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ABSTRACT  

One of the main challenges in river management is the setting of nutrient thresholds that support good 

ecological status, which is the main objective to achieve for the European member states. This is a 

complex process, which needs an accurate analysis of the data collected so far for the ecological 

classification of rivers belonging to different typologies. We analysed the data of the multiannual 

monitoring concerning diatoms and nutrients in the upper Po River (NW Italy) with the aim of 

exploring the response of diatom community in terms of species composition, ecological guilds and 

indices. We considered data of 390 samples, of which 2/3 belonging to the “Central macrotype” (i.e. 

lowland stretches) and 1/3 to “Alpine siliceous”. We performed a Principal Coordinate Analysis to 

detect community patterns with respect to water chemical classification and macrotypes highlighting 

species and ecological guilds characteristic of samples along a water quality gradient. We then 

performed a partial RDA to focus on the role of environmental and spatial factors in shaping the 



diatom community in each of the two macrotypes. Finally, we investigated the concordance between 

the Italian normative indices ICMi (for diatoms) and LIMECO (a chemical index of water quality). 

We found significant differences in the diatom communities of the two macrotypes and in their 

response to water quality and to spatial factors. Communities resulted as much more uniform in sites 

with a low water quality, with characteristic species such as Navicula gregaria, Nitzschia palea and 

Sellaphora nigri. On the other hands, moderately disturbed sites (in terms of trophic level) were 

characterised by the highest guild diversity. The RDA confirmed the importance of spatial factors in 

shaping the diatom assemblages, especially in Alpine streams where the physical barriers may 

condition species dispersion. The comparison between the two normative indices highlights that the 

correspondence in the classification is achieved in the 57% (Alpine macrotype) and 43% (Central 

macrotype) of samples. According to our findings, we suggest the revision of the ICMi, both class 

boundaries and reference value. In addition, we recommend to lower LIMECO threshold for total 

phosphorus: indeed, several studies have shown significant changes in the diatom community 

composition starting from very low values (below the current LIMECO threshold, i.e. 50 µgL-1). 

Moreover, the extension of our study to the whole Po River basin will complete our knowledge of 

species not yet included in the diatom indices and of the community response to nutrient levels also 

in other macrotypes. 

 

INTRODUCTION 

Benthic diatoms are recognised worldwide as a reliable indicator of ecological health in rivers and 

streams. Indeed, they own most of the desirable attributes of the “perfect ecological indicator”, such 

as wide distribution, presence in all seasons, taxon–specific response to multiple stresses, key-role in 

the river trophic chain. For these reasons, many countries such as the United States and the European 

Union (EU) members have adopted standard methods and specific diatom-based metrics in their 

monitoring programs. In the EU the Water Framework Directive 2000/60/EC (European 

Commission, 2000) has led to the intercalibration of a large number of diatom metrics given their 

contribution to the ecological assessment of water bodies. In Italy, a new index derived from the 

intercalibration exercise has been adopted as the standard for the ecological classification of rivers, 

the Intercalibration Common Metrics Index ICMi (Mancini and Sollazzo, 2009) which is calculated 

as the mean of the Ecological Quality Ratio (EQR) of two existing indices, IPS (CEMAGREF, 1982) 

and TI (Rott et al., 1999).  

The WFD aims at achieving at least the good ecological status for all the rivers whilst a recent survey 

highlighted that less than half of the rivers met this objective (Kristensen et al., 2018). To improve 



the current ecological status of rivers it is crucial to identify the causes of degradation by relating 

appropriate biological metrics to environmental stressors. Among the various stressors to which 

diatoms respond, nutrients (i.e. phosphorus and nitrogen) enrichment is, without doubt, one of the 

most important, because of its role in regulating algal growth. Though, the quantitative relationship 

between nutrient concentration and benthic algae growth is not so clear for rivers, while it has been 

investigated in deep by limnologists for lakes, starting with the pivotal works of Vollenweider (1968; 

1976) who found a clear relationship between phosphorus and chlorophyll-a concentration. 

Nevertheless, excessive nutrients are still considered as one of the most broadly problematic chemical 

stressors in rivers and streams (U.S. Environmental Protection Agency 2016; Kristensen et al., 2018). 

Recent studies have attempted to establish nutrient thresholds driven by ecological criteria also for 

rivers (see Poikane et al., 2021 for an overview), using a wide range of diatom indices and community 

metrics. A wide variety of thresholds has been suggested, this variety being strongly related to the 

variables (both biological and chemical) analysed, to the method applied, and to the type of river.  

In Italy the application of diatom indices for the river classification has many distinctive aspects: 1) 

data concerning diatom flora is scattered and relatively recent compared to other close countries such 

as France and Germany. Published studies on the Italian flora regard in particular the Apennines 

starting from 1999 and confined to single Apennine streams (Dell’Uomo et al., 1999; Torrisi and 

Dell’Uomo, 2006; Dell’Uomo and Torrisi, 2011), Eastern Alps from 1998 (Cantonati, 1998) and 

Western Alps from 2004 (Battegazzore et al., 2004); 2) the river network is very diverse 

encompassing 24 hydroecoregions; 3) Italy has adopted a new index for the WFD application that 

has very little been considered in the scientific literature, except for the intercalibration exercise 

proposed by Almeida et al., 2014 for the Mediterranean river type. 

For these reasons, before the establishment of national diatom-based nutrient thresholds, it is 

necessary to analyse extensive databases concerning diatom communities collected following the 

application of the WFD.    

