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Abstract  27 

 28 

Several health benefits are related to the administration of nicotinamide riboside (NR), a form of 29 

Vitamin B3, and its precursors nicotinamide mononucleotide (NMN) and NAD+. Therefore, 30 

considerable interest is currently devoted to the potential therapeutic value of their supplementation, 31 

thus justifying scientific studies on the distribution of these molecules in foods and beverages. In this 32 

study, the three vitamers were quantitatively analyzed in ten craft beers for the first time. All beers 33 

from different commercial S. cerevisiae strains contained NAD+. NR, NMN and NAD+ were mostly 34 

present in beers produced with Saccharomyces cerevisiae strain US-05. Interestingly, the three 35 

vitamers were not detectable in beers produced with a commercial strain of Saccharomyces 36 

pastorianus. Data from laboratory-scale beer production using S. cerevisiae strain US-05 showed that 37 

the addition of hops during the fermentation process significantly increased NR production. The rapid 38 

increase in NR formation only occurred if both hops and yeast were present, and the burst was also 39 

confirmed in fermentations trials performed with S. cerevisiae strain CBS1171T and by replacing 40 

wort with YPD medium. The experimental model proposed in the present study can serve as baseline 41 

for further research aimed at investigating the yeast-hop interaction at metabolic and molecular levels. 42 

In addition to highlighting the potentialities of microorganisms to act as biological factories for 43 

beneficial molecules to humans, these findings open new intriguing perspectives for the development 44 

of innovative fermented foods naturally enriched in NR and its precursors. 45 

 46 

Keywords: Vitamin B3, NR, NMN, NAD+, Saccharomyces cerevisiae, hop, beer, yeast and hop 47 

synergy 48 

 49 

 50 

 51 

 52 
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1. Introduction 53 

 54 

Vitamin B3, which is also called Niacin or vitamin PP (Pellagra-Preventing), includes nicotinic acid 55 

(NA), its amide nicotinamide (Nam), and nicotinamide riboside (NR), the last discovered form 56 

(Bieganowski & Brenner, 2004). Once taken with the diet, NA, Nam and NR are transported inside 57 

the cells where they can be transformed into NAD+, which represents the biologically active form of 58 

vitamin B3. NAD+ itself is present in food together with the phosphorylated form of NR, i.e., 59 

nicotinamide mononucleotide (NMN). In the human gut, both dietary NAD+ and NMN can be 60 

transformed into the three forms of the vitamin by a combined action of enzymes of the intestinal 61 

mucosa and microbiota (Bogan & Brenner, 2008).  62 

Numerous lines of evidence indicate that administration of the vitamin NR and its precursor NMN to 63 

mice at doses ranging from 100 to 500 mg/kg/day causes a significant increase in the intracellular 64 

content of NAD+ in many tissues and organs, which is reflected in improvements in energy 65 

metabolism and mitochondrial function. As a result, supplementation of NR or NMN shows both 66 

preventive and therapeutic properties in neurodegenerative diseases (e.g., Parkinson’s and 67 

Alzheimer’s), metabolic syndrome (Hartnup’s disease), human immunodeficiency virus (HIV), 68 

autoimmune diseases, alcohol dependence, anorexia and diseases related to aging that seem to 69 

reproduce the symptoms of pellagra (Chi & Sauve, 2013; Hong, Mo, Zhang, Huang, Wei, & 2020; 70 

Rajman, Chwalek, Sinclair, & 2018; Ruggieri, Orsomando, Sorci, & Raffaelli 2015; Yoshino, Baur, 71 

& Imai, 2018). Doses yielding health benefits in mice models are much higher than the amounts of 72 

NR and NMN that have been documented to date in a common balanced diet. NMN has been detected 73 

in many natural foods, such as broccoli, tomatoes, mushrooms, cabbage, shrimp, avocado and beef 74 

meat, with a maximum concentration of 1.88 mg/100 g (Mills et al., 2016), whereas NR has only 75 

been documented at micromolar concentrations in milk to date (Trammell, Yu, Redpath, Migaud, & 76 

