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Abstract

Probabilistic timed automata are classical timed automata extended with discrete
probability distributions over edges. We introduce clock-dependent probabilistic timed
automata, a variant of probabilistic timed automata in which transition probabilities
can depend linearly on clock values. Clock-dependent probabilistic timed automata al-
low the modelling of a continuous relationship between time passage and the likelihood
of system events. We show that the problem of deciding whether the maximum probabil-
ity of reaching a certain location is above a threshold is undecidable for clock-dependent
probabilistic timed automata. On the positive side, we show that the maximum and min-
imum probability of reaching a certain location in clock-dependent probabilistic timed
automata can be approximated using a region-graph-based approach.

1 Introduction

Reactive systems are increasingly required to satisfy a combination of qualitative criteria
(such as safety and liveness) and quantitative criteria (such as timeliness, reliability and per-
formance). This trend has led to the development of techniques and tools for the formal
verification of both qualitative and quantitative properties. In this paper, we consider a for-
malism for real-time systems that exhibit randomised behaviour, namely probabilistic timed
automata (PTA) [1, 2]. PTA extend classical Alur-Dill timed automata [3] with discrete
probabilistic branching over automata edges; alternatively a PTA can be viewed as a Markov
decision process [4] or a Segala probabilistic automaton [5] extended with timed-automata-like
clock variables and constraints over those clocks. PTA have been used previously to model
case studies including randomised protocols and scheduling problems with uncertainty [6, 7],
some of which have become standard benchmarks in the field of probabilistic model checking.

We recall briefly the behaviour of a PTA: as time passes, the model stays within a particular
discrete state, and the values of its clocks increase at the same rate; at a certain point in time,
the model can leave the discrete state if the current values of the clocks satisfy a constraint
(called a guard) labelling one of the probability distributions over edges leaving the state; then
a probabilistic choice as to which discrete state to then visit is made according to the chosen
distribution over edges. In the standard presentation of PTA, any dependencies between time
and probabilities over edges must be defined by utilising multiple distributions enabled with
different sets of clock values. For example, to model the fact that a packet loss is more likely
as time passes, we can use clock x to measure time, and two distributions µ1 and µ2 assigning
probability λ1 and λ2 (for λ1 < λ2), respectively, to taking edges leading to a discrete state
corresponding to packet loss, where the guard of µ1 is x ≤ c and the guard of µ2 is x > c,
for some constant c ∈ N. Hence, when the value of clock x is not more than c, a packet
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loss occurs with probability λ1, otherwise it occurs with probability λ2. A more direct way
of expressing the relationship between time and probability would be letting the probability
of making a transition to a discrete state representing packet loss be dependent on the value
of the clock, i.e., let the value of this probability be equal to f(x), where f is an increasing
function from the values of x to probabilities. We note that such a kind of dependence of
discrete branching probabilities on values of continuous variables is standard in the field of
stochastic hybrid systems, for example in [8].

In this paper we consider such a formalism based on PTA, in which all probabilities used
by edge distributions can be expressed as functions of values of the clocks used by the model:
the resulting formalism is called clock-dependent probabilistic timed automata (cdPTA). We
focus on a simple class of functions from clock values to probabilities, namely those that can
be expressed as sums of continuous linear functions, and consider a basic problem in the
context of probabilistic model checking, namely probabilistic reachability: determine whether
the maximum (respectively, minimum) probability of reaching a certain set of discrete states
from the initial state is above (respectively, below) a threshold. After introducing cdPTA
(in Section 2), our first result (in Section 3) is that the probabilistic reachability problem is
undecidable for cdPTA with a least three clocks. This result is inspired from recent related
work on stochastic timed Markov decision processes [9]. Furthermore, we give an example of
cdPTA with one clock for which the maximal probability of reaching a certain discrete state
involves a particular edge being taken when the clock has an irrational value. This suggests
that classical techniques for partitioning the state space into a finite number of equivalence
classes on the basis of a fixed, rational-numbered time granularity, such as the region graph [3]
or the corner-point abstraction [10], cannot be applied directly to the case of cdPTA to obtain
optimal reachability probabilities, because they rely on the fact that optimal choices can be
made either at or arbitrarily closely to clock values that are multiples of the chosen rational-
numbered time granularity. In Section 4, we present a conservative approximation method
for cdPTA, i.e., maximum (respectively, minimum) probabilities are bounded from above
(respectively, from below) in the approximation. This method is based on the region graph
but uses concepts from the corner-point abstraction to define transition distributions. We show
that successive refinement of the approximation, obtained by increasing the time granularity
by a constant factor, does not lead to a more conservative approximation: in practice, in many
cases such a refinement can lead to a substantial improvement in the computed probabilities,
as we show using a small example. Furthermore, we show that, for the class of cdPTA for
which the target states can only be reached within a bounded number of steps, for any time
granularity, we can obtain a bound on the difference of the probabilities computed on the
approximation and those of the cdPTA, and that increasing the time granularity results in a
quantifiable improvement in the bound. This final result, together with proofs of all results
and additional examples, extends the workshop version of the paper [11]. This paper is a
post-print version of [12].

2 Clock-Dependent Probabilistic Timed Automata

2.1 Preliminaries

We use R≥0 to denote the set of non-negative real numbers, Q to denote the set of rational
numbers and N to denote the set of natural numbers. A (discrete) probability distribution
over a countable set Q is a function µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. For a function

µ : Q → R≥0 we define support(µ) = {q ∈ Q : µ(q) > 0}. For an uncountable set Q we
define Dist(Q) to be the set of functions µ : Q → [0, 1], such that support(µ) is a countable
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set and µ restricted to support(µ) is a (discrete) probability distribution. Given q ∈ Q, we
use {q 7→ 1} to denote the distribution that assigns probability 1 to the single element q. Let
{µi}i∈I ⊆ Dist(Q) be a set of distributions and {λi}i∈I be a set of weights such that λi > 0 for
all i ∈ I and

∑
i∈I λi = 1. Then we write

⊕
i∈I λi · µi to refer to the distribution over Q such

that (
⊕

i∈I λi · µi)(q) =
∑

i∈I λi · µi(q) for each q ∈ Q.
A probabilistic transition system (PTS) T = (S, s,Act ,∆) comprises the following compo-

nents: a set S of states with an initial state s ∈ S, a set Act of actions, and a probabilistic
transition relation ∆ ⊆ S × Act × Dist(S). The sets of states, actions and the probabilistic
transition relation can be uncountable. Transitions from state to state of a PTS are performed
in two steps: if the current state is s, the first step concerns a nondeterministic selection of a
probabilistic transition (s, a, µ) ∈ ∆; the second step comprises a probabilistic choice, made
according to the distribution µ, as to which state to make the transition (that is, a transition
to a state s′ ∈ S is made with probability µ(s′)). We denote such a completed transition by

s
a,µ−→ s′. We assume that for each state s ∈ S there exists some (s, a, µ) ∈ ∆.

An infinite run of the PTS T is an infinite sequence of consecutive transitions r = s0
a0,µ0−−−→

s1
a1,µ1−−−→ · · · (i.e., the target state of one transition is the source state of the next). Similarly, a

finite run of T is a finite sequence of consecutive transitions r = s0
a0,µ0−−−→ s1

a1,µ1−−−→ · · · an−1,µn−1−−−−−−→
sn. We use InfRunsT to denote the set of infinite runs of T , and FinRunsT the set of finite
runs of T . If r is a finite run, we denote by last(r) the last state of r. For any infinite run
r and i ∈ N, let r(i) = si be the (i + 1)th state along r. Let FinRunsT (s) and InfRunsT (s)
refer to the set of finite and infinite runs of T , respectively, commencing in state s ∈ S.

A strategy of a PTS T is a function σ mapping every finite run r ∈ FinRunsT to a
distribution in Dist(∆) such that (s, a, µ) ∈ support(σ(r)) implies that s = last(r). From
[13, Lemma 4.10], without loss of generality we can assume henceforth that strategies map to
distributions assigning positive probability to finite sets of elements, i.e., strategies σ for which
|support(σ(r))| is finite for all r ∈ FinRunsT . Let ΣT be the set of strategies of T ; when clear
from the context, we write simply Σ. For any strategy σ, let FinRunsσ and InfRunsσ denote
the set of finite and infinite runs, respectively, resulting from the choices of σ. For a state s ∈ S,
let FinRunsσ(s) = FinRunsσ ∩ FinRunsT (s) and InfRunsσ(s) = InfRunsσ ∩ InfRunsT (s).

Given a strategy σ and a state s ∈ S, we define the probability measure Prσs over
InfRunsσ(s) in the following, standard way [14]. A Markov chain (MC) M = (S, s,P) com-
prises a set S of states with the initial state s ∈ S, and a probabilistic transition function
P : S×S→ [0, 1], such that

∑
s′∈S P(s, s′) = 1 for all s ∈ S. Given a PTS T = (S, s,Act ,∆),

a state s ∈ S, and a strategy σ ∈ Σ, we can define a countably infinite-state MC Mσ
s =

(FinRunsσ(s), s,Pσ
s ), where Pσ

s is defined in the following way: for r, r′ ∈ FinRunsσ(s), we

let Pσ
s (r, r′) = σ(r)(last(r), a, µ) · µ(s′) if r′ = r

a,µ−→ s′, and we let Pσ
s (r, r′) = 0 otherwise.

For a finite path r ∈ FinRunsσ(s), where r = s0
a0,µ0−−−→ s1

a1,µ1−−−→ · · · an−1,µn−1−−−−−−→ sn, and i ≤ n

let r↓i= s0
a0,µ0−−−→ s1

a1,µ1−−−→ · · · ai−1,µi−1−−−−−→ si. Then we let Pσ
s (r) = Pσ

s (r↓0, r↓1) · Pσ
s (r↓1, r↓2

) · . . . ·Pσ
s (r↓n−1, r↓n). Let Cyl(r) ⊆ InfRunsσ(s) be the set of infinite runs with r as a prefix,

and let Prσs be the unique measure such that Prσs (Cyl(r)) = Pσ
s (r).

Given a set SF ⊆ S, define 3SF = {r ∈ InfRunsT : ∃i ∈ N s.t. r(i) ∈ SF} to be
the set of infinite runs of T such that some state of SF is visited along the run. Given
a set Σ′ ⊆ Σ of strategies, we define the maximum value over Σ′ with respect to SF as
Pmax
T ,Σ′(SF ) = supσ∈Σ′ Prσs (3SF ). Similarly, the minimum value over Σ′ with respect to SF is

defined as Pmin
T ,Σ′(SF ) = infσ∈Σ′ Prσs (3SF ). The maximal reachability problem for T , SF ⊆ S,

Σ′ ⊆ Σ, � ∈ {≥, >} and λ ∈ [0, 1] is to decide whether Pmax
T ,Σ′(SF ) � λ. Similarly, the minimal

reachability problem for T , SF ⊆ S, Σ′ ⊆ Σ, � ∈ {≤, <} and λ ∈ [0, 1] is to decide whether
Pmin
T ,Σ′(SF ) � λ.

Let ≡⊆ S × S be an equivalence relation over S. We say that ≡ respects S ′ ⊆ S if S ′ is
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the union of states contained in some set of equivalence classes of ≡. Given two distributions
µ, µ′ over S, we write µ ≡ µ′ if

∑
s∈C µ(s) =

∑
s∈C µ

′(s) for all equivalence classes C of ≡. A
combined transition from state s ∈ S is a pair ({(s, ai, µi)}i∈I , {λi}i∈I) such that (s, ai, µi) ∈ ∆
and λi > 0 for all i ∈ I, and

∑
i∈I λi = 1. Let A ⊆ Act be a set of actions. Then a probabilistic

simulation respecting ≡ and A is a relation �⊆ S×S such that s � t implies that (1) s ≡ t, and
(2) for each transition (s, a, µ) ∈ ∆, there exists a combined transition ({(t, ai, µi)}i∈I , {λi}i∈I)
such that µ ≡

⊕
i∈I λi · µi, {ai}i∈I ⊆ A if a ∈ A, and {ai}i∈I ⊆ Act \ A if a ∈ Act \ A.1

Next, we consider strategies that alternate between actions in a certain set A ⊆ Act and
actions in the complement set Act \ A. Formally, an A-alternating strategy σ is a strategy

such that, for finite run r ∈ FinRunsT that has s
a,µ−→ s′ as its final transition, then {a′ ∈ Act :

(s, a′, µ) ∈ support(σ(r))} ⊆ A if a ∈ Act \ A, and {a′ ∈ Act : (s, a′, µ) ∈ support(σ(r))} ⊆
Act \A if a ∈ A. Let ΣTA be the set of A-alternating strategies of T ; when the context is clear,
we write simply ΣA rather than ΣTA.

Given two PTSs T1 = (S1, s1,Act1,∆1) and T2 = (S2, s2,Act2,∆2), their disjoint union is
defined as the PTS (S1]S2, ,Act1]Act2,∆1]∆2) (where the initial state is irrelevant and is
hence omitted). The following result is essentially identical to [13, Lemma 3.17, Lemma 3.18]
(which in turn relies on [5, Theorem 8.6.1]).

Proposition 1. [13] Let A1 ⊆ Act1, let A2 ⊆ Act2, and let ≡ be an equivalence relation over
S1 ] S2 that respects SF . If s1 � s2 for a probabilistic simulation respecting ≡ and A1 ] A2,
then Pmax

T1,ΣA1
(SF ) ≤ Pmax

T2,ΣA2
(SF ) and Pmin

T1,ΣA1
(SF ) ≥ Pmin

T2,ΣA2
(SF ).

2.2 Clock-Dependent Probabilistic Timed Automata

Let X be a finite set of real-valued variables called clocks, the values of which increase at the
same rate as real-time and which can be reset to 0. A function v : X → R≥0 is referred to as
a clock valuation and the set of all clock valuations is denoted by RX≥0. For v ∈ RX≥0, t ∈ R≥0

and X ⊆ X , we use v+t to denote the clock valuation that increments all clock values in v by
t, and v[X:=0] to denote the clock valuation in which clocks in X are reset to 0. Formally,
(v+t)(x) = v(x)+t for all x ∈ X , v[X:=0](x) = 0 for all x ∈ X, and v[X:=0](x) = v(x) for all
x ∈ X \X.

For a set Q, a distribution template d : RX≥0 → Dist(Q) gives a distribution over Q for
each clock valuation. In the following, we use notation d[v], rather than d(v), to denote the
distribution corresponding to distribution template d and clock valuation v. Let Templates(Q)
be the set of distribution templates over Q.

The set CC (X ) of clock constraints over X is defined as the set of conjunctions over atomic
formulae of the form x ∼ c, where x ∈ X , ∼∈ {<,≤,≥, >} and c ∈ N. A clock valuation v
satisfies a clock constraint ψ, denoted by v |= ψ, if ψ resolves to true when substituting each
occurrence of clock x with v(x).