This is the first study specifically focused on the analysis of data collected in the most representative 

macrotypes of Northern Italy (namely Alpine siliceous, R-A2 and Central, R-C). The aim is to explore 

the relationships of nutrients and diatoms in rivers considering, besides the normative diatom metrics, 

also the taxonomical and functional composition. Results of this analysis could be the initial step 

towards the setting of nutrient thresholds consistent with good ecological status, according to the 

objectives of the WFD. To achieve these objectives, we analysed the dataset regarding diatom 

community composition and nutrient concentrations coming from the WFD monitoring programme 

performed by the Regional Environmental Protection Agency (hereafter, ARPA) of Piedmont (NW 

Italy) from 2009 to 2016 in the upper part of the Po river basin, the longest river in Italy.    



 

METHODS 

Study area  

The study area is the upper catchment of the Po River comprised in the Piedmont region, NW Italy. 

This basin represents a hydrogeological system of European relevance (De Luca et al., 2020). 

Piedmont has a high climatic, lithological and orographic variability: the Po drains the semicircle 

formed by the Alps and Apennines, which surround the region on three sides. The Alpine section 

includes peaks over 4000 m asl such as Monte Rosa and Gran Paradiso but other features of this 

region are the damp rice paddies, the hillsides of Langhe, Roero, Monferrato and the western part of 

the Padana plain. This landscape diversity reflects the presence of five river macrotypes, among 

which the most represented are the R-A2 (Alpine siliceous) and the R-C (Central, corresponding to 

lowland stretches). The upland river basins are located in the Alps, with altitudes ranging between 

300 and >4000 m asl and maximum precipitation mostly recorded in spring and autumn. The 

hydrological regime shifts from nival (i.e., high flow season in late spring and low flows mainly 

during winter) to pluvio-nival (i.e., two periods of high flows, in spring and autumn, and two periods 

of low flows, in summer and winter) as the altitude decreases. In these catchments, water abstractions 

and morphological alterations currently represent the most significant pressures. Lowland river basins 

within the Piedmont borders are located in the Po Plain at low altitudes (below 300 m asl) and are 

characterised by the pluvio-nival regime. In these areas, the catchments are modified by human 

activities, especially intensive agriculture and animal farming, urbanization and industry. 

 

Data source 

We analysed diatom and water chemical dataf the R-A2 and R-C river types (Fig. 1) collected by 

ARPA and available at the website https://webgis.arpa.piemonte.it (retrieved October 2020). The 

available data range is from 2009 to 2016. Sampling for chemical analysis has a higher frequency 

than biological quality elements, we selected the samples collected in the closest date possible to the 

biological ones. 

The total number of samples was 390, collected in 139 sites, of which 50 belong to R-A2 (122 

samples) and 89 (268 samples) to R-C river type. Sampling frequency was twice per year, in most 

cases in spring and autumn. 

Diatom data were available as relative abundance of each taxon. Diatom samples were collected and 

processed by ARPA following the Italian standard method (ISPRA, 2014), based on the European 

standards UNI EN 13946:2005 (European Committee for Standardization, 2005) and UNI EN 

14407:2004 (European Committee for Standardization, 2004) and following updates. 



We selected water chemical data corresponding to the schedule of the biological samples to obtain a 

correspondence between the two matrices (i.e. biological and environmental). We considered the 

following water parameters: ammonium (NH4-N), Biological Oxygen Demand (BOD), conductivity 

(COND), dissolved oxygen (DO), nitrates (NO3-N), soluble reactive phosphorus (SRP), pH, total 

nitrogen (TN), total phosphorus (TP). For statistical analysis purposes, values below the detection 

limit were split in half.  

 

Database preparation 

Diatom taxonomic list was revised and updated following the most recent literature papers and taxa 

names were uniformed to obtain comparable inventories over the whole surveillance period. Each 

taxon was assigned to one of the four ecological guilds described by Rimet and Bouchez (2012): low 

profile (small, fast-growing diatoms), high profile (large or colonial diatoms), motile (fast-moving 

diatoms), and planktic (diatoms adapted to lentic environment). Diatom inventories were then 

inserted in the OMNIDIA software version 6.0.8 for the calculation of the quality indices. The use of 

the most updated version of this software allowed comparable results over the whole sampling period. 

For each inventory we calculated IPS (Indice de Polluo-Sensibilité Spécifique; CEMAGREF, 1982) 

and TI (Trophic Index; Rott et al., 1999) values. We then calculated ICMi according to Mancini and 

Sollazzo (2009). First, for each sample, we calculated Ecological Quality Ratios (EQRs) between 

observed and reference IPS and TI values proposed by Mancini and Sollazzo (2009). Second, we 

calculated the mean between IPS EQRs and TI EQRs, obtaining the ICMi final values.  

As regards chemical data, we calculated for each sample the Italian normative LIMECO index 

(Government of Italy, 2010), which is based on four chemical parameters (namely ammonium, 

nitrate, TP and DO). LIMECO is an Italian synthetic index used to summarise the chemical quality 

and classify rivers into 5 classes, from high (1st class) to bad (5th class). LIMECO contributes to the 

river ecological classification according to the Italian legislation. Finally, we prepared a spatial matrix 

based on the geographical coordinates of the study sites.  

 

Statistical analyses 
Water quality - Differences between macrotypes 

Possible differences in terms of water parameters between R-A2 and R-C were tested through t-test 

in R 3.6.0. 

