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ABSTRACT: For a broad class of quantum models of practical interest, we demonstrate
that the Hamiltonian of the system nonlinearly coupled to a harmonic bath through the
system and bath coordinates can be equivalently mapped into the Hamiltonian of the
system bilinearly coupled to the bath through the system and bath momenta. We show
that the Hamiltonian with bilinear system−bath momentum coupling can be treated by the
hierarchical equations-of-motion (HEOM) method and present the corresponding proof-
of-principle simulations. The developed methodology creates the opportunity to scrutinize
a new family of nonlinear quantum systems by the numerically accurate HEOM method.

1. INTRODUCTION
The hierarchical equations-of-motion (HEOM) method1−10 is
nowadays the most powerful technique to study dissipative
quantum dynamics within the system−bath approach (see ref
11 for a recent comprehensive review). HEOM permits the
simulation of evolutions of various quantum systems numeri-
cally accurately, for the entire range of system−bath couplings
and bath memories. Conceptually, HEOM can be applied to
any system−bath problem if (i) the heat bath can be
represented as a collection of noninteracting bosons, Fermions,
or spins, (ii) the bath spectral density can be modeled by a
linear combination of Drude−Lorenz spectral densities, and
(iii) the system−bath coupling Hamiltonian is linear in the
bath coordinate. The above three assumptions are well fulfilled
for a large variety of quantum dissipative systems of broad
interest. Yet, researchers nowadays are challenged to realisti-
cally simulate dynamics of systems of ever increasing
complexity and with ever increasing accuracy. It is thus
tempting to explore whether the HEOM machinery can be
extended beyond postulates i−iii.
It may look unlikely that postulate i can be lifted within the

HEOM paradigm, because a possibility to treat the bath
dynamics analytically as well as integrate bath variables out is at
the very core of the HEOM method. Nevertheless, Yan12 as
well as Hsieh and Cao13,14 (gHEOM) developed a method
which permits one to systematically take into account higher-
order cumulants of the bath influence functional. Restriction ii
has also been overcome recently: the so-called eHEOM
methodology treats arbitrary bath spectral densities by using
the Fourier, Gauss−Legendre, or Chebyshev-quadrature
spectral decomposition.15−27 As for assumption iii, there
exist stochastic28 and density-matrix-based29,30 methods

allowing one to treat system−bath coupling which is quadratic
in system−bath coordinates.
In the present work, we demonstrate how assumption iii can

be lifted for a broad class of problems of practical interest and
formulate the HEOM methodology toward system−bath
couplings which are nonlinear in both system and bath
coordinates. More specifically, we consider a microscopic
model of energy transport in molecular chains with nearest-
neighbor interactions, which is ubiquitous in the study of heat-
transfer and vibrational energy redistribution. We assume that
the first particle in the chain (the system) interacts with its
neighbor via an arbitrary (nonlinear) pair potential, while all
other particles in the chain (the bath) interact with each other
via nearest-neighbor harmonic potentials. In sections 2 and 3
we show how the Hamiltonian of this chain model can be
transformed into the system−bath form suitable for the
application of the HEOM formalism, where the system−bath
coupling Hamiltonian is linear both in the system and in the
bath momentum operators. The corresponding HEOM
equations are derived in section 4. In section 5, the obtained
momentum HEOM scheme is applied for the simulation of
two models of general interest which can help to understand
the fundamental role of the momentum coupling operator in
relaxation processes. The main results are briefly summarized
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in section 6. Technical derivations are deferred to Appendixes
A and B. Possible extensions of the momentum HEOM are
discussed in Appendix C.