A clock-dependent probabilistic timed automaton (cdPTA) P = (L, l̄,X , inv , prob) com-
prises the following components:

• a finite set L of locations with an initial location l̄ ∈ L;

• a finite set X of clocks;

1 Our notion of probabilistic simulation respecting an equivalence relation is stronger than that of proba-
bilistic simulation of [5], because in our setting we require that the distributions referred to in the definition
assign the same probability to equivalence classes, whereas the standard definition of probabilistic simulation
requires that corresponding transitions should be related by a weight function based on the probabilistic sim-
ulation preorder. Also note that we do not require actions to be matched in the definition of probabilistic
simulation respecting ≡, although we do require that matching actions are either all in A or all in Act \A: in
this paper, we use actions in later sections only to clarify aspects of correctness proofs.
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1− y
cmax

y
cmax

y = cmax

Figure 1: A cdPTA modelling a simple robot example.

• a function inv : L→ CC (X ) associating an invariant condition with each location;

• a set prob ⊆ L× CC (X )× Templates(2X × L) of probabilistic edges.

A probabilistic edge (l, g, p) ∈ prob comprises: (1) a source location l; (2) a clock constraint
g, called a guard ; and (3) a distribution template p with respect to pairs of the form (X, l′) ∈
2X × L (i.e., pairs consisting of a set X of clocks to be reset and a target location l′).

The behaviour of a cdPTA takes a similar form to that of a standard probabilistic timed
automaton [1, 2]: in any location time can advance as long as the invariant holds, and the choice
as to how much time elapses is made nondeterministically; a probabilistic edge can be taken if
its guard is satisfied by the current values of the clocks, and the choice as to which probabilistic
edge to take is made nondeterministically; for a taken probabilistic edge, the choice of which
clocks to reset and which target location to make the transition to is probabilistic. The key
difference with cdPTA is that the distribution used to make this probabilistic choice depends
on the probabilistic edge taken and on the current clock valuation.

Example 1. In Figure 1 we give an example of a cdPTA modelling a simple robot that must
reach a certain geographical area and then carry out a particular task. The usual conventions
for the graphical representation of timed automata are used in the figure. Black squares denote
the distributions of probabilistic edges, and expressions on probabilities used by distribution
templates are written with a grey background labelling their outgoing arcs. Edges without black
squares correspond to probabilistic edges assigning probability 1 to a single clock set/target
location pair. The robot can be in one of four geographical areas, which can be thought of as
cells in a 2 × 2 grid, each of which corresponds to a cdPTA location. The robot begins in the
top-left cell (corresponding to location TL), and its objective is to reach the bottom-right cell
(location BR). From the top-left cell, the robot can move either to the top-right cell (location
TR), or to the bottom-left cell (location BL). In each cell, the robot must wait a certain amount
of time (1 time units in the top cells and 2 time units in the bottom-left cell) before attempting
to leave the cell (for example, to recharge solar batteries), after which it can spend at most 1
time unit attempting to leave the cell. With a certain probability, the attempt to leave the cell
will fail. The more time dedicated to an attempt to leave the cell, the more likely the attempt
will succeed. If the attempt to leave the cell fails, the robot must wait before trying to leave the
cell again. Although passing through the top-right cell is not slower than passing through the
bottom-left cell, the probability of leaving the cell successfully increases at a slower rate than in
other cells (hence, the top-right cell could represent a short route to the bottom-right cell, but
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through terrain in which the robot finds it difficult to navigate). On arrival in the bottom-right
cell, the robot successfully carries out its task with a probability that is inversely proportional
to the total time elapsed (for example, the robot could be transporting medical supplies, the
efficacy of which may be inversely proportional to the time elapsed). The clock x is used to
represent the amount of time used by the robot in its attempt to move from cell to cell, whereas
the clock y represents the total amount of time since the start of the robot’s mission. If the
clock y reaches its maximum amount cmax, then the mission fails (as denoted by the edge to
the location denoted by 7, which is available in locations TL, TR, BL and BR, as indicated
by the dashed box). The objective of the robot’s controller is to maximise the probability of
reaching the location denoted by X. Note that there is a trade-off between dedicating more
time to movement between the cells, which increases the probability of successful navigation
and therefore progress towards the target point, and spending less time on the overall mission,
which increases the probability of carrying out the required task at the target point.

A state of a cdPTA is a pair comprising a location and a clock valuation satisfying the
location’s invariant condition, i.e., (l, v) ∈ L × RX≥0 such that v |= inv(l). In any state (l, v),
either a certain amount of time δ ∈ R≥0 elapses, or a probabilistic edge is traversed. If time
elapses, then the choice of δ requires that the invariant inv(l) remains continuously satisfied
while time passes. The resulting state after this transition is (l, v+δ). A probabilistic edge
(l′, g, p) ∈ prob can be chosen from state (l, v) if l = l′ and it is enabled, i.e., the clock constraint
g is satisfied by v. Once a probabilistic edge (l, g, p) is chosen, a set of clocks to reset to 0
and a successor location are selected at random, according to the distribution p[v]. Note that
the fundamental difference between cdPTA and the standard PTA formalism concerns the
fact that, in PTA, the third component of edges is a distribution, rather than a distribution
template, and hence the probabilities used in a PTA do not depend on valuations.

We make a number of assumptions concerning the cdPTA models considered. These as-
sumptions are standard for PTA, and enable the definition of (cd)PTA semantics. Firstly, we
restrict our attention to cdPTA for which it is always possible to take a probabilistic edge,
either immediately or after letting time elapse. This condition holds generally for PTA models
in practice [6]. A sufficient syntactic condition for this property has been presented formally
in [15]. Secondly, in the standard manner for PTA [7], we assume that all possible target
states of probabilistic edges satisfy their invariants: for all probabilistic edges (l, g, p) ∈ prob,
for all clock valuations v ∈ RX≥0 such that v |= g, and for all (X, l′) ∈ 2X × L, we have that
p[v](X, l′) > 0 implies v[X := 0] |= inv(l′). Thirdly, we assume that any clock valuation that
satisfies the guard of a probabilistic edge also satisfies the invariant of the source location: this
can be achieved, without changing the underlying semantic PTS, by replacing each probabilis-
tic edge (l, g, p) ∈ prob by (l, g ∧ inv(l), p). Finally, we consider cdPTA that feature invariant
conditions that prevent clock values from exceeding some bound: formally, for each location
l ∈ L, we have that inv(l) contains a constraint of the form x ≤ c or x < c for each clock
x ∈ X (this assumption is not necessary for the definition of the semantics of cdPTA, but will
simplify the material in subsequent sections).2

Let 0 ∈ RX≥0 be the clock valuation that assigns 0 to all clocks in X . The semantics of the
cdPTA P = (L, l̄,X , inv , prob) is the PTS [[P ]] = (S, s,Act ,∆) where:

• S = {(l, v) : l ∈ L and v ∈ RX≥0 s.t. v |= inv(l)} and s = {(l̄,0)};

• Act = R≥0 ∪ prob;

2 Note that we relax some of these assumptions when depicting cdPTA graphically. For example, we
generally depict final locations, and sink locations that cannot reach a target location, without invariant
conditions or outgoing edges. To satisfy the above assumptions, we can equip each such a location with an
invariant condition x ≤M for some clock x, where M is the greatest constant featured in guards or invariant
conditions of the cdPTA, and with a self-loop probabilistic edge with guard x ≤M and a clock reset set {x}.
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• ∆ =
−→
∆ ∪ ∆̂, where

−→
∆ ⊆ S × R≥0 × Dist(S) and ∆̂ ⊆ S × prob × Dist(S) such that:

–
−→
∆ is the smallest set such that ((l, v), δ, {(l, v + δ) 7→ 1}) ∈

−→
∆ if there exists

δ ∈ R≥0 such that v + δ′ |= inv(l) for all 0 ≤ δ′ ≤ δ;

– ∆̂ is the smallest set such that ((l, v), (l, g, p), µ) ∈ ∆̂ if

1. v |= g;

2. for any (l′, v′) ∈ S, we have µ(l′, v′) =
∑

X∈Reset(v,v′) p[v](X, l′), where

Reset(v, v′) = {X ⊆ X | v[X := 0] = v′}.

When considering maximum and minimum values for cdPTA, we henceforth consider

strategies that alternate between transitions from
−→
∆ (time elapse transitions) and transitions

from ∆̂ (probabilistic edge transitions). Formally, a cdPTA strategy σ is a strategy such that,

for a finite run r ∈ FinRuns [[P]] that has s
a,µ−→ s′ as its final transition, either (s, a, µ) ∈

−→
∆ and

support(σ(r)) ⊆ ∆̂, or (s, a, µ) ∈ ∆̂ and support(σ(r)) ⊆
−→
∆. We write Σ for the set of cdPTA

strategies of [[P ]]. Given a set F ⊆ L of locations, subsequently called target locations, we let
SF = {(l, v) ∈ S : l ∈ F}. Let � ∈ {≥, >}, � ∈ {≤, <} and λ ∈ [0, 1]: then the maximal
(respectively, minimal) reachability problem for cdPTA is to decide whether Pmax

[[P]],Σ(SF ) � λ

(respectively, Pmin
[[P]],Σ(SF ) � λ).

2.3 Linear Clock Dependencies

In this paper, we concentrate on a particular subclass of distribution templates based on linear
functions. Let x ∈ X be a clock and ψ ∈ CC (X ) be a clock constraint. Let Iψx be the interval
containing the values of x of clock valuations that satisfy ψ: formally Iψx = {v(x) ∈ R≥0 : v ∈
RX≥0 s.t. v |= ψ}. Let Iψx be the closure of Iψx . For example, for ψ = (x ≥ 3)∧(x < 5)∧(y ≤ 8),

we have Iψx = [3, 5), Iψx = [3, 5] and Iψy = Iψy = [0, 8]. We equip each probabilistic edge
p = (l, g, p) ∈ prob, clock set/location pair e = (X, l′) ∈ 2X × L and clock x ∈ X , with a pair
(cp,ex , dp,ex ) ∈ Q2 of rational constants. We then define the linear function fp,ex with domain

Igx by fp,ex (γ) = cp,ex + dp,ex · γ for all γ ∈ Igx . We make the following assumptions for each
probabilistic edge p ∈ prob:

1.
∑

x∈X f
p,e
x (v(x)) ∈ [0, 1] for each e ∈ 2X × L and v ∈ RX≥0 such that v |= g;

2.
∑

e∈2X×L
∑

x∈X f
p,e
x (v(x)) = 1 for each v ∈ RX≥0 such that v |= g.

Then we say that the probabilistic edge p is linear if, for each e ∈ 2X×L and each v ∈ RX≥0 such
that v |= g, we have p[v](e) =

∑
x∈X f

p,e
x (v(x)). We assume henceforth that all probabilistic

edges of cdPTA are linear.3

Example 2. Standard methods for the analysis of timed automata typically consist of a finite-
state system that represents faithfully the original model. In particular, the region graph [3]

3 The original version of the paper [11] featured piecewise linear clock dependencies, where the functions
defining clock dependencies are linear over intervals of clock values that are bounded by rationals. The
version of clock dependencies presented in this paper is no less expressive, because such piecewise linear clock
dependencies can be modelled by (1) scaling up all constants in guards, invariants and the endpoints of
intervals used to define over which clock dependencies are linear so that the intervals used for defining clock
dependencies have natural numbered endpoints, and (2) modelling a probabilistic edge with piecewise linear
clock dependencies by multiple probabilistic edges with linear clock dependencies, where the guards of the new
probabilistic edges encode the (scaled-up) intervals over which the original piecewise linear clock dependency
functions were linear.
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1− x
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Figure 2: A one-clock cdPTA for which the maximum probability is attained by a time delay
corresponding to an irrational number.

and the corner-point abstraction [10] both involve the division of the state space according
to a fixed, rational-numbered granularity. The example of a one-clock cdPTA P of Figure 2
shows that such an approach cannot be used for the exact computation of optimal reachability
probabilities in cdPTA, because optimality may be attained when the clock has an irrational
value. For an example of the formal description of a linear probabilistic edge, consider the
probabilistic edge from location C, which we denote by pC: then we have IpCx = (0, 1), with

c
pC,(∅,D)
x = 1, d

pC,(∅,D)
x = −1

2
, c

pC,(∅,E)
x = 0, and d

pC,(∅,E)
x = 1

2
. Now consider the maximum

probability of reaching location D (that is, Pmax
[[P]],Σ(S{D})). Intuitively, the longer the cdPTA

remains in location A, the lower the probability of making a transition to location E from A,
but the higher the probability of making a transition to E from B and C. Note that, after A
is left, the choice resulting in the maximum probability of reaching D is to take the outgoing
transitions from B and C as soon as possible (delaying in B and C will increase the value of
x, therefore increasing the probability of making a transition to E). Denoting by δ the amount
of time elapsed in A, the maximum probability of reaching D is equal to δ(1− δ)(1− δ

2
), which

(within the interval [0, 1)) reaches its maximum at 1 −
√

3
3

. Hence, this example indicates
that abstractions based on the optimality of choices made at (or arbitrarily close to) rational-
numbered clock values (such as the region graph or corner-point abstraction) do not yield exact
analysis methods for cdPTA.

3 Undecidability of Maximal Reachability for cdPTA

Theorem 1. The maximal reachability problem is undecidable for cdPTA with at least 3 clocks.

Proof. We proceed by reducing the non-halting problem for two-counter machines to the
maximal reachability problem for cdPTA. The reduction has close similarities to a reduction
presented in [9].

A two-counter machine M = (L, C) comprises a set L = {`1, ..., `n} of instructions and a
set C = {c1, c2} of counters. The instructions are of the following form (for i, j, k ∈ {1, ..., n}
and m ∈ {1, 2}):

1. `i : cm := cm + 1; goto `j (increment cm);

2. `i : cm := cm − 1; goto `j (decrement cm);

3. `i : if (cm > 0) then goto `j else goto `k (zero check cm);

4. `n : HALT (halting instruction).

A configuration (`, v1, v2) of a two-counter machine comprises an instruction ` and values
v1 and v2 of counters c1 and c2, respectively. The instruction of a configuration describes
ow the counter values are to be updated and what is the next instruction to be executed
(for example, an instruction `8 : c2 := c2 + 1; goto `3 taken from configuration (`8, 6, 4)
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x1 = 1
2c1 `i

x1, x2 ≤ 1
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x1, x3 < 1

C
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x2 = 1, {x2}

0 < x1, x3 < 1

x2 = 1, {x2}

1
2

{x1}
1
2
{x2}

x3 = 1

{x3}

x2 = 1, {x2}

x2 = 0

1
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(x1 + x3)1− 1
2

(x1 + x3)

x2 = 0

1− 1
2

(x1 + x3)

1
2

(x1 + x3)

Figure 3: The cdPTA module for simulating an increment instruction for counter c1.

results in the configuration (`3, 6, 5)). A run of a two-counter machine consists of a finite or
infinite sequence of configurations, starting from configuration (`1, 0, 0), and where subsequent
configurations are successively generated by following the instruction specified in the associated
configuration. A run is finite if and only if the final instruction visited along the run is `n
(the halting instruction). The halting problem for two-counter machines concerns determining
whether the unique run of the two-counter machine is finite, and is undecidable [16]; hence
the non-halting problem (determining whether the unique run of the two-counter machine is
infinite) is also undecidable.

