± 0.08

Table 1: Biased MNIST performance on the unbiased

test set.

best results are underlined. “Vanilla” denotes the baseline

model performance for the learning problem, with no debi-

asing technique applied. All the EnD’s results are averaged

over three different runs. 1 In our experiments, EnD is al-

ways applied after the network’s encoder, which is typically

a bottleneck: this is a reasonable choice in order to exploit

the whole encoder to extract unbiased features.

4.1. Controlled experiments

In this section we describe the controlled experiments

that we performed in order to assess the performance of

EnD. Full control over the amount and type of bias allows

to correctly analyze EnD’s behavior, excluding noise and

uncertainty given by real-world data.

4.1.1 Biased MNIST

We test our method on a synthetic dataset, where we can

control the bias in the training data. We use the Biased

MNIST dataset proposed by Bahng et al. [4]. This dataset

is constructed from the MNIST dataset [19] by injecting a

color into the images background, as shown in Fig. 3. Each

digit is associated with one of ten pre-defined colors. To

assign the color bias to an image of a given target class,

the pre-defined color is selected with a probability ρ, and

any other color is chosen with a probability (1 − ρ). To

vary the level of difficulty in the dataset, the authors select

ρ ∈ {0.990, 0.995, 0.997, 0.999}. Higher values of ρ cor-

1The source code is available at https://github.com/

EIDOSlab/entangling-disentangling-bias. The hyperpa-

rameters used for the proposed experiments (optimized using a validation

set or k-folding cross-validation depending on the dataset) are indicated in

the supplementary material.

respond to higher correlation between target class and bias

class (color). Two testing datasets are constructed with the

same criterion: biased, with ρ = 1.0, and unbiased, with

ρ = 0.1. Given the low correlation between color and digit

class in the unbiased test set, models must learn to classify

shapes instead of colors in order to reach a high accuracy.

Setup. We use the network architecture proposed by

Bahng et al. [4], consisting of four convolutional layers with

7×7 kernels. The EnD regularization term is applied on the

average pooling layer, before the fully connected classifier

of the network.

Results. Results are shown in Tab. 1. EnD’s results are

averaged across three different runs for each value of ρ. For

all values of ρ we report the accuracy obtained by EnD on

the unbiased evaluation set, compared with other debiasing

algorithms.

EnD successfully mitigates bias propagation. The im-

provement obtained with EnD with respect to the baseline

model is noticeable, especially in the higher levels of diffi-

culty. We observe an increase of accuracy across all values

of ρ. Notably, for ρ = 0.999 the vanilla model reaches

10.4% accuracy, meaning that the background color is used

as the only cue for classifying the digits, whereas employ-

ing EnD yields an accuracy of 52.30%. Fig. 4 shows the

effect of EnD, using Grad-CAM [27] to highlight the im-

portant regions of the input image for the model predic-

tion. We observe that the vanilla model (Fig. 4a) focuses on

the background, while the EnD-regularized model (Fig. 4b)

correctly learns to focus on the digit shape.

Comparison with other techniques. We observe that EnD

yields the highest results among all of the compared debi-

asing algorithms. Such gap is especially higher in the most

difficult settings for ρ ∈ {0.999, 0.997} where many algo-

rithms are unable to generalize to the unbiased set, espe-

cially HEX [39] and LearnedMixin [6]. Some of the com-

pared algorithms even show a collapse in accuracy com-

pared to the vanilla baseline in certain cases (HEX for most

values of ρ, LearnedMixin and ReBias for ρ = 0.990).

Ablation study. We also perform an ablation study of EnD

to analyze how each of the EnD’s terms affect the perfor-

mance of the trained model. For a fixed ρ = 0.997, we

evaluate only the contribution of the disentangling term R⊥

and disable the entangling term R‖ by setting β = 0. We

then perform the opposite evaluation by setting α = 0, to

only take into account the entangling term. The results are

shown in Tab. 2. We observe that both the regularization

terms contribute to boost the model’s generalization capa-

bility. As expected, the best results are achieved when both

of them are jointly applied. The entangling term yields a

higher increase in performance compared to the disentan-

gling one, however it is in general not always applicable.