 



 
Diatom composition according to macrotypes and LIMECO index  

We performed a Principal Coordinate Analysis (PCoA) to detect possible differences in terms of 

taxonomic composition (Bray-Curtis distance) among diatom samples collected in sites belonging to 

different macrotypes (R-A2 and R-C) or LIMECO quality classes. Using R package vegan (Oksanen 

et al. 2020), we plotted the results as an ordination diagram and we connected the points for sites to 

the centroids calculated for the different macrotypes (Fig. 2a) and LIMECO classes (Fig. 2b). Possible 

dissimilarity in taxonomical matrices of diatoms collected in R-A2 and R-C and LIMECO were tested 

through a Two-Way PERMANOVA (Anderson, 2001). Similarity Percentage Analysis (SIMPER) 

(Clarke, 1993) was used to determine the contribution of each species to the average Bray–Curtis 

dissimilarity between the two macrotypes (R-A2 and R-C) and LIMECO quality classes. The PCoA, 

the Two-Way PERMANOVA and the SIMPER analyses were performed in PAST 4.03 (Hammer et 

al., 2001). 

The set of ecological guilds and relative abundances extrapolated from the functional matrix were 

subjected to a non-parametric Mann-Whitney U test, performed in PAST 4.03, to check for 

differences 1) between R-A2 and R-C sites and 2) among the LIMECO water quality classes.  

 
Influence of environmental and geographical variables on diatom community 

We then investigated the role of water parameters in shaping the diatom community in both R-A2 

and R-C sites. To achieve this goal, for each macrotype we performed a partial-RDA (Peres-Neto et 

al., 2006; De Bie et al., 2012) built up on two explanatory matrices, to focus on physical-chemical 

variables, partialling out the spatial component of the taxonomic variation. 

A physical-chemical matrix [C] included all the 9 parameters cited above, and a spatial matrix [S] 

included a set of orthogonal spatial variables derived from the geographical coordinates of the study 

sites. By a Moran’s Eigenvector Maps analysis (MEM, Dray et al., 2006), we partitioned the spatial 

information into the spatial variables. These variables represent the potential autocorrelation between 

spatial points at different scales and they can model coarse patterns in the community data and then 

progressively represent finer-scale patterns (Borcard et al., 2004). Each spatial variable corresponds 

to a specific spatial structure and scale. For both matrices, we applied a forward selection to obtain a 

parsimonious combination of variables, i.e., including only variables with a significant relationship 

with the community matrix. We separately tested the [C] and [S] matrices against the taxonomic 

matrix and we decomposed total community variation into pure components and their intersections. 

We tested the significance of the chemical component using a Monte Carlo test with 1000 



permutations. The partial RDA analyses were performed with the R package vegan (Oksanen et al., 

2020). 

RESULTS 

Sampling sites – water quality 

Physical and chemical parameters detected over the whole survey are summarised in Tab. 1. We 

detected significant differences between R-A2 and R-C for all the considered parameters, except for 

ammonia and pH. As expected, R-A2 samples showed lower nutrient concentrations, BOD and 

conductivity than R-C sites. On the other hand, we noticed the highest dissolved oxygen values in R-

C with maximum values reaching 184% and 18.3 mg L-1, probably due to algae blooms in some 

sampling sites. Samples belonging to R-A2 were mostly classified as high based on the LIMECO 

classification (88.5%); about 6% were classified as good; about 5% as moderate and only one site fell 

into the worst quality class of LIMECO. No site was classified into the 4th LIMECO quality class 

(poor). On the other hand, 51% of the samples belonging to R-C were classified as high based on the 

LIMECO classification; 25% fall into the second quality class; 16% into the third; ca. 6% into the 

fourth class and 7 sites out of 268 were classified into the worst class. 

 

Diatom communities: comparison among macrotypes and water quality classes 

A total of 338 diatom taxa were detected in the study area (207 in R-A2, 304 in R-C). For statistical 

analyses, rare taxa (i.e. never exceeding 2% of relative abundance and/or recorded in less than 10 

samplings over 390) were excluded. The final biological matrix accounted for 163 diatom species. 

The visual inspection of the PCoA, which ordered samples according to their community 

composition, highlighted that R-A2 sites are mostly placed on the left side of the diagram while R-C 

are mainly distributed on the right side, with a clear separation of the two spider graphs (Fig.2a). 

According to LIMECO, we also noticed a rather high dispersion within the sites classified as high or 

good (i.e. blue and green in Fig.2b) which denotes high heterogeneity among samples in terms of 

diatom species composition. On the contrary, samples classified from moderate to bad (i.e. yellow, 

orange and red) were very close, and consequently similar to each other, pointing out a lower 

heterogeneity in terms of species composition. The centroids of “high” and “good” samples are well 

separated from the three other LIMECO categories, which are very close among them. 

Results of the Two-Way PERMANOVA performed on the taxonomic matrix confirmed the 

differences among species composition according to both macrotypes (F=7.6727; p=0.0001) and 

LIMECO quality class (F=2.0856; p=0.0001), but not to their interaction (F=-56.313; p=0.9672). 



To single out the contribution of each species to the average Bray–Curtis dissimilarity between 

macrotypes and LIMECO quality classes, we performed a Similarity Percentage Analysis (SIMPER) 

on the taxonomic matrix. As shown in Tab. 2, several species contributed to the differences between 

the two macrotypes. As expected, in R-A2 the species contributing most to this difference were 

mainly sensitive taxa, widely distributed in oligo-mesotrophic streams and were, accordingly, typical 

of mountain streams. These taxa were, in order of importance: Achnanthidium minutissimum 

(Kützing) Czarnecki, Achnanthidium pyrenaicum (Hustedt) Kobayasi, Cocconeis lineata C.G. 