Brenner, 2016; Ummarino et al., 2017). Considering the beneficial effects attributed to these 77 

molecules, it is important to extensively investigate their distribution in food. Beside the natural 78 

https://doi.org/10.3945/jn.116.230078
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presence of NR in milk, it has been hypothesized that microbial metabolic activities could contribute 79 

to its occurrence in fermented food and beverages (Chi & Sauve, 2013). Indeed, different authors 80 

reported the ability of Saccharomyces cerevisiae to actively secrete this vitamin (Bogan et al., 2009; 81 

Lu, Kato, & Lin, 2009). Such evidence prompted us to investigate the presence of NR and its dietary 82 

precursors, NMN and NAD+, in craft beer. Beer is a beverage consumed worldwide that is derived 83 

from a biochemical process based on the fermentation of sugary substrates present in the wort beer 84 

by the action of yeast (Anderson, Santos, Hildebrand, & Schug, 2019; Nardini & Garaguso, 2020). 85 

This process is an alcoholic fermentation that leads to the production of ethanol, carbon dioxide and 86 

other secondary compounds, such as polyphenols particularly phenolic acids (benzoic and cinnamic 87 

acid derivatives) and flavonoids, important for the characterization of the product (Nardini & 88 

Garaguso, 2020). The raw materials necessary for the beer production include water, barley 89 

(Hordeum vulgare) and other cereals eventually used, hops (Humulus lupulus), and yeast. Yeast 90 

strains used for the brewing process belong to the genus Saccharomyces spp. Traditionally, these 91 

yeast strains are classified as yeast for low fermentation, namely, Saccharomyces pastorianus 92 

(operating temperature 8-15°C), and yeast for high fermentation, namely, S. cerevisiae (operating 93 

temperature 15-23°C). The use of S. cerevisiae cultures (top yeast) produces a high fermentation beer 94 

(top fermentation) called Ale, in which the yeasts tend to rise to the surface positioning in the foam. 95 

In contrast, S. pastorianus (bottom yeast) produces low fermentation (bottom fermentation) in which 96 

the yeast at the end of the fermentation process are found on the bottom of the beer based on their 97 

ability to flocculate (Lager beer) (Iserentant, 2003; Lodolo, Kock, Axcell, & Brooks, 2008; Speers,  98 

Tung, Durance, & Stewart, 1992; Verstrepen, Derdelinckx, Verachtert, & Delvaux, 2003). The 99 

brewing process can be divided in four different main phases: malting (transformation of barley into 100 

malt), mashing (production of wort), fermentation by yeast (transformation of sugars in ethanol, 101 

carbon dioxide and secondary compounds) and downstream processes (maturing, bottling, and 102 

packaging) (Anderson et al., 2019). At the end of maturation (generally 3-4 weeks), the beer must be 103 

subjected to filtration processes to separate the suspended solids and to pasteurization to produce a 104 
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more stable final product. In a few cases, there is another step of hop addition to the beer. This step, 105 

which is called dry hopping, can be performed before fermentation, at the end of fermentation, or 106 

during a second fermentation in the bottle. Craft beers, unlike industrial beers, are usually subjected 107 

to a second fermentation process in the bottle, by the addition of sugars and yeast. The beer produced 108 

in craft breweries differs from industrial beers also because they are consumed unfiltered and 109 

unpasteurized (Garofalo et al., 2015). Moreover, craft breweries produce mainly Ale beers, so they 110 

utilize predominantly S. cerevisiae strains (Iattici, Catallo, & Solieri, 2020). 111 