Given some i-th sample yi in a mini-batch, the entangling

13512



(a) (b)

Figure 4: Grad-CAM [27] on Colored MNIST: vanilla model (a) and EnD-regularized model (b). Images were processed

with an edge detection filter in order to improve the readability of the activation map.
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Figure 5: EnD learning curves on Colored MNIST for ρ= 0.995. Biased accuracy (a), unbiased accuracy (b), L value on

the training set (c) and R value on the training set (d).

Setting α β
Unbiased

accuracy

Vanilla 0 0 33.4

Disentangling only [0; 1] 0 45.67 ± 0.67

Entangling only 0 [0; 1] 75.36 ± 0.94

EnD [0; 1] [0; 1] 83.70 ± 1.03

Table 2: Ablation study of EnD on the Biased MNIST

dataset, ρ = 0.997.

term can be applied if and only if:

∃j, j 6= i | T (yi) = T (yj) ∧ B(yi) 6= B(yj). (12)

The bias’s distribution over the training set and the batch

size play an important role in the possibility of applying the

entangling term on every update step. If there are domi-

nant biases for specific target classes, this can be accounted

for by clever batching (i.e. applying a weighted sampler).

This would maximize the chances satisfying the condition

in (12). In our experiments we applied the entangling term

when the condition is satisfied. The disentangling term pro-

vides a smaller benefit in this case, but, on the other hand, it

can always be applied. We find that the ideal case for EnD is

when both of the terms can be used in the learning process,

leading to better generalization capabilities. Furthermore,

we observe a similar pattern in the learning process when

employing the full EnD regularization for different values

of ρ. Fig. 5 shows the learning curves for ρ = 0.995. We

notice how models tend to quickly learn the color bias in

the first few epochs, as the accuracy on the biased test set is

close to 100% (Fig. 5a). However, once the value of the loss

(in this case, we have used the cross-entropy loss, Fig. 5c)

falls below a certain threshold, the contribution R of the

EnD term becomes predominant (Fig. 5d). In this phase,

which we call kick-in region, the optimization process begin

to rapidly minimize R, stopping the model from relying on

the bias-related features. This can be observed in the rapid

increase of the accuracy on the unbiased test set (Fig. 5b),

whereas the biased accuracy momentarily drops as the mod-

els shift their focus from the background color to the digit

shape.

4.2. Real world datasets

After benchmarking EnD in a controlled scenario on

synthetic data, we move to real world datasets where biases

might be subtle and harder to handle. In this section we aim

at removing age and gender bias in different datasets. We

also apply EnD on a computer-aided diagnosis task, where

hidden biases might lead to sub-optimal generalization of

the model.

Setup. For CelebA and IMDB Face, we use the ResNet-
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Method Unbiased Bias-conflicting

L
ea

rn
H

ai
rC

o
lo

r Vanilla 70.25 ± 0.35 52.52 ± 0.19

Group DRO [25] 85.43 ± 0.53 83.40 ± 0.67

LfF[22] 84.24 ± 0.37 81.24 ± 1.38

EnD 91.21 ± 0.22 87.45 ± 1.06

L
ea

rn
H

ea
v

y
M

ak
eu

p Vanilla 62.00 ± 0.02 33.75 ± 0.28

Group DRO [25] 64.88 ± 0.42 50.24 ± 0.68

LfF[22] 66.20 ± 1.21 45.48 ± 4.33

EnD 75.93 ± 1.31 53.70 ± 5.24

Table 3: Performance on CelebA.

18 model proposed by He et al. [12]. The network was

pre-trained on ImageNet [9], except for the last fully con-

nected layer. The EnD regularization is applied on the aver-

age pooling layer, before the fully connected classifier. For

CORDA, we use a DenseNet-121 [15] encoder pre-trained

on publicly available CXR data, which is then followed by

a two-layer fully connected classifier.