Consider a two-counter machine M. We reduce the non-halting problem for M to the
maximal reachability problem of a cdPTA in the following way. We construct a cdPTA PM
with three clocks {x1, x2, x3} by considering modules for each form that the instructions of a
two-counter machine can take. On entry to each module, we have that x1 = 1

2c1
, x2 = 1

2c2
and

x3 = 0. The module for simulating an increment instruction for c1 is shown in Figure 3. In
location `i, there is a delay of 1− 1

2c1
, and hence the values of the clocks on entry to location

B are x1 = 0, x2 = 1
2c2

+ 1 − 1
2c1

mod 1 and x3 = 1 − 1
2c1

. A nondeterministic choice is then
made concerning the amount of time that elapses in location B: note that this amount must
be in the interval (0, 1

2c1
). In order to correctly simulate the increment of counter c1, the choice

of delay in location B should be equal to 1
2c1+1 . On leaving location B, a probabilistic choice

is made: the rightward outcome corresponds to continuing the simulation of the two-counter
machine, whereas the downward outcome corresponds to checking that the delay in location
B was correctly 1

2c1+1 . We write the delay in location B as 1
2c1+1 + ε, where − 1

2c1+1 < ε < 1
2c1+1 :

hence, for a correct simulation of the increment of c1, we require that ε = 0.
Consider the case in which the downward outcome (from the outgoing probabilistic edge

of location B) is taken: then the cdPTA fragment from location D has the role of checking
whether ε = 0. Note that, after entering location D, no time elapses in locations D and E (as
enforced by the reset of x2 to zero and the invariant condition x2 = 0), and hence both clocks
x1 and x3 retain the same values as they had when location B was left. We show that the
probability of reaching the target location G from location D is 1

4
− ε2, and hence equal to 1

4

if and only if ε = 0. To see that the probability of reaching G from D is 1
4
− ε2, observe that

the probability is equal to 1
2
(x1 + x3) = 1

2
( 1

2c1+1 + ε + (1 − 1
2c1+1 ) + ε) = 1

2
+ ε multiplied by

1− 1
2
(x1 + x3) = 1

2
− ε, i.e., equal to 1

4
− ε2. Hence the probability of reaching location G from

location D is equal to 1
4

if and only if ε = 0 (otherwise, the probability is strictly less than 1
4
).

The module for simulating a decrement instruction for counter c1 is shown in Figure 4.
In a similar manner to the cdPTA fragment in Figure 3 for the simulation of an increment
instruction, the only nondeterministic choice made is with regard to the amount of time spent
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x2 = 1, {x2}

x1 = 1

{x1}
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Figure 4: The cdPTA module for simulating a decrement instruction for counter c1.

x1 = 1
2c1

,
x3 = 0

`i

x3 = 0

x3 = 0

`k

`j

x1 = 1

x1 < 1

1
2

1
2

1
2

1
2

1
4

3
4

Figure 5: The cdPTA module for simulating a zero-test instruction for counter c1.

in a location, in this case location `i. This amount of time is denoted by δ. For the correct
simulation of the decrement instruction, δ should equal 1 − 1

2c1−1 . The rightward outcome
is taken from the probabilistic edge leaving location `i corresponds to the continuation of
the simulation of the two-counter machine: hence, on entry to location B, we have x1 = 0,
x2 = 1

2c2
+δ and x3 = δ; then, on entry to location `j, we have x1 = 1−δ, x2 = 1

2c2
and x3 = 0.

Let δ = 1− 1
2c1−1 + ε. For the correct simulation of the decrement instruction, we require

that ε = 0. The downward outcome from the probabilistic edge leaving location `i corresponds
to checking that ε = 0, and takes a similar form to the analogous downward edge of the cdPTA
fragment for the increment instruction, as shown in Figure 3. Note that, on entry to location
C, we have that x1 = 1− 1

2c1
+ε, x2 = 0 and x3 = 1− 1

2c1−1 +ε. Then, on entry to location D, we
have that x1 = 0, x2 = 1

2c1
−ε and x3 = 1− 1

2c1
. As no time elapses in locations D and E, we have

that target location F is then reached with probability 1
2
(x2 +x3) = 1

2
( 1

2c1
− ε+1− 1

2c1
) = 1

2
+ ε

2

multiplied by the probability 1− 1
2
(x2 + x3) = 1

2
− ε

2
, which equals 1

4
− ε2

4
. Hence we conclude

that the probability of reaching location F from location C is equal to 1
4

if ε = 0, and is strictly
less than 1

4
otherwise.

Finally, the module for a zero test instruction `i : if (c1 > 0) then goto `j else goto `k
is shown in Figure 5. After entry to location `i, two probabilistic edges are enabled: the
upper one is taken if c1 = 0 (i.e., if x1 = 1

20
= 1), whereas the lower one is taken otherwise.

Both probabilistic edges involve an outcome leading to location `j or `k (depending on which
probabilistic edge was taken) with probability 1

2
, leading to a target location with probability

1
2
· 1

4
, and leading to a sink, non-target location with probability 1

2
· 3

4
, in exactly the same

manner as the modules for increment and decrement.

10



Given the construction of a cdPTA simulating the two-counter machine using the modules
described above, we can now proceed to show Theorem 1. The reasoning is the same as that of
Lemma 5 of [9]. First note that, in the module of the cdPTA for simulating an instruction of
the two-counter machine, if the strategy of the cdPTA simulates correctly a single step of the
two-counter machine, then a target location is reached with probability 1

2
· 1

4
(i.e., probability

1
2

for deciding to check the amount of time elapsed in a particular location multiplied by
probability 1

4
for the probability of reaching a target location when checking the amount of

time elapsed, in both the increment and decrement modules, and probability 1
2
· 1

4
in the

zero-test module, regardless of the value of the tested counter). If the two-counter machine
halts in k steps, and the strategy of the cdPTA correctly simulates the two-counter machine
the probability of reaching a target location will be 1

2
· 1

4
+ (1

2
)2 · 1

4
+ ... + (1

2
)k · 1

4
< 1

4
. If

the two-counter machine halts in k steps, and the strategy of the cdPTA does not correctly
simulate the two-counter machine, then this means that the probability of reaching a target
location is strictly less than that corresponding to correct simulation, given that deviation
from simulation of a certain step corresponds to reaching the target locations with probability
strictly less than 1

4
in that step; hence the overall probability of reaching a target location will

be strictly less than . 1
2
· 1

4
+ (1

2
)2 · 1

4
+ ... + (1

2
)k · 1

4
< 1

4
. Now consider the case in which the

two-counter machine does not halt: in this case, faithful simulation in the cdPTA corresponds
to reaching target locations with probability

∑∞
i=1(1

2
)i · 1

4
= 1

4
, whereas unfaithful simulation

in the cdPTA corresponds to reaching the target locations with probability
∑∞

i=1(1
2
)i ·γi where

γi ≤ 1
4

for all i ∈ N and γj <
1
4

for at least one j ∈ N, and hence
∑∞

i=1(1
2
)i · γi < 1

4
. Therefore

the two-counter machine does not halt if and only if there exists a strategy in the constructed
cdPTA that reaches the target locations with probability at least 1

4
, concluding the proof of

Theorem 1.

4 Approximation of Reachability Probabilities

We now consider the approximation of maximal and minimal reachability probabilities of
cdPTA. Our approach is to utilise concepts from the corner-point abstraction [10]. Recall that
the standard corner-point abstraction is a finite-state system that extends the classical region
graph by encoding regions and corner points within its states; for example, the state (l, 0 <
x < 1, x = 1) represents the situations in which the system is in location l, and the value of the
clock x is in the interval (0, 1) and is “close” to 1. The corner-point abstraction can be used to
obtain a quantitative measure that is arbitrarily close to the actual one; this is typical in the
context of weighted (or priced) timed automata (see [17] for a survey). Instead, in the context
of cdPTA, as indicated by Example 2 and the undecidability results presented in Section 3, such
a construction cannot be used directly to obtain maximal or minimal reachability probabilities
that are arbitrarily close to those of the cdPTA under consideration. Hence we present a
method that conservatively approximates maximal and minimal reachability probabilities (i.e.,
the computed maximal probability bounds the actual maximal probability from above, and the
computed minimal probability bounds the actual minimal probability from below), and show
that successive refinement of regions leads to finite-state systems that approximate the actual
maximal and minimal probabilities at least as accurately. The states of our finite-state system
correspond to location-region pairs, rather than to location-region-corner point triples as in
the standard corner-point abstraction, and we use corners of regions only to define available
distributions.

First we define regions and corner points. Let P = (L, l̄,X , inv , prob) be a cdPTA, which
we assume to be fixed throughout this section, and let M ∈ N denote the upper bound on
clocks in P . We choose k ∈ N, which we will refer to as the (time) granularity, and let
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[k] = { c
k

: c ∈ N} be the set of multiples of 1
k
. A k-region (h, [X0, ..., Xn]) over X comprises:

1. a function h : X → ([k] ∩ [0,M ]) assigning a multiple of 1
k

no greater than M to each
clock and

2. a partition [X0, ..., Xn] of X , where Xi 6= ∅ for all 1 ≤ i ≤ n and h(x) = M implies
x ∈ X0 for all x ∈ X .

Given clock valuation v ∈ RX≥0 such that v(x) ≤ M for all x ∈ X , and granularity k, the
k-region R = (h, [X0, ..., Xn]) containing v, written v ∈ R, satisfies the following conditions:

1. bk · v(x)c=k · h(x) for all clocks x ∈ X ;

2. v(x)=h(x) for all clocks x ∈ X0;

3. k · v(x)− bk · v(x)c ≤ k · v(y)− bk · v(y)c if and only if x ∈ Xi and y ∈ Xj with i ≤ j,
for all clocks x, y ∈ X .

Note that, rather than considering regions delimited by valuations corresponding to natural
numbers, in our definition regions are delimited by valuations corresponding to multiples of
1
k
. We use Regsk to denote the set of k-regions. For R,R′ ∈ Regsk and clock constraint
ψ ∈ CC (X ), we say that R′ is a ψ-satisfying time successor of R if, for all v ∈ R, there exists
δ ∈ R≥0, such that (v+δ) ∈ R′ and (v+δ′) |= ψ for all 0 ≤ δ′ ≤ δ. We write R |= ψ if all
valuations v ∈ R are such that v |= ψ (note that the definition of k-regions implies that either
v |= ψ for all v ∈ R or v 6|= ψ for all v ∈ R). For a given k-region R ∈ Regsk, we let R[X := 0]
be the k-region that corresponds to resetting clocks in X to 0 from clock valuations in R (that
is, R[X := 0] contains valuations v[X := 0] for v ∈ R). We use R0 to denote the k-region that
contains the valuation 0.

A corner point α = 〈ai〉0≤i≤n ∈ ([k] ∩ [0,M ])n of k-region (h, [X0, ..., Xn]) is defined by:

ai(x) =

{
h(x) if x ∈ Xj with j ≤ i
h(x) + 1

k
if x ∈ Xj with j > i .

Note that a k-region (h, [X0, ..., Xn]) is associated with n+ 1 corner points. Let CP(R) be the
set of corner points of k-region R. Given granularity k, we let CornerPointsk be the set of all
corner points of k-regions.

Next we define the clock-dependent region graph with granularity k as the finite-state PTS
Ak = (Sk, s,Actk,Γk), where Sk = L× Regsk, s = (l̄, R0), Actk = {τ} ∪ (CornerPointsk × prob),

and Γk =
−→
Γk∪ Γ̂k where

−→
Γk ⊆ Sk×{τ}×Dist(Sk) and Γ̂k ⊆ Sk×CornerPointsk×prob×Dist(Sk)

are such that:

•
−→
Γk is the smallest set of transitions such that ((l, R), τ, {(l, R′) 7→ 1}) ∈

−→
Γk if (l, R′) is

an inv(l)-satisfying time successor of (l, R);

• Γ̂k is the smallest set such that ((l, R), (α, (l, g, p)), ν) ∈ Γ̂k if:

1. R |= g;

2. α ∈ CP(R);

3. for any (l′, R′) ∈ Sk, we have that ν(l′, R′) =
∑

X∈Reset(R,R′) p[α](X, l′), where

Reset(R,R′) = {X ⊆ X | R[X := 0] = R′}.
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Figure 6: A finite-state PTS showing that a direct approach encoding corner points in states
does not lead to a conservative overapproximation of the cdPTA with regard to reachability
probabilities.
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Figure 7: The clock-dependent region graph of Example 2 for k = 1.

Hence the clock-dependent region graph of a cdPTA encodes corner points within
(probabilistic-edge-based) transitions, in contrast to the corner-point abstraction, which en-
codes corner points within states. In fact, a literal application of the standard corner-point
abstraction, as presented in [17], does not result in a conservative approximation, which we
now explain with reference to Example 2.

Example 3. Recall that the states of the corner-point abstraction comprise a location, a
region and a corner point of the region, and each transition maintains consistency between
the corner points of the transition’s source and target states. For example, for the cdPTA of
Figure 2, consider the state (A, 0 < x < 1, x = 1), where 0 < x < 1 is used to refer to the
state’s region component and x = 1 is used to refer to the state’s corner point. Then the
probabilistic edge leaving location A is enabled (because the state represents the situation in
which clock x is in the interval (0, 1) and arbitrarily close to 1). Standard intuition on the
corner-point abstraction (adapted from weights in [17] to probabilities in distribution templates
in this paper) specifies that, when considering probabilities of outgoing probabilistic edges,
the state (A, 0 < x < 1, x = 1) should be associated with probabilities corresponding to the
valuation for which x = 1. Hence the probability of making a transition to location B is
1, and the target corner-point-abstraction state is (B, 0 < x < 1, x = 1). However, now
consider the probabilistic edge leaving location B: in this case, given that the corner point
under consideration is x = 1, the probability of making a transition to location C is 0, and
hence the target location D is reachable with probability 0. Furthermore, consider the state
(A, 0 < x < 1, x = 0): in this case, if the probabilistic edge leaving location A is taken,
then location B is reached with probability 0, and hence location D is again reachable with
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probability 0. Following this approach of encoding corner points within states, we obtain the
finite-state PTS in Figure 6. For emphasis, we show (with dashed lines) transitions that
correspond to probability 0; vice versa, for simplicity we do not show transitions from states
reached with probability 0 or from the location E, and duplicate the state (E, 0 < x < 1, x = 1).
We can conclude that such a direct application of the corner-point abstraction to cdPTA is
not a conservative approximation of the cdPTA, because the maximum probability of reaching
location D in the corner-point abstraction is 0, i.e., less than the maximum probability of
reaching location D in the cdPTA (which we recall is 1−

√
3

3
).

Instead, in our definition of the clock-dependent region graph, we allow “inconsistent”
corner points to be used in successive transitions: for example, from location A, the outgoing
probabilistic edge can be taken using the value of x corresponding to the corner point x = 1;
then, from locations B and C, the outgoing probabilistic edge can be taken using corner point
x = 0. This approach, with k = 1, yields the finite-state PTS shown in Figure 7; as above,
we show transitions with probability 0 with dashed lines, and for simplicity duplicate the state
(E, 0 < x < 1) and omit self-loops labelled with τ . The distributions depicted in the top part
of the figure correspond to the corner point with x = 0, whereas the distributions of the bottom
part correspond to the corner point with x = 1. It can be observed that the maximum probability
of reaching the target location D in this clock-dependent region graph is 1 (i.e., greater than

1−
√

3
3

, as required by a conservative approximation approach).