In this work, levels of NR and its precursors NMN and NAD+ have been quantified in different craft 112 

beers via an enzyme-coupled assay (Ummarino et al., 2017). In addition, laboratory-scale 113 

fermentations have been established using different S. cerevisiae strains added to wort or YPD 114 

medium to shed light on the mechanism of NR production.   115 

 116 

2. Material and methods 117 

 118 

2.1. Craft beer and wort sampling 119 

 120 

Ten craft beers of different brewing styles were analyzed for the presence of NR, NMN and NAD+. 121 

In particular, two samples from different batches of each beer type were collected from two craft 122 

breweries located in the Marche region (Central Italy).   123 

All the worts used to produce these beers were collected at the end of boiling step and stored at 4°C. 124 

Table 1 summarizes the yeast species and strains, ingredients and alcohol percentage (%) of the craft 125 

beers under study, and Figure 1 shows a flow diagram of their manufacturing process. 126 

 127 

2.2. Fermentation trials 128 

 129 



6 

 

The yeast strains S. cerevisiae US-05 (Fermentis Lessafre Italia, Parma, Italy) and S. cerevisiae CBS 130 

1171T (from the Centraalbureau voor Schimmelcultures, Filamentous fungi and Yeast Collection, 131 

The Netherlands) were grown on Yeast Extract Peptone D-glucose (YPD) (yeast extract 10 g/L, 132 

peptone 20 g/L, D-glucose 20 g/L) medium at 25°C for 72 hours. Yeast strains were inoculated in 133 

sterile flasks containing 100 mL of wort (or 200 mL YPD) to reach a final concentration of 134 

approximately 6 log10 cfu/mL. In a conventional fermentation trial, after 9 days at 21°C, two different 135 

hops were added in pellet form (dry hopping). These hops consisted of amarillo (alpha acid: 9.0%) 136 

(4 g/L) and centennial (alpha acid: 8.5%) (4 g/L) varieties. After this addition, the maturation 137 

continued at 4°C. At the 16th day of fermentation, dextrose (7 g/L) was added; it was dissolved in 600 138 

µL of sterile water by heating at 100°C for 5 minutes. The brewing process continued at 4°C until the 139 

45th day unless otherwise stated.  140 

At different days during the fermentation, aliquots of samples were removed to analyze the following: 141 

i) the yeast concentration through viable counting on YPD agar (agar 18 g/L) following decimal serial 142 

dilutions on sterile peptone water (peptone 1 g/L); ii) the content of NR, NMN and NAD+ as described 143 

in paragraph 2.3.  144 

 145 

2.3 NR, NMN and NAD+ quantitation 146 

 147 

Samples of beers and aliquots from the fermentation trials were subjected to acid-soluble nucleotides 148 

extraction. To this end, 0.5 mL were centrifuged at 16000 x g for 5 minutes at room temperature 149 

before adding 250 µL of 1.2 M HClO4. After 15 minutes at 4°C, samples were centrifuged as 150 

described above and 700 µL of the supernatants were added to 170 µL of 1.0 M K2CO3 to reach a pH 151 

value of approximately 7.0. Neutralized samples were centrifuged again, and the supernatants were 152 

used for the quantitation of NR, NMN and NAD+ through the enzyme-coupled assay described by 153 

Ummarino et al. (2017). Briefly, the coupled assay consists of two consecutive reactions catalyzed 154 

by recombinant bacterial NR kinase and recombinant murine NMN adenylyltransferase that 155 
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stoichiometrically convert NR to NMN and NMN to NAD+, respectively. The produced NAD+ is 156 

then quantified by the fluorometric cycling assay described by Zamporlini et al. (2014). 157 

 158 

2.4. Statistical Analysis 159 

 160 

NR, NMN and NAD+ data are represented by boxplot that represent the interquartile range (IQR) 161 

between the first and third quartiles, and the line inside the plot represents the median (2nd quartile). 162 

Data were subjected to one-way ANOVA to examine the development across time. When significant 163 

differences were found, Duncan’s multiple range test was used. Linear regression model was used to 164 

reveal the associations between NR, NMN and NAD+ as a function of time. A P-value of less than 165 