4.2.1 CelebA

CelebA [20] is a dataset of for face-recognition tasks,

providing 40 attributes for every image. Following

Nam et al. [22], we select BlondHair and HeavyMakeup as

target attributes t and Male as bias attribute b. This choice

is dictated by the fact that there is a high correlation be-

tween these attributes (i.e. most women have blond hair or

wear heavy makeup in this dataset). The dataset contains

a total of 202,599 images, and following the official train-

validation split we obtain 162,770 images for training and

19,867 images for testing our models. Nam et al. [22] build

two types of testing dataset: unbiased, by selecting the same

number of samples for every possible value of the pair (t, b),
and bias-conflicting, by removing from the unbiased set all

of the samples where b and t are equal.

Results. As in [22], the accuracy is computed as average

accuracy over all the (t, b) pairs. Tab. 3 shows the results

obtained on the CelebA dataset. We observe how the vanilla

model heavily relies on the bias attribute, scoring a low ac-

curacy especially on the bias-conflicting sets. EnD, on the

other hand, outperforms the baseline in both the tasks. We

report reference results [22] of other debiasing algorithms,

specifically Group DRO [25] and LfF [22], for comparison

with EnD. The results we obtain are significantly higher

across most of the evaluation sets, and comparable with

Group DRO and LfF on the bias-conflicting set when the

target attribute is HeavyMakeup.

(a)

(b)

Figure 6: IMDB train splits: EB1 (a) and EB2 (b).

Method
Trained on EB1 Trained on EB2

EB2 Test EB1 Test

L
ea

rn
G

en
d

er Vanilla 59.86 84.42 57.84 69.75

BlindEye [1] 63.74 85.56 57.33 69.90

Kim et al. [17] 68.00 86.66 64.18 74.50

EnD 65.49 87.15 69.40 78.19

± 0.81 ± 0.31 ± 2.01 ± 1.18
L

ea
rn

A
g

e Vanilla 54.30 77.17 48.91 61.97

BlindEye [1] 66.80 75.13 64.16 62.40

Kim et al. [17] 65.27 77.43 62.18 63.04

EnD 76.04 80.15 74.25 78.80

± 0.25 ± 0.96 ± 2.26 ± 1.48

Table 4: Performance on IMDB Face. When gender is

learned, age is the bias, and when age is learned the gender

is the bias.

4.2.2 IMDB Face

The IMDB Face dataset [24] contains 460,723 face images

annotated with age and gender information. To filter out the

misannotated labels of this dataset [24, 36], Kim et al. [17]

use a model trained on the Audience benchmark [10], keep-

ing the images where the prediction matches the provided

label. Following Kim et al.’s proposed data split, 20% of the

IMDB is used as test set, containing samples with age 0-29

or 40+. The remaining data is then split into two extreme-

bias subset: EB1 contains women in the age range 0-29 and

men with age 40+, while EB2 contains men aged 0-29 and

women 40+. Thus, when learning to predict the gender at-

tribute, the bias is given by the age and vice-versa. An ex-

ample of the EB1 and EB2 training sets is shown in Fig. 6.

Results. Tab. 4 shows the results obtained on the IMDB

Face dataset. We performed two main experiments: gen-

der and age prediction. Besides the perfomance evaluation

on the test set, when training on EB1 we also tested the

model’s performance on EB2, and viceversa. This allows us

to better evaluate the bias features’ influence on the model

prediction. We notice how the baseline model is heavily
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biased towards age when predicting gender, and towards

gender when predicting age. This can be observed on the

performance achieved on the EB2 and EB1 sets, both for

gender and age prediction. When employing our regular-

ization term, we observe an increase across all of the ob-

tained results: in particular, when training on EB2 for age

prediction, we notice an increase from 48.91% to 74.25%

on the EB1 set. We also report reference results of other

debiasing algorithms, specifically BlindEye [1] and the ad-

versarial approach proposed by Kim et al. [17]. In general,

EnD obtains the best results among all the other debiasing

algorithms we compared to.