2. STARTING EQUATIONS
Let us consider a chain of N point particles of masses mk with
positions Xk and momenta Pk coupled by nearest-neighbor
nonlinear potentials Uk(Xk+1 − Xk). The chain is described by
the Hamiltonian

P
m

U X X
2

( )
k

N
k

k k

N

k k k
1

2

1

1

1∑ ∑= + −
= =

−

+
(1)

If Uk(X) are polynomials up to the forth-order in X, eq 1
corresponds to a quantum version of the celebrated Fermi−
Pasta−Ulam model31,32 or Bose−Hubbard model.33,34 If all
particles are the same and are all coupled by Hookean springs,
the Hamiltonian of eq 1 yields the so-called Rubin model.35,36

The Hamiltonian of eq 1 is also frequently used for the
description of quantum dynamics in terms of hierarchies of
effective modes.37,38

Let us now introduce the new coordinates, the center-of-
mass coordinate

Q
m
M

X
k

N
k

k
1

∑=
= (2)

(M mk
N

k1= ∑ = is the total mass) and the relative distance
coordinates

q X X k N, 1, ..., 1k k k1= − = −+ (3)

The coordinate transformation of eqs 2 and 3 is linear, but not
canonical, while the determinant of the transformation matrix
equals one.39−41 The original momenta Pk are connected to the
new momenta P ≡−iℏd/dQ and pk ≡−iℏd/dqk as follows:

P
m
M

P p pk
k

k k 1= + − − (4)

In these new variables

P
M

H
2

2
= +

(5)

where
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p p
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=
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(6)

(p0 ≡ pN ≡ 0). The first term in eq 5 describes the center-of-
mass motion of the chain, which is totally decoupled from the
internal dynamics of the chain specified by the Hamiltonian H.
Interestingly, there is no position couplings in H. Instead, the
neighboring oscillators are bilinearly coupled through their
momenta. Such momentum couplings are inevitable e.g. in
molecular physics, when molecules are modeled as a collection
of interacting atoms and the nuclear center-of-mass motion is
removed.42−44 In addition, bilinear coordinate and momentum
system−bath couplings naturally arise after the unitary
transformation of the exciton-vibrational Hamiltonian with
standard coordinate couplings, allowing the alternative
formulation of HEOM through an effective Fokker−Planck
equation.7 Generally speaking, momentum couplings are not
limited to the chain model described above. For example, two-
particle couplings ∼ pkpk′, where k, k′ label any two vibrational

degrees of freedom, can be at the origin of Fermi-resonances
(and of energy transfer in general) in molecular systems
described in curvilinear coordinates.45,46

3. SYSTEM−BATH APPROACH FOR MOMENTUM
COUPLING

Let us assume that the particle 1 is the system and the
remaining particles form a bath. Then we recast the
Hamiltonian of eq 6 in the system−bath form

H H H HS B SB= + + (7)

Here

H
p

m
U q

2
( )S

1
2

1
1 1= +

(8)

is the system Hamiltonian

H
p p

mSB
2 1

2
= −

(9)

is the system−bath coupling Hamiltonian
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is the bath Hamiltonian, and
m m

m mk
k k

k k

1

1
μ =

+
+

+ (11)

are the reduced masses of the bath oscillators (μ1 = m1, μN−1 =
mN−1). Now assume that the bath is harmonic

U q q k N( )
2

, 2, ..., 1k k
k

k
2α

= = −
(12)

(remind that U1(q1) can be arbitrary). The so-obtained
Hamiltonian has been used for the studies of energy transfer
in molecular chains by classical molecular dynamics and
quantum model simulations,47 path-integral methods,48 and
mixed quantum-classical simulations.49

It is convenient to introduce the dimensionless bath
coordinates and momenta

q q p p,k k
k

k k
k

α
α

̃ =
ℏΩ

̃ = Ω
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where Ω is a certain characteristic harmonic frequency. Then
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and
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k

ω
α
μ

=
(16)
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are the harmonic frequencies of the bath oscillators. Bkk′ is a
symmetric matrix which can be diagonalized by the orthogonal
transformation

B O B Okk
a

N

ka a ak
2

1

∑′ = ̃
′

=

−

(17)

where Ba are the eigenvalues of Bkk′. Introducing the new
variables

q B O q p
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=

−

(18)

we recast the bath Hamiltonian into a standard form describing
a collection of normal modes

H p q B
2

( ),
a

N
a

a a a aB
2

1
2 2∑=

ℏΩ
̅ + ̅ Ω = Ω

=

−

(19)