Ehrenberg, Achnanthidium gracillimum  (Meister) Lange-Bertalot, Gomphonema elegantissimum 

Reichardt & Lange-Bertalot in Hofmann & al. and Encyonema silesiacum (Bleisch in Rabh.) D.G. 

Mann. On the contrary, species contributing most to the differences between macrotypes and typically 

recorded in R-C were ubiquitous taxa, widely distributed in lowland rivers with meso-eutrophic 

status: Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend., Reimeria sinuata 

(Gregory) Kociolek & Stoermer, Cocconeis euglypta C.G. Ehrenberg, Nitzschia fonticola Grunow in 

Cleve et Möller and Nitzschia dissipata  (Kützing) Grunow. 

The same analysis was performed on LIMECO quality classes (Tab. 3). In general, Achnanthidium 

species were typical of the 1st quality class, but well represented up to the 3rd one denoting a wide 

ecological tolerance. On the contrary, species generally found in eutrophic lowland rivers, such as 

Mayamaea permitis (Hustedt) Bruder & Medlin, Navicula gregaria Donkin and Craticula 

subminuscula C.E. Wetzel & Ector were, accordingly, found in the 4th water quality class. Sellaphora 

nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend. resulted as the most tolerant taxa, with a 

mean relative abundance of ca.11% in the worse quality class. 

The compositional differences between the two macrotypes and the LIMECO quality classes were 

confirmed by the analysis of the ecological guilds. Planktic taxa were excluded from the analysis 

because they accounted on average for less than 1% of the community. The ternary plot of Fig. 3a 

shows that samples belonging to the R-A2 macrotype were mainly composed of low profile and high 

profile taxa, while a higher functional heterogeneity characterised samples belonging to the R-C 

macrotype (Fig. 3b), that were composed of all the ecological guilds (i.e. low profile, high profile and 

motile). Moreover, R-C macrotype was characterized by a significantly higher abundance of motile 

taxa than R-A2 (Tab. 4). This difference was confirmed through the non-parametric Mann-Whitney 

U test, which detected also significant differences among R-A2 and R-C in terms of low profile and 

high profile guilds.  

Also the LIMECO class influenced diatom functional composition (Fig. 3). Low profile species were 

significantly more abundant in the high water quality class and their abundance gradually decreased 



up to the 4th LIMECO class (Tab.4). Unexpectedly, the 5th water quality class sheltered a higher 

median value in terms of low profile taxa than the 4th quality class, however, this difference could be 

due to the low number of observations included in this category (n=7) and to the biofilm stage of 

development (see comments in the following sections). High profile guild showed the same pattern 

as low profile with a gradual decrease of abundance from the 1st to the 5th LIMECO water quality 

class. Finally, the motile guild showed exactly the opposite pattern in comparison to low and high 

profile guilds, with increasing abundances towards the poorest water quality class. However, despite 

median values being significantly lower in the first LIMECO class in comparison with the others, we 

noticed a high dispersion of data denoting that the presence of motile taxa was recorded also in good 

or high-quality sites. 

 

Diatom communities: water parameters vs spatial component factors 

We then analysed whether diatom communities in the two macrotypes were driven by spatial factors 

or physical chemical parameters. The partial RDA performed on samples collected in the Alpine 

macrotype (Fig. 4a) highlighted the strong dominance of the spatial matrix, which included 17 PCNM 

vectors referring to both coarse and fine-scale spatial autocorrelation after forward selection, in 

comparison to the chemical one. The spatial component represented the key driver in explaining 

diatom composition, accounting for 15% of the total variance. The spatially structured environmental 

parameters represented 7% of the total explained variance. On the other hand, chemical parameters 

just explained 3% of the total explained variation. In this case, TP and SRP were not significantly 

related to the community matrix and they were excluded from the ordination diagram (Fig. 4a) where 

nitrate and TN were negatively correlated with both RDA axes. Conductivity and pH were negatively 

correlated with RDA1 but positively correlated with RDA2.  

The partial RDA performed on samples collected in the Central macrotype (Fig. 4b) highlighted again 

a strong dominant role of the spatial component in explaining diatom composition. Indeed, this matrix 

alone explains 11% of the total variance. Chemical and spatially structured environmental parameters 

were less important in shaping the communities of the R-C macrotype, both of them explaining 3% 

of the total variance. Five chemical parameters (namely pH, nitrate, conductivity, TP, SRP) were 

included in the ordination represented in Fig. 4b, where RDA1 was mainly correlated with nutrient 

concentrations, while RDA2 represented pH and conductivity. 

 

 



Diatom indices vs LIMECO 

Most of the samples collected in the Alpine macrotype were classified as at least good basing on 

diatom indices (in detail 91% basing on IPS, 75% basing on TI and 83% basing on ICMi). In the 

Central macrotype we observed higher discordance among diatom indices classification with TI being 

more severe (with only 23% of the samples classified as at least good), followed by IPS (65% of the 

samples classified as at least good) and ICMi (71% of the samples classified as at least good). The 

pattern of diatom indices (IPS, TI and ICMi) along an environmental gradient represented by the 

LIMECO water quality classes is shown in the boxplots of Fig. 5. As expected, all the diatom indices 

here considered tend to worsen going from the 1st to the last LIMECO class, for both macrotypes. 