Analogously to the case of cdPTA strategies, we consider strategies of clock-dependent

region graphs that alternate between transitions from
−→
Γk (time elapse transitions) and transi-

tions from Γ̂k (probabilistic edge transitions). Formally, a region graph strategy π is a strategy

of Ak such that, for a finite run r ∈ FinRunsAk that has (l, R)
a,ν−→ (l′, R′) as its final transition,

either ((l, R), a, ν) ∈
−→
Γk and support(π(r)) ⊆ Γ̂k, or ((l, R), a, ν) ∈ Γ̂k and support(π(r)) ⊆

−→
Γk.

We write Πk for the set of region graph strategies of Ak.
Let F ⊆ L be a set of target locations, which we assume to be fixed in the following. Recall

that SF = {(l, v) ∈ L× RX≥0 : l ∈ F} and let RegsFk = {(l, R) ∈ Sk : l ∈ F}. The remainder of
this section is dedicated to showing that clock-dependent region graphs can be used to provide
a technique for approximating maximal and minimum probability for reaching target locations.
We first show in Proposition 2 that, for any k ≥ 1, the maximum (minimum) probability for
reaching target locations from the initial state of a cdPTA is bounded from above (from below,
respectively) by the corresponding maximum (minimum, respectively) probability in the clock-
dependent region graph with granularity k. Then we show in Proposition 3 that, similarly, the
maximum (minimum) probability computed in the clock-dependent region graph of granularity
k is an upper (lower, respectively) bound on the maximum (minimum, respectively) probability
computed in the clock-dependent region graph of granularity 2k.

4.1 Approximating a cdPTA with a clock-dependent region graph

In this subsection, we show that we can use Ak, the clock-dependent region graph with granu-
larity k, to approximate the cdPTA P . In order to show the required result, we first consider
the following intermediate lemmata.

The first lemma specifies that the sets of clocks that, when reset to 0, are used to transform
valuation v to valuation v′ are the same as the sets of clocks used to transform the k-region
containing v to the k-region containing the valuation v′.

Lemma 1. Let k ∈ N and v, v′ ∈ RX≥0 such that, for each clock x ∈ X , either v′(x) = v(x) or
v′(x) = 0. Using R,R′ ∈ Regsk to denote the k-regions such that v ∈ R and v′ ∈ R′, we have
Reset(v, v′) = Reset(R,R′).
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Proof. Let X0
v be the set of clocks that are equal to 0 in v, and let X0

v′ be the set of clocks that
are equal to 0 in v′. Similarly, let X0

R be the set of clocks that are equal to 0 in all valuations in
R, and let X0

R′ be the set of clocks that are equal to 0 in all valuations in R′. By the definition
of k-regions, for any clock x ∈ X , we have v(x) = 0 if and only if v′′(x) = 0 for all v′′ ∈ R,
and v′(x) = 0 if and only if v′′(x) = 0 for all v′′ ∈ R′. Hence X0

v = X0
R and X0

v′ = X0
R′ . Given

that either v′(x) = v(x) or v′(x) = 0 for each x ∈ X , we have that X ∈ Reset(v, v′) if and
only if X0

v′ \X0
v ⊆ X ⊆ X0

v′ . Similarly, X ∈ Reset(R,R′) if and only if X0
R′ \X0

R ⊆ X ⊆ X0
R′ .

Therefore we have that X ∈ Reset(v, v′) if and only if X0
v′ \ X0

v ⊆ X ⊆ X0
v′ if and only if

X0
R′ \X0

R ⊆ X ⊆ X0
R′ if and only if X ∈ Reset(R,R′). Hence Reset(v, v′) = Reset(R,R′).

Recall that we denote a set of weights by a finite set {θi}i∈I , where θi ∈ (0, 1] for each i ∈ I
and

∑
i∈I θi = 1. In the following, we use an interpretation of valuations and corner points

as points in R|X |≥0 -space, allowing the use of operations such as θ · v and v + v′ (interpreted as
(θ · v)(x) = θ · v(x) and (v + v′)(x) = v(x) + v′(x) for all clocks x ∈ X , respectively).

Lemma 2. Let v ∈ RX≥0, let k ∈ N and let R ∈ Regsk be the unique k-region such that v ∈ R.
Then there exists a set of weights {θα}α∈CP(R) such that v =

∑
α∈CP(R) θα · α.

Proof. Observe that the convex hull of corner points CP(R) corresponds to a superset of the
valuations contained in R. Hence, given that v ∈ R, we have that v is in the set of valuations
induced by the convex hull of CP(R), and hence there exists {θα}α∈CP(R) with the required
property.

In the following, for a state (l, v) ∈ S of [[P ]], we use 〈[l, v]〉k to denote the unique pair
(l′, R) ∈ L× Regsk such that l = l′ and v ∈ R.

Lemma 3. Let (l, v) ∈ S be a state, let k ∈ N, let R ∈ Regsk be the k-region such that v ∈ R,
and let (l, g, p) ∈ prob be a probabilistic edge such that v |= g. Then there exists a set of
weights {θα}α∈CP(R) such that, for any (X, l′) ∈ 2X × L:

p[v](X, l′) =
∑

α∈CP(R)

θα · p[α](X, l′) .

Proof. Let {θα}α∈CP(R) be the set of weights such that v =
∑

α∈CP(R) θα · α, which exists by

Lemma 2. Let e = (X, l′) ∈ 2X × L. Then we have:

p[v](e) =
∑
x∈X

fp,ex (v(x))

=
∑
x∈X

(cp,ex + dp,ex · v(x))

=
∑
x∈X

(cp,ex + dp,ex ·
∑

α∈CP(R)

θα · α(x))

=
∑

α∈CP(R)

θα
∑
x∈X

cp,ex +
∑

α∈CP(R)

θα
∑
x∈X

dp,ex · α(x) (from
∑

α∈CP(R)

θα = 1)

=
∑

α∈CP(R)

θα(
∑
x∈X

cp,ex +
∑
x∈X

dp,ex · α(x)) .

Recall that Ipx has natural-numbered endpoints, and that α(x) is a rational number. Note
that Ipx may not include α(x) in the case that Ipx is open or half-open. Given that fp,ex is a
continuous function, we have that fp,ex (γ) = cp,ex + dp,ex · γ for all γ in the closure of Ipx. Given
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Figure 8: (a) The cdPTA fragment of Example 4. (b) 1-region for x, y ∈ (0, 1) and y < x, and
valuation v with v(x) = 2

3
and v(y) = 1

2
. (c) 1-region for x, y ∈ (0, 1) and y < x, and 2-regions

contained within the 1-region.

that α(x) must belong to the closure of Ipx, we conclude the following:∑
α∈CP(R)

θα(
∑
x∈X

cp,ex +
∑
x∈X

dp,ex · α(x)) =
∑

α∈CP(R)

θα
∑
x∈X

fp,ex (α(x))

=
∑

α∈CP(R)

θα · p[α](e) .

Hence we have shown that p[v](e) =
∑

α∈CP(R) θα · p[α](e), which concludes the proof.

Example 4. We illustrate Lemma 2 and Lemma 3 with regard to the cdPTA fragment shown
in Figure 8(a), where the cdPTA has two clocks, x and y. Consider the state (l, v), i.e., the
state for which the cdPTA is in location l with valuation v, where v(x) = 2

3
and v(y) = 1

2
.

The valuation v and the unique 1-region (which is characterised by x, y ∈ (0, 1) and y < x)
containing v are shown in Figure 8(b). The corner points of the 1-region are α00, α10 and
α11, where α00(x) = α00(y) = 0, α10(x) = 1 and α10(y) = 0, and α11(x) = α11(y) = 1. Now
consider Lemma 2. The weights θα00 = 1

3
, θα10 = 1

6
, and θα11 = 1

2
correspond to v, from the

following reasoning:

(θα00 · α00 + θα10 · α10 + θα11 · α11)(x) = θα00 · α00(x) + θα10 · α10(x) + θα11 · α11(x)
= 1

3
· 0 + 1

6
· 1 + 1

2
· 1 = 2

3
= v(x) ,

(θα00 · α00 + θα10 · α10 + θα11 · α11)(y) = θα00 · α00(y) + θα10 · α10(y) + θα11 · α11(y)
= 1

3
· 0 + 1

6
· 0 + 1

2
· 1 = 1

2
= v(y) .

Next, we consider Lemma 3, and use p to denote the probabilistic edge from location l. First
note that p[v](∅, lt) = 1

2
·(v(x)+v(y)) = 1

2
·(2

3
+ 1

2
) = 7

12
, and p[v](∅, lb) = 1− 1

2
·(v(x)+v(y)) = 5

12
.

Now considering the corner points, we have:

p[α00](∅, lt) = 1
2
· (α00(x) + α00(y)) = 1

2
· (0 + 0) = 0 ,

p[α00](∅, lb) = 1− 1
2
· (α00(x) + α00(y)) = 1− 1

2
· (0 + 0) = 1 ,

p[α10](∅, lt) = 1
2
· (α10(x) + α10(y)) = 1

2
· (1 + 0) = 1

2
,

p[α10](∅, lb) = 1− 1
2
· (α10(x) + α10(y)) = 1− 1

2
· (1 + 0) = 1

2
,

p[α11](∅, lt) = 1
2
· (α11(x) + α11(y)) = 1

2
· (1 + 1) = 1 ,

p[α11](∅, lb) = 1− 1
2
· (α11(x) + α11(y)) = 1− 1

2
· (1 + 1) = 0 .
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We conclude Example 4 by observing that the equality of Lemma 3 holds:∑
α∈CP(〈[l,v]〉1) θα · p[α](∅, lt) = θα00 · p[α00](∅, lt) + θα10 · p[α10](∅, lt) + θα11 · p[α11](∅, lt)

= 1
3
· 0 + 1

6
· 1

2
+ 1

2
· 1

= 7
12

= p[v](∅, lt) ,∑
α∈CP(〈[l,v]〉1) θα · p[α](∅, lb) = θα00 · p[α00](∅, lb) + θα10 · p[α10](∅, lb) + θα11 · p[α11](∅, lb)

= 1
3
· 1 + 1

6
· 1

2
+ 1

2
· 0

= 5
12

= p[v](∅, lb) .

We now use the previous three lemmata to show that, from a state (l, v) of the semantics
of a cdPTA, a distribution derived from a particular probabilistic edge can be obtained as
a weighted sum of distributions, derived from the same probabilistic edge, available at the
corner points of the k-region containing (l, v).

Lemma 4. Let (l, v) ∈ S be a state, let k ∈ N, and let R ∈ Regsk be the k-region such

that v ∈ R. For each transition ((l, v), (l, g, p), µ) ∈ ∆̂ of [[P ]], there exists a set of transitions

{(〈[l, v]〉k, (α, (l, g, p)), να)}α∈CP(R) ⊆ Γ̂k of Ak and weights {θα}α∈CP(R) such that, for each state
(l′, v′) ∈ S:

µ(l′, v′) =
∑

α∈CP(R)

θα · να(〈[l′, v′]〉k) .

Proof. Let {θα}α∈CP(R) be the set of weights such that v =
∑

α∈CP(R) θα · α, which exists by
Lemma 2, and let R,R′ ∈ Regsk be the k-regions such that v ∈ R and v′ ∈ R′. By definition
of [[P ]], we have:

µ(l′, v′) =
∑

X∈Reset(v,v′)

p[v](X, l′)

=
∑

X∈Reset(v,v′)

∑
α∈CP(R)

θα · p[α](X, l′) (by Lemma 3)

=
∑

X∈Reset(R,R′)

∑
α∈CP(R)

θα · p[α](X, l′) (by Lemma 1)

=
∑

α∈CP(R)

θα
∑

X∈Reset(R,R′)

p[α](X, l′)

=
∑

α∈CP(R)

θα · νi(〈[l′, v′]〉k) .

The next lemma specifies that any time elapse transition of [[P ]] can be mimicked by a
transition of Ak.

Lemma 5. Let (l, v) ∈ S be a state, and let k ∈ N. For each transition ((l, v), δ, {(l, v + δ) 7→
1}) ∈

−→
∆ of [[P ]], there exists a transition (〈[l, v]〉k, τ, {〈[l, v + δ]〉k 7→ 1}) ∈

−→
Γk of Ak.

Proof. The lemma follows directly from the definition of
−→
Γk and of inv(l)-satisfying time

successors.

The following lemma specifies that, for any transition of [[P ]], any two distinct states within
its distribution’s support set have valuations belonging to different k-regions.
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Lemma 6. Let (l, v) ∈ S be a state, let k ∈ N, and let ((l, v), (l, g, p), µ) ∈ ∆̂ be a transition of
[[P ]]. For each pair (l1, v1), (l2, v2) ∈ support(µ) such that (l1, v1) 6= (l2, v2), we have 〈[l1, v1]〉k 6=
〈[l2, v2]〉k.

Proof. Let (l1, v1), (l2, v2) ∈ support(µ) such that (l1, v1) 6= (l2, v2). First observe that if l1 6= l2
then trivially 〈[l1, v1]〉k 6= 〈[l2, v2]〉k. Now consider the case in which l1 = l2 and v1 6= v2. Note
that the definition of [[P ]] specifies that v1 = v[X1 := 0] and v2 = v[X2 := 0] for some clock
sets X1, X2 ⊆ X such that X1 6= X2. Hence v1 and v2 differ only in terms of which clocks
are equal to 0. Intuitively, by the definition of k-regions, any two valuations that differ only
in terms of which clocks are equal to 0 belong to different k-regions. For completeness, we
now explain this formally. Denote the sets of clocks that are equal to 0 in v1 by X ′1 and in v2

by X ′2 (note that X1 ⊆ X ′1, X2 ⊆ X ′2 and that X ′1 6= X ′2 because v1 6= v2). Let the k-region
component of 〈[l1, v1]〉k be denoted by (h1, [X1,0, X1,1, ..., X1,n1 ]) and let the k-region component
of 〈[l2, v2]〉k be denoted by (h2, [X2,0, X2,1, ..., X2,n2 ]). Given that X ′1 6= X ′2, either there exists
clock x ∈ X ′1 \X ′2 such that h1(x) = 0 and x ∈ X1,0 but either h2(x) 6= 0 or x 6∈ X2,0, or there
exists clock x ∈ X ′2 \X ′1 such that h2(x) = 0 and x ∈ X2,0 but either h1(x) 6= 0 or x 6∈ X1,0.
Hence we have either h1 6= h2 or X1,0 6= X2,0, and therefore 〈[l1, v1]〉k 6= 〈[l2, v2]〉k.

Lemma 6 specifies that, for each transition ((l, v), a, µ) ∈ ∆ of [[P ]] and for each (l′, R) ∈ Sk,
there exists at most one valuation v′ ∈ R such that (l′, v′) ∈ support(µ). If such a valuation v′

exists, we set vµ,(l′,R) = v′, otherwise vµ,(l′,R) can be set to an arbitrary valuation. From this
fact, together with Lemma 4 and Lemma 5, we obtain the following lemma.