The total Hamiltonian is thus given by eq 7, where the system
Hamiltonian is determined by eq 8, the bath Hamiltonian is
specified by eq 19, and the system−bath coupling is described
by

H p p
SB 1

( )ξ= (20)

where the collective bath momentum ξ(p) is defined as

g p g
m

B
O,p

a
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a
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a a
p a

a
( )

2

1
( ) ( ) 2

2

2
2∑ξ

ω μ
= − ̅ =

ℏ
Ω=

−

(21)

It is appropriate to mention that system−bath Hamiltonians
with momentum coupling and mixed coordinate−momentum
couplings are well-known in the literature, where different
(p1p̅a, q1p̅a, p1q̅a, q1q̅a) couplings and combinations thereof are
considered. According to Leggett’s terminology, coordinate
and momentum couplings cause normal and anomalous
dissipation, correspondingly,50 and combined influence of
normal and anomalous dissipation has been scrutinized for
various harmonic systems.50−58 Charged oscillators in
magnetic field have been considered in ref 59, dynamics of
classical spins have been studied in ref 60, and Kramers’
problem in the presence of coordinate and momentum
couplings has been investigated in refs 61 and 62. However,
all these position−momentum couplings were introduced in an
ad hoc manner, and to our knowledge, harmonic systems were
considered only. In the present work, the momentum system−
bath coupling arises naturally from the physically motivated
Hamiltonian with (nonlinear) coordinate coupling as a result
of the removal of the center-of-mass motion. The momentum
coupling is thereby caused by purely geometric effects, i.e., by
the transformation of variables via eqs 2 and 3.

4. CONSTRUCTION OF THE MOMENTUM HEOM
Let us consider the system dynamics driven by the total
Hamiltonian H of eq 7 defined via eqs 8, 19, and 20. The
corresponding Liouville−von Neumann equation for the total
density matrix ρ(t) reads

t
i

H t( ) ( )tρ ρ∂ = −
ℏ

×
(22)

where A×f = Af − fA for any operator f. Changing to the
interaction representation with respect to HB, we obtain

t
i

H H t t( ) ( ( )) ( )t I S SB Iρ ρ∂ = −
ℏ

+× ×
(23)

where

t e t( ) ( )eiH t iH t
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1
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1
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1
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ℏ − ℏ
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−

(25)

Here the time dependence of the bath momentum coupling
operator ξ(p)(t) and of the bath momenta p̅a(t) is generated
exclusively by the bath Hamiltonian HB. Obviously, ξ

(p)(t) is a
stationary quantum Gaussian non-Markovian process whose
stochastic properties are fully specified by the momentum
coupling correlation function

C t t( ) ( ) (0)p p p( ) ( ) ( )ξ ξ= ⟨ ⟩ (26)

By introducing the momentum bath spectral density

J g( )
2

( ) ( )p

a
a

p
a

( ) ( ) 2∑ω π δ ω= − Ω
(27)

and changing to creation and annihilation operators

(p i b b( )/ 2a a a̅ = −† , )q b b( )/ 2a a a̅ = +† , we obtain the

familiar formula

Ä

Ç

ÅÅÅÅÅÅÅÅÅ
i
k
jjj

y
{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑ

C t J

t i t d

( )
1

( )

coth
2
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0

( )∫π
ω

β ω ω ω ω

=

ℏ −

∞

(28)

where β = 1/kBT is the inverse temperature. Interestingly,
C(p)(t) ≡ C(q)(t), where C(q)(t) = ⟨ξ(q)(t)ξ(q)(0)⟩ and ξ(q) is
the collective coordinate operator obtained by replacing p̅a →
q̅a in eq 21.
The above considerations make it clear that all general

methods of construction of HEOM for harmonic baths linearly
coupled to the system through the bath coordinates can be
directly applied to the case of linear coupling of the system
through the bath momenta.9 To obtain the explicit form of the
HEOM equations, we need to specify the bath spectral density
(see Appendix A for the discussion of the choice of J(p)(ω)). In
the present work, we adopt a Drude spectral density36

