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Over a normal base scheme, we prove the generalized Theorem of the Cube for 1-
motives and that a torsion class of the group H2

ét(M, Gm,M ) of a 1-motive M , whose 
pull-back via the unit section ε : S → M is zero, comes from an Azumaya algebra. 
In particular, we deduce that over an algebraically closed field of characteristic zero, 
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0. Introduction

Grothendieck has defined the Brauer group Br(X) of a scheme X as the group of similarity classes of 
Azumaya algebras over X. In [25, I, §1] he constructed an injective group homomorphism

δ : Br(X) −→ H2
ét(X,Gm) (0.1)

from the Brauer group of X to the étale cohomology group H2
ét(X, Gm). This homomorphism is not in 

general bijective, as pointed out by Grothendieck in [25, II, §2], where he found a scheme X whose Brauer 
group is a torsion group but whose étale cohomology group H2

ét(X, Gm) is not torsion. However, if X is 
quasi-compact the elements of δ(Br(X)) are torsion elements of H2

ét(X, Gm), and so Grothendieck asked in 
[25] the following question:

Question. For a quasi-compact scheme X, is the image of Br(X) via the homomorphism δ (0.1) the torsion 
subgroup H2

ét(X, Gm)Tors of H2
ét(X, Gm)?

Grothendieck showed that if X is regular, the étale cohomology group H2
ét(X, Gm) is a torsion group, 

and so under this hypothesis the question is whether the Brauer group of X is all of H2
ét(X, Gm).

The following well-known results are related to this question: If X has dimension ≤ 1 or if X is regular 
and of dimension ≤ 2, then the Brauer group of X is all of H2

ét(X, Gm,X) ([25, II, Cor 2.2]). Gabber 
(unpublished theorem) showed that the Brauer group of a quasi-compact and separated scheme X endowed 
with an ample invertible sheaf is isomorphic to H2

ét(X, Gm)Tors. A different proof of this result was found 
by de Jong (see [18]).

In [20] Giraud introduced gerbes in the general setting of non abelian cohomology following Grothendieck’s 
ideas: in particular he proved that gerbes give a geometrical description of classes of the group H2(X, Gm).

The aim of this paper is to extend Grothendieck’s theory of Brauer groups to 1-motives, using gerbes as 
fundamental tools.

In particular,

• we study gerbes on stacks which are not separated;
• we study Azumaya algebras and Brauer groups for stacks which are not separated;
• we apply the above results to 1-motives using the dictionary between length two complexes of abelian 

sheaves and Picard stacks developed by Deligne in [17, Exposé XVIII, §1.4]. Remark that the Picard 
stacks associated to 1-motives are not algebraic in the sense of [30] since they are not quasi-separated.

We proceed in the following way:
Let S be a site. In Section 1 we associate to a stack in groupoids X over S the site S(X), which allows us 

to study the notion of sheaf and gerbe on a stack.
In Section 2 we prove the following homological interpretation of F -gerbes, with F an abelian sheaf on 

a site S: the Picard 2-stack GerbeS(F ) of F -gerbes is equivalent (as Picard 2-stack) to the Picard 2-stack 
associated to the complex F [2], where F [2] = [F → 0 → 0] with F in degree -2:

GerbeS(F ) ∼= 2st(F [2]) (0.2)

(Theorem 2.2). In particular, for i = 2, 1, 0, we have an isomorphism of abelian groups between the i-th 
classifying group GerbeiS(F ) and the cohomological group Hi(S, F ). The equivalence of Picard 2-stacks (0.2)
contains the following classical result: elements of Gerbe2

S(F ), which are F -equivalence classes of F -gerbes, 
are parametrized by cohomological classes of H2(S, F ). Always in Section 2, applying [20, Chp IV] to the 
site S(X) associated to a stack X, we obtain the Picard 2-stack GerbeS(X)(F) of F-gerbes on X, with F an 
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abelian sheaf on the site S(X). We finish Section 2 proving the effectiveness of the 2-descent of Gm-gerbes 
with respect to a faithfully flat morphism of schemes which is quasi-compact or locally of finite presentation 
(Theorem 2.7).

Let Sét be the étale site on an arbitrary scheme S and let X = (X, OX) be a locally ringed S-stack 
with associated étale site Sét(X). In Section 3 we recall the notion of the Brauer group Br(X) of X and in 
Theorem 3.4 we establish an injective group homomorphism

δ : Br(X) −→ H2
ét(X,Gm,X), (0.3)

which extends Grothendieck’s group homomorphism (0.1) to locally ringed S-stacks.
Let M = [u : X → G] be a 1-motive defined over a scheme S, with X an S-group scheme which is, locally 

for the étale topology, a constant group scheme defined by a finitely generated free Z-module, G an extension 
of an abelian S-scheme by an S-torus, and finally u : X → G a morphism of S-group schemes. Since in 
[17, Exposé XVIII, §1.4] Deligne associates to any length two complex of abelian sheaves a Picard stack, in 
Section 4 we can define the Brauer group of the 1-motive M as the Brauer group Br(M) of the associated 
Picard stack M and by Theorem 3.4 we have an injective group homomorphism δ : Br(M) → H2

ét(M, Gm,M). 
At the end of Section 4 we prove the effectiveness of the descent of Azumaya algebras and of Gm-gerbes 
with respect to the quotient map ι : G → [G/X] ∼= M (Lemma 4.2 and Lemma 4.3).

Denote by sij := M ×S M → M ×S M ×S M the map which inserts the unit section ε : S → M of M
into the k-th factor for k ∈ {1, 2, 3} −{i, j}. If � is a prime number distinct from the residue characteristics 
of S, we say that the 1-motive M satisfies the generalized Theorem of the Cube for the prime � if the 
homomorphism

∏
(i,j)∈{1,2,3} s

∗
ij : H2

ét(M3,Gm,M3)(�) −→
(
H2

ét(M2,Gm,M2)(�)
)3

x �−→ (s∗12(x), s∗13(x), s∗23(x))

is injective, where (�) denotes the �-primary component (Definition 5.1). We start Section 5 studying the 
consequences of the generalized Theorem of the Cube for 1-motives. In Corollary 5.6 we show that if the base 
scheme is connected, reduced, normal and noetherian, extensions of abelian schemes by split tori satisfy the 
generalized Theorem of the Cube for any prime � distinct from the residue characteristics of S (Corollary 5.6). 
Then, as a consequence of the effectiveness of the 2-descent of Gm-gerbes with respect to the quotient map 
ι : G → [G/X] ∼= M (Lemma 4.3), we get Theorem 5.7: 1-motives, which are defined over a connected, 
reduced, normal and noetherian scheme S, and whose underlying tori are split, satisfy the generalized 
Theorem of the Cube for any prime � distinct from the residue characteristics of S. Note that in [8, Thm 
5.1] S. Brochard and the first author prove the Theorem of the Cube (involving the H1(M, Gm,M) instead 
of H2(M, Gm,M)) for 1-motives, and in [9] the authors show that the sheaf of divisorial correspondences of 
extensions of abelian schemes by tori is representable.

