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Simple Summary: The marine drug lurbinectedin revealed an unprecedented efficacy against patient-
derived malignant pleural mesothelioma cells, regardless of the histological type and the BAP1
mutation status. By inducing strong DNA damages, it dramatically arrested cell cycle progression
and induced apoptosis. These results may be translated into the use of lurbinectedin as an effective
agent for malignant pleural mesothelioma patients.

Abstract: Background: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer gener-
ally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations
in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the
use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here
we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived
drug that recently received accelerated approval by the FDA for the treatment of patients with
metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy.
Methods: A panel of primary MPM cultures, resembling the three major MPM histological subtypes
(epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological
markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell
cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. Results: Stabilized
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MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational
status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a
cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that
invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death.
Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM
transforming abilities in vitro. Conclusion: Overall, our data provide evidence that lurbinectedin
exerts a potent antitumoral activity on primary MPM cells, independently from both the histological
subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.

Keywords: MPM; lurbinectedin; DNA damage response

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare but extremely aggressive type of
cancer arising from pleural mesothelium and is highly associated with asbestos exposure.
The disease is characterized by a long latency between initial exposure to asbestos and
the clinical onset of the disease (30–50 years) and, although in Western regions the peak
was expected in the 2020s [1], the ongoing use of asbestos in developing countries could
lead to a persistence of new cases in the next decades [2]. MPM is classified into three
major histological subtypes: epithelioid, sarcomatoid, and biphasic. While the epithelioid
subtype occurs more frequently, accounting for approximately 60% of cases, and correlates
with a better outcome, the sarcomatoid subgroup represents 10–20% of the cases and
is characterized by a worse prognosis [3,4]. Independently from the morphology, the
MPM tumor microenvironment is particularly enriched of immunosuppressive cells, which
makes this tumor particularly refractory to different therapies [5–10]. Moreover, MPM
is generally diagnosed in advanced stage, minimizing the role of curative treatments.
For advanced-stage disease, the first-line systemic treatment consists of cisplatin and
pemetrexed [11], a combination that prolongs the median survival time of only 3 months.
Recently, the combination of immune checkpoint inhibitors directed against programmed
death-1 (PD-1) and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) showed its
superiority over chemotherapy in previously untreated and unresectable MPM, especially
in non-epithelioid tumors [12]. Conversely, no second-line standard therapy has been
approved, despite the pre-clinical and the clinical evaluation of different therapeutic
agents [13,14].

The genomic landscape of MPM reveals a low mutational burden with inactivat-
ing alterations mainly on oncosuppressors (BAP1, CDKN2A, NF2, TP53, LATS2, and
SETD2) [15–18] thus precluding the use of molecular therapies against activated oncogenes.
Among the oncosuppressors, BAP1 (BRCA1-associated protein) alterations account from
30% to 60% of cases [15,17,19,20]. Indeed, BAP1 germline mutations are known to pre-
dispose to mesothelioma and other cancer-associated syndromes [21,22] thus indicating a
critical role for this deubiquitinase in suppressing tumor development. BAP1 regulates
different biological processes among which chromatin modification, cell cycle, apoptosis,
ferroptosis, cell metabolism, and differentiation [23]. Notably, BAP1 is involved in DNA
synthesis, DNA duplication under stress conditions [24,25], and DNA damage response,
by modulating the function of the BRCA1/BARD1 (BRCA1 Associated RING Domain 1)
complex and coordinating the recruitment of RAD51 to the damaged DNA loci [26,27].