J ( )
2p( )
2 2ω λγω

γ ω
=

+ (29)

where λ is the system−bath coupling and γ is the inverse bath
correlation (memory) time. By applying the Pade ́ spectral
decomposition63,64 and employing the identity

i
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2
2 4

l

l

l1
2 2∑β γ

β γ
γ

β
η

γ ν
ℏ =

ℏ
+

ℏ −=

∞

(30)

the correlation function for the Drude spectral density can be
calculated as
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where ηl and νl are the prefactor and frequency of the lth Pade ́
term. Because the correlation function is a linear combination
of exponentials, HEOM can be derived in the usual way. If we
write the momentum coupling correlation function as

C t c ic e F t( ) ( ) ( )p

k

K

k k
t( )

0

k∑ δ= ′ + ″ +γ

=

−

(32)

we obtain the conventional form of HEOM for the auxiliary
density operators
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0
, 1,

K K
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0 0
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ρ γ ρ

ρ ρ

∂ = −
ℏ

+ +

− Φ − Θ

×

=

× ×

=
··· + ···

=
··· − ···

(33)

where Φρ = i[W, ρ], c ick k kΘ = ′Φ + ″Ψ, i W ,ρ ρΨ = { }, and
the auxiliary density operator with n0 = ··· = nK = 0 corresponds
to the actual reduced density operator, ρ0, ..., 0(t) ≡ ρS(t). As
distinct from the case of conventional case of coordinate
system−bath coupling, we have

W p1= (34)

owing to the bilinear momentum system−bath coupling.
The derivation of the momentum HEOM given above is

rather formal. For better understanding of relaxation
mechanisms induced by momentum coupling, it is appropriate
to look at the problem from a different, more physical
perspective. This is done in Appendix A, where we show that
the system−bath Hamiltonian of eq 7 with bilinear momentum
coupling, eqs 19 and 20, can be mapped one-to-one to the
corresponding Hamiltonian with bilinear momentum-coordi-
nate coupling, HSB = p1ξ

(q), where ξ(q) a linear combination of
the bath coordinates. This transformation allows us to uncover
physical meaning of the momentum coupling and momentum
HEOM. Furthermore, the existence of this transformation
proves that numerical convergence of the momentum-coupling
HEOM should be similar to that of the conventional
coordinate-coupling HEOM.

5. ILLUSTRATIVE CALCULATION
In the present section, we invoke the momentum HEOM of eq
33 to simulate the dynamics of the harmonic (section 5.1) and
anharmonic double-well (section 5.2) systems. The dynamics
of both models are described in dimensionless variables which
are specified in sections 5.1 and 5.2. For the initial state of the
momentum HEOM, we choose a Gaussian wavepacket

i
k
jjj

y
{
zzzz z q z q q(0) ,

1
exp

1
2

( )S 1 1/4 1 1
(0) 2ρ

π
= | ⟩⟨ | ⟨ | ⟩ = − −

(35)

where the initial dimensionless position is set to q1
(0) = 4, which

corresponds to a highly nonequilibrium initial preparation of
the system. The physical quantities we are interested in are the
expectation values of the position operator q1 and the system
Hamiltonian HS

q t q t

H t H t

( ) Tr( ( ))

( ) Tr( ( ))
1 1 S

S S S

ρ

ρ

⟨ ⟩ =

⟨ ⟩ = (36)

which are evaluated for different system−bath couplings λ and
inverse bath memory times γ. The counter term in the
system−bath Hamiltonian is included in the simulations (see
Appendix A for the details).
For the numerical simulation of eq 33, we expand the system

Hamiltonian HS and the operator W of eq 34 in matrix form
using the harmonic oscillator basis functions. We have
employed a basis set of 30 and 60 functions for the harmonic
and anharmonic double-well systems, respectively. Depending
on the value of the system−bath coupling λ, we vary the
truncation number of hierarchy from 6 to 12 to achieve the
convergent results. To properly characterize the bath
correlation function, 1 (2) Pade ́ terms are included in the
bath correlation function for small (large) values of γ. To
facilitate the propagation of eq 33, we use a GPU (graphic
processing unit) implementation of the BLAS (basic linear
algebra subprograms) package (cuBLAS). The numerical
integration of eq 33 is performed on a NVIDIA Tesla K40
GPU using a fourth-order Runge−Kutta method with a
(dimensionless) time step of 0.002.