However, samples classified as “high quality” according to LIMECO show a rather wide range of 

diatom indices values, Indeed, IPS and TI show median values falling into the first/second quality 

class and raw values reached even the 4th class. As expected, TI worked better in the Alpine than in 

R-C, where values and quality judgment underestimated water quality (see high/good LIMECO 

quality class in comparison to TI values). In many cases (i.e. 21.8% of the whole database), ICMi 

exceeded 1.  

In the Alpine macrotype, we always noticed an important difference, in terms of diatom indices 

values, between the high LIMECO quality class and the lower ones. On the contrary, diatom indices 

values were quite comparable between 2nd and 3rd LIMECO water quality class, as indices were not 

able to discern good/moderate quality status. 

In R-C, we observed a more gradual decrease of the diatom indices values, which generally followed 

water quality depletion. The only exception was represented by the 5th water quality class. In this 

case, IPS and ICMi showed higher median values than those observed in the 4th LIMECO class. This 

increase was also slightly observed when calculating TI. However, we also noticed a high data 

dispersion for this category, with IPS data ranging from the 2nd to the 5th quality class and from the 

2nd to the 4th concerning the ICMi index. As already noticed before, this could be due to the low 

number of samples included in this category (n=6) for the R-C macrotype.   

 

DISCUSSION 

To our knowledge, this is the first study to examine an extensive database of a significant portion of 

the Po river containing diatom and environmental data collected after the application of the WFD in 

Italy. We investigated the relationship between diatom communities and WFD related index to the 

water chemistry as a preliminary step towards the establishment of diatom-base nutrient thresholds. 



Our findings shed light on the difference between the two prevailing macrotypes in the study area in 

terms of diatom community (taxonomical and functional composition) and their response to water 

quality. We confirmed the importance of spatial factors and highlighted concordance and drawbacks 

of the normative indices currently used in Italy.  

Diatom communities and water quality in the two macrotypes 

Rivers included in the study area as resulted from the synthetic index LIMECO are in general of good 

quality. In R-A2 sites, the mean LIMECO value was 0.855 ± 0.168 corresponding to the high status, 

in R-C the mean was 0.638±0.214, corresponding to the good status. It should be remarked that the 

study area lies in the initial portion of the Po river basin where rural landscape is still predominating 

and the only cities with a population over 100,000 are Turin (nearly 850,000) and Novara (nearly 

102,000). Nevertheless, the river catchment is affected by a wide range of human pressures and this 

is reflected by the nearly 25% of sites classified as “not good” in the Central river types.   

Diatom assemblages show significant differences according to water quality (evaluated by the 

LIMECO index) and river macrotype. Our data showed a strong homogenization of diatom species 

composition along the increasing disturbance gradient represented by the LIMECO classification (see 

the PCoA), confirming results obtained by Pillsbury et al. (2019). Recently, homogenization of 

diatom communities has also been observed in response to hydrological alterations and urbanization 

in Mediterranean rivers which also led to significant species loss at both local and regional scales 

(Falasco et al., 2021a) and a reduced role of diatoms in the total benthic chlorophyll-a (Piano et al., 

2016). Moreover, the present study confirmed the high trophic value of some species, mainly 

collected in the R-C macrotype, such as N. gregaria (Hicks and Taylor, 2019; Hausmann et al., 2016; 

Szczepocka et al., 2016), Nitzschia palea (Licursi et al., 2016; Szczepocka et al., 2016; Yang et al., 

2015), Gomphonema parvulum (Lu et al., 2020; Szczepocka et al., 2016) and C. euglypta (Trábert et 

al., 2020). S. nigri was confirmed as one of the most tolerant diatom species (see Hausmann et al., 

2016 as Eolimna minima; Yang et al., 2015). On the contrary, other taxa such as A. minutissimum, A. 

pyrenaicum and E. silesiacum mainly preferred waters confirming previous observations (Çelekli et 

al., 2019; Pillsbury et al., 2019; Hausmann et al., 2016; Yang et al., 2015; Black et al., 2011). From 

a functional point of view, as expected, Alpine streams belonging to R-A2 were characterized by low 

profile taxa confirming the adaptation of this guild to the resource limitations (Passy, 2007; Berthon 

et al., 2011; Novais et al., 2014; Stenger-Kovács et al., 2020) and its resistance to physical disturbance 

(i.e. the high turbulence characterizing the Alpine stretches). In these rivers, low nutrient and light 

availability limit the development of a mature three-dimensional biofilm favouring the dominance of 

low profile taxa. On the other hand, higher light availability, ion and nutrient concentration of the 



macrotype R-C enhanced the development of a more complex biofilm structure characterised by 

motile taxa (Berthon et al., 2011; Licursi et al., 2016; Stenger-Kovács et al., 2020). This guild is 

known to be composed of mostly eutrophic and pollution tolerant species (Passy, 2007), probably 

due to their ability to absorb and store nutrients (Berthon et al., 2011). We found a weak relationship 

between the high profile guild and nutrient concentration, as already observed by Passy (2007). 

Intermediate LIMECO categories were also characterised by the highest guild diversity confirming 

the hypothesis that thick biofilms host strong resource gradients that can be exploited by different 

guilds in different ways (Stevenson et al., 1996). Once more, the functional analysis of the diatom 

community provided important and interesting results, which improved the information provided by 

the taxonomic composition analysis (Falasco et al., 2020; 2021a). 