Lemma 7. Let (l, v) ∈ S be a state, and let k ∈ N. For each transition ((l, v), a, µ) ∈ ∆ of
[[P ]], there exists a combined transition ({(〈[l, v]〉k, ai, νi)}i∈I , {λi}i∈I) of Ak such that, for each
(l′, R′) ∈ Sk, we have:

1. µ(l′, vµ,(l′,R′)) =
∑

i∈I λi · νi(l′, R′);

2.
∑

v′∈R′ µ(l′, v′) =
∑

i∈I λi · νi(l′, R′).

Proof. We first consider part (1). Let R ∈ Regsk be the unique region such that v ∈ R. We
consider the following two cases.

Case a ∈ prob. Let p = a. By Lemma 4, there exist {((l, R), (α, p), να)}α∈CP(R) ⊆ Γ̂k of Ak
and weights {θα}α∈CP(R) such that µ(l′, vµ,(l′,R′)) =

∑
α∈CP(R) θα · να(〈[l′, vµ,(l′,R′)]〉k). Hence we

let I = CP(R) and λα = θα for each α ∈ CP(R), concluding that µ(l′, vµ,(l′,R′)) =
∑

α∈CP(R) θα ·
να(l′, R′) =

∑
i∈I λi · νi(l′, R′).

Case a ∈ R≥0. Let δ = a. Note that, by definition of [[P ]], for the unique (l′, R′) ∈ Sk such
that l = l′ and v+δ ∈ R′, we must have vµ,(l′,R′) = v+δ, i.e., µ(l′, vµ,(l′,R′)) = µ(l′, v+δ) = 1. By

Lemma 5, there exists ((l, R), τ, {〈[l, v + δ]〉k 7→ 1}) ∈
−→
Γk: hence we let |I| = 1 and let {λi}i∈I

be the set containing a single weight equal to 1. Then we conclude that µ(l′, vµ,(l′,R′)) =
µ(l′, v + δ) = 1 = {〈[l, v + δ]〉k 7→ 1}(〈[l, v + δ]〉k) =

∑
i∈I λi · νi(l′, R′).

Part (2) of the lemma then follows from part (1) and Lemma 6, which establishes that∑
v′′∈R′ µ(l′, v′′) = µ(l′, vµ,(l′,R′)) for (l′, R′) ∈ Sk such that there exists a valuation v′ ∈ R′ with

(l′, v′) ∈ support(µ).

Consider equivalence ≡⊆ (S ] Sk)
2 over the states of the disjoint union of [[P ]] and Ak

defined as the smallest equivalence satisfying the following conditions:

• for states (l, v), (l′, v′) ∈ S, we have (l, v) ≡ (l′, v′) if 〈[l, v]〉k = 〈[l′, v′]〉k (i.e., l = l′, and v
and v′ belong to the same k-region in Regsk);
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• for (l, v) ∈ S, (l′, R) ∈ Sk, we have (l, v) ≡ (l′, R) if 〈[l, v]〉k = (l′, R) (i.e., l = l′ and v
belongs to R).

Then the following corollary is a direct consequence of part (2) of Lemma 7.

Corollary 1. Let (l, v) ∈ S be a state, and let k ∈ N. For each transition ((l, v), a, µ) ∈ ∆
of [[P ]], there exists a combined transition ({(〈[l, v]〉k, ai, νi)}i∈I , {λi}i∈I) of Ak such that µ ≡⊕

i∈I λi · νi and either ai = τ for all i ∈ I if a ∈ R≥0, and {ai}i∈I ⊆ CornerPointsk × prob
otherwise.

We now state the main result of this section.

Proposition 2. Let k ∈ N. Then:

Pmax
[[P]],Σ(SF ) ≤ Pmax

Ak,Πk
(RegsFk ), and Pmin

[[P]],Σ(SF ) ≥ Pmin
Ak,Πk

(RegsFk ) .

Proof. Consider �⊆ (S ] Sk)
2 such that � is the smallest relation satisfying the following

property: for (l, v) ∈ S, (l′, R) ∈ Sk, we have (l, v) � (l′, R) if 〈[l, v]〉k = (l′, R). By Corollary 1,
� is a probabilistic simulation respecting ≡ and {τ} ∪ R≥0. Then, by Proposition 1, we
have that Pmax

[[P]],ΣR≥0
(SF ) ≤ Pmax

Ak,Σ{τ}(Regs
F
k ) and Pmin

[[P]],ΣR≥0
(SF ) ≥ Pmin

Ak,Σ{τ}(Regs
F
k ). Noting that

Σ = ΣR≥0
and Πk = Σ{τ}, we have that Pmax

[[P]],Σ(SF ) ≤ Pmax
Ak,Πk

(RegsFk ) and Pmin
[[P]],Σ(SF ) ≥

Pmin
Ak,Πk

(RegsFk ).

4.2 Approximating a clock-dependent region graph with granular-
ity 2k with a clock-dependent region graph with granularity
k

In this subsection, we show that Ak, the clock-dependent region graph with granularity k
approximates A2k, the clock-dependent region graph with granularity 2k. The results of this
subsection can be adapted to hold for granularity ck rather than 2k, for any c ∈ N \ {0, 1}:
we consider only the case of c = 2 for simplicity. Before presenting the main result on
approximating the case of granularity 2k by that of granularity k, we consider a number of
intermediate lemmata, which have similarities with the intermediate lemmata presented in
Section 4.1.

For 2k-region R ∈ Regs2k and k-region R′ ∈ Regsk, we write R ⊆ R′ if every valuation that
is contained in R is also contained in R′ (i.e., if {v ∈ RX≥0 : v ∈ R} ⊆ {v ∈ RX≥0 : v ∈ R′}).
Note that, for a given 2k-region R ∈ Regs2k there is exactly one k-region R′ ∈ Regsk such that
R ⊆ R′. In the following, given the 2k-region R, we use [R]k to denote the unique k-region
such that R ⊆ [R]k. We now adapt Lemma 1 to the case of 2k-regions and k-regions: that is,
the sets of clocks that, when reset to 0, are used to transform 2k-region R to 2k-region R′ are
the same as the sets of clocks used to transform the k-region containing the 2k-region R to
the k-region containing the 2k-region R′. The proof of the lemma proceeds in an analogous
manner to that of Lemma 1, and is therefore omitted.

Lemma 8. Let k ∈ N and let R2k, R
′
2k ∈ Regs2k such that R′2k = R2k[X := 0] for some X ⊆ X .

Using Rk, R
′
k ∈ Regsk to denote the unique k-regions such that R2k ⊆ Rk and R′2k ⊆ R′k, we

have Reset(R2k, R
′
2k) = Reset(Rk, R

′
k).

The following result specifies that every corner point of R ∈ Regs2k is either a corner point
of [R]k or can be obtained from a weighted combination of corner points of [R]k.

Lemma 9. Let k ∈ N and let R ∈ Regs2k. For each corner point α ∈ CP(R), there exist a set
of weights {θα′}α′∈CP([R]k) such that α =

∑
α′∈CP([R]k) θα′ · α′.
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Proof. Note that the convex hull of corner points in CP([R]k) is a superset of the convex hull
of corner points in CP(R). Hence, any corner point α ∈ CP(R) is in the set of valuations
induced by the convex hull of CP([R]k), and hence there exists the required {θα′}α′∈CP([R]k)

such that α =
∑

α′∈CP([R]k) θα′ · α′.

We note that the corner points of R ∈ Regs2k are either also corner points of the unique
R′ ∈ Regsk such that R ⊆ R′, or they are mid-points of edges of the polyhedron induced by
the convex hull of the corner points of R′.

Lemma 9 allows us to state the following lemma (which is an analogue of Lemma 3).

Lemma 10. Let k ∈ N, let R ∈ Regs2k, let (l, g, p) ∈ prob be a probabilistic edge such
that R |= g, and let α ∈ CP(R) be a corner point of R. Then there exists a set of weights
{θα′}α′∈CP([R]k) such that, for any (X, l′) ∈ 2X × L, we have:

p[α](X, l′) =
∑

α′∈CP([R]k)

θα′ · p[α′](X, l′) .

Proof. By Lemma 9, it is possible that α ∈ CP([R]k), in which case we let θα = 1 and trivially
we have:

p[α](X, l′) = θα · p[α](X, l′) =
∑

α′∈CP([R]k)

θα′ · p[α′](X, l′) .

Now consider the case in which α 6∈ CP([R]k). We proceed in a similar manner to the proof
of Lemma 3. By Lemma 9, we have the existence of a set of weights {θα′}α′∈CP([R]k) such that
α =

∑
α′∈CP([R]k) θα′ · α′. Let e = (X, l′) ∈ 2X × L. Then we have:

p[α](e) =
∑
x∈X

fp,ex (α(x))

=
∑
x∈X

(cp,ex + dp,ex · α(x))

=
∑
x∈X

(cp,ex + dp,ex ·
∑

α′∈CP([R]k)

θα′ · α′(x))

=
∑

α′∈CP([R]k)

θα′
∑
x∈X

cp,ex +
∑

α′∈CP([R]k)

θα′
∑
x∈X

dp,ex · α′(x)

=
∑

α′∈CP([R]k)

θα′(
∑
x∈X

cp,ex +
∑
x∈X

dp,ex · α′(x))

=
∑

α′∈CP([R]k)

θα′
∑
x∈X

fp,ex (α′(x))

=
∑

α′∈CP([R]k)

θα′ · p[α′](e)

(where the fourth equation follows from
∑

α′∈CP([R]k) θα′ = 1, and the penultimate equation

follows from the fact that fp,ex is a continuous function, as in the proof of Lemma 3), which
concludes the proof.

Example 5. Recall the cdPTA example of Figure 8(a). In Figure 8(c), we show the 1-region
corresponding to x, y ∈ (0, 1) and y < x, together with the 2-regions contained within this
1-region. Consider Lemma 9, and recall this lemma specifies that the corner points of a 2-
region are either corner points of the 1-region that it is contained within, or are equal to the
weighted combination of corner points of that 1-region. As an example, take the corner point
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α such that α(x) = 1 and α(y) = 1
2
: denoting by α00, α10 and α11 the three corner points of

the 1-region defined as in Example 4, the weights θα00 = 0, θα10 = 1
2
, and θα11 = 1

2
witness

Lemma 9, i.e., (θα00 ·α00 +θα10 ·α10 +θα11 ·α11)(x) = θα00 ·α00(x)+θα10 ·α10(x)+θα11 ·α11(x) =
0 · 0 + 1

2
· 1 + 1

2
· 1 = 1 = α(x), and (θα00 · α00 + θα10 · α10 + θα11 · α11)(y) = θα00 · α00(y) + θα10 ·

α10(y) + θα11 · α11(y) = 0 · 0 + 1
2
· 0 + 1

2
· 1 = 1

2
= α(y). Now consider Lemma 10. First note

that p[α](∅, lt) = 1
2
· (α(x) +α(y)) = 1

2
· (1 + 1

2
) = 3

4
, and p[v](∅, lb) = 1− 1

2
· (α(x) +α(y)) = 1

4
.

Recall that, as explained in Example 4, p[α00](∅, lt) = 0, p[α00](∅, lb) = 1, p[α10](∅, lt) = 1
2
,

p[α10](∅, lb) = 1
2
, p[α11](∅, lt) = 1, p[α11](∅, lb) = 0. Then the following shows that Lemma 10

holds:

θα00 · p[α00](∅, lt) + θα10 · p[α10](∅, lt) + θα11 · p[α11](∅, lt) = 0 · 0 + 1
2
· 1

2
+ 1

2
· 1

= 3
4

= p[α](∅, lt) ,
θα00 · p[α00](∅, lb) + θα10 · p[α10](∅, lb) + θα11 · p[α11](∅, lb) = 0 · 1 + 1

2
· 1

2
+ 1

2
· 0

= 1
4

= p[α](∅, lb) .

Lemma 11. Let k ∈ N and R ∈ Regs2k. For each transition ((l, R), (α, (l, g, p)), ν) ∈ Γ̂2k

of A2k, there exists a set of transitions {(l, [R]k), (α
′, (l, g, p)), να′)}α′∈CP([R]k) ⊆ Γ̂k of Ak and

weights {θα′}α′∈CP([R]k) such that, for each state (l′, R′) ∈ S2k, we have:

ν(l′, R′) =
∑

α′∈CP([R]k)

θα′ · να′(l′, [R′]k) .

Proof. We proceed in a similar manner to the proof of Lemma 4. Let {θα′}α′∈CP([R]k) be the
set of weights such that α =

∑
α′∈CP([R]k) θα′ · α′, which exists by Lemma 9. Then for each

(l′, R′) ∈ S2k, by the definition of A2k, we have:

ν(l′, R′) =
∑

X∈Reset(R,R′)

p[α](X, l′)

=
∑

X∈Reset(R,R′)

∑
α′∈CP([R]k)

θα′ · p[α′](X, l′) (by Lemma 10)

=
∑

X∈Reset([R]k,[R′]k)

∑
α′∈CP([R]k)

θα′ · p[α′](X, l′) (by Lemma 8)

=
∑

α′∈CP([R]k)

θα′ ·
∑

X∈Reset([R]k,[R′]k)

p[α′](X, l′)

=
∑

α′∈CP([R]k)

θα′ · νi(l′, [R′]k) .

The next lemma considers time-successor transitions of the region graphs for granularity
k and 2k: as it relies on standard non-probabilistic reasoning on the region graphs, we omit
its proof.

Lemma 12. Let k ∈ N and let (l, R) ∈ S2k be a state of A2k. For each transition

((l, R), τ, {(l, R′) 7→ 1}) ∈
−→
Γ2k of A2k, there exists a transition ((l, [R]k), τ, {(l′, [R′]k) 7→ 1}) ∈

−→
Γk of Ak.

The following lemma is an analogue of Lemma 6, applied to the case of k-regions and
2k-regions.
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Lemma 13. Let (l, R) ∈ Regs2k be a state of the region graph with granularity 2k, and let

((l, R), (α, (l, g, p)), ν) ∈ Γ̂2k be a transition of A2k. For each pair (l1, R1), (l2, R2) ∈ support(ν)
such that (l1, R1) 6= (l2, R2), we have (l1, [R1]k) 6= (l2, [R2]k).

Proof. Let (l1, R1), (l2, R2) ∈ support(ν) such that (l1, R1) 6= (l2, R2). If l1 6= l2 then trivially
(l1, [R1]k) 6= (l2, [R2]k). Now consider the case in which l1 = l2 and R1 6= R2. Note that the
definition of Ak specifies that R1 = R[X1 := 0] and R2 = R[X2 := 0] for some clock sets
X1, X2 ⊆ X such that X1 6= X2. Let X ′1 and X ′2 be the set of clocks that are equal to 0
in R1 and R2, respectively, and note that X ′1 6= X ′2. Then [R1]k = (h1, [X1,0, X1,1..., X1,n1 ])
and [R2]k = (h2, [X2,0, X2,1..., X2,n2 ]) have the following properties: either there exists clock
x ∈ X ′1 \X ′2 such that h1(x) = 0 and x ∈ X1,0 but either h2(x) 6= 0 or x 6∈ X2,0, or there exists
clock x ∈ X ′2 \X ′1 such that h2(x) = 0 and x ∈ X2,0 but either h1(x) 6= 0 or x 6∈ X1,0. Hence
we have (l1, [R1]k) 6= (l2, [R2]k).