5.1. Harmonic Oscillator. Obviously, the system−bath
dynamics of such a system can be solved analytically and
similar harmonic systems have indeed been studied.50−58

Furthermore, as shown in Appendix B, the dynamics generated
by the momentum coupling Hamiltonian of the present work
and by the standard bilinear coordinate coupling Hamiltonian
are in fact equivalent for harmonic systems. For example, the
L a p l a c e t r a n s f o rm o f t h e me an co o r d i n a t e ,

q s dt q t( ) e ( )st
1 0 1∫⟨ ⟩ = ⟨ ⟩

∞ − can be evaluated in the classical

limit as follows (cf. refs 36 and 65):

q s q
s s

s s s s
( )

( )
( ) ( ) 21 1

(0)
2

γ
γ γ λ

⟨ ⟩ = +
+ + + + (37)

The inversion of this expression requires the solution of the
cubic equation and cannot be given in the compact form. In
the Markovian limit (λ = γλγ, γ → ∞, λγ = const)

q t
q

s s
s e s e( ) s t s t

1
1
(0)

1 2
1 2

1 2⟨ ⟩ =
−

{ − }
(38)

where

s i 11,2
2λ λ= − ± −γ γ (39)

For weak to moderate damping (λγ < 1), for example, ⟨q1(t)⟩
exhibits oscillations with a damping rate λγ and frequency

1 2λ− γ which decreases with λγ.

Nevertheless, to set up the stage, we start from the study of
harmonic system and take U1(q1) = ω1q1

2/2. We will adopt the
system harmonic oscillator frequency ω1 for the construction

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c02431
J. Phys. Chem. B 2021, 125, 4863−4873

4866

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c02431?rel=cite-as&ref=PDF&jav=VoR


of dimensionless variables: Frequencies and energies are
expressed in units of ω1, while time is expressed in units of
2π/ω1. In the calculations, we set the inverse temperature to
βω1 = 0.5, vary system−bath coupling from weak (λ = 0.1ω1)
through medium (λ = 0.4ω1) to relatively strong (λ = ω1) as
well as consider almost Markovian bath (γ = 3ω1) and non-
Markovian bath (γ = ω1).
The results of the simulations are presented in Figure 1 for

⟨q1(t)⟩ (left column) and ⟨HS(t)⟩ (right column). As explained
above, the damping rate of the oscillations in ⟨q1(t)⟩ is
controlled by the system−bath coupling λ and the period of
these oscillations increases with λ. The bath memory also has
visible impact on the ⟨q1(t)⟩ dynamics. As for the energy
relaxation (right panels) two effects are to be pointed out.
First, oscillations and their decay rate are faster for ⟨HS(t)⟩
than for ⟨q1(t)⟩. This is a direct consequence of the Gaussian
nature of the harmonic oscillator dynamics, which requires that
all higher-order correlation functions should be expressed as
products of the lowest-order correlation functions. This means
that, approximately, ⟨HS(t)⟩ should oscillate and decay twice
faster than ⟨q1(t)⟩ (see, e.g., refs 65 and 66), as indeed
observed in Figure 1. Second, ⟨HS(t)⟩ initially increases with
time. This is a consequence of the nonequilibrium preparation
of the system according to eq 35, which results in the initial
transfer of energy from the bath to the system (cf. refs 67 and
68).
5.2. Double Well Potential. To study the nonlinear

dynamics, we chose the system Hamiltonian with a symmetric
double well potential

U q q q( ) 0.1( 2) ( 2)1 1 1
2

1
2= − + (40)