Lurbinectedin (PM01183) is a marine-derived anticancer drug that exerts a potent
antitumor activity in different cancer cell lines and xenografts models and is currently
under clinical evaluation in several tumor types [28–35]. Recently, the FDA has released a
conditional approval for lurbinectedin for the treatment of second-line metastatic small cell
lung cancer patients [36] while promising antitumor activity has been reported in MPM
patients in second- and third-line [37]. However, there are no data available on the role
of lurbinectedin as monotherapy or in combination in the first-line treatment of MPM. At
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the molecular level, lurbinectedin covalently binds CG-rich sequences in the DNA minor
groove. The presence of the drug on the DNA helix inhibits the transcriptional process
and is associated with the generation of DNA breaks [28]. Moreover, the interaction of
lurbinectedin with both DNA strand breaks also interferes with the enzymes involved in
the DNA damage response [38].

Here, we report about the potential efficacy of lurbinectedin in a panel of primary
MPM cultures. Specifically, we demonstrated that lurbinectedin is strongly effective at
nanomolar concentration and interferes with the transforming properties of MPM in a way
that is independent of the BAP1 status and histological classification. With the caveat that
our cell cultures were derived from diagnostic biopsies or surgical resections, our data
indicate that lurbinectedin could potentially be explored in the management of patients
with advanced MPM as second-line treatment or part of combination treatment in first-line.

2. Results
2.1. Primary Mesothelioma Cell Cultures Characterization

Twelve primary MPM cell lines, derived from patients with different histology, were
stabilized as 2D cultures (Figure 1A). Flow cytometry for pan-cytokeratin (Figure 1B),
immunohistochemical analysis (Figure 1C and Table 1), and immunoblotting for the BAP1
status (Figure 1D) were used to characterize the MPM cell lines. Notably, our panel
(6 BAP1+ and 6 BAP1− cultures) was representative of the three major MPM histological
subtypes (epithelioid, sarcomatoid, and biphasic) (Table S1).

Table 1. Histological characterization of MPM cultures.

UPN BAP1 Pan-CK WT1 CALR

1 POS POS POS POS

2 POS POS NEG NEG

3 POS POS POS NEG

4 POS POS POS POS

5 POS NEG POS POS

6 POS POS NEG NEG

7 NEG POS POS POS

8 NEG POS POS NEG

9 NEG POS POS POS

10 NEG POS POS POS

11 NEG POS NEG POS

12 NEG POS NEG NEG
Results of the immunohistochemical stainings of MPM samples for BRCA1 associated protein-1 (BAP1), pancy-
tokeratin (pan-CK), Wilms tumor-1 antigen (WT1), calretinin (CALR). POS: positive; NEG: negative.

2.2. Lurbinectedin Exerts Anti-Proliferative Effects in Patient-Derived Mesothelioma Cells

As shown in Figure 2, lurbinectedin decreased the viability of MPM cells in a dose-
dependent manner, with an IC50 in the low nanomolar range for all cell lines (Table 2),
independently from the BAP1 status and the histological subtype (Figure 2A–D). Indeed,
although the IC50 was slightly higher in BAP1− vs. BAP1+ cells (Figure 2C) as well as
in the sarcomatoid/biphasic vs epithelioid histotype (Figure 2D), the difference was not
statistically significant. Notably, UPN6, UPN10, and UPN12 received trabectedin as second-
line treatment and their overall survival was <12 months (Table S1). The cell lines derived
from these patients had indeed the highest IC50 in the panel analyzed, but it was below
5 nM for all of them (Table 2).

2.3. Long-Term Lurbinectedin Treatment Impacts on MPM Transforming Abilities

Since mesothelioma is particularly resistant to conventional chemotherapy, we eval-
uated the long-term effect of lurbinectedin in terms of inhibiting cell proliferation by
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performing a crystal violet viability assay. Also in this setting, nanomolar concentrations of
lurbinectedin dramatically reduced cell growth (Figure 3A,B). Furthermore, we extended
our analysis by testing lurbinectedin ability to interfere with the anchorage-independent
growth of MPM cells. The number of visible colonies was markedly decreased upon
treatment, showing long-term anticancer efficacy (Figure 3C,D). Importantly, the consistent
reduction in anchorage-independent growth showed no differences between BAP1+ and
BAP1− cells, suggesting that lurbinectedin strongly impairs the tumorigenic potential of
MPM cells, independently from the BAP1 status.