In Section 6 we investigate Grothendieck’s Question for 1-motives and our answer is contained in Theo-
rem 6.2 which states that if M = [u : X → G] is 1-motive defined over a normal and noetherian scheme S
and if the extension G underlying M satisfies the generalized Theorem of the Cube for a prime number �
distinct from the residue characteristics of S, then the �-primary component of the kernel of the homomor-
phism H2

ét(ε) : H2
ét(M, Gm,M) → H2

ét(S, Gm,S) induced by the unit section ε : S → M of M , is contained in 
the Brauer group of M :

ker
[
H2

ét(ε) : H2
ét(M,Gm,M) −→ H2

ét(S,Gm,S)
]
(�) ⊆ Br(M).

We prove this result as follows: first we show this theorem for an extension of an abelian scheme by a torus 
using Hoobler’s Theorem [27, Thm 3.3] (Proposition 6.1). Then, thanks to the effectiveness of the descent 
of Azumaya algebras and of Gm-gerbes with respect to the quotient map ι : G → [G/X] ∼= M, we get 
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the required statement for M . We finish Section 6 giving a positive answer to Grothendieck’s Question for 
1-motives (and so in particular for semi-abelian varieties) over an algebraically closed field of characteristic 
zero (Corollary 6.3).

In the last years, several authors have worked with the Brauer group of stacks (see for example [1], [19], 
[31]) but most of them focus on algebraic or separated stacks. Moreover the techniques used in this paper 
are rather different from the ones used in [1], [19], [31]. Since the Picard stack associated to a 1-motive is 
not quasi-separated, we recall the theory of Brauer group of stacks.

An important role in this paper is played by the 2-descent theory of gerbes for which we add an Appendix.

Acknowledgment

We are very grateful to Pierre Deligne for his comments on the first version of this paper and for his 
communication on 2-descent theory for stacks (see Appendix). We would like to thank also the referee for 
the very useful comments.

Notation

Stack language
Here we refer mainly to [20]. Let S be a site. A stack over S is a fibered category X over S such that

• (Gluing condition on objects) descent is effective for objects in X, and
• (Gluing condition on arrows) for any object U of S and for every pair of objects X, Y of the category 

X(U), the presheaf of arrows ArrX(U)(X, Y ) of X(U) is a sheaf over U .

For the notions of morphisms of stacks (i.e. catesian functors) and morphism of cartesian functors we refer 
to [20, Chp. II 1.2]. An equivalence (resp. isomorphism) of stacks F : X → Y is a morphism of stacks 
which is an equivalence (resp. isomorphism) of fibered categories over S, that is F (U) : X(U) → Y(U) is an 
equivalence (resp. isomorphism) of categories for any object U of S. A stack in groupoids over S is a stack 
X over S such that for any object U of S the category X(U) is a groupoid, i.e. a category in which all arrows 
are invertible. Recall that 2-morphisms of stacks in groupoids are automatically invertible. From now on, 
all stacks will be stacks in groupoids.

A gerbe over the site S is a stack G over S such that

• G is locally not empty: for any object U of S, there exists a covering {φi : Ui → U}i∈I for which the set 
of objects of the category G(Ui) is not empty for all i ∈ I;

• G is locally connected: for any object U of S and for each pair of objects g1 and g2 of G(U), there exists 
a covering {φi : Ui → U}i∈I of U such that the set of arrows from g1|Ui

to g2|Ui
in G(Ui) is not empty 

for all i ∈ I.

A morphism (resp. isomorphism) of gerbes is just a morphism (resp. isomorphism) of stacks whose source 
and target are gerbes, and a 2-morphism of gerbes is a morphism of cartesian functors. An equivalence of 
gerbes is an equivalence of stacks.

A strictly commutative Picard stack over the site S (just called a Picard stack) is a stack P over S endowed 
with a morphism of stacks ⊗ : P ×S P → P, called the group law of P, and two natural isomorphisms a and 
c, expressing the associativity and the commutativity constraints of the group law of P, such that P(U) is 
a strictly commutative Picard category for any object U of S (see [17] 1.4.2 for more details). An additive 
functor (F, 

∑
) : P1 → P2 between two Picard stacks is a morphism of stacks F : P1 → P2 endowed with 

a natural isomorphism 
∑

: F (a ⊗P1 b) ∼= F (a) ⊗P2 F (b) (for all a, b ∈ P1) which is compatible with the 
natural isomorphisms a and c underlying P1 and P2.
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A strict 2-category (just called 2-category) A = (A, C(a, b), Ka,b,c, Ua)a,b,c∈A is given by the following 
data: a set A of objects a, b, c, ...; for each ordered pair (a, b) of objects of A, a category C(a, b); for each 
ordered triple (a, b, c) of objects A, a composition functor Ka,b,c : C(b, c) × C(a, b) → C(a, c), that satisfies 
the associativity law; for each object a, a unit functor Ua : 1 → C(a, a) where 1 is the terminal category, 
that provides a left and right identity for the composition functor.

A 2-stack over the site S is a fibered 2-category X over S (i.e. a family of 2-categories indexed by objects 
of S, see [15, 1.10 p.29] for more details) such that

• 2-descent is effective for objects in X (see [15, 1.10 p.31]), and
• for any object U of S and for every pair of objects X, Y of the 2-category X(U), the fibered category of 

arrows ArrX(U)(X, Y ) of X(U) is a stack over S|U .

For the notions of morphisms of 2-stacks (i.e. cartesian 2-functors), morphisms of cartesian 2-functors, 
modifications of 2-stacks and equivalences of 2-stacks, we refer to [26, Chp I]. A 2-stack in 2-groupoids over 
S is a 2-stack X over S such that for any object U of S the 2-category X(U) is a 2-groupoid. From now on, 
all 2-stacks will be 2-stacks in 2-groupoids.

Let S be an arbitrary scheme and denote by S the site of S for a Grothendieck topology that we will fix 
later. We will call a stack, a Picard stack, a 2-stack over S respectively an S-stack, a Picard S-stack, an 
S-2-stack.

1. Recall on sheaves, gerbes and Picard stacks on a stack

Let S be a site. Let X be a stack over S. We always assume that fibered (2-)categories come with a fixed 
cleavage (see [16, §2, §6]). Deligne furnished us the following definition of site associated to a stack.

Definition 1.1. The site S(X) associated to X over S is the site defined in the following way:

• the category underlying S(X) consists of the objects (U, u) with U an object of S and u an object of 
X(U), and of the arrows (φ, Φ) : (U, u) → (V, v) with φ : U → V a morphism of S and Φ : φ∗v → u an 
isomorphism in X(U). We call the pair (U, u) an open of X with respect to the chosen topology.

• the topology on S(X) is the one generated by the pre-topology for which a covering of (U, u) is a family 
{(φi, Φi) : (Ui, ui) → (U, u)}i such that the morphism of S

∐
φi :

∐
Ui → U is a covering of U .

Definition 1.2. A sheaf (of sets) F on X is a system (FU,u, θφ,Φ), where for any object (U, u) of S(X), FU,u

is a sheaf on S|U , and for any arrow (φ, Φ) : (U, u) → (V, v) of S(X), θφ,Φ : FV,v → φ∗FU,u is a morphism of 
sheaves on S|V , such that

(i) if (φ, Φ) : (U, u) → (V, v) and (γ, Γ) : (V, v) → (W, w) are two arrows of S(X), then γ∗θφ,Φ ◦ θγ,Γ =
θγ◦φ,φ∗Γ◦Φ;

(ii) if (φ, Φ) : (U, u) → (V, v) is an arrow of S(X), the morphism of sheaves φ−1FV,v → FU,u, obtained by 
adjunction from θφ,Φ, is an isomorphism.