 

The influence of physical chemical and spatial factors on diatom communities 

In recent years, many studies demonstrated that not only environmental local factors but also spatial 

ones may play an important role in diatom species distribution and abundance. Indeed, the spatial 

component has been recognised as one of the most important drivers for diatom communities 

especially in mountain areas, where geographical and topographical processes may influence the 

species dispersal (Dong et al., 2016; Piano et al., 2017; Falasco et al., 2019). Although the influence 

of spatial factors increases with geographical distance (Heino et al., 2010), it can be high also at the 

regional scale (Bottin et al., 2014). Our study corroborates these findings and showed that, especially 

in our study area, the effect of spatial processes is very important also due to its strong spatial 

organization and can soften the response of diatom to water chemistry. Among the spatial processes 

involved we can mention geographical barriers (i.e., spatial distance between sites), topographical 

and geomorphological constraints that limit the diatom dispersion. Among the chemical parameters, 

the ion content (through conductivity and pH) was significantly related to the diatom matrix while 

the only significant nutrient seemed to be nitrogen (as TN and nitrate). Phosphorus was excluded 

from the ordination diagram not being correlated with the community composition. Results obtained 

in the partial RDA applied to R-C macrotype confirm the importance of spatial factors but a lower 

influence of spatially structured environmental parameters. Among the latter, TP and SRP were 

included in the ordination diagram, unlike the diagram obtained for the Alpine macrotype. The higher 

variance explained by the two shared components in more pristine sites agrees with our previous 

findings in the Eastern Alps (Falasco et al., 2019), while the different role of phosphorus between the 

two macrotypes can be explained by the high occurrence of low values that is particularly marked in 

R-A2. 



The ecological status of the upper Po Basin: issues emerging from the comparison between 

diatom and chemical indices 

The comparison between ICMi and LIMECO shows a correspondence of 57% (in R-A2) and 43% 

(in R-C) in terms of water quality classes. Indeed, in R-A2 the ICMi diatom index underestimated the 

ecological quality in comparison to LIMECO in 41% of the cases, while in the remaining 2% the 

quality class expressed by ICMi was higher than the LIMECO one. In R-C, the trend is quite different 

since ICMi overestimated the ecological status in ca. 22% of the samples when compared with 

LIMECO; contrarily, ICMi underestimated water quality in comparison to chemical classification in 

35% of the cases. The lack of agreement between the two normative indices is consistent with the 

findings of the partial RDA, where three LIMECO parameters out of four do not result as significant 

in shaping the diatom communities. The higher severity of the ICMi could be mainly due to the effects 

of other impacts, such as the hydromorphological alterations in the Alpine zone, or the pollution 

generated by herbicides in the lowland stretches, which lies outside the LIMECO calculation but 

indirectly included in the ICMi calculation (teratological forms considered in the IPS). On the 

contrary, high values of ICMi in poor LIMECO water quality sites may correspond to conditions of 

functional alterations of the diatom community that the diatom index does not consider. In many 

cases, by analysing those sites characterized by higher values of ICMi in comparison to the LIMECO 

classes detected, we observed undeveloped communities composed of low profile and pioneer taxa 

(such as A. minutissimum, A. pediculus and C. euglypta) which could denote that sampled biofilms 

were probably in their first stage of recolonization. 

The species just mentioned are considered as sensitive to trophic pollution by most of the diatom 

indices, and this could be the reason for the overestimation of the ICMi vs LIMECO. We observed 

that diatom indices discriminate better among high/good water quality classes than over moderate-

poor status, confirming previous observations (Pan et al., 1996; Ponander et al., 2007). From the 

analysis of the whole database, we highlighted that in almost 22% of the samples ICMi exceeded the 

value 1, meaning that it is higher than the mean reference value. The WFD bases the ecological status 

classification on a reference approach, where observed values of a given water body have to be 

compared with reference values for the same river typology. Reference conditions can be set in 

different ways: if reference sites and consequent reference values can be selected for typologies (i.e. 

Alpine ones) that include a good number of pristine sites, this is much challenging for Central or 

Mediterranean rivers where reference conditions are much more difficult to attain. 

The relatively high occurrence of values >1 for this index confirms what has been found in 

Mediterranean rivers by Falasco et al. (2012; 2016) and in Po tributaries located in Lombardy by 

Salmaso et al. (2019). As pointed out by these authors, the reference values currently available for 



the calculation of EQRs are on average too low and need to be revised to increase the reliability of 

this index. For instance, in the R-C typology, the IPS reference value proposed is 16.7 corresponding 

to a mesotrophic environment, while 2.4 for the TI, corresponding to eutrophic conditions. To confirm 

this, a recent report of ARPA and Regione Piemonte (2020) points out that ICMi is the index that by 

far classifies rivers in higher quality classes than other biological quality elements (namely 

macroinvertebrates and macrophytes) and LIMECO. The apparent conclusion that could be drawn is 

that diatoms have a low discriminating power between quality classes. It is therefore essential to 

consolidate the process of revision of the thresholds between classes and of the reference values 

already initiated in the EU and at national level. 

Another important drawback that should be improved is the number of species considered in the 

diatom indices calculation, since 19% of taxa included in our database is not considered in the TI 

calculation (corresponding to 85 taxa). For instance, in the R-A2 typology the lowest observed value 

was detected in the Bogna river where even though 76% of the species was included in the TI floristic 

list, only 26% of the individuals contained in the inventory contributed to the index calculation. 