Table 2. IC50 values of MPM cell lines treated with lurbinectedin.

UPN IC50 L (nM)

1 0.073

2 0.33

3 0.28

4 0.35

5 1.09

6 1.13

7 0.085

8 0.65

9 0.23

10 3.29

11 0.76

12 4.54

Figure 1. Characterization of patient-derived MPM cell lines. (A) Representative images showing different morphology of
three BAP1 positive (BAP1+) and three BAP1 negative (BAP1−) MPM cell lines (scale bar = 100 µm). (B) Flow cytometry
plot representing the percentage of pancytokeratine positive cells in the indicated MPM cell lines. (C) Immunohistochemical
analysis of BAP1, pan-cytokeratin (pan-CK), Wilms tumor-1 antigen (WT1), and calretinin (CALR) in the indicated MPM
cell lines (scale bar = 100 µm). (D) Western blot analysis showing BAP1 status of the reported MPM cell lines.
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2.4. Lurbinectedin Treatment Interferes with Cell Cycle Progression

To study the molecular basis of this anti-proliferative activity, we analyzed the effect of
lurbinectedin on cell cycle regulation. While we observed variable changes in the percent-
age of cells in the G2/M-phase, indicating an unlikely strong mitotic arrest, we observed a
constant accumulation of cells in the S-phase (Figure 4 and Supplementary Figure S1). This
event occurred in both BAP1+ and BAP1− cells, suggesting that lurbinectedin-mediated
perturbation of the cell cycle is BAP1-independent.

2.5. Lurbinectedin Induces a Profound DNA Damage Coupled with Strong Apoptosis

Among the pleiotropic mechanisms of action of lurbinectedin [28,38] the increase of
S-phase arrested cells is suggestive of irreversible DNA damage. Indeed, lurbinectedin
induced a significant increase in round-shaped and dense cells (Supplementary Figure S2).
The presence of irreversible DNA fragmentation was evaluated by the Single Cell Gel
Electrophoresis (SCGE). Specifically, in both BAP1+ and BAP1− cells lurbinectedin in-
duced a dose-dependent genomic fragmentation (Figure 5A,B). The presence of genotoxic
stress was confirmed by the increase in the phospho (Ser345) Chk1 and phospho (Thr68)
Chk2 (Figure 5C,D), two cell cycle checkpoints that block DNA replication after being
phosphorylated by the DNA-damaging sensors ATM/ATR kinases [39]. Moreover, in
lurbinectedin-treated cells, we observed the accumulation of phospho (Ser15) p53 and
phospho (Ser139) H2AX (Figure 5C,D), two additional targets of ATM/ATR kinases that are
generally phosphorylated in response to DNA strand breaks and stalled replication [40,41].
This provided additional evidence of the strong DNA damage induced by lurbinectedin,
which is also responsible for cell growth arrest (Figure 4 and Supplementary Figure S1).
Such mitotic catastrophe is often coupled with apoptosis [40]. Accordingly, lurbinectedin
treatment resulted in a strong induction of apoptosis (Figure 6A,B) as also shown by the
dose-dependent activation of caspase 3 (Figure 6C,D).

Figure 2. Patient-derived MPM cell lines sensitivity to lurbinectedin. (A,B) Representative dose-response curves and
corresponding IC50 values of the two indicated MPM cell lines treated with lurbinectedin (0.1 nM–100 nM) for 72 h. (C) Dot
plot of IC50 values measured in lurbinectedin-treated MPM cell lines positive or negative for BAP1 expression. NS p > 0.05.
(D) Dot plot of IC50 values measured in lurbinectedin-treated MPM cell lines grouped according to the histological subtype.
NS p > 0.05.
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Figure 3. Lurbinectedin impairs long-term proliferation and anchorage-independent growth of MPM cell lines. (A,B) Rep-
resentative pictures (lower panels) and quantification (upper panels) of crystal violet staining performed on the indicated
MPM cell lines treated or not with lurbinectedin (5-fold the IC50) for 10 days. Data are expressed as means ± SEM; ** p < 0.01;
*** p < 0.001. (C,D) Soft agar growth assay quantification of the indicated MPM cell lines treated or not with lurbinectedin
(5-fold the IC50) for 20 days. The number of colonies obtained from untreated cells was set at 100%. Data are expressed as
means ± SEM; *** p < 0.001.