To simplify notations, we denote just (FU,u) the sheaf F = (FU,u, θφ,Φ). The set of global sections Γ(X, F)
of a sheaf F on X is the set of families (sU,u) of sections of F on the objects (U, u) of S(X) such that for any 
arrow (φ, Φ) : (U, u) → (V, v) of S(X), resφsV,v = sU,u.

An abelian sheaf F on X is a system (FU,u) verifying the conditions (i) and (ii) of Definition 1.2, where the 
FU,u are abelian sheaves on S|U . We denote by Ab(X) the category of abelian sheaves on X. According to [23, 
Exp II, Prop. 6.7] and [21, Thm 1.10.1], the category Ab(X) is an abelian category with enough injectives. 
Let RΓ(X, −) be the right derived functor of the functor Γ(X, −) : Ab(X) → Ab of global sections (here 
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Ab is the category of abelian groups). The i-th cohomology group Hi
(
RΓ(X, −)

)
of RΓ(X, −) is denoted by 

Hi(X, −).
A stack on X is a stack Y over S endowed with a morphism of stacks P : Y → X (called the structural 

morphism) such that for any object (U, x) of S(X) the fibered product U ×x,X,P Y is a stack over S|U .
A gerbe on X is stack G over S endowed with a morphism of stacks P : G → X (called the structural 

morphism) such that for any object (U, x) of S(X) the fibered product U ×x,X,P G is a gerbe over S|U . 
A morphism of gerbes on X is a morphism of gerbes which is compatible with the underlying structural 
morphisms.

Let F : X → Y be a morphism of S-stacks and let G be a gerbe on Y. The pull-back of G via F is the 
fibered product

F ∗G := X×F,Y,P G (1.1)

of X and G via the morphism F : X → Y and the structural morphism P : G → Y underlying G (see [7, Def 
2.14] for the definition of fibered product of S-stacks).

A Picard stack on X is a stack P over S endowed with a morphism of stacks P : P → X (called the 
structural morphism), with a morphism of stacks ⊗ : P ×P,X,P P → P, and with two natural isomorphisms 
a and c, such that U ×x,X,P P is a Picard stack over S|U for any object (U, x) of S(X).

A Picard 2-stack on X is a 2-stack P over S endowed with a morphism of 2-stacks P : P → X (called 
the structural morphism - here we see X as a 2-stack), with a morphism of 2-stacks ⊗ : P ×P,X,P P → P , 
and with two natural 2-transformations a and c, such that U ×x,X,P P is a Picard 2-stack over S|U for any 
object (U, x) of S(X) (for more details see [7, §1] or [6]). An additive 2-functor (F, λF ) : P1 → P2 between 
two Picard 2-stacks on X is given by a morphism of 2-stacks F : P1 → P2 and a natural 2-transformation 
λF : ⊗P2 ◦F 2 → F ◦ ⊗P1 , which are compatible with the structural morphisms of 2-stacks P1 : P1 → X

and P2 : P2 → X and with the natural 2-transformations a and c underlying P1 and P2. An equivalence of 
Picard 2-stacks on X is an additive 2-functor whose underlying morphism of 2-stacks is an equivalence of 
2-stacks.

Denote by 2P icard(X, S) the category whose objects are Picard 2-stacks on X and whose arrows are 
isomorphism classes of additive 2-functors. Applying [36, Cor 6.5] to the site S(X), we have the following 
equivalence of categories

2st : D[−2,0](S(X)) −→ 2P icard(X,S), (1.2)

where D[−2,0](S(X)) is the derived category of length three complexes of abelian sheaves on X. Via this 
equivalence, Picard 2-stacks (resp. Picard stacks) on X correspond to length three (resp. two) complexes of 
abelian sheaves on X. Therefore, the theory of Picard stacks is included in the theory of Picard 2-stacks. 
We denote by [ ] the inverse equivalence of 2st.

If P is a Picard stack over a site S we define its classifying groups Pi for i = 1, 0 in the following way: P1 is 
the group of isomorphism classes of objects of P and P0 is the group of automorphisms of the neutral object 
e of P. We define the classifying groups P i for i = 2, 1, 0 of a Picard 2-stack P over a site S recursively: 
P 2 is the group of equivalence classes of objects of P , P 1 = Aut1(e) and P 0 = Aut0(e) where Aut(e) is 
the Picard stack of automorphisms of the neutral object e of P . Explicitly, P 1 is the group of isomorphism 
classes of objects of Aut(e) and P 0 is the group of automorphisms of the neutral object of Aut(e). We have 
the following link between the classifying groups P i and the cohomology groups Hi(S, [P ]) of the complex 
[P ] associated to P via (1.2): P i ∼= Hi−2(S, [P ]) for i = 0, 1, 2.

If two Picard 2-stacks P and P ′ are equivalent as Picard 2-stacks, then their classifying groups are 
isomorphic: P i ∼= P ′ i for i = 2, 1, 0. The inverse affirmation is not true as explained in [3, Rem 1.3].

Let S be an arbitrary scheme and denote by S the site of S for a Grothendieck topology. Let X be an 
S-stack. A stack (resp. a Picard 2-stack) on X will be called an S-stack (resp. a Picard S-2-stack) on X.
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2. Gerbes with Abelian band on a stack

Let F be an abelian sheaf on a site S. Denote by GerbeS(F ) the fibered 2-category of F -gerbes over S.

Lemma 2.1. The fibered 2-category GerbeS(F ) of F -gerbes is a Picard 2-stack over S.

Proof. By [15, §2.6] the 2-descent is effective for objects of GerbeS(F ). Moreover, morphisms of gerbes are 
just morphisms of stacks and so by [15, Examples 1.11 i)], the gluing condition on arrows of GerbeS(F )
is satisfied. Thus, the fibered 2-category GerbeS(F ) is in fact a 2-stack over S. In [20, Chp IV Prop 2.4.1 
(i)] Giraud has defined the contracted product of gerbes (see in particular [20] Example 2.4.3 for the case 
of gerbes bound by abelian sheaves). He also showed that this contracted product satisfies associativity 
and commutativity constraints (see [20, Chp IV Cor 2.4.2 (i) and (ii)]). Hence we can conclude that the 
contracted product of F -gerbes endows the 2-stack of F -gerbes with a Picard structure. �
2.1. Homological interpretation of gerbes over a site

Let F be an abelian sheaf on a site S. The classifying groups GerbeiS(F ) for i = 2, 1, 0 of the Picard 
2-stack GerbeS(F ) are

• Gerbe2
S(F ), the abelian group of F -equivalence classes of F -gerbes;

• Gerbe1
S(F ), the abelian group of isomorphism classes of morphisms of F -gerbes from a F -gerbe to itself.

• Gerbe0
S(F ), the abelian group of automorphisms of a morphism of F -gerbes from a F -gerbe to itself.

Theorem 2.2. Let F be an abelian sheaf on a site S. Then the Picard 2-stack GerbeS(F ) of F -gerbes is 
equivalent (as Picard 2-stack) to the Picard 2-stack associated to the complex F [2], where F [2] = [F → 0 → 0]
with F in degree -2:

GerbeS(F ) ∼= 2st(F [2]).