4.2.3 COVID CXR dataset

CORDA is a dataset comprising 898 Chest X-Ray images

(CXR), collected during March and April 2020 by radiol-

ogy units at Città della Salute e della Scienza (CDSS) and

San Luigi Gonzaga (SLG), in Italy. Nasopharingeal swab

was used to determine the presence of COVID-19 infection.

The dataset can be split by collecting institution, resulting

in CORDA-CDSS with 297 images of COVID-19 positive

patients and 150 of negatives, and CORDA-SLG with 129

positives and 322 negatives. Recent literature [7, 21, 31]

shows that merging CXRs coming from different sources

poses bias issues: differences in CXR scanners or compo-

sition of the population might be used by the deep model

to distinguish the provenance of the data itself, even when

pre-processing techniques are employed. Differently from

the previous experiments, in this case we hypothesize the

presence of bias, without knowing the specific low-level

features characterizing it. Data coming from CDSS con-

tain a majority of positive samples, while data coming from

SLG have a majority of negative samples. Hence, if distin-

guishing features are embedded in the scans, then the net-

works might learn to discriminate the source of the data, in-

stead of actually classifying between COVID positives and

negatives. To build the test sets, we use 30% of CORDA-

CDSS and 30% of CORDA-SLG. The remaining data are

then merged and used as training set. Testing on the two

separate sets allows us to assess whether the prediction of

the models are biased towards the origin of the data.

Results. The results obtained on CORDA-CDSS and

CORDA-SLG are presented in Tab. 5. We observe how

the vanilla model is in fact biased towards the source of the

data. On CORDA-CDSS (which contains mostly positive

samples) the vanilla model shows a higher true positive rate

(TPR) and a lower true negative rate (TNR). On the other

hand, on CORDA-SLG we notice a lower TPR compared

to the sensibly higher TNR. Employing EnD helps in im-

proving the results in this case too. While maintaining a

similar TPR on CORDA-CDSS and TNR on CORDA-SLG,

we obtain an improvement of the TNR 59.26%→76.30%

and of the TPR 52.14%→68.37% on CORDA-CDSS and

Test on CORDA-CDSS

TPR TNR BA

Vanilla 69.99 ± 3.27 59.26 ± 2.09 64.63 ± 2.50

EnD 68.16 ± 2.08 76.30 ± 2.10 72.22 ± 0.01

Test on CORDA-SLG

Vanilla 52.14 ± 3.20 87.63 ± 4.37 69.88 ± 2.95

EnD 68.37 ± 6.04 84.51 ± 3.04 75.94 ± 1.62

Table 5: Performance on CORDA, sorted by collecting

institution.

(a) (b)

Figure 7: Grad-CAM on CORDA: vanilla model (a) and

EnD-regularized model (b).

CORDA-SLG, respectively. This also results in an in-

creased balanced accuracy (BA) on both of the test sets.

As a further insight, we observe in Fig. 7a that the vanilla

model focuses on irrelevant regions outside the lungs area,

while the EnD-regularized model mainly focuses on the

lower lobes of the lungs (Fig. 7b).

5. Conclusion

In this work we aimed at EnD-ing the selection of biased

features in deep model trained on biased datasets. We pro-

posed a regularizer whose task is to either disentangle deep

feature representations with the same bias and to entangle

deep features with different biases, but belonging to the

same target classification class. Differently from other de-

biasing techniques, we do not introduce any additional pa-

rameters to be learned and we do not modify the input data:

the model is naturally driven into choosing unbiased deep

features, without introducing additional priors to the data.

Our experiments show the effectiveness of EnD when com-

pared to other state-of-the-art techniques, excelling in the

cases of heavily-biased data. As a practical case, we tested

the effect of EnD on the COVID diagnosis from CXR im-

ages, where the bias is given by the data source and it is

not straightforward to detect. In this case we have ob-

served an overall improvement of the performance on the

test set as well, showing that our technique may be em-

ployed to build more reliable models even in more sensitive

tasks.
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