Given ((l, R), (α, (l, g, p)), ν) ∈ Γ̂2k and (l′, R′) ∈ Sk, Lemma 13 specifies that there exists
at most one 2k-region R′′ such that (l′, R′′) ∈ support(ν) and R′′ ⊆ R′. In the case in which
such a 2k-region R′′ exists, we let Rν,(l′,R′) = R′′, otherwise we can set Rν,(l′,R′) be equal to an
arbitrary 2k-region. From this fact, together with Lemma 11 and Lemma 12, we obtain the
following lemma. Its proof is similar to that of Lemma 7, and hence we omit it.

Lemma 14. Let (l, R) ∈ Sk be a state of the region graph with granularity 2k. For

each transition ((l, R), (α, (l, g, p)), ν) ∈ Γ̂2k of A2k, there exists a combined transition
({(l, [R]k, ai, νi)}i∈I , {λi}i∈I) of Ak such that, for each (l′, R′) ∈ Sk, we have:

1. ν(l′, Rν,(l′,R′)) =
∑

i∈I λi · νi(l′, R′);

2.
∑

R′′∈Regs2k s.t. [R′′]k=R′ ν(l′, R′′) =
∑

i∈I λi · νi(l′, R′).

Consider equivalence ≡⊆ (S2k ] Sk)
2 over the states of the disjoint union of A2k and Ak

defined as the smallest equivalence satisfying the following conditions:

• for states (l, R), (l′, R′) ∈ S2k, we have (l, R) ≡ (l′, R′) if l = l′, and [R]k = [R′]k (i.e., R
and R′ are contained in the same k-region in Regsk);

• for (l, R) ∈ S2k, (l′, R′) ∈ Sk, (l, R) ≡ (l′, R′) if l = l′ and [R]k = R′ (i.e., R is contained
in R′).

We then obtain the following corollary from part (2) of Lemma 14.

Corollary 2. Let (l, R) ∈ S2k be a state of A2k. For each transition ((l, R), a, ν) ∈ Γ2k of A2k,
there exists a combined transition ({(l, [R]k), ai, νi)}i∈I , {λi}i∈I) of Ak such that ν ≡

⊕
i∈I λi·νi,

ai = τ for all i ∈ I if a = τ , and {ai}i∈I ⊆ CornerPointsk × prob otherwise.

We now proceed to the principal result of this subsection, which shows that maximum
and minimum reachability probabilities in Ak bound maximum and minimum reachability
probabilities in A2k.

Proposition 3. Let k ∈ N. Then:

Pmax
A2k,Π2k

(RegsF2k) ≤ Pmax
Ak,Πk

(RegsFk ), and Pmin
A2k,Π2k

(RegsF2k) ≥ Pmin
Ak,Πk

(RegsFk ) .
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Proof. Consider the relation �⊆ (S2k]Sk)2 such that � is the smallest relation satisfying: for
(l, R) ∈ S2k, (l′, R′) ∈ Sk, (l, R) � (l′, R′) if (l, [R]k) = (l′, R′). By Corollary 2, we have that �
is a probabilistic simulation respecting ≡ and {τ}. Then, by Proposition 1, we have that:

Pmax

A2k,Σ
A2k
{τ}

(RegsF2k) ≤ Pmax

Ak,Σ
Ak
{τ}

(RegsFk )

Pmin

A2k,Σ
A2k
{τ}

(RegsF2k) ≥ Pmin

Ak,Σ
Ak
{τ}

(RegsFk ) .

Noting that Π2k = ΣA2k

{τ} and Πk = ΣAk{τ}, we have that Pmax
A2k,Π2k

(RegsF2k) ≤ Pmax
Ak,Πk

(RegsFk ) and

Pmin
A2k,Π2k

(RegsF2k) ≥ Pmin
Ak,Πk

(RegsFk ).

Proposition 2 and Proposition 3 suggest the following approach for maximal and minimal
reachability problems of cdPTA. Consider a maximal reachability problem that involves de-
ciding whether Pmax

[[P]],Σ(SF ) � λ. We proceed by first constructing the clock-dependent region

graph for some granularity k ∈ N. If Pmax
Ak,Πk

(RegsFk )6�λ, then we know from Proposition 2

that Pmax
[[P]],Σ(SF )6�λ. If, instead, Pmax

Ak,Πk
(RegsFk ) � λ, then we choose some n ≥ 1, construct

A2n·k and check whether Pmax
A2n·k,Π2n·k

(RegsF2n·k)�λ. This process continues until we have either
established that Pmax

[[P]],Σ(SF )6�λ or we have run out of resources. A similar approach can be
taken with minimal reachability problems.

4.3 Bounding the approximation error for a subclass of cdPTA

In this subsection we show that, for a particular class of cdPTA, we can identify a bound
on the difference between the optimal (maximum or minimum) value computed on the clock-
dependent region graph with granularity k and the corresponding optimal value of the cdPTA.
Our results are based on the fact that we can quantify the maximum difference between the
distributions used from states within a region and the distributions corresponding to corner
points of that region. This allows us to show the existence of ε-bisimulation relations [18,
19] between MCs obtained from region graph strategies and cdPTA strategies. The level
of approximation, given by ε ∈ [0, 1], is a product of 1

k
and a constant that depends on

the cdPTA. Then a result of [19] can be applied to show that difference between (i) the
maximum (minimum, respectively) probability of reaching the target locations within a certain
number b of transitions computed on the clock-dependent region graph with granularity k and
(ii) the maximum (minimum, respectively) probability of reaching the target locations within
b transitions in the cdPTA, has an upper bound of 1− (1− ε)b.

In order to use the above approach in the context of reachability problems, which consider
whether a target location is reached within any number of transitions, we restrict our attention
to a particular subclass of cdPTA. Let b ∈ N. A cdPTA P is b-step-bounded if all runs of P
either do not reach the target locations at all or reach the target locations within b transitions;
formally, for each infinite run r ∈ 3SF , there exists i ≤ b such that r(i) ∈ SF . A sufficient
condition for a cdPTA to be b-step-bounded for some b ∈ N is when (1) we require that the
target set of locations is reached within a time deadline (known as time-bounded reachability),
and (2) all cycles of the cdPTA correspond to the elapse of at least one time unit (known as
structural non-Zenoness [20]). In particular, we note that this condition is satisfied by the
cdPTA of Figure 1: the time deadline is encoded in the cdPTA by letting clock y measure the
total amount of time elapsed and by making the location X reachable only when y ≤ cmax,
and all cycles of the cdPTA of Figure 1 require at least one time unit to elapse.

Let P = (L, l̄,X , inv , prob) be a cdPTA, let F ⊆ L, and assume that P is b-step-bounded
with respect to F . Recalling that SF = {(l, v) ∈ S : l ∈ F}, and letting 3≤bSF = {r ∈
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InfRuns [[P]] : ∃i ≤ b s.t. r(i) ∈ SF}, we observe that r ∈ 3≤bSF if and only if r ∈ 3SF , for
any r ∈ InfRuns [[P]].

Given that the results of [19] are stated in terms of MCs, we need to reason about properties
of MCs arising from cdPTA strategies and region graph strategies. In the following, we fix
k, b ∈ N, the b-step-bounded cdPTA P = (L, l̄,X , inv , prob), and the set F ⊆ L of target
locations. Let σ ∈ Σ be a cdPTA strategy and let s ∈ S be a state of [[P ]]. Consider
the MC Mσ

s = (S, s,Pσ
s ), where S = FinRunsσ(s) and s = s, and let InfRunsσ(s) be

the set of sequences s0s1 · · · such that s0 = s and Pσ
s (si, si+1) > 0 for each i ∈ N. For

r = s0s1 · · · , where r ∈ InfRunsσ(s), and i ∈ N, let r(i) = si. Consider the bijection f :

InfRunsσ(s)→ InfRunsσ(s) such that f(s0
a0,µ0−−−→ s1

a1,µ1−−−→ s2 · · · ) = (s0)(s0
a0,µ0−−−→ s1)(s0

a0,µ0−−−→
s1

a1,µ1−−−→ s2) · · · . Then we can define a probability measure Prσs over InfRunsσ(s) such that
Prσs ({f(r) : r ∈ E}) = Prσs (E) for any measurable set E ⊆ InfRunsσ(s). Now let SF ⊆ S
be the smallest set such that s ∈ SF if last(s) ∈ SF (recall that each state in S is a finite
run from FinRuns [[P]]), and let 3≤bSF = {r ∈ InfRunsσ : ∃i ≤ b s.t. r(i) ∈ SF}. Note that
3≤bSF = {f(r) : r ∈ 3≤bSF}, and hence Prσs (3≤bSF ) = Prσs (3≤bSF ).

We now recall a number of technical definitions from [18, 19]. Let M = (S, s,P) be an
MC with a countable state space, let R ⊆ S× S be a binary relation on S, and let ε ∈ [0, 1].
For a set S′ ⊆ S, we define R(S′) to be the set of states related to states in S′ by R; formally,
R(S′) = {s ∈ S : ∃s′ ∈ S′ s.t. (s, s′) ∈ R}. Let SF ⊆ S. A symmetric binary relation
R ⊆ S × S over S is an ε-bisimulation if (s1, s2) ∈ R implies that (1) s1 ∈ SF if and only if
s2 ∈ SF , and (2) P(s2,R(S′)) ≥ P(s1,S

′) − ε for all sets S′ ⊆ S.4 The following result is a
direct corollary of Theorem 2 and Theorem 4 of [19].

Proposition 4. Let M = (S, s,P) be an MC with a countable state space, let SF ⊆ S, let
b ∈ N, and let ε ∈ [0, 1]. If s1, s2 ∈ S are ε-bisimilar, then |Prσs1(3

≤bSF ) − Prσs2(3
≤bSF )| ≤

1− (1− ε)b.

As in the case of PTSs, we can define the disjoint union of the two MCsM1 = (S1, s1,P1)
and M2 = (S2, s2,P2) as the MC (S1 ] S2, ,P), where the initial state is irrelevant and is
hence omitted, and P is defined in the following way: for s, s′ ∈ S1 ] S2, if s, s′ ∈ S1 then
P(s, s′) = P1(s, s′), if s, s′ ∈ S2 then P(s, s′) = P2(s, s′), otherwise P(s, s′) = 0.

We now proceed to explain the relevance of Proposition 4 to b-step-bounded cdPTA. First,
we note that the combination of Corollary 1, Proposition 1 and [5, Theorem 8.6.1] implies
that, for each cdPTA strategy σ ∈ Σ and each state (l, v) ∈ S of [[P ]], we can obtain a
region graph strategy π ∈ Πk that mimics precisely the behaviour of σ from state (l, v),
such that Prσ(l,v)(3

≤bSF ) = Prπ〈[l,v]〉k(3
≤bSF ). It remains to show that, for any region graph

strategy π ∈ Πk, we can mimic π by a cdPTA strategy; however, it is not possible to mimic
π precisely with a cdPTA strategy, and we have to settle for a cdPTA strategy that mimics π
approximately. Our approach in the following is to define a cdPTA strategy σ ∈ Σ that defines
an MC that is related to the MC induced by π by ε-bisimulation. Then, using Proposition 4, we
conclude that the b-step-bounded reachability probabilities of σ and π do not exceed 1−(1−ε)b.

A technical difficulty that arises in the construction of the cdPTA strategy σ is that σ may
be forced to assign positive probability to some runs for which the associated runs of π assign
probability 0 due to the fact that corner points can induce distributions assigning probability 0
to some outcomes. For example, in Figure 7, if the region strategy π chooses (with probability
1) the uppermost transition from (A, 0 < x < 1), then there is no run of π passing through
(B, 0 < x < 1), because the corner point associated with the uppermost transition means that
the probability of going to (B, 0 < x < 1) is 0. In contrast, for any cdPTA strategy, from

4Note that [19] requires S′ be be measurable, which is implied in our context because we assume that M
has a countable state space.
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any state encoded by (A, 0 < x < 1), the outgoing probabilistic edge transition must assign
probability greater than 0 to a state encoded by (B, 0 < x < 1). In order to obtain a 1-to-1
relationship between finite runs of π and the finite runs of the cdPTA strategy σ that we aim
to construct, we modify the definition of the MC of π so that its state space also includes
some finite runs that have probability 0.

Before presenting the modified MC, we require the following technical material. Let (l, R) ∈
L × Regsk, and let (l, g, p) ∈ prob such that R |= g. We define support[R](l, g, p) as the set
of outcomes that are assigned positive probability by p from valuations within R. Formally,
let support[R](l, g, p) = {e ∈ 2X × L : ∃v ∈ R s.t. p[v](e) > 0}. Next, we identify the set of
location-region pairs that are obtained from (l, R) by applying outcomes in support[R](l, g, p).
Formally, let PT((l, R), (l, g, p)) = {(l′, R′) ∈ L×Regsk : (X, l′) ∈ support[R]((l, g, p)) and R′ =
R[X := 0]} be the set of potential targets of (l, R) and (l, g, p).

A technical property that will be useful for subsequent proofs is that any outcome that is
assigned positive probability by p for some valuation in R is assigned positive probability by
all valuations in R.

Lemma 15. Let (l, R) ∈ L× Regsk, let (l, g, p) ∈ prob such that R |= g, and let e ∈ 2X × L.
If there exists v ∈ R such that p[v](e) > 0 then p[v′](e) > 0 for all v′ ∈ R.

Proof. Aiming for a contradiction, assume that there exist valuations v>0, v=0 ∈ R such that
p[v>0](e) > 0 and p[v=0](e) = 0. Using (h, [X0, ..., Xm]) to denote R, let X o

R =
⋃

1≤i≤mXi

be the set of clocks that are not equal to a multiple of 1
k

in R. Recall from Section 2.3 that
p[v′](e) =

∑
x∈X f

p,e
x (v′(x)) ≥ 0 for all v′ ∈ R. Let λ =

∑
x∈X c

p,e
x +

∑
x∈X\X o

R
dp,ex · v>0(x).

Note that v>0(x) = v=0(x) for each x ∈ X \X o
R, and hence

∑
x∈X c

p,e
x +

∑
x∈X\X o

R
dp,ex ·v=0(x) =∑

x∈X c
p,e
x +

∑
x∈X\X o

R
dp,ex · v>0(x) = λ.

Recall that, by definition, p[v>0](e) =
∑

x∈X f
p,e
x (v>0(x)) > 0 and p[v=0](e) =∑

x∈X f
p,e
x (v=0(x)) = 0. We can write:

p[v>0](e) =
∑
x∈X

fp,ex (v>0(x))

=
∑
x∈X

(cp,ex + dp,ex · v>0(x))

=
∑
x∈X

cp,ex +
∑

x∈X\X o
R

dp,ex · v>0(x) +
∑
x∈X o

R

dp,ex · v>0(x)

= λ+
∑
x∈X o

R

dp,ex · v>0(x) .