In particular, for i = 2, 1, 0, we have an isomorphism of abelian groups between the i-th classifying group 
GerbeiS(F ) and the cohomological group Hi(S, F ).

Proof. It is a classical result that via the equivalence of categories stated in [17, Exposé XVIII, Prop 
1.4.15], the complex F [1] corresponds to the Picard stack Tors(F ) of F -torsors: Tors(F ) = 2st(F [1]). A 
higher dimensional analogue of the notion of torsor under an abelian sheaf is the notion of torsor under a 
Picard stack, which was introduced by Breen in [13, Def 3.1.8] and studied by the first author in [5, §2]
(remark that in fact in [7] the first author introduces the notion of torsor under a Picard 2-stack, see also 
[4], [2] and [10]). Hence we have the notion of Tors(F )-torsors. The contracted product of torsors under 
a Picard 2-stack, introduced in [7, Def 2.11], endows the 2-stack Tors(Tors(F )) of Tors(F )-torsors with a 
Picard structure, and by [7, Thm 0.1] this Picard 2-stack Tors(Tors(F )) corresponds, via the equivalence 
of categories (1.2), to the complex [Tors(F )][1]:

Tors(Tors(F )) = 2st(F [2]). (2.1)

In [15, Prop 2.14] Breen constructs a canonical equivalence of Picard 2-stacks between the Picard 2-stack 
GerbeS(F ) of F -gerbes and the Picard 2-stack Tors(Tors(F )) of Tors(F )-torsors:

GerbeS(F ) ∼= Tors(Tors(F )). (2.2)
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This equivalence and the equality (2.1) furnish the expected equivalence GerbeS(F ) ∼= 2st(F [2]). The 
classifying groups of the Picard 2-stack GerbeS(F ) are therefore

GerbeiS(F ) ∼= Hi−2(S, F [2]) = Hi(S, F ). �
Remark 2.3. Via the cohomological interpretation (2.1) of torsors under the Picard stack of F -torsors, 
the equivalence of Picard 2-stacks (2.2) is the geometrical counterpart of the canonical isomorphism in 
cohomology H2(S, F ) ∼= H1(S, F [1]).

2.2. Gerbes on a stack

Let X be a stack over a site S and denote by S(X) the site associated to X. Applying [20, Chp IV] to the 
site S(X), we get the notion of F-gerbes on the stack X, with F an abelian sheaf on X. We recall briefly this 
notion.

An F-gerbe is a gerbe G on X such that for any object (U, x) of S(X) the fibered product U ×x,X,P G

is a FU,x-gerbe over S|U (here P : G → X is the structural morphism): in particular for each i indexing a 
covering {Ui → U}i of U , it exists an object gi of (U ×x,X,P G)(Ui) and an isomorphism FU,x|Ui

→ Aut(gi)
of sheaves of groups on Ui (see [15, Def 2.3]). Consider now an F-gerbe G and an F′-gerbe G′ on X. Let 
u : F → F′ a morphism of abelian sheaves on X. A morphism of gerbes m : G → G′ is an u-morphism
if u is compatible with the morphism of bands Band(Aut(g)U,x) → Band(Aut(m(g))U,x) (see [20, Chp IV 
2.1.5.1]). As in [20, Chp IV Prop 2.2.6] an u-morphism m : G → G′ is fully faithful if and only if u : F → F′

is an isomorphism, in which case m is an equivalence of gerbes. If G and G′ are two F-gerbes on X, instead 
of idF-morphism G → G′ we use the terminology F-equivalence G → G′ of F-gerbes on X.

F-gerbes on X build a Picard 2-stack on X, that we denote by

GerbeS(X)(F)

whose group law is given by the contracted product of F-gerbes on X ([20, Chp IV 2.4.3]). Its neutral 
element is the stack Tors(F) of F-torsors on X, which is called the neutral F-gerbe. Applying Theorem 2.2
to the abelian sheaf F on the site S(X) (see Definition 1.2) we get

Corollary 2.4. We have the following equivalence of Picard 2-stacks

GerbeS(X)(F) ∼= 2st(F[2]).

In particular, GerbeiS(X)(F) ∼= Hi(X, F) for i = 2, 1, 0.

Hence, F-equivalence classes of F-gerbes on X, which are the elements of the 0th-homotopy group 
Gerbe2

S(X)(F), are parametrized by cohomological classes of H2(X, F).

Remark 2.5. GerbeS(X)(F) is a Picard S(X)-2-stack. Via the structural morphism F : X → S, we 
can view GerbeS(X)(F) also as a Picard S-2-stack GerbeS(F). In this case we have that GerbeS(F) ∼=
2st(τ≤0RF∗(F[2])) where τ≤0 is the good truncation in degree 0. We will not use this fact in the paper and 
therefore we omit the proof.

2.3. 2-descent of Gm-gerbes

We finish this section proving the effectiveness of the 2-descent of Gm-gerbes with respect to a faithfully 
flat morphism of schemes p : S′ → S which is quasi-compact or locally of finite presentation. We will need 



C. Bertolin, F. Galluzzi / Journal of Pure and Applied Algebra 225 (2021) 106754 9
the semi-local description of gerbes done by Breen in [16, §4] and [14, §2.3], that we recall only in the case 
of Gm-gerbes. Denote by Tors(Gm) the Picard stack of Gm-torsors. According to Breen, to have a Gm-gerbe 
G over a site S is equivalent to have the data

(
(Tors(Gm,U ),Ψx), (ψx, ξx)

)
x∈G(U),U∈S (2.3)

indexed by the objects x of the Gm-gerbe G (recall that G is locally not empty), where

• Ψx : G|U → Tors(Gm,U ) is an equivalence of U -stacks between the restriction G|U to U of the Gm-gerbe 
G and the neutral gerbe Tors(Gm,U ). This equivalence is determined by the object x in G(U),

• ψx = pr∗1Ψx ◦ (pr∗2Ψx)−1 : Tors(pr∗2Gm,U ) → Tors(pr∗1Gm,U ) is an equivalence of stacks over U ×S U

(here pri : U ×S U → U are the projections), which restricts to the identity when pulled back via the 
diagonal morphism Δ : U → U ×S U , and

• ξx : pr∗23ψx ◦ pr∗12ψx ⇒ pr∗13ψx is a isomorphism of cartesian S-functors between morphisms of stacks 
on U ×S U ×S U (here prij : U ×S U ×S U → U ×S U are the partial projections), which satisfies the 
compatibility condition

pr∗134ξx ◦ [pr∗34ψx ∗ pr∗123ξx] = pr∗124ξx ◦ [pr∗234ξx ∗ pr∗12ψx] (2.4)

when pulled back to U ×S U ×S U ×S U := U4 (here prijk : U4 → U ×S U ×S U and prij : U4 → U ×S U

are the partial projections. See [12, (6.2.7)-(6.2.8)] for more details).

Therefore, the Gm-gerbe G may be reconstructed from the local data (Tors(Gm), Ψx)x using the transition 
data (ψx, ξx). We call the equivalences of stacks Ψx the local neutralizations of the Gm-gerbe G defined by 
the local objects x ∈ G(U). The transition data (ψx, ξx) are in fact 2-descent data. See Appendix for this 
reconstruction of a Gm-gerbe via local neutralizations and 2-descent data.