(we set ℏ = μ1 = 1 for the construction of dimensionless
variables). Figure 2 shows the corresponding potential energy
function (blue curve) and the initial wavepacket (red curve).
The simulated ⟨q1(t)⟩ (left column) and ⟨HS(t)⟩ (right

column) are presented in Figure 3 for various parameters of
the model indicated in the figure. Nonlinearity has a drastic

effect on the relaxation process: both ⟨q1(t)⟩ and ⟨HS(t)⟩ reach
equilibrium much faster than in the harmonic case, and their
dynamics is much less oscillatory (cf. ref 69). In addition, non-
Markovian effects are much less pronounced in the present
case. With the preparation of the initial wavepacket shown in
Figure 2, ⟨q1(t)⟩ and ⟨HS(t)⟩ of Figure 3 do not reveal any
indication of the energy exchange between the two minima of
the double-well potential, which may be manifested as an extra
beating caused by the tunneling splitting. There are two
reasons for that. First, mean positions and energies are not
proper observables which can reveal this splitting. Second, the
initial wavepacket is much closer to the right potential well
(see Figure 2). Hence it is mostly nonlinearity of the problem
which causes faster dephasing and relaxation of the wavepacket
while the double-well nature of the potential is of secondary
importance for the simulations presented in Figure 3. It should
also be noted that equilibration time of the linear system is
independent of the system’s preparation. For example, eq 37
shows that the details of the initial preparation (q1

(0)) enter the
expression for ⟨q1(t)⟩ just as a factor. This is no longer the case

Figure 1. Expectation value of the position ⟨q1(t)⟩ (left column) and system energy ⟨HS(t)⟩ (right column) for different system−bath couplings λ
and inverse bath memory times γ indicated in the panels. The inverse temperature is βω1 = 0.5.

Figure 2. Double well potential energy of the system (blue curve) and
the initial wavepacket (red curve).
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for nonlinear systems (see, e.g., ref 70) and the study of
different preparations of nonlinear systems is currently in
progress.

6. SUMMARY

We have demonstrated that, for a rather broad class of models,
the Hamiltonian of the system nonlinearly interacting with a
harmonic bath via coordinate coupling can be equivalently
mapped into the Hamiltonian of the system bilinearly coupled
to the bath via momentum coupling. This finding opens up the
opportunity to scrutinize dynamics and relaxation processes in
such systems via the numerically accurate HEOM machinery.
In the main body of the paper, we have studied the simplest

situation, where a particle of interest is nonlinearly coupled to
a harmonic chain. The reduction of the nonlinear coordinate
coupling to bilinear momentum coupling for other classes of
systems has been done in Appendix C. The present approach
can also be extended toward systems coupled to several baths
at different temperatures and toward systems coupled to each
other via a harmonic bath. Other generalizations are also
possible.
Finally, we mention that the momentum-momentum

coupling Hamiltonian considered in this work is not limited
to molecular chains, but it is a fundamental ingredient of any
realistic model of vibrational energy redistribution pro-
cesses.45,71,72 This envisages new applications of the HEOM
methodology to realistic Hamiltonian models beyond the
linear system−bath coupling.73,74

■ APPENDIX A: TRANSFORMATION OF THE
MOMENTUM COUPLING HAMILTONIAN TO THE
COORDINATE COUPLING HAMILTONIAN

Let us start from the total Hamiltonian of eq 7. For our
purposes, it is elucidative to reinstall dimensional bath
momenta and positions

P p M Q q
M

,= ̅ Ω ℏ = ̅
ℏ
Ωα α α α α α

α α (41)

where Mα is a mass associated with the αth bath oscillator.
With these variables, the bath Hamiltonian of eq 19 is written
as

i
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jjjjj

y
{
zzzzzH

P
M

M
Q

2 2B

2 2
2∑= +

Ω

α

α

α

α α
α

(42)

and the system−bath coupling Hamiltonian of eq 20 assumes
the form

H p C P C
g

M
,

p

SB 1

( )

∑= − =
Ω ℏα

α α α
α

α α (43)