Similarly, we can obtain p[v=0](e) = λ +
∑

x∈X o
R
dp,ex · v=0(x). Given that p[v>0](e) > 0 and

p[v=0](e) = 0, we must have
∑

x∈X o
R
dp,ex · v>0(x) > −λ and

∑
x∈X o

R
dp,ex · v=0(x) = −λ. Further-

more, for all v′ ∈ R, we can conclude that
∑

x∈X o
R
dp,ex ·v′(x) ≥ −λ by similar reasoning and from

the fact that p[v′](e) ≥ 0. Now let X>0
R = {x ∈ X o

R : dp,ex > 0}, let X<0
R = {x ∈ X o

R : dp,ex < 0},
and let X=0

R = X o
R \ (X>0

R ∪ X<0
R ). Note that it cannot be the case that X=0

R = X o
R, because

otherwise dp,ex = 0 for all x ∈ X o
R, which would imply that both λ > 0 and λ = 0.

Let ṽ ∈ R be a valuation such that h(x) < ṽ(x) < v=0(x) for each x ∈ X>0
R and v=0(x) <

ṽ(x) < h(x)+ 1
k

for each x ∈ X<0
R . Then we obtain

∑
x∈X o

R
dp,ex ·ṽ(x) <

∑
x∈X o

R
dp,ex ·v=0(x) = −λ,

which contradicts the fact that
∑

x∈X o
R
dp,ex · v′(x) ≥ −λ for all v′ ∈ R.

Overall, we have shown that there cannot exist v>0, v=0 ∈ R such that p[v>0](e) > 0 and
p[v=0](e) = 0. The statement of the lemma then follows.
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The following lemma establishes that there is a 1-to-1 relationship between the target
states of the cdPTA after taking a probabilistic edge and the potential targets of the region
graph obtained after taking the same probabilistic edge.

Lemma 16. Let ((l, v), (l, g, p), µ) ∈ ∆̂ be a transition of [[P ]], and let support(µ) =
{(l1, v1), . . . , (lm, vm)}. Then PT(〈[l, v]〉k, (l, g, p)) = {〈[l1, v1]〉k, . . . , 〈[lm, vm]〉k}, where
〈[li, vi]〉k 6= 〈[lj, vj]〉k for all i, j ∈ {1, . . . ,m} such that i 6= j.

Proof. First note that 〈[li, vi]〉k 6= 〈[lj, vj]〉k for all i, j ∈ {1, . . . ,m} such that i 6= j follows from
Lemma 6.

Now we show that PT(〈[l, v]〉k, (l, g, p)) ⊇ {〈[l1, v1]〉k, . . . , 〈[lm, vm]〉k}. Denote 〈[l, v]〉k by
(l, R) and 〈[li, vi]〉k by (li, Ri) (hence v ∈ R and vi ∈ Ri) for each i ∈ {1, . . . ,m}. Given that
(li, vi) ∈ support(µ), we observe that p[v](X, li) > 0 and vi = v[X := 0] for some X ⊆ X . From
Lemma 1, we have Reset(v, vi) = Reset(R,Ri). Therefore X ∈ Reset(v, vi) implies that X ∈
Reset(R,Ri). This in turn means that Ri = R[X := 0]. Hence (li, Ri) ∈ PT(〈[l, v]〉k, (l, g, p)).

Next, we show that PT(〈[l, v]〉k, (l, g, p)) ⊆ {〈[l1, v1]〉k, . . . , 〈[lm, vm]〉k}. Let (l′, R′) ∈
PT(〈[l, v]〉k, (l, g, p)). Then, from the definition of potential targets and Lemma 15, we have that
R′ = R[X := 0] and p[v](X, l′) > 0 for some X ⊆ X . Consider the valuation v′ = v[X := 0].
Note that v′ ∈ R′. The fact that p[v](X, l′) > 0 means that (l′, v′) ∈ support(µ), i.e., there
exists i ∈ {1, . . . ,m} such that (l′, v′) = (li, vi). Hence (l′, R′) = 〈[li, vi]〉k.

Given transition ((l, R), (α, p), ν) ∈ Γ̂k we write (l, R)
(α,p),ν−−−−→→ (l′, R′) if (l′, R′) is a poten-

tial target of (l, R) and (l, g, p). A potential finite run is a finite sequence (l0, R0)
(α0,p0),ν0−−−−−→→

(l1, R1)
(α1,p1),ν1−−−−−→→ · · · (αn−1,pn−1),νn−1−−−−−−−−−−→→ (ln, Rn) and a potential infinite run is an infinite sequence

(l0, R0)
(α0,p0),ν0−−−−−→→ (l1, R1)

(α1,p1),ν1−−−−−→→ · · · . Let PFinRuns be the set of potential finite runs, and
let PFinRuns(l, R) be the set of potential finite runs starting from (l, R). In the following,
we assume that each region graph strategy π ∈ Πk is a mapping from PFinRuns to Dist(Γk).
The assumption allows us to define a 1-to-1 relationship between the potential runs of region
graph strategies and the runs of constructed cdPTA strategies. Let PFinRunsπ(l, R) be the
set of potential finite runs starting from (l, R) resulting from π (i.e., where each finite poten-

tial run (ρ
(α,p),ν−−−−→→ (l′, R′)) ∈ PFinRunsπ(l, R) is such that π(ρ)(last(ρ)(α, p), ν) > 0). Then

we define the potential MC of π and (l, R) as MPot,π
(l,R) = (PFinRunsπ(l, R), (l, R),PPot,π

(l,R) ),

where, for ρ, ρ′ ∈ PFinRunsπ(l, R), we let PPot,π
(l,R) (ρ, ρ′) = π(ρ)(last(ρ), (α, p), ν) · ν(l′, R′)

if ρ′ = ρ
(α,p),ν−−−−→→ (l′, R′), and PPot,π

(l,R) (ρ, ρ′) = 0 otherwise. We denote by PrPot,π
(l,R) the proba-

bility measure associated with MPot,π
(l,R) over potential infinite runs. Note that, for finite run

(l0, R0)
(α0,p0),ν0−−−−−→ (l1, R1)

(α1,p1),ν1−−−−−→ · · · (αn−1,pn−1),νn−1−−−−−−−−−−→ (ln, Rn), there exists a unique potential

finite run (l0, R0)
(α0,p0),ν0−−−−−→→ (l1, R1)

(α1,p1),ν1−−−−−→→ · · · (αn−1,pn−1),νn−1−−−−−−−−−−→→ (ln, Rn). Furthermore, for
any “standard” region graph strategy π that is defined as a mapping from FinRunsAk , a re-
gion graph strategy π′ mapping from PFinRuns can be obtained by letting the choices of π′

be the same as those of π for each potential finite run that has an associated finite run, and
letting the choices of π′ be arbitrary otherwise. Given that a potential finite run in PFinRuns
that is without an associated finite run in FinRunsAk must correspond to probability 0, we
have that PrPot,π′

(l,R) (3≤bSF ) = Prπ(l,R)(3
≤bSF ). Vice versa, for any region graph strategy π

mapping from PFinRuns, we can obtain “standard” region graph strategy mapping π′ from
FinRunsAk such that probabilities of 3≤bSF are the same for both strategies by letting π′

make the same choice for a finite run as that made by π for the associated unique potential
finite run. Hence considering region strategies that are mappings from PFinRuns does not
change the maximum and minimum probabilities on the region graph Ak.
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We now describe formally how to obtain the cdPTA strategy σ ∈ Σ, given π ∈ Πk and
(l, R) ∈ L× Regsk. First we assume that π ∈ Πk is deterministic, i.e., |support(π(r))| = 1 for
each r ∈ FinRunsAk ; in this case we write π : FinRunsAk → Γk (rather than π : FinRunsAk →
Dist(Γk)). This assumption is without loss of generality, because, for a finite-state PTS such
as Ak, there exist deterministic strategies attaining the maximum and minimum values (see,
for example, [21]). From π, we will construct a deterministic cdPTA strategy σ ∈ Σ and
hence write σ : FinRuns [[P]] → ∆ (rather than σ : FinRuns [[P]] → Dist(∆)). Let v ∈ R be an
arbitrary valuation in R. We show how to construct σ inductively, starting from the state
(l, v) and considering progressively longer runs (where the length of a run refers to its number
of transitions).

Base case: run of length 0. Consider the choice of transition of π from (l, R). If π(l, R) =

((l, R), τ, {(l, R′) 7→ 1}) ∈
−→
Γk, then we let σ(l, v) = ((l, v), δ, {(l, v+δ) 7→ 1}) for some

δ ∈ R≥0 such that v+δ ∈ R′ (the existence of transition ((l, v), δ, {(l, v + δ) 7→ 1}) follows
from the fact that R′ must be an inv(l)-satisfying time successor of R, by definition of
−→
Γk).

If instead π(l, R) = ((l, R), (α, (l, g, p)), ν) ∈ Γ̂k, then we let σ(l, v) = ((l, v), (l, g, p), µ),

i.e., we let σ(l, v) be the (unique) transition from ∆̂ generated from the probabilistic
edge (l, g, p) (this transition must exist because R |= g and v ∈ R implies that v |= g).

Observe that, from Lemma 16, we can identify a bijection f1 between the poten-
tial finite runs of length 1 of π and the finite runs of length 1 of σ. More pre-

cisely, for ((l, R)
τ,{(l,R′)7→1}−−−−−−−→→ (l, R′)) ∈ PFinRunsπ(l, R), we let f1((l, R)

τ,{(l,R′)7→1}−−−−−−−→→
(l′, R′)) = (l, v)

δ,{(l,v+δ)7→1}−−−−−−−−→ (l, v+δ). Similarly, if instead ((l, R)
(α,(l,g,p)),ν−−−−−−→→ (l′, R′)) ∈

PFinRunsπ(l, R), we let f1((l, R)
(α,(l,g,p)),ν−−−−−−→→ (l′, R′)) = (l, v)

(l,g,p),µ−−−−→ (l′, v′) where
〈[l′, v′]〉k = (l′, R′).

Inductive step: runs of length n. Assume that we have defined σ for finite runs of length
n−1, thereby obtaining a set of runs of length n. We now show how to define σ on these

finite runs. Consider the finite run r = (l0, v0)
a0,µ0−−−→ (l1, v1)

a1,µ1−−−→ · · · an−1,µn−1−−−−−−→ (ln, vn)
of σ. As established by induction, there exists a bijection fn between the potential
finite runs of length n of π and the finite runs of length n of σ. Consider the po-
tential finite run f−1

n (r) of π, and write (ln, Rn) for last(f−1
n (r)). The construction

proceeds in a similar manner to that for the base case. If π(f−1
n (r)) ∈

−→
Γk where

π(fn(r)) = ((ln, Rn), τ, {(ln, R′) 7→ 1}), then we let σ(r) = ((ln, vn), δ, {(ln, vn+δ) 7→ 1})
for some δ ∈ R≥0 such that vn+δ ∈ R′. Furthermore, fn+1(f−1

n (r)
τ,{(ln,R′)7→1}−−−−−−−−→→

(ln, R
′)) = r

δ,{(l,vn+δ)7→1}−−−−−−−−−→ (ln, vn+δ).

If instead π(f−1
n (r)) ∈ Γ̂k, where π(f−1

n (r)) = ((ln, Rn), (α, (ln, g, p)), ν), then we let

σ(r) = ((ln, vn), (ln, g, p), µ), i.e., σ(l, v) is the transition from ∆̂ generated from the

probabilistic edge (ln, g, p). Then for f−1
n (r)

(α,(ln,g,p)),ν−−−−−−−→→ (l′, R′) ∈ PFinRunsπ(l, R), we

let fn+1(f−1
n (r)

(α,(ln,g,p)),ν−−−−−−−→→ (l′, R′)) = r
(ln,g,p),µ−−−−−→ (l′, v′) where 〈[l′, v′]〉k = (l′, R′).

Repeating this approach for all runs of length n then yields a definition of σ and of fn+1.

Given the state (l, v) ∈ S and the deterministic region graph strategy π ∈ Πk, the mimicking
strategy for (l, v) and π is the deterministic cdPTA strategy σ ∈ Σ obtained by the above
construction.

Consider the MCs Mσ
(l,v) = (FinRunsσ(l, v), (l, v),Pσ

(l,v)) and MPot,π
(l,R) =

(PFinRunsπ(l, R), (l, R),PPot,π
(l,R) ). Let f : PFinRunsπ(l, R) → FinRunsσ(l, v) be such
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that, for a potential finite run ρ ∈ PFinRunsπ(l, R) of length n, we have f(ρ) = fn(ρ).
We now show that the equivalence relation induced by f on the disjoint union of Mσ

(l,v)

and MPot,π
(l,R) is an ε-bisimulation, where ε depends on the cdPTA and on the granularity k.

Formally, we define the equivalence relation Rf ⊆ FinRunsσ(l, v) × PFinRunsπ(l, R) as
the smallest set such that, for r ∈ FinRunsσ(l, v) and ρ ∈ PFinRunsπ(l, R), if f(ρ) = r
then (r, ρ) ∈ Rf . In order to show that the equivalence relation Rf is an ε-bisimulation,
we show that the distributions chosen from equivalent finite paths generated by σ and π
are sufficiently “close”. Consider r ∈ FinRunsσ(l, v) and ρ ∈ PFinRunsπ(l, R) such that
(r, ρ) ∈ Rf . In the following, we use (l̃, ṽ) to denote last(r) and (l̃, R̃) to denote last(ρ) (note
that (r, ρ) ∈ Rf guarantees that last(r) and last(ρ) have the same location component l̃).

We focus primarily on the case in which σ(r) ∈ ∆̂ and π(ρ) ∈ Γ̂k: we let σ(r) = ((l̃, ṽ), p, µ)
and π(ρ) = ((l, R̃), (α, p), ν). Note that, by the construction of σ, the same probabilistic
edge p = (l̃, g, p) is used for both σ(r) and π(ρ). Given an outcome e ∈ 2X × L, let
d̆p,e = maxx∈X |dp,ex |.

Lemma 17. Let α ∈ CP(R̃) and let e ∈ 2X × L. Then |p[ṽ](e)− p[α](e)| < |X |·d̆p,e
k

.

Proof. Note that, by the definition of CP(R̃), we have |(ṽ(x) − α(x))| < 1
k

for each x ∈ X .
By definition, for β ∈ {ṽ, α}, we have p[β](e) =

∑
x∈X f

p,e
x (β(x)) =

∑
x∈X (cp,ex + dp,ex · β(x)) =∑

x∈X c
p,e
x +

∑
x∈X d

p,e
x · β(x). Hence:

|p[ṽ](e)− p[α](e)| = |
∑
x∈X

dp,ex · ṽ(x)−
∑
x∈X

dp,ex · α(x)|

≤
∑
x∈X

dp,ex |(ṽ(x)− α(x))| <
∑
x∈X

dp,ex ·
1

k
≤ |X | · d̆

p,e

k
.