In §5 we will need the semi-local description of a Gm-equivalence class of a Gm-gerbe which consists in 
the following data: a family (Tors1(Gm,U ))U∈S of groups of isomorphism classes of Gm-torsors, bijections 
Tors1(pr∗2Gm,U ) → Tors1(pr∗1Gm,U ) of their pull-backs on U ×S U via the projections pri : U ×S U → U , 
and compatibility conditions on the pull-back on U ×S U ×S U of these bijections (here we use the above 
notations).

Remark 2.6. In this paper, Breen’s semi-local description of gerbes allows us to reduce of one the degree of 
the cohomology groups involved: instead of working with gerbes, which are cohomology classes of H2(S, Gm), 
we can work with torsors, which are cohomology classes of H1(S, Gm).

Theorem 2.7. Let p : S′ → S be a faithfully flat morphism of schemes which is quasi-compact or locally of 
finite presentation. To have a Gm,S-gerbe over S is equivalent to have a triple

(G′, ϕ, γ)

where G′ is a Gm,S′-gerbe over S′ and (ϕ, γ) are 2-descent data on G′ with respect to p : S′ → S. More 
precisely,

• G′ is a Gm,S′-gerbe over S′,
• ϕ : p∗1G′ → p∗2G

′ is an equivalence of gerbes over S′ ×S S′, where pi : S′ ×S S′ → S′ are the natural 
projections,

• γ : p∗23ϕ ◦p∗12ϕ ⇒ p∗13ϕ is a natural isomorphism over S′×SS
′×SS

′, where pij : S′×SS
′×SS

′ → S′×SS
′

are the partial projections,
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such that over S′ ×S S′ ×S S′ ×S S′ the compatibility condition

p∗134γ ◦ [p∗34ϕ ∗ p∗123γ] = p∗124γ ◦ [p∗234γ ∗ p∗12ϕ] (2.5)

is satisfied, where pijk : S′×S S
′×S S

′×S S
′×S S

′ → S′×S S
′×S S

′ and pij : S′×S S
′×S S

′×S S
′ → S′×S S

′

are the partial projections.
Under this equivalence, the pull-back p∗ : GerbeS(Gm,S) → GerbeS′(Gm,S′) is the additive 2-functor 

which forgets the 2-descent data: p∗(G′, ϕ, γ) = G′.

Proof. Let (G′, ϕ, γ) be a triplet as in the statement. According to Appendix, the data (ϕ, γ) satisfying 
the equality (2.5) are 2-descent data for the gerbe G′. As observed in Lemma 2.1, the fibered 2-category of 
Gm-gerbes builds a 2-stack (that is, in particular, the 2-descent is effective for objects), and so G′ with its 
2-descent data corresponds to a Gm,S-gerbe G over S. �
3. The Brauer group of a locally ringed stack

Let X be a stack over a site S and let S(X) be its associated site.
A sheaf of rings A on X is a system (AU,u) verifying the conditions (i) and (ii) of Definition 1.2, where 

the AU,u are sheaves of rings on S|U . Consider the sheaf of rings OX on X given by the system (OX U,u)
with OX U,u the structural sheaf of U . The sheaf of rings OX is the structural sheaf of the stack X and the 
pair (X, OX) is a ringed stack. An OX-module M is a system (MU,u) verifying the conditions (i) and (ii)
of Definition 1.2, where the MU,u are sheaves of OU -modules on S|U . An OX-algebra A is a system (AU,u)
verifying the conditions (i) and (ii) of Definition 1.2, where the AU,u are sheaves of OU -algebras on S|U . An 
OX-module M is of finite presentation if the MU,u are sheaves of OU -modules of finite presentation.

Now let S be an arbitrary scheme and let Sét be the étale site on S. Let X = (X, OX) be a locally ringed 
S-stack, i.e. a ringed stack such that, for any object (U, u) of the associated étale site Sét(X), and for any 
section f ∈ OX U,u(U), there exists a covering {(Ui, ui) → (U, u)}i∈I of (U, u) such that for any i ∈ I either 
f |(Ui,ui) or (1 − f)|(Ui,ui) is invertible in Γ(Ui, OX Ui,ui

)
An Azumaya algebra over X is an OX-algebra A = (AU,u) of finite presentation as OX-module which 

is, locally for the topology of Sét(X), isomorphic to a matrix algebra, i.e. for any open (U, u) of X there 
exists a covering {(φi, Φi) : (Ui, ui) → (U, u)}i in Sét(X) such that AU,u ⊗OU,u

OUi
∼= Mri(OUi,ui

) for any i. 
Azumaya algebras over X, that we denote by

Az(X),

build an S-stack on X by [22, Exposé VIII 1.1, 1.2] (see also [30, (3.4.4)]). Two Azumaya algebras A and 
A′ over X are Brauer-equivalent if there exist two locally free OX-modules E and E′ of finite rank such that

A⊗OX
EndOX

(E) ∼= A′ ⊗OX
EndOX

(E′).

The above isomorphism defines an equivalence relation because of the isomorphism of OX-algebras 
EndOX

(E) ⊗OX
EndOX

(E′) ∼= EndOX
(E ⊗OX

E′). We denote by [A] the equivalence class of an Azumaya 
algebra A over X. The set of equivalence classes of Azumaya algebra is a group under the group law given 
by [A][A′] = [A ⊗OX

A′]. A trivialization of an Azumaya algebra A over X is a couple (L, a) with L a locally 
free OX-module and a : EndOX

(L) → A an isomorphism of sheaves of OX-algebras. An Azumaya algebra A
is trivial if it exists a trivialization of A. The class of any trivial Azumaya algebra is the neutral element of 
the above group law. The inverse of a class [A] is the class 

[
A0] with A0 the opposite OX-algebra of A.

Definition 3.1. Let X = (X, OX) be a locally ringed S-stack. The Brauer group of X, denoted by Br(X), is 
the group of equivalence classes of Azumaya algebras over X.
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Br(−) is a functor from the category of locally ringed S-stacks (objects are locally ringed S-stacks and 
arrows are isomorphism classes of morphisms of locally ringed S-stacks) to the category Ab of abelian 
groups. Remark that the above definition generalizes to stack the classical notion of Brauer group of a 
scheme: in fact if X is a locally ringed S-stack associated to an S-scheme X, then Br(X) = Br(X).

Consider the following sheaves of groups on X: the multiplicative group Gm,X, the linear general 
group GL(n, X), and the sheaf of groups PGL(n, X) on X defined by the system (PGL(n, X)U,u) where 
PGL(n, X)U,u = Aut

(
Mn(OX U,u)

)
(automorphisms of Mn(OX U,u) as a sheaf of OX U,u-algebras). We have 

the following

Lemma 3.2. Assume n > 0. The sequence of sheaves of groups on X

1 −→ Gm,X −→ GL(n,X) −→ PGL(n,X) −→ 1 (3.1)

is exact.