0.05 was considered statistically significant. All statistical analyses were performed using SPSS 21.0 166 

and R software. 167 

 168 

3. Results and Discussion 169 

 170 

3.1 NAD+, NMN, NR determination in craft beers 171 

 172 

Ten different types of craft beers were analyzed for the presence of NR, NMN and NAD+ as described 173 

in paragraph 2.3. All the beers analyzed were prepared with S. cerevisiae, except beer B1, which was 174 

produced by S. pastorianus. The results of the screening are shown in Figure 2. To the best of the 175 

authors knowledge, this is the first report showing the presence of NAD+, NMN and NR in beer. In 176 

more detail, NAD+ was detected in all the studied beers with the exception of B1. Its content showed 177 

marked variability, even within different batches of the same beer. Levels ranged from 1.10 nmol/mL 178 

to 17.80 nmol/mL and were intriguingly very similar to those determined in ovine and caprine milk 179 

(Ummarino et al., 2017). The highest amount of NAD+ (P<0.05) was present in the two beers 180 

produced using the S. cerevisiae strain S-04. In particular the highest value was reached in sample 181 
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B6 followed by sample B5 while lowest amount and minimal differences were observed among the 182 

others (Figure 2). These results suggest that S-04 has the capacity among the tested strains to produce 183 

and release the highest amount of NAD+ during the brewing process. In addition, the only beer lacking 184 

NAD+ was the one prepared using S. pastorianus (sample B1), thus indicating that NAD+ production 185 

could be species specific. Interestingly, in this latter beer, NR and NMN were also undetectable 186 

(Figure 2). Notably, among the beers prepared with S. cerevisiae, all the beers produced with the 187 

strain US-05 contained NR. Three of the beers also contained NMN (sample B7, B9 and B10), 188 

although at levels generally lower than NR and without differences in the quantity among them 189 

(Figure 2, P>0.05). NR concentrations ranged from 0.48 to 3.25 nmol/mL, and these values were 190 

unexpectedly very similar to those determined in bovine milk (from 0.5 to 3.6 nmol/mL) (Trammell 191 

et al., 2016; Ummarino et al., 2017). In particular, NR was mostly detected in samples B9 and B10. 192 

However, no difference in concentration between the two was observed (Figure 2, P>0.05). 193 

Furthermore, samples B7 and B8 showed comparable quantities of NR but always significantly lower 194 

than B9 and B10 (Figure 2, P<0.05). In contrast to NR, NMN was not always present in both tested 195 

batches of beer, and when present, its content was approximately 0.9 nmol/mL. This content closely 196 

resembles that measured in ovine and donkey milk, where NMN ranges from 0 to 1.0 nmol/mL 197 

(Ummarino et al., 2017). In general, NMN levels in beer and milk are lower than those measured in 198 

other foods, such as tomato, avocado and beef meat (from 0.78 nmol/mg to 4.79 nmol/mg) (Mills et 199 

al., 2016).  200 

All the worts were negative for the presence of NR and its metabolic precursors (data not shown).  201 

The data obtained in the present study clearly indicate that the production of the three metabolites is 202 

a typical feature of the S. cerevisiae species and is strain dependent.   203 

 204 

https://doi.org/10.3945/jn.116.230078
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3.2 NR, NMN and NAD+ determination in lab-scale produced beer 205 

 206 

Screening of NR, NMN and NAD+ in the different craft beers indicated that only the beers produced 207 

with S. cerevisiae strain US-05 contained all the three vitamers (Figure 2). Prompted by these results, 208 

a replicate of the beer B9 on a laboratory scale (B9L) was established to monitor the production of 209 

the molecules during the entire fermentation process. The B9 sample was chosen based on the 210 

availability of the corresponding wort by the brewery. The fermentation was performed as described 211 

in paragraph 2.2, and the production of the three metabolites as well as the viable yeast counts were 212 

monitored during the entire process (Figure 3A). 213 

On the 2nd day of fermentation, the concentration of the yeast strain significantly increased from the 214 

starting inoculum (P < 0.05) reached the value of 7.5 log10 cfu/mL and then remained constant until 215 

the end of the process (P < 0.05). Different fluctuations in the levels of the metabolites were recorded. 216 