We now generalise Lemma 17 from outcomes to target states. Let d̆p = maxe∈2X×L d̆
p,e

and, for l′ ∈ L, let OutLoc[R̃](p, l′) = |{(X, l′′) ∈ support[R̃](p) : l′′ = l′}| be the number of
outcomes leading to location l′ that are assigned positive probability for p from valuations
within R̃.

Lemma 18. Let ((l̃, ṽ), p, µ) ∈ ∆̂, let ((l, R̃), (α, p), ν) ∈ Γ̂k, and let (l′, v′) ∈ support(µ). Then

|µ(l′, v′)− ν(〈[l′, v′]〉k)| < OutLoc[R̃](p,l′)·|X |·d̆p
k

.

Proof. Let p = (l̃, g, p). Using (l′, R′) ∈ L × Regsk to denote 〈[l′, v′]〉k, we recall that, by
definition, µ(l′, v′) =

∑
X∈Reset(ṽ,v′) p[ṽ](X, l′) and ν(l′, R′) =

∑
X∈Reset(R̃,R′) p[α](X, l′). By

Lemma 1, we have Reset(ṽ, v′) = Reset(R̃, R′), and hence:

|µ(l′, v′)− ν(〈[l′, v′]〉k)| =
∣∣∣ ∑
X∈Reset(ṽ,v′)

p[ṽ](X, l′)−
∑

X∈Reset(R̃,R′)

p[α](X, l′)
∣∣∣

=
∣∣∣ ∑
X∈Reset(ṽ,v′)

p[ṽ](X, l′)−
∑

X∈Reset(ṽ,v′)

p[α](X, l′)
∣∣∣

≤
∑

X∈Reset(ṽ,v′)

|p[ṽ](X, l′)− p[α](X, l′)| .

Furthermore, from Lemma 17, for all e ∈ 2X × L, we have |p[ṽ](e) − p[α](e)| < |X |·d̆p,e
k
≤

|X |·d̆p
k

. Note that, from the definition of support[R̃](p), for any (X, l′) 6∈ support[R̃](p), we have
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p[v′](X, l′) = 0 for all v′ ∈ R̃ (and hence p[ṽ](X, l′) = 0). Furthermore, this fact implies that,
for (X, l′) 6∈ support[R̃](p), we have p[α](X, l′) = 0 for all α ∈ CP(R), given that (1) p[·](X, l′) is
a constant function over valuations in R̃, (2) p[·](X, l′) is a continuous function over valuations
in the closure of R̃, and (3) α corresponds to a point in the closure of R̃. Overall, this means
that (X, l′) 6∈ support[R̃](p) implies that |p[ṽ](X, l′) − p[α](X, l′)| = 0. In turn, this means
that:∑
X∈Reset(ṽ,v′)

|p[ṽ](X, l′)− p[α](X, l′)| =
∑

X∈Reset(ṽ,v′)∧(X,l′)∈support[R̃](p)

|p[ṽ](X, l′)− p[α](X, l′)|

≤
∑

X⊆X∧(X,l′)∈support[R̃](p)

|p[ṽ](X, l′)− p[α](X, l′)|

<
OutLoc[R̃](p, l′) · |X | · d̆p

k
.

Let d̆ = maxp∈prob d̆
p be the maximum absolute value of the gradient of any clock in any

clock dependency of the cdPTA, let MaxOutLoc = max(R′,p,l′)∈Regsk×prob×L OutLoc[R′](p, l′) be
the maximum number of outcomes of any probabilistic edge leading to the same location,
and let MaxOut = max(R′,p)∈Regsk×prob support[R

′](p) be the maximum number of outcomes
that can be associated positive probability by any probabilistic edge. The main result of this
section now follows.

Proposition 5. Let k ∈ N, let (l, v) ∈ S and let π ∈ Πk be a deterministic region graph
strategy. Then there exists a deterministic cdPTA strategy σ ∈ Σ such that Rf is an ε-

bisimulation on the disjoint union of Mσ
(l,v) and MPot,π

〈[l,v]〉k , where ε = MaxOutLoc·|X |·d̆·MaxOut
k

.

Proof. Let σ ∈ Σ be the mimicking strategy for (l, v) and π. In the following, we use (l, R)
to denote 〈[l, v]〉k. Consider the MCs Mσ

(l,v) = (FinRunsσ(l, v), (l, v),Pσ
(l,v)) and MPot,π

(l,R) =

(PFinRunsπ(l, R), (l, R),PPot,π
(l,R) ). Let r ∈ FinRunsσ(l, v) and ρ ∈ PFinRunsπ(l, R) be such

that (r, ρ) ∈ Rf . As above, we use (l̃, ṽ) to denote last(r) and (l̃, R̃) to denote last(ρ). We
first show that, for r′ ∈ FinRunsσ(l, v) and ρ′ ∈ PFinRunsπ(l, R) for which (r′, ρ′) ∈ Rf

and for which the length of r′ and ρ′ is equal to the length of r and ρ plus 1, we have

|Pσ
(l,v)(r, r

′)−PPot,π
(l,R) (ρ, ρ′)| < MaxOutLoc·|X |·d̆

k
. We have two cases:

Case π(ρ) ∈
−→
Γk: If π(ρ) = ((l̃, R̃), τ, {(l̃, R′) 7→ 1}) ∈

−→
Γk, then the construction of σ specifies

that σ(r) = ((l̃, ṽ), δ, {(l, ṽ+δ) 7→ 1}) for some δ ∈ R≥0 such that ṽ+δ ∈ R′. Then

r′ = r
δ,{(l,vn+δ)7→1}−−−−−−−−−→ (ln, vn+δ) and ρ′ = ρ

τ,{(l̃,R′)7→1}−−−−−−−→→ (l̃, R′). Given that, by the
construction of σ, we have fn+1(ρ′) = r′, it follows that (r′, ρ′) ∈ Rf . Furthermore, we

note that Pσ
(l,v)(r, r

′) = PPot,π
(l,R) (ρ, ρ′) = 1, and hence trivially |Pσ

(l,v)(r, r
′)−PPot,π

(l,R) (ρ, ρ′)| =
0 < MaxOutLoc·|X |·d̆

k
.

Case π(ρ) ∈ Γ̂k: If π(ρ) = ((l̃, R̃), (α, (l̃, g, p)), ν) ∈ Γ̂k, then the construction of σ spec-
ifies that σ(r) = ((l̃, ṽ), (l̃, g, p), µ). Let support(µ) = {(l1, v1), . . . , (lm, vm)}. Then
PT(〈[l, v]〉k, (l, g, p)) = {〈[l1, v1]〉k, . . . , 〈[lm, vm]〉k} where 〈[li, vi]〉k 6= 〈[lj, vj]〉k for all i, j ∈
{1, . . . ,m} such that i 6= j, by Lemma 16. Consider i such that i ∈ {1, . . . ,m}, and

let ri = r
(l̃,g,p),µ−−−−→ (li, vi) and ρi = ρ

(α,(l̃,g,p)),ν−−−−−−→→ 〈[li, vi]〉k. Furthermore, we have defined
f : PFinRunsπ(l, R) → FinRunsσ(l, v) such that f(ρi) = ri for each i ∈ {1, . . . ,m},
and hence (ri, ρi) ∈ Rf . Then the fact that |Pσ

(l,v)(r, ri) − PPot,π
(l,R) (ρ, ρi)| < MaxOutLoc·|X |·d̆

k

follows directly from Lemma 18 and the definitions of MaxOutLoc and d̆.
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Now consider r ∈ FinRunsσ(l, v) and ρ ∈ PFinRunsπ(l, R) such that (r, ρ) ∈ Rf . In order
to show that Rf is an ε-bisimulation, we require that (1) last(r) ∈ SF if and only if last(ρ) ∈
RegsFk , (2a) PPot,π

(l,R) (ρ,Rf (E)) ≥ Pσ
(l,v)(r, E) − MaxOutLoc·|X |·d̆·MaxOut

k
for E ⊆ FinRunsσ(l, v),

and (2b) Pσ
(l,v)(r,Rf (E)) ≥ PPot,π

(l,R) (ρ,E) − MaxOutLoc·|X |·d̆·MaxOut
k

for E ⊆ PFinRunsπ(l, R).

Requirement (1) follows directly from the fact that the location components of the states
last(r) and last(ρ) are identical. Now we show that requirement (2a) holds. First note
that Rf (E) = {f(r) : r ∈ E}. Also note that Pσ

(l,v)(r, E) =
∑

r′∈E Pσ
(l,v)(r, r

′), and simi-

larly PPot,π
(l,R) (ρ,Rf (E)) =

∑
ρ′∈Rf (E) PPot,π

(l,R) (ρ, ρ′) =
∑

r′∈E PPot,π
(l,R) (ρ, f(r′)). We can assume that

E only contains finite runs that are successor runs of r under σ, because Pσ
(l,v)(r, r

′) = 0

for all finite other runs r′. Under this assumption, |E| ≤ MaxOut . Furthermore, we
can observe that Rf (E) will contain only potential finite runs that are obtained from ρ

under π. We have established above that |Pσ
(l,v)(r, r

′) − PPot,π
(l,R) (ρ, ρ′)| < MaxOutLoc·|X |·d̆

k
for

(r, ρ), (r′, ρ′) ∈ Rf (where r′ and ρ′ are obtained by extending r and ρ, respectively, with one

transition). Hence, for r′ ∈ E, we have PPot,π
(l,R) (ρ, f(r′)) ≥ Pσ

(l,v)(r, r
′) − MaxOutLoc·|X |·d̆

k
. Then

PPot,π
(l,R) (ρ,Rf (E)) =

∑
ρ′∈Rf (E) PPot,π

(l,R) (ρ, ρ′) =
∑

r′∈E PPot,π
(l,R) (ρ, f(r′)) ≥

∑
r′∈E(Pσ

(l,v)(r, r
′) −

MaxOutLoc·|X |·d̆
k

) ≥ Pσ
(l,v)(r, E)− MaxOutLoc·|X |·d̆·MaxOut

k
.

It remains to show requirement (2b), i.e., Pσ
(l,v)(r,Rf (E)) ≥ PPot,π

(l,R) (ρ,E) −
MaxOutLoc·|X |·d̆·MaxOut

k
for E ⊆ PFinRunsπ(l, R). We can proceed in a similar manner to case

(2a), and omit the details.

The combination of Proposition 4 and Proposition 5 give us the following corollary, where
we assume that k, (l, v), π and ε are as in the statement of Proposition 5, that b ∈ N, and
that SF is the set of states of the disjoint union of the MCs Mσ

(l,v) and MPot,π
(l,R) that end in a

state with location component in F ⊆ L.

Corollary 3. The mimicking strategy σ for (l, R) and π is such that

|Prσ(l,v)(3
≤bSF )−Prπ〈[l,v]〉k(3

≤bSF )| ≤ 1− (1− ε)b .

Proposition 3 leads to the following approach for maximal and minimal reachability prob-

lems for b-step-bounded cdPTA. Let εk = MaxOutLoc·|X |·d̆·MaxOut
k

. Consider the case for the
maximal reachability problem, which we recall involves deciding whether Pmax

[[P]],Σ(SF ) � λ. Af-

ter selecting an initial k ∈ N, construct Ak and compute Pmax
Ak,Πk

(SF ). If Pmax
Ak,Πk

(SF ) − (1 −
(1 − εk)

b) � λ, we conclude that Pmax
[[P]],Σ(SF ) � λ holds. If, instead, Pmax

Ak,Πk
(SF ) 6�λ then, by

Proposition 2, we conclude that Pmax
[[P]],Σ(SF )6�λ. The remaining possibility (that is, when

Pmax
Ak,Πk

(SF )− (1− (1− εk)b) 6�λ and Pmax
Ak,Πk

(SF ) � λ) is inconclusive; hence, as in Section 4.2,
we choose some n ≥ 1, and repeat the above process using 2n · k instead of k. Note that
this approach can establish both positive and negative answers to the maximal reachability
problem, unlike the approach of Section 4.2, which can only establish negative answers. A
similar approach can be taken for minimum reachability problems.

4.4 Application to Examples 1 and 2

We now consider the application of the results of this section to Examples 1 and 2.

Example 6. We give the intuition underlying Proposition 2 and Proposition 3 using the
cdPTA of Example 2 (Figure 2), considering the maximum probability of reaching the target
location D. When k = 1, as described above, the maximum probability of reaching D is
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Figure 9: Maximum probability of reaching location X in the cdPTA of Figure 1. (Left)
Results for k ∈ {20, 21, ..., 25} and cmax ∈ {2, ..., 20}. (Right) Magnified view of the results for
k ∈ {20, 21, ..., 25} and cmax ∈ {17, 18, 19, 20}.

1. Instead, for k = 2, the maximum probability of reaching location D requires taking the
probabilistic edge from location A for the corner point x = 1

2
corresponding to the 2-region

0 < x < 1
2

and the probabilistic edges from locations B and C for corner point x = 0, again
for the 2-region 0 < x < 1

2
i.e., the probability is 1

2
. With granularity k = 4, the maximum

probability of reaching location D is 0.328125, obtained by taking the probabilistic edge from A
for the corner point x = 1

2
, and the probabilistic edges from B and C for corner point x = 1

4
,

where the 4-region used in all cases is 1
4
< x < 1

2
.

Example 7. In Figure 9 we plot the values of the maximum probability of reaching location X
in the cdPTA of Example 1 (Figure 1) for various values of cmax and k, obtained by encoding
the clock-dependent region graph as a finite-state PTS and using Prism [22]. For this example,
the difference between the probabilities obtained for various values of k decreases substantially
as greater values of k are considered, as emphasised by focussing on a limited number of values
of cmax on the right of Figure 9. For cmax = 20, the number of states of the clock-dependent
region graphs ranges from 3444 for k = 1, 12866 for k = 2, 49638 for k = 4, 194894 for
k = 8, 772254 for k = 16, to 3074366 for k = 32. Note that both this and the previous
examples are b-step-bounded cdPTA: for Example 2 we have b = 6, and for Example 1 we have
b = 2(cmax + 1).

5 Conclusion

In this paper we presented cdPTA, an extension of PTA in which probabilities can depend
on the values of clocks. We have shown that a basic probabilistic model checking problem,
maximal reachability, is undecidable for cdPTA with at least three clocks. We also presented
a conservative overapproximation method for cdPTA, and presented bounds on the degree
of approximation for a subclass of cdPTA. One direction of future research could concern
identifying other kinds of subclass of cdPTA for which for which probabilistic reachability
problems are decidable. Furthermore, we conjecture that qualitative reachability problems
(whether there exists a strategy such that the target locations are reached with probability
strictly greater than 0, or equal to 1) are decidable (and in exponential time) for cdPTA
for which the linear functions are bounded away from 0, by a region graph construction.
The case of linear functions that can approach arbitrarily closely to 0 requires more care:
although concepts introduced for qualitative reachability problems for open interval Markov
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chains [23] can be used as a starting point, the issue of non-forgetful cycles, in the terminology
of [24], present a challenge, because they can prevent the convergence of a probability of
a cdPTA run to 0. Finally, the issue of the expressiveness of cdPTA in relation to other
modelling formalisms, such as stochastic timed automata [25] or stochastic timed Markov
decision processes [9], could be explored.
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