Proof. It is enough to show that for any étale open (U, u) of X, the restriction to the étale site of U of the 
sequence 1 → GmU,u

→ GL(n)U,u → PGL(n)U,u → 1 is exact and this follows by [32, IV, Prop. 2.3. and 
Cor 2.4.]. �

Let Lf(X) be the S-stack on X of locally free OX-modules. Let A be an Azumaya algebra over X. Consider 
the morphism of S-stacks on X

End : Lf(X) −→ Az(X), L �−→ EndOX
(L) (3.2)

Following [20, Chp IV 2.5], let δ(A) be the fibered category over Sét of trivializations of A defined in the 
following way:

• for any U ∈ Ob(Sét), the objects of δ(A)(U) are trivalizations of A|U , i.e. pairs (L, a) with L ∈
Ob(Lf(X)(U)) and a ∈ IsomU

(
EndOX

(L), A|U
)
,

• for any arrow f : V → U of Sét, the arrows of δ(A) over f with source (L′, a′) and target (L, a) are 
arrows ϕ : L′ → L of Lf(X) over f such that Az(X)(f) ◦ a′ = a ◦ End(ϕ), with Az(X)(f) : A|V → A|U .

Since Lf(X) and Az(X) are S-stacks on X, δ(A) is also an S-stack on X (see [20, Chp IV Prop 2.5.4 (i)]). 
Observe that the morphism of S-stacks End : Lf(X) → Az(X) is locally surjective on objects by definition of 
Azumaya algebra. Moreover, it is locally surjective on arrows by exactness of the sequence (3.1). Therefore 
as in [20, Chp IV Prop 2.5.4 (ii)], δ(A) is a gerbe over X, called the gerbe of trivializations of A. For any 
object (U, u) of Sét(X) the morphism of sheaves of groups on U

(Gm,X)U,u = (O∗
X)U,u −→

(
Aut(L, a)

)
U,u

,

that sends a section g of (O∗
X)U,u to the multiplication g · − : (L, a)U,u → (L, a)U,u by this section, is 

an isomorphism. This means that the gerbe δ(A) is in fact a Gm,X-gerbe. By Corollary 2.4 we can then 
associate to any Azumaya algebra A over X a cohomological class in H2

ét(X, Gm,X), denoted by δ(A), which 
is given by the Gm,X-equivalence class of δ(A) in Gerbe2

S(Gm,X).

Proposition 3.3. An Azumaya algebra A over X is trivial if and only if its cohomological class δ(A) in 
H2

ét(X, Gm,X) is zero.

Proof. The Azumaya algebra A is trivial if and only if the gerbe δ(A) admits a global section if and only 
if its corresponding class δ(A) is zero in H2

ét(X, Gm,X). �
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Theorem 3.4. The morphism

δ : Br(X) −→ H2
ét(X,Gm,X)

[A] �−→ δ(A)

is an injective group homomorphism.

Proof. Let A, B be two Azumaya algebras over X. For any U ∈ Ob(Sét), the morphism of gerbes

δ(A)(U) × δ(B)(U) −→ δ(A⊗OX
B)(U)

((L, a), (M, b)) �−→ (L⊗OX
M, a⊗OX

b)

is a +-morphism, where + : Gm,X ×Gm,X → Gm,X is the group law underlying the sheaf Gm,X. Therefore

δ(A) + δ(B) = δ(A⊗OX
B) (3.3)

in H2
ét(X, Gm,X). This equality shows first that δ(A) = −δ(A0) and also that

[A] = [B] ⇔ [A⊗OX
B0] = 0 Prop 3.3⇔ δ(A⊗OX

B0) = 0 (3.3)⇔ δ(A) + δ(B0) = 0 ⇔ δ(A) = δ(B)

These equivalences prove that the morphism δ : Br(X) → H2
ét(X, Gm,X) is well-defined and injective. Finally 

always from the equality (3.3) we get that δ is a group homomorphism. �
4. Gerbes and Azumaya algebras over 1-motives

Let M = [u : X → G] be a 1-motive defined over a scheme S, denote by M its associated Picard S-stack 
under the equivalence constructed in [17, Exposé XVIII, Prop 1.4.15] and denote by S(M) the site associated 
to the stack M as in Definition 1.1.

Definition 4.1.

(1) The S-stack of Azumaya algebras over the 1-motive M is the S-stack of Azumaya algebras Az(M) over 
M.

(2) The Brauer group of the 1-motive M is the Brauer group Br(M) of M.
(3) A Gm-gerbe on the 1-motive M is a Gm,M-gerbe on M (i.e. a Gm,M-gerbe on the site S(M)).

By [30, (3.4.3)] the associated Picard S-stack M is isomorphic to the quotient stack [G/X] (where X
acts on G via the given morphism u : X → G). Note that in general it is not algebraic in the sense of [30]
because it is not quasi-separated. However the quotient map

ι : G −→ [G/X] ∼= M

is representable, étale and surjective. The fiber product G ×[G/X] G is isomorphic to X ×S G. Via this 
identification, the projections qi : G ×[G/X] G → G (for i = 1, 2) correspond respectively to the second 
projection p2 : X ×S G → G and to the map μ : X ×S G → G given by the action (x, g) �→ u(x)g. We 
can further identify the fiber product G ×[G/X] G ×[G/X] G with X ×S X ×S G and the partial projections 
q13, q23, q12 : G ×[G/X]G ×[G/X]G → G ×[G/X]G respectively with the map mX×idG : X×SX×SG → X×SG

where mX denotes the group law of X, the map idX×μ : X×SX×SG → X×SG, and the partial projection 
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p23 : X ×S X ×S G → X ×S G. The effectiveness of the descent of Azumaya algebras with respect to the 
quotient map ι : G → [G/X] is proved in the following Lemma (see [35, (9.3.4)] for the definition of pull-back 
of OM-algebras):

Lemma 4.2. The pull-back ι∗ : Az(M) → Az(G) is an equivalence of S-stacks between the S-stack of Azumaya 
algebras on M and the S-stack of X-equivariant Azumaya algebras on G. More precisely, to have an Azumaya 
algebra A on M is equivalent to have a pair

(A,ϕ)

where A is an Azumaya algebra on G and ϕ : p∗2A → μ∗A is an isomorphism of Azumaya algebras on X×SG

that satisfies (up to canonical isomorphisms) the cocycle condition

(mX × idG)∗ϕ =
(
(idX × μ)∗ϕ

)
◦
(
(p23)∗ϕ

)
. (4.1)

Under this equivalence, the pull-back ι∗ : Az(M) → Az(G) is the morphism of stacks which forgets the 
descent datum: ι∗(A, ϕ) = A.

Proof. Since the assertion is local for the topology on Sét(M), it suffices to prove it for any open (U, u) of 
M, where U is an object of Sét and x is an object of M(U). The descent of quasi-coherent modules is known 
for the morphism ιU : G ×ι,M,x U → U obtained by base change (see [30, Thm (13.5.5)]). The additional 
algebra structure descends by [29, II Thm 3.4]. Finally the Azumaya algebra structure descends by [28, III, 
Prop 2.8]. Since an Azumaya algebra on M is by definition a collection of Azumaya algebras on the various 
schemes U , the general case follows. �

Now we prove also the effectiveness of the 2-descent of Gm-gerbes under the quotient map ι : G → M, 
using the result of Section 2.3.