Figure 4. Lurbinectedin effects on cell cycle distribution. (A,C) Representative flow cytometry histogram showing the cell
cycle distribution of the indicated MPM cell lines, treated (purple) or not (green) with lurbinectedin (2.5-fold the IC50) for
24 h. (B,D) Histograms displaying cell number percentage in each cell cycle phase (G0/G1, S and G2/M) of the indicated
MPM cell lines, treated or not with lurbinectedin (2.5-fold the IC50) for 24 h. Data are expressed as means ± SEM; NS p > 0.05;
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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Figure 5. Lurbinectedin actively induces DNA damage response in MPM cell lines. (A) Representative Comet assay
images of the indicated BAP1+ and BAP1− MPM cell lines treated or not with increasing lurbinectedin (L) concentrations
(2.5-fold and 5-fold the IC50) for 24h (scale bar = 5 µm). (B) Histograms showing Comet assay data quantitation by
CometScore software. Bars represent a percentage of total DNA in the tail. Data are expressed as means ± SEM; *** p < 0.001.
(C,D) Western blot analysis for the indicated proteins in BAP1+ and BAP1- MPM cell lines treated or not with increasing
lurbinectedin (L) concentrations (2.5-fold and 5-fold the IC50) for 24 h. GAPDH was used as a loading control.
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Figure 6. Lurbinectedin treatment strongly induces apoptosis in MPM cell lines. (A,B) Histograms
representing the percentage of apoptotic MPM cells treated or not with increasing lurbinectedin (L)
concentrations (2.5-fold and 5-fold the IC50) for 72 h. The apoptotic rate was measured by TMRM
assay. Data are expressed as means ± SEM; * p < 0.05; ** p < 0.01; *** p < 0.001, **** p < 0.0001.
(C,D) Western blot analysis of cleaved caspase 3 in MPM cell lines treated or not with increasing
lurbinectedin (L) concentrations (2.5-fold and 5-fold the IC50) for 24 h. GAPDH was used as a
loading control.

3. Discussion

Malignant Pleural Mesothelioma (MPM) is an aggressive tumor marginally impacted
by standard chemotherapy regimens. Moreover, the lack of effective molecular therapies
as well as the immune-evasive tumor microenvironment makes the treatment of MPM
particularly challenging [5–10,42]. Because MPM currently lacks peculiar oncogenic drivers,
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we have explored the potential therapeutic efficacy of lurbinectedin, an alkylating agent
which recently received FDA-conditional approval for the treatment of metastatic small
cell lung cancer patients relapsing after chemotherapy [36].

We investigated the antitumor activity of lurbinectedin in a panel of 12 recently es-
tablished primary MPM cell cultures. Our panel included all three MPM histotypes as
well as cultures BAP1 positive and negative. Thus, although limited in terms of absolute
number of cell lines, this panel is potentially representative of the different MPM pheno-
types. Interestingly, we initially observed that lurbinectedin was effective at nanomolar
concentrations and, as reported for other agents, its efficacy was independent of the BAP1
status. These data are particularly encouraging, although we are aware that freshly stabi-
lized cultures could be potentially more sensitive to cytotoxic agents than what is usually
observed at the clinical level. It is worthy of note, however, that three patients (UPN6,
UPN10, UPN12) subsequently received trabectedin, a previous generation drug binding
the minor groove of DNA, as second-line treatment. They did not show a superior clinical
benefit compared to patients undergoing other treatments, indicating a limited efficacy of
trabectedin. Interestingly, the MPM cells derived from these three patients had the highest
IC50 to lurbinectedin. These data may suggest that the response obtained in our stabilized
cultures is a good surrogate of the potential effect of drugs binding the DNA minor groove
and targeting the DNA repair observed in vivo.