After an initial lag of approximately 2 days, the amount of NR significantly increased, exhibiting a 217 

burst after the addition of the hop, i.e., after the 9th day. In fact, the value of NR shifted from 1.3 218 

nmol/mL on the 9th day to 3.4 nmol/mL on the 14th day, representing an approximately 3-fold 219 

increase. The linear regression model showed a significant increase in the production of NR across 220 

time (Adjusted R-squared: 0.9694, p-value: < 0.05). The addition of sugar after 16th days did not 221 

affect the trend of NR. The trend for NAD+ was very different from that of NR. In more detail, in the 222 

first two days of the process, this metabolite significantly increased to approximately 3 nmol/mL 223 

(P<0.05) and remained at this level until the addition of the hops. After the 9th day, it sharply 224 

decreased to very low levels (Adjusted R-squared: 0.2701, p-value< 0.05). Regarding NMN, after a 225 

sharp increase in the first two days to a value similar to that of NAD+, it remained constant until the 226 

23rd day and then started to slowly decrease (Adjusted R-squared: 0.003437, p-value: 0.2992). 227 

A comparison of the levels of the molecules of interest in the B9 beer (Figure 2) and in the lab-scale 228 

beer B9L on the last day of the fermentation (Figure 3A) revealed that the final amount of NR in B9L 229 
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was considerably increased compared with that in B9 beer, whereas NAD+ was lower. On the other 230 

hand, NMN levels were very similar.  231 

The differences in NR and NAD+ content between B9 and B9L samples might be due to several 232 

reasons. In fact, although we used the same ingredients at the same concentrations as in the brewery, 233 

the yeast strain used by the brewery was in a lyophilized form (not grown on YPD for 72 hours), and 234 

the second fermentation occurred in a closed bottle in the brewery. Furthermore, the time elapsed 235 

from bottling to sampling was unknown. 236 

The results in Figure 3A suggest that the addition of the hops might be responsible for boosting NR 237 

and decreasing NAD+ during the fermentation trial. This behavior was confirmed by the linear 238 

regression model where a positive relationship among NAD+ and NR was observed (Adjusted R-239 

squared: 0.3632, p-value < 0.05). 240 

To better define the role of hops in the change in metabolites levels, a control fermentation trial 241 

without the addition of hops was established (Figure 3B). After the initial increase to approximately 242 

3 nmol/mL, NAD+ continued to slightly increase throughout the fermentation process (Adjusted R-243 

squared: 0.6937, p-value < 0.05), whereas NMN remained constant (Adjusted R-squared: 0.1112, p-244 

value < 0.05). NR showed a very slight increase from the 8th day until the end of the fermentation 245 

(Adjusted R-squared: 0.7835, p-value< 0.05). Altogether, these results suggest that the addition of 246 

hops stimulates NR production and induces degradation of both NAD+ and NMN. However, the 247 

relationship was verified by the linear model only by considering the behavior of NR and NAD+ 248 