Lemma 4.3. To have a Gm,M-gerbe G on M is equivalent to have a triplet

(G′, ϕ, γ)

where G′ is a Gm,G-gerbe on G and (ϕ, γ) are 2-descent data on G′ with respect to ι : G → [G/X], that is

• ϕ : p∗2G′ → μ∗G′ is an equivalence of gerbes on X ×S G,
• γ :

(
(idX × μ)∗ϕ

)
◦
(
(p23)∗ϕ

)
⇒ (mX × idG)∗ϕ is a natural isomorphism on X ×S X ×S G ∼= G ×[G/X]

G ×[G/X] G,

which satisfies the compatibility condition

p∗134γ ◦ [p∗34ϕ ∗ p∗123γ] = p∗124γ ◦ [p∗234γ ∗ p∗12ϕ] (4.2)

when pulled back to X ×S X ×S X ×S G ∼= G ×[G/X] G ×[G/X] G ×[G/X] G := G4 (here prijk : G4 →
G ×[G/X] G ×[G/X] G and prij : G4 → G ×[G/X] G are the partial projections).

Proof. A Gm,M-gerbe on M is by definition a collection of Gm,U -gerbes over the various objects U of S. 
Hence it is enough to prove that for any object U of S and any object x of M(U), the 2-descent of Gm-
gerbes with respect to the morphism ιU : G ×ι,M,x U → U obtained by base change is effective. But this is 
a consequence of Theorem 2.7. �
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5. The generalized theorem of the Cube for 1-motives and its consequences

We use the same notation of the previous Section. We denote by M3 = M ×SM ×SM (resp. M2 = M ×SM) 
the fibered product of 3 (resp. 2) copies of M. Since any Picard stack admits a global neutral object, it 
exists a unit section denoted by ε : S → M. Consider the map

sij := M×S M → M×S M×S M

which inserts the unit section ε : S → M into the k-th factor for k ∈ {1, 2, 3} −{i, j}. If � is a prime number 
and H is an abelian group, H(�) denotes the �-primary component of H.

Definition 5.1. Let M be a 1-motive defined over a scheme S. Let � be a prime number distinct from the 
residue characteristics of S. The 1-motive M satisfies the generalized Theorem of the Cube for the prime 
� if the natural homomorphism

∏
s∗ij : H2

ét(M3,Gm,M3)(�) −→
(
H2

ét(M2,Gm,M2)(�)
)3

x �−→ (s∗12(x), s∗13(x), s∗23(x))
(5.1)

is injective.

5.1. Its consequences

Proposition 5.2. Let M be a 1-motive satisfying the generalized Theorem of the Cube for a prime � distinct 
from the residue characteristics of S. Let N : M → M be the multiplication by N on the Picard S-stack M. 
Then for any y ∈ H2

ét(M, Gm,M)(�) we have that

N∗(y) = N2y +
(N2 −N

2

)(
(−idM)∗(y) − y

)
. (5.2)

Proof. First we prove that given three contravariant functors F, G, H : P → M, we have the following 
equality for any y in H2

ét(M, Gm,M)(�)

(F + G + H)∗(y) − (F + G)∗(y) − (F + H)∗(y) − (G + H)∗(y) + F ∗(y) + G∗(y) + H∗(y) = 0. (5.3)

Let pri : M ×M ×M → M the projection onto the ith factor. Put mi,j = pri ⊗ prj : M ×M ×M → M and 
m = pr1 ⊗ pr2 ⊗ pr3 : M ×M ×M → M, where ⊗ is the law group of the Picard S-stack M. The element

z = m∗(y) −m∗
1,2(y) −m∗

1,3(y) −m∗
2,3(y) + pr∗1(y) + pr∗2(y) + pr∗3(y)

of H2
ét(M3, Gm,M3)(�) is zero when restricted to S ×M ×M, M × S ×M and M ×M × S (this restriction 

is obtained inserting the unit section ε : S → M). Thus it is zero in H2
ét(M3, Gm,M3)(�) by the generalized 

Theorem of the Cube for �. Finally, pulling back z by (F, G, H) : P → M ×M ×M we get (5.3).
Now, setting F = N, G = idM, h = (−idM) we get

N∗(y) = (N + idM)∗(y) + (N − idM)∗(y) + 0∗(y) −N∗(y) − (idM)∗(y) − (−idM)∗(y).

We rewrite this as

(N + idM)∗(y) −N∗(y) = N∗(y) − (N − idM)∗(y) + (idM)∗(y) + (−idM)∗(y).
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If we denote z1 = y and zN = N∗(y) −(N−idM)∗(y), we obtain zN+1 = zN +y+(−idM)∗(y). By induction, 
we get zN = y + (N − idM)(y + (−idM)∗(y)). From the equality N∗(y) = zN + (N − idM)∗(y) we have

N∗(y) = zN + zN−1 + · · · + z1,

and therefore we are done. �
Corollary 5.3. Let M be a 1-motive satisfying the generalized Theorem of the Cube for a prime �. Then, if 
� = 2, the �n-torsion elements of H2

ét(M, Gm,M) are contained in

ker
[
(�nM)∗ : H2

ét(M,Gm,M) −→ H2
ét(M,Gm,M)

]

and if � = 2, they are contained in

ker
[
(2n+1

M )∗ : H2
ét(M,Gm,M) −→ H2

ét(M,Gm,M)
]
.

Proof. The result follows by (5.2). �
5.2. Its proof

We finish this section by searching the hypothesis we should put on the base scheme S in order to have 
that the 1-motive M = [X u→ G] satisfies the generalized Theorem of the Cube. From now on we will 
switch freely between the two equivalent notion of invertible sheaf L on the extension G and Gm-torsor 
Isom(OG, L) on G. The extension G fits into the following short exact sequence

0 −→ T −→ G
π−→ A −→ 0

The pull-back of gerbes defined in (1.1) allows us to define an homomorphism of abelian groups π∗ :
Gerbe2

S(Gm,A) → Gerbe2
S(Gm,G).

Proposition 5.4. Let S be a normal scheme. Let G be an extension of an abelian S-scheme A by Gr
m. The 

pull-back π∗ : Gerbe2
S(Gm,A) → Gerbe2

S(Gm,G) is surjective.

Proof. Denote by TorsRig(Gm,G) the Picard S-stack of Gm-torsors on G with rigidification along the unit 
section εG : S → G. Because of this unit section εG, the group of isomorphism classes of Gm-torsors 
over G with rigidification is canonically isomorphic to the quotient of the group of isomorphism classes of 
Gm-torsors over G by the group of isomorphism classes of Gm-torsors over S:

TorsRig1(Gm,G) ∼= Tors1(Gm,G)/Tors1(Gm,S). (5.4)

Denote by Cub(G, Gm) the Picard S-stack of Gm-torsors on G with cubical structure and by Cubi(G, Gm)
for i = 1, 0 its classifying groups. Roughly speaking a Gm-torsor on G is cubical if it satisfies the Theorem 
of the Cube, for details see [11, Def 2.2]. In [11, Prop 2.4], Breen proves the Theorem of the Cube for 
extensions of abelian schemes by tori which are defined over a normal scheme, that is the forgetful additive 
functor Cub(G, Gm) → TorsRig(Gm,G) is an equivalence of Picard S-stacks. In particular

Cub1(G,Gm) ∼= TorsRig1(Gm,G). (5.5)