(Cα has the unit of inverse mass).
Despite the fact that the transformation of eqs 2 and 3 is not

canonical, the Hamiltonian of eq 7 is an absolutely legitimate
quantum Hamiltonian which has a well-defined classical
counterpart as well as a classical Lagrangian. The classical
Lagrangian corresponding to the Hamiltonian of eq 7 is given
by the expression
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jjjjj
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L q q q U q q C M Q

M Q
M

Q

Q Q( , , , )
1
2

( )

1
2 2

1 1 1 1
2

1 1 1 1

2
2

2

∑

∑

μ μ̇ ̇ = ̇ − + ̇ ̇

+ ̇ −
Ω

α
α α α

α
α α

α α
α

(44)

From the Euler−Lagrange equations we obtain the equations
of motion

U q

q
q C M Q

M Q q C M M Q

( )1 1

1
1 1 1

2
1 1

∑μ μ

μ

−
∂

∂
= ̈ + ̈

− Ω = ̈ + ̈
α

α α α

α α α α α α α (45)

Following ref 75, we introduce a new set of coordinates given
by

y M Q q C M1 1μ= ̇ + ̇α α α α α (46)

Here, yα has the unit of momentum. In the new variables, the
Lagrangian assumes the form

Figure 3. Expectation value of the position ⟨q1(t)⟩ (left column) and and system energy ⟨HS(t)⟩ (right column) for different system−bath
couplings λ and inverse bath memory times γ indicated in the panels. The inverse temperature is β = 0.5.
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It generates the equations of motion

U q

q
q C M Q

M Q q C M M Q
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∂
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α

α α α
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We further define the variables

R
y

M
=

Ωα
α

α α (49)

which have the unit of position. Then eq 47 is transformed to

L q q q U q q
D

M

q D R M R

M R

R R( , , , )
1
2

( ) ( )
2

1
2

1
2

1 1 1 1
2

1 1 1 1
2

2

2

1 1
2

2 2

∑

∑ ∑

∑

μ μ

μ

̇ ̇ = ̇ − − ̇
Ω

+ ̇ + ̇

− Ω

α

α

α α

α
α α

α
α α

α
α α α

(50)

where Dα = CαMαΩα has the unit of angular frequency. The
corresponding Hamiltonian is
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This Hamiltonian differs from the original Hamiltonian of eqs
7, 8, 42, and 43 in two aspects. First, it contains the counter
term in the system−bath coupling. Second, the momentum
system−bath coupling is replaced by the coupling which is
linear in the bath positions Rα. In general, a possibility of such
transformation is rooted into foundations of classical
Hamiltonian mechanics: Labeling canonically conjugated
variables as positions and momenta does not have a deep
physical meaning, because a simple canonical transformations
swaps positions and momenta.76

We can apply the standard path-integral machinery to the
Hamiltonian of eq 51. Then, assuming factorized initial
conditions, the reduced system density matrix is expressed in
the standard path integral form75

q q t q q dq dq

q q t e F q q t

( , ; ) ( ) ( )

( , ; ) ( , ; )e

S

iS q t iS q t

1 1 1 1 0 0

0 0 0
;

1 1
;1 1

∫ ∫ ∫ρ τ τ

ρ

′ = ′ ′

′ ′[ ] − [ ′ ]
(52)

where the influence functional reads
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Here
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and

i
k
jjj

y
{
zzza

D
M

a
D

M

( )
2

coth
1
2

cos ( )

( )
2

sin ( )

R

I

2

2

∑

∑

τ τ β τ τ

τ τ τ τ

− ′ =
Ω

ℏΩ Ω − ′

− ′ =
Ω

Ω − ′

α

α

α α
α α

α

α

α α
α

(55)

Then, differentiation of eq 52 with respect to time (see, e.g. ref
3) yields the HEOM of eq 33.
The equivalence of baths with position and momentum

couplings demonstrated above indicates that the correspond-
ing spectral densities of the baths, J(q)(ω) and J(p)(ω), can be
chosen by invoking similar physical arguments and have similar
physical meaning. J(q)(ω) for the harmonic chain model with
nearest-neighbor coupling can be explicitly derived for the
Rubin model,35,36 in which all chain oscillators are identical. In
this case

J ( ) ( ) 1 ( / )q
R R

( ) 2ω θ ω ω ω ω ω∼ − −

where ωR is the characteristic frequency. In the present work,
we wish to adopt a more general description and choose to
model J(p)(ω) by the Drude spectral density of eq 29. This
spectral density is commonly used in the conventional
position-coupling HEOM to describe a harmonic non-
Markovian bath with the exponential memory function.