Our experiments revealed that, as a consequence of the intrinsic ability of lurbinecte-
din to bind the minor groove of DNA, the drug interferes with the cell cycle, delaying
progression through the S-phase. Interestingly, MPM cells immediately responded to
genotoxic stress as demonstrated by the phosphorylation of H2AX, an early marker of the
cellular response triggered by DNA double-strand breaks. Moreover, we observed the
activation of Chk1 and Chk2 as a direct consequence of the stalled replication induced
by DNA damage, responsible for the accumulation of MPM cells in the S-phase of the
cell cycle. Finally, in our setting, p53 stabilization was not associated with DNA repair
but invariably resulted in a massive apoptotic response, as revealed by cleaved caspase 3
activity and irreversible DNA fragmentation detected by Comet assay.

Notably, the efficacy of lurbinectedin against MPM was maintained also upon long-
term treatment, as assessed by both crystal violet viability and anchorage-independent
growth assays, providing further evidence of its anticancer potential.

As a consequence of DNA damage, replication arrest, and induction of apoptosis,
we propose that lurbinectedin impairs the tumorigenic potential of MPM cells, and our
results provide support to the clinical data recently reported in a multicentric phase II
trial in second- or third-line palliative therapy [37]. Speculatively, considering the high
anti-proliferative effect, if the results of the present study will be confirmed in MPM
PDXs, lurbinectedin could be potentially investigated in the front line setting, for instance
for a short pre-operative treatment in the early stages of MPM. Indeed, the reduction of
anchorage-independent growth ability suggests lurbinectedin as a potential cytoreductive
agent that, if proven in animal models and at the clinical level, will allow more conserva-
tive/less invasive surgery. Finally, the efficacy in all histotypes, independently from the
BAP1 status, confers to lurbinectedin a strong advantage compared to other drugs currently
used in MPM treatment, since its use could be potentially considered for all patients.

4. Materials and Methods
4.1. Reagents and Chemicals

Cell culture plasticware was obtained from Falcon (Glendale, AZ, USA), Biofil (Indore,
India), and Costar (Washingtone, DC, USA). Lurbinectedin (PM01183) was kindly provided
by PharmaMar (Madrid, Spain).

4.2. Cells

Primary MPM cells were obtained from biopsies during explorative thoracoscopy
or pleurectomy, performed at the Thoracic Surgery Division of AOU Città della Salute e
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della Scienza, Torino, Italy; AOU San Luigi Gonzaga, Orbassano, Italy, and AO of Alessan-
dria, Biological Bank of Mesothelioma, Alessandria, Italy. Samples were anonymized
by assigning an unknown patient number (UPN). Histological features of the original
tumors and clinical features, including the first- and second-line treatment and the overall
survival, of the corresponding patients are reported in Table S1. Samples were minced in 1
mm3-pieces, enzymatically digested for 1 h at 37 ◦C with 0.2 mg/mL hyaluronidase and 1
mg/mL collagenase [5], centrifuged at 1200× g for 5 min and seeded at 1 × 106 cells/mL
density in DMEM advanced/F12 (Gibco, Dublin, Ireland) until passage #5, when cultures
were shifted to DMEM/F12 nutrient mixture medium (Sigma, Saint Louis, MO, USA). All
media were supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Sigma),
1% L-glutamine, 1% penicillin/streptomycin. Cells reached a stabilization (i.e., rate of cell
subculture ≤1/week) in 2 to 7 months. UPN#3, UPN#4, UPN#5, UPN#6, UPN#10, UPN#11,
UPN #12 were directly put in culture. UPN#1, UPN#2, UPN#7, UPN#8, UPN#9 were
established from patient-derived xenografts. All cell lines were cultured in a humidified
incubator at 37 ◦C in 5% CO2 and routinely checked for Mycoplasma spp. contamination.