(Adjusted R-squared: 0.56, p-value< 0.05).  249 

S. cerevisiae cells constitutively produce, release and import NR (Bogan et al., 2009; Lu et al., 2009), 250 

whereas no information is available on the ability of plant cells to release NR. It is therefore tempting 251 

to hypothesize that hops might enhance the yeast’s ability to produce and release the vitamin. In this 252 

view, yeast cells would facilitate NAD+ supply to hop cells by providing the NR precursor. Metabolic 253 

interaction between different cell-types through the exchange of extracellular metabolites is a well-254 

known mechanism, and evidence has been provided that different cell types might support each 255 
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other's NAD+ pools by providing NR as NAD+ precursor (Kulikova et al., 2015). Morover, it is 256 

interesting to note that Steyer, Tristam, Clayeux, Heitz, & Laugel (2017) highlighted a synergy 257 

between several yeast strains and hop varieties on beer volatile compounds production, thus 258 

indicating that an interaction between hop compounds and yeast metabolism exists although it 259 

remains to be investigated. Unfortunately, the lack of information on the regulation of intracellular 260 

NR generation and release does not allow to explain the mechanism underlying the metabolic 261 

interaction between yeast and hop cells. Furthermore, to the authors’ knowledge, data regarding NR, 262 

NMN and NAD+ dynamics during a craft beer production is lacking in the scientific literature, thereby 263 

preventing further comparison. 264 

 265 

3.3 Effect of wort and S. cerevisiae strain on the production of NR, NMN and NAD+  266 

 267 

The present study also investigated whether the presence of the wort was required for the NR bursting 268 

effect exerted by the hops. To this end, a fermentation trial substituting the wort with YPD medium 269 

and determining the concentrations of the molecules of interest on different days was performed. As 270 

shown in Figure 4A, the change in metabolites levels during the process closely resembled that 271 

observed in the fermentation of wort. Indeed, in YPD, the addition of hops caused a rapid increase in 272 

NR (Adjusted R-squared: 0.866, p-value < 0.05) and a decrease in NAD+ (Adjusted R-squared: 273 

0.1699, p-value < 0.05) thus indicating that the presence of wort is not essential for the production of 274 

the vitamin. Even in YPD a linear trend was observed by the consumption of NAD+ and the 275 

production of NR (Adjusted R-squared: 0.2964, p-value < 0.05). Dextrose was not added in these 276 

fermentation trials since it was previously demonstrated that it did not influence the vitamer trends. 277 

It was therefore asked whether the presence of the yeast was required for the effect of the hops and 278 

whether the effect was strain specific. Figure 4B shows that NR and NAD+ are not produced in the 279 

absence of yeast. On the other hand, a slight amount of NMN was produced when hops were added 280 

to the YPD medium (Figure 4B). The amount was approximately three fold lower than that measured 281 
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in the presence of the S. cerevisiae strain US-05 and decreased to undetectable levels at the end of 282 

the process.   283 

Figure 4C shows the levels of the metabolites during the fermentation of YPD inoculated with S. 284 

cerevisiae strain CBS 1171T. The tendency of NR to increase following the addition of hops was 285 

observed also in the presence of this strain. Strain CBS 1171T released NR on the 4th day, whereas 286 

the vitamin was detectable on the 9th day with the strain US-05 (Adjusted R-squared: 0.9138, p-value 287 

< 0.05). Moreover, in the absence of hops, NR decreased in the strain US-05 under sustained 288 

fermentation, whereas it continued to slowly increase when strain CBS 1171T was present (Adjusted 289 

R-squared: 0.6907, p-value < 0.05). NMN production was different in the two fermentations. The 290 

strain US-05 released NMN from the beginning of the process, and the addition of hops did not change 291 

its concentration up to the 15th day. Then, a progressive decrease was noted (Adjusted R-squared: 292 

0.04175, p-value: 0.2346). On the other hand, strain CBS 1171T produced NMN only after the 293 

addition of hops, and the levels slowly decreased during the fermentation (Adjusted R-squared:  294 

0.3007, p-value < 0.05). The trend of NAD+ production was similar in the two fermentations. In fact, 295 

the addition of hops also caused a decrease in NAD+ levels with the CBS 1171T strain. CBS 1171T 296 

released more NAD+ than US-05.  297 

Altogether, these results indicated that both hops and yeast are required during the brewing process 298 

to increase NR production. Moreover, the NR bursting effect seems to be S. cerevisiae strain and wort 299 

independent. Further studies to elucidate the interaction between hops and S. cerevisiae cells at 300 

intracellular metabolic level could shed more light on the NR bursting effect exerted by hops.  301 