■ APPENDIX B: COORDINATE BATH VS
MOMENTUM BATH

Coordinate Bath
Let us consider the standard system−bath Hamiltonian with
bilinear coordinate coupling
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This Hamiltonian generates the following (classical or
quantum) equations of motion:
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Expressing momenta through coordinates, we obtain
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Hence
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or, equivalently
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We thus arrive at the generalized Langevin equation36
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is the memory kernel, ηq(0) is the bath-induced renormaliza-
tion of the system potential (it can be incorporated into the
counter term in the bath Hamiltonian), and
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is the Gaussian stochastic force. In the classical limit, the
exponential memory kernel ηq(t) = λ exp(−γt) corresponds to
the Drude spectral density of eq 29.
Momentum Bath
The momentum-coupling Hamiltonian of the present work
reads
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The corresponding equations of motion are as follows
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Expressing momenta through coordinates, we obtain
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Hence
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and we arrive at the generalized Langevin equation of the kind
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where
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is the memory kernel, ηp(0) is the bath-induced renormaliza-
tion of the system mass (it also can be incorporated into the
counter term in the bath Hamiltonian), and
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(71)

As distinct from the generalized Langevin eq 61 generated by
the coordinate coupling Hamiltonian, the Langevin equation of
eq 69 contains system coordinate and momentum operators.
The latter can be expressed through the system coordinates via
the second part of eqs 65, but the resulting generalized
Langevin equation will contain the derivative of the system
potential and (in general) will be highly nonlinear and difficult
to interpret (cf. ref 52). It is only in the case of harmonic
potential when

U q q p q( ) /2,1 1 1
2

1 1κ κ= ̇ = − (72)
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Up to the redefinition of the system−bath coupling constants
ga
(q) and ga

(p), eqs 61 and 73 are equivalent.

■ APPENDIX C: GENERALIZATIONS OF THE CHAIN
MODEL

Particle in an External Potential
Let us add an external potential V(X1) to the Hamiltonian of
eq 1:
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Introduce

Q X q X X k N, , 1, ..., 1k k k1 1= = − = −+ (75)

Then the original momenta Pk are connected to the new
momenta P ≡−iℏd/dQ and pk ≡−iℏd/dqk as follows:

P P p P p p, k k k1 1 1= + = − − (76)
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(pN ≡ 0).
Now we recast eq 77 in the system−bath form of eq 7 where
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(78)

while HSB and HB are given by eqs 9 and 10, respectively. The
entire derivation then goes as in section 3. In fact the system−
bath interaction is included into the extended system
Hamiltonian of eq 78. These equations could be of interest
for exploring quantum thermodynamics in the case of strong
system−bath coupling.77

Two Particles Nonlinearly Coupled to a Chain of Harmonic
Oscillators
Let us consider the starting Hamiltonian of eq 1 in which
U1(X2 − X1) and UN−1(XN − XN−1) are certain nonlinear
potentials. This corresponds to the situation where the first
and the last particle of the chain interact nonlinearly with their
neighbors, while the latter are connected to each other via a
harmonic chain (quantum dynamics of similar systems has
recently been studied via tensor-train methods46). This model
is described by the Hamiltonian of eq 6 in which U1(q1) and
UN−1(qN−1) are arbitrary and
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k

k
2α

= = −
(79)

The Hamiltonian of this problem can again be recast in the
system−bath form of eq 7 with bilinear momentum coupling
where
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is the system Hamiltonian
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is the system−bath momentum coupling Hamiltonian, and
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