Again, in the R-C typology we observed a similar situation in the Polonghera river, with 61% of the 

taxa included in the TI floristic list and only 32% of the individuals used to calculate it. Among the 

taxa missing in the TI floristic list for the index calculation we can mention some widely distributed 

and abundant species in NW-Italy, among the most sensitive are Gomphonema elegantissimum, 

Nitzschia puriformis and Nitzschia alicae. Moreover, tolerant species such as Achnanthidium 

eutrophilum, or taxa considered as allochthonous but nowadays spread in our rivers, such as 

Achnanthidium subhudsonis or Cymbella tropica (Falasco and Bona, 2013) are still non included. 

Finally, yet importantly, all the teratological forms are not considered in the TI calculation, even 

though the detection of these forms, especially in the R-C typology, can provide important 

information concerning the presence of toxicants in the water column (Falasco et al., 2021b). 

As it is well known in biomonitoring, there are several aspects to evaluate in the study of the 

relationship between biological quality elements and chemical parameters of aquatic environments. 

Firstly, the concentrations of chemicals detected at a certain moment are a "snapshot" of the water 

quality and do not take into account the high temporal dynamism of river processes. Conversely, 

biological indicators provide an integrated response to the alterations that occur over longer time 

frames. In the case of nutrients, the choice of which chemical parameter to consider is not so easy. 

As related to phosphorus, the choice of dissolved (SRP) versus total forms (TP) is still controversial 

(Wagenhoff et al., 2017), although the recent study of Poikane et al. (2021) found a significant 

relationship between diatoms (and macrophytes) with SRP and not TP. In Italy, only TP is considered 

in the calculation of the synthetic index LIMECO that is used for the ecological classification of 



rivers. Another issue of LIMECO is that the TP threshold between the first and the second class is 

very high (0.05 mg L-1) when referring to the response of benthic diatoms. Pillsbury et al. (2019) 

cited several studies in which the greatest changes in diatom species composition occurred in the 

range of 10–60 μg TP L-1. Moreover, in pristine Alpine streams of the study area it is quite frequent 

to find phosphorus concentrations even lower than 10 μg L-1 (Falasco and Bona, 2011). 

Regarding nitrogen, most studies examined the response of diatoms to total nitrogen TN (Poikane et 

al., 2021) while LIMECO considers nitrates and ammonia.  

 

CONCLUSIONS 

As regards the need to set national management targets for nutrients in rivers, the main technical 

reference on the procedure is the EC report by Phillips et al. (2018) that suggests the statistical 

approach (mainly regression techniques between EQR and nutrient concentration) for singling out 

the nutrient concentrations suitable to support the good ecological status. This approach has already 

been tested in Central Europe (Poikane et al. 2019) while in other European regions, including Italy, 

we are still far from an “ecology-based” set up of nutrients thresholds. According to our findings, the 

implementation of such an approach should consider the necessity to revise the class boundaries and 

reference values for diatom indices. At the same time, we also pointed out the need for available data 

of nutrients that include TN and P concentration lower than 50 µg L-1. 

The extension of our study to the whole Po river catchment would represent an excellent opportunity 

to deepen some important aspects highlighted by our study. In particular, considering other 

macrotypes and an even greater geographical variability will increase the knowledge of the 

autecology of the species not yet considered by the currently applied indices and the community 

response to nutrient concentrations.  
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Tab. 1. Average (mean), standard deviation (ds), minimum (min) and maximum (max) value of physical and chemical parameters observed in the 
two macrotypes R-A2 and R-C. Significantly different parameters between the two macrotypes are highlighted in bold.  

Macrotype Value N-NH4 
(mg L-1) 

N-NO3  
(mg L-1)*** 

TN  
(mg L-1)*** 

TP  
(mg L-1)** 

SRP  
(mg L-1)* 

BOD 
 (mg L-1)* 

COND 
(µS cm-1)*** 

DO 
(mg L-1)*** 

DO 

(%) * 

pH LIMECO*** 

R-A2 mean 0.117 0.770 1.63 0.035 0.026 2.17 144 10.9 97.3 7.58 0.855 

 SD 0.611 0.674 1.29 0.066 0.008 3.39 118 2.13 14.2 0.423 0.168 

 min 0.015 0.050 0.500 <0.050 <0.050 1.00 23.0 7.10 59.0 6.60 0.125 

 max 5.30 4.10 8.70 0.730 0.090 18.0 724 24.3 172 8.60 1.00 

R-C mean 0.390 2.01 3.74 0.115 0.084 3.89 360 10.2 100 7.55 0.638 

 SD 2.69 1.39 4.22 0.481 0.451 11.9 301 1.98 18.8 0.502 0.214 

 min 0.015 0.050 0.500 0.025 0.025 1.00 40.0 4.80 47.0 5.20 0.063 

 max 36.2 7.50 60.0 6.90 6.80 190 3820 18.3 184 8.65 1.00 

N-NH4, ammonia; N-NO3, nitrates; TP, total phosphorus; TN, total nitrogen; SRP, soluble reactive phosphorus; BOD, biochemical oxygen demand; COND, conductivity; DO, dissolved oxygen; DO (%SAT), dissolved oxygen 
(% saturation); LIMECO, chemical index; *p<0.05; **p<0.01; ***p<0.001.



Tab. 2. Summary of the SIMPER analysis showing species contributing more (up to 50% of the 
cumulative percentage) to the compositional differences between macrotypes (R-A2 and R-C). 
Percentage contribution (Contrib. %) of the species to the average community dissimilarity, 
cumulative percentage (Cum. %) and the mean abundance of taxa in the groups (i.e., R-A2 vs R-C). 