 302 

4. Conclusion 303 

 304 

In the present work, for the first time, the presence of NR and its dietary precursors NMN and NAD+ 305 

in craft beers was quantitatively assessed, suggesting potential beneficial properties of such a low 306 

alcoholic beverage. The presence of the three vitamers in the beers under study was S. cerevisiae 307 
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strain-dependent. Overall, all craft beers prepared with different S. cerevisiae strains contained 308 

NAD+, further highlighting the potentialities of microorganisms to act as biological factories for 309 

beneficial molecules to humans. By reproducing a lab-scale fermentation process either in wort and 310 

YPD medium, a significant increase in NR levels was observed after the addition of hops, and both 311 

the yeast S. cerevisiae and hops are required for such a burst to occur, thus indicating that a yeast and 312 

hops sinergy on NR production occurs. The present study represents the first attempt to provide an 313 

experimental model to study the hop-yeast interaction at metabolic and molecular levels. Finally, 314 

these findings open new intriguing perspectives for the development of innovative fermented foods 315 

naturally enriched in NR and its precursors. 316 
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FIGURE CAPTIONS 410 

 411 

Figure 1. Flow diagram of manufacture of the craft beers B1-B8 (A); Flow diagram of manufacture 412 

of the craft beers B9 and B10 (B). 413 

 414 

Figure 2. Boxplots showing the levels NR, NMN, NAD+ concentrations (nmol/mL) detected in the 415 

different craft beers under study.  416 

 417 

Different letters at the base of the boxes indicate significant differences for each metabolite among 418 

beers (P <0.05).  419 

 420 

Figure 3. NR, NMN and NAD+ concentrations in B9L (A) and control (B) during the fermentation 421 

process.  422 

 423 

Measurements were performed in duplicate and the means ± standard deviation were reported. 424 

 425 

Figure 4. Effect of hop addition on NR, NMN and NAD+ levels in YPD medium inoculated with S. 426 

cerevisiae strain US-05 (A), without yeast inoculation (B), and inoculated with S. cerevisiae strain 427 

CBS 1171T (C).  428 

 429 

Hop was added at the 9th day. Measurements were performed in duplicate and the means ± standard 430 

deviation were reported. 431 

 432 

 433 



Table 1.  Saccharomyces yeast strains, ingredients and alcohol percentage (%) in craft beer samples 

 

 
Sample Yeast species Strain Ingredients % alcohol 

B1 Saccharomyces pastorianus W34/70 H2O, hop, yeast, sugar, barley and wheat malt 6.0 

B2 Saccharomyces cerevisiae S-33 H2O, hop, yeast, sugar, barley malt 5.5 

B3 Saccharomyces cerevisiae WB-06 H2O, hop, yeast, sugar, barley and wheat malt, wheat 6.3 

B4 Saccharomyces cerevisiae WB-06 H2O, hop, yeast, sugar, barley and wheat malt 5.8 

B5 Saccharomyces cerevisiae S-04 H2O, hop, yeast, sugar, barley malt 6.3 

B6 Saccharomyces cerevisiae S-04 H2O, hop, yeast, sugar, barley and wheat malt 6.6 

B7 Saccharomyces cerevisiae US-05 H2O, hop, yeast, sugar, barley and wheat malt 6.6 

B8 Saccharomyces cerevisiae US-05 H2O, hop, yeast, sugar, barley malt 5.4 

B9 Saccharomyces cerevisiae US-05 H2O, hop, yeast, sugar, barley malt, oat flakes 5.5 

B10 Saccharomyces cerevisiae US-05 H2O, hop, yeast, sugar, barley and wheat malt, oat flakes 5.5 
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