4.3. Patient-Derived Xenograft Generation

MPM patient-derived xenografts (PDXs) models were established from diagnostic
tissue samples obtained at videothoracoscopy or during surgical pleurectomy. Each sample
was implanted in the left or right side of the dorsal region of female NOD scid gamma
(NSG) mice. A small piece of tumor was implanted subcutaneously and the wound was
then stitched by surgical glue (Vetbond, Alcyon Italia, Cherasco, Italy). The tumor growth
was monitored until the mass reached 2000 mm3. Then the animal was sacrificed by cervical
dislocation, after anesthesia. The tumor area was shaved and disinfected with alcohol
and the skin around the tumor was cut off. The tumor was divided into smaller pieces
for re-implanting and collecting materials for further investigations. In the present work,
the PDX platform was used as a tool to generate primary MPM cell cultures, stabilized in
a shorter period (i.e., 2–3 months) than cells obtained directly from surgical procedures
and used for pharmacological screening. To this aim, 0.2 g of tumors excised from the P1
generation of mice were digested to obtained a single-cell suspension [5] and put in culture
as described in paragraph 4.2.

4.4. Immunohistochemical Analysis

The mesothelial features of cultures were confirmed by immunohistochemical (IHC)
staining carried out on cells at passage 1. Specifically, cells were centrifuged at 1200× g
for 5 min, fixed overnight in 4% v/v formalin at 4 ◦C, and then paraffin-embedded. The
following antibodies were used: BAP-1 (Santa-Cruz Biotechnology, Santa Cruz, CA, USA,
sc-28383, 1:100); Pan-cytokeratin AE1/AE3 (Dako, Agilent, Santa Clara, CA, USA, GA053,
1:500); Wilms Tumor-1 antigen (WT1) cl.6FH2 (Thermo Fisher Scientific, Waltham, MA,
USA, MA1-46028, 1:10); Calretinin (Thermo Fisher Scientific, RB-9002-R7, 1:100). Mesothe-
lial origin was confirmed if positivity for at least one between calretinin and WT1 was
detected, as well as in the case of positivity for pancytokeratin. The histological features
are reported in Table 1.

4.5. IC50 Calculation

Cells were seeded in 96-well plates at a density of 2 × 103/well and serially diluted
lurbinectedin (0.01 nM–100 nM) was added to the medium. After 72 h of treatment, IC50
was evaluated with CellTiter-Glo (Promega) according to the manufacturer’s instructions,
using a Cytation 3 Imaging Reader (Bio-Tek Instruments, Winooski, VT, USA).

4.6. Crystal Violet Assay

For long-term proliferation, cells were seeded at a density of 4 × 103/well in 12-
well plates and treated with the indicated concentrations of lurbinectedin for 10 days.
Subsequently, cells were fixed and stained with 5% w/v crystal violet solution in 66% v/v
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methanol and washed. Crystal violet was eluted by adding 10% acetic acid into each well.
Quantification was performed by measuring the absorbance (570 nm) with Cytation 3
Imaging Reader (Bio-Tek Instruments).

4.7. Soft-Agar Assay

For anchorage-independent cell growth assay, cells were suspended in 0.45% type
VII low-melting agarose in medium supplemented with 10% FBS at 1 × 105 cells/well,
plated on a layer of 0.9% agarose in 10% FBS medium in 6-well plates, and cultured for
20–30 days with the indicated concentrations of lurbinectedin.

4.8. Cell Cycle Analysis

Cells were plated at a density of 1.2 × 105/well in 6-well plates and treated with the
indicated concentrations of lurbinectedin for 24 h. Subsequently, cells were washed in PBS,
treated with RNAse (167 µg/mL), and stained for 15 min at RT with propidium iodide
(33 µg/mL). The cell-cycle distribution in G0/G1, S, and G2/M phases was analyzed by
FACSCalibur flow cytometer (Becton Dickinson, Franklin Lanes, NJ, USA) and calculated
using the CellQuest program (Becton Dickinson).