With our hypothesis, by [33, Chp I, Rem 7.2.4], any Gm-torsors on G with cubical structure comes from a 
Gm-torsors on A with cubical structure. Using the isomorphisms (5.4) and (5.5), we get the surjection
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π∗ : Tors1(Gm,A) −→ Tors1(Gm,G). (5.6)

Now let G be a Gm,G-gerbe on G. Breen’s semi-local description of gerbes (2.3) asserts that to have G
is equivalent to have the local data (Tors(Gm,G,U ), Ψx)x∈G(U),U∈Sfppf

endowed with the transition data 
(ψx, ξx). Let y = π(P (x)) ∈ A(U), where P : G → G is the structural morphism of G. The equivalence of 
U ×S U -stacks ψx : Tors(pr∗2Gm,G,U ) → Tors(pr∗1Gm,G,U ) induces a bijection between the classifying groups 
ψ1
x : Tors1(pr∗2Gm,G,U ) → Tors1(pr∗1Gm,G,U ). Because of the surjection (5.6), all torsors over G come from 

torsors over A up to isomorphisms, and so we have a bijection

ψ1
y : Tors1(pr∗2Gm,A,U ) → Tors1(pr∗1Gm,A,U )

such that ψ1
y = (π∗)∗ψ1

x. By pull-back via (5.6), the isomorphism of cartesian S-functors ξx : pr∗23ψx ◦
pr∗12ψx ⇒ pr∗13ψx gives ξ1

y = (π∗)∗ξ1
x : pr∗23ψ

1
y ◦ pr∗12ψ

1
y ⇒ pr∗13ψ

1
y over U ×S U ×S U , which satisfies an 

analogue of the equality (2.4). The local data (Tors1(Gm,A,U ))y=π(P (x)),x∈G(U) endowed with the transition 

data (ψ1
y, ξ

1
y), which are defined on isomorphism classes of Gm-torsors, furnish a Gm,A-equivalence class G′

of a Gm,A-gerbe on A such that π∗(G′) = G. �
We give an immediate application of this result in the case of extensions over a field k.

Corollary 5.5. Let G be an extension of an abelian variety by a torus over a field k. Then Br(G) ∼=
H2

ét(G, Gm,G).

Proof. By Gabber’s unpublished result [18], if A is an abelian variety defined over a field k, then Br(A) ∼=
H2

ét(A, Gm,A). We have the following commutative diagram

Br(A)

π∗

∼= H2
ét(A,Gm)

π∗

Br(G)
δ

H2
ét(G,Gm)

(5.7)

where π : G → A is the surjective morphism of varieties underlying G and π∗ denotes the pull-back maps 
of Azumaya algebras and cohomological classes. By [25, II, Prop 1.4] the cohomological groups H2

ét(G, Gm)
and H2

ét(A, Gm) are torsion groups and so Theorem 2.2 and Proposition 5.4 imply that π∗ : H2
ét(A, Gm) →

H2
ét(G, Gm) is surjective. Hence the injective homomorphism δ on the bottom row is surjective too. �
Let Gi be an extension of an abelian S-scheme Ai by an S-torus for i = 1, 2, 3, and denote by εGi : S → Gi

its unit section. Let sGij := Gi ×S Gj → G1 ×S G2 ×S G3 be the map obtained from the unit section 
εGk : S → Gk after the base change Gi ×S Gj → S (i.e. the map which inserts εGk : S → Gk into the k-th 
factor for k ∈ {1, 2, 3} − {i, j}).

Corollary 5.6. Let S be a connected, reduced, normal and noetherian scheme and let Gi be an extension of 
an abelian S-scheme Ai by Gri

m for i = 1, 2, 3. Let � be a prime distinct from the residue characteristics of 
S. Then, with the above notation, the natural homomorphism

∏
sG∗
ij : H2

ét(G1 ×S G2 ×S G3,Gm)(�) −→
∏

(i,j)∈{1,2,3} H2
ét(Gi ×S Gj ,Gm)(�)

x �−→ (sG∗
12 (x), sG∗

13 (x), sG∗
23 (x)) (5.8)

is injective.
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In particular, if the base scheme is connected, reduced, normal and noetherian, an extension of an abelian 
S-scheme by Gr

m satisfies the generalized Theorem of the Cube for any prime � distinct from the residue 
characteristics of S.

Proof. Let pGij : G1×S G2×S G3 → Gi×S Gj be the projection maps for i, j = 1, 2, 3 and let αG be the map

αG :
∏

(i,j)∈{1,2,3} H2
ét(Gi ×S Gj ,Gm)(�) −→ H2

ét(G1 ×S G2 ×S G3,Gm)(�)
((y2, y3), (y1, y3), (y1, y2)) �−→

∑
i,j=1,2,3 p

G∗
ij (yi, yj))

(5.9)

Analogously we define the maps αA and pAij . We observe that the injectivity of the map 
∏

sG∗
ij is equivalent 

to the surjectivity of the map αG ([34, Rem page 55]). If we denote πi : Gi → Ai the surjections underlying 
the extensions Gi (for i = 1, 2, 3), (πi × πj) ◦ pGij = pAij ◦ (π1 × π2 × π2) and so we have the following 
commutative diagram

∏
(i,j)∈{1,2,3} H2

ét(Ai ×S Aj ,Gm)(�) αA

H2
ét(A1 ×S A2 ×S A3,Gm)(�)

∏
(i,j)∈{1,2,3} H2

ét(Gi ×S Gj ,Gm)(�) αG

H2
ét(G1 ×S G2 ×S G3,Gm)(�)

(5.10)

where the vertical arrows, which are the pull-backs induced by the πi, are surjective by Proposition 5.4
and Corollary 2.4. The top horizontal arrow is surjective since under our hypotheses abelian S-schemes 
satisfy the generalized Theorem of the Cube (see [27, Cor 2.6]). Hence we can conclude that also the down 
horizontal arrow is surjective, i.e. 

∏
sG∗
ij is injective. �

Using the effectiveness of the 2-descent for Gm-gerbes via the quotient map ι : G → M (Lemma 4.3), 
from the above corollary we get

Theorem 5.7. 1-motives, which are defined over a connected, reduced, normal and noetherian scheme S, and 
whose underlying tori are split, satisfy the generalized Theorem of the Cube for any prime � distinct from 
the residue characteristics of S.

6. Cohomological classes of 1-motives which are Azumaya algebras

Let S be a scheme. We will need the finite site on S: first recall that a morphism of schemes f : X → S

is said to be finite locally free if it is finite and f∗(OX) is a locally free OS-module. In particular, by [24, 
Prop (18.2.3)] finite étale morphisms are finite locally free. The finite site on S, denoted Sf , is the category 
of finite locally free schemes over S, endowed with the topology generated from the pretopology for which 
the set of coverings of a finite locally free scheme T over S is the set of single morphisms u : T ′ → T such 
that u is finite locally free and T = u(T ′) (set theoretically). There is a morphism of site τ : Sfppf → Sf . 
If F is a sheaf for the étale topology, then we define as in [27, §3]

F (T )f :=
{
y ∈ F (T ) | there is a covering u : T ′ → T in Sf with F (u)(y) = 0

}

i.e. F (T )f are the elements of F (T ) which can be split by a finite locally free covering.

Proposition 6.1. Let G be an extension of an abelian scheme by a torus, which is defined over