 

Taxon Contrib. % Cum. % A2 C 

Achnanthidium minutissimum (Kützing) Czarnecki 12.88 12.88 0.221 0.106 

Achnanthidium pyrenaicum (Hustedt) Kobayasi 11.03 23.92 0.150 0.098 

Sellaphora nigri (De Not.) C.E. Wetzel et Ector 3.878 27.79 0.033 0.036 

Cocconeis lineata Ehrenberg 3.133 30.93 0.040 0.020 

Reimeria sinuata (Gregory) Kociolek & Stoermer 3.071 34.00 0.020 0.046 

Achnanthidium gracillimum (Meister)Lange-Bertalot 2.885 36.88 0.044 0.003 

Cocconeis euglypta Ehrenberg 2.858 39.74 0.018 0.037 

Nitzschia fonticola Grunow  2.737 42.48 0.021 0.032 

Gomphonema elegantissimum Reichardt & Lange-Bertalot  2.519 45.00 0.036 0.009 

Nitzschia dissipata (Kützing) Grunow 2.507 47.50 0.006 0.039 

Encyonema silesiacum (Bleisch) Mann 2.388 49.89 0.032 0.017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tab. 3. Summary of the SIMPER analysis showing species contributing more (up to 50% of the 
cumulative percentage) to the compositional differences between LIMECO quality classes. 
Percentage contribution (Contrib. %) of the species to the average community dissimilarity, 
cumulative percentage (Cum. %) and the mean abundance of taxa in the groups (i.e., LIMECO1, 
LIMECO2, LIMECO3, LIMECO4 and LIMECO5). 

   Mean abundance 

Taxon 

Contrib. 

% 

Cum. 

% 

LIMECO 

1 

LIMECO 

2 

LIMECO 

3 

LIMECO 

4 

LIMECO 

5 

Achnanthidium minutissimum 

(Kützing) Czarnecki 
10.08 10.08 0.183 0.073 0.094 0.024 0.053 

Achnanthidium pyrenaicum 

(Hustedt) Kobayasi 
9.506 19.59 0.138 0.090 0.069 0.023 0.055 

Sellaphora nigri (De Not.) 

C.E. Wetzel et Ector 
4.177 23.77 0.029 0.030 0.054 0.071 0.106 

Mayamaea permitis (Hustedt) 

Bruder & Medlin 
3.472 27.24 0.010 0.028 0.061 0.074 0.058 

Reimeria sinuata (Gregory) 

Kociolek & Stoermer 
3.433 30.67 0.033 0.063 0.032 0.019 0.036 

Nitzschia dissipata (Kützing) 

Grunow 
3.410 34.08 0.019 0.066 0.025 0.024 0.013 

Cocconeis euglypta 

Ehrenberg 
3.128 37.21 0.029 0.037 0.035 0.030 0.038 

Nitzschia fonticola Grunow  2.863 40.07 0.026 0.029 0.039 0.026 0.016 

Cocconeis lineata Ehrenberg 2.828 42.9 0.025 0.028 0.030 0.000 0.051 

Navicula gregaria Donkin  2.583 45.48 0.009 0.017 0.050 0.068 0.034 

Craticula subminuscula 
(Mang) Wetzel & Ector  

2.211 47.69 0.007 0.011 0.044 0.066 0.018 

Gomphonema parvulum 

(Kützing) Kützing 
2.207 49.9 0.016 0.024 0.026 0.048 0.029 

 

 

 

 

 

 

 

 

 



Tab. 4. Median abundance values for the guilds in each river type/ LIMECO quality class and results 
of the Mann-Whitney U test. Letters in superscript indicate significant differences among the two 
river types and between LIMECO quality class. 

 Macrotype LIMECO quality class 

 R-A2 R-C 1 2 3 4 5 

Low profile 66%a 34%a 57%d,e,f,g 33%d,h 28%e 18%f,h 40%g 

High profile  17%b 13%b 16%i 13% 11%i 9% 10% 

Motile 6%c 41%c 15%j,k,l,m 36%j,n,o 54%k,n 68%l,o 48%m 
a,c,d,e,f,j,k,lp<0.001; b,h,m,op<0.01; g,i,np<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 1. Sampling site location collected in the two river macrotypes. Black filled squares, R-A2; grey 

filled circle, R-C.  



a)  

 

b) 

 

Fig. 2. Graphical result of the Principal Coordinate Analysis (PCoA), displaying samples based on 
the taxonomical matrix. In a) spider graphs are distinguished according to the river type (black 
squares=R-A2; grey circles: R-C); in b) each spider graph refers to a LIMECO class (blue, high; 
green, good; yellow, moderate; orange, poor; red, bad). 

 



 

 

Fig. 3. Ternary plot showing diatom guilds composition (i.e., low profile, high profile and motile) in 
the two macrotypes: R-A2 (a) and R-C (b). Colours represent the water quality classification of 
LIMECO (blue, high; green, good; yellow, moderate; orange, poor; red, bad). 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4. Results from variation partitioning (partial RDA) showing the relative contributions (% of 
explanation) of chemical and spatial variables, as well as the shared components explaining variation 
in diatom communities in R-A2 (a) and R-C (b) sites. The ordination diagrams show the distribution 
of sampling sites according to their correlations with the significant chemical parameters. the 
eigenvalues are given in brackets on the two axes. 
 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 5. Box plots representing the pattern of IPS, TI and ICMi values in the R-A2 (left panel) and R-
C (right panel) according to LIMECO water quality classes. 
 

 

Annex 1. Taxonomical list with guild assignment  
 