4.9. Apoptosis Detection Assay

MPM cells were plated at a density of 1.2 × 105/well in 6-well plates and treated
with the indicated concentrations of lurbinectedin for 72 h. Subsequently, floating and
adherent cells were washed with PBS and stained with tetramethylrhodamine methylester
perchlorate (TMRM) (200 nM) for 15 min at RT. The percentage of apoptosis was measured
by FACSCalibur flow cytometer (Becton Dickinson) and calculated using the CellQuest
program (Becton Dickinson).

4.10. Comet Assay

DNA damage was assessed by Single Cell Gel Electrophoresis assay (Comet assay) [43].
At least 100 nuclei were counted in each condition. The percentage of DNA in the tail was
quantified using the CometScore software (TriTek Corp., Sumerduck, VA, USA).

4.11. Western Blot Analysis

Cells were washed with ice-cold PBS and incubated for 20 min on ice in 0.1% Triton
X-100 lysis buffer (20 mM Tris HCl pH 7.4; 150 mM NaCl; 5 mM EDTA; 0.1% Triton X-100;
1 mM Phenylmethanesulfonyl fluoride; 10 mM NaF; 1 mM Na3VO4, supplemented with
protease inhibitor cocktail). Cells were then centrifuged at 14,000× g for 15 min at 4 ◦C
to remove any cellular debris. Protein lysates were subsequently quantified using DC
protein assay (Bio-Rad), loaded in 4–12% NuPAGE Bis-Tris Protein Gels (Thermo Fisher
Scientific) according to the manufacturer’s instructions, and transferred onto Hybond ECL
nitrocellulose membranes. Blocking was performed with 5% Nonfat dried milk (PanReac
AppliChem, Darmstadt, Germany) for 45 min at RT. Membranes were then incubated
O/N at 4◦C with the following antibodies: BAP-1 (Santa Cruz Biotechnology, sc-28383);
phospho(Ser345) Chk1 (Cell Signaling, Danvers, MA, USA, 2348); phospho(Thr68) Chk2
(Cell Signaling, 2197); phospho(Ser15) p53 (Cell Signaling, 9286); GAPDH (Cell Signaling,
5174); cleaved Caspase3 (Cell Signaling, 9661); phospho(Ser139)-Histone H2A.X (Cell
Signaling, 9718); rabbit IgG, HRP-linked (Cell Signaling, 7074); mouse IgG, HRP-linked
(Cell Signaling, 7076). Proteins were detected with horseradish peroxidase-conjugated
secondary antibodies and Pierce™ ECL Western Blotting Substrate.

4.12. Image Processing

Image acquisition was performed with Leica dmire2 microscope and with Olympus
BX51. Images were processed with the ImageJ software package (https://imagej.nih.gov/
ij/ accessed on 16 April 2021).

https://imagej.nih.gov/ij/
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4.13. Statistical Analysis

All values were expressed as mean ± SEM and derived from at least two independent
experiments. Statistical analyses were performed using Microsoft Excel and GraphPad
Prism 5. Graphs were generated using Microsoft Excel and GraphPad Prism. Two-tailed
Student’s t-test was used to evaluate statistical significance: NS p > 0.05; * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.

5. Conclusions

Overall, our work proves the efficacy of lurbinectedin at nanomolar concentration
against primary MPM cells. Although obtained in a relatively small cohort, that however is
representative of the different MPM phenotypes, our results are particularly encouraging
and put the basis for investigating lurbinectedin in different therapeutic settings of MPM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13102332/s1, Figure S1: Lurbinectedin effects on cell cycle distribution, Figure S2:
Lurbinectedin treatment strongly impairs cell viability in MPM cell lines, Table S1: Histological
features of the original tumors and clinical features of the corresponding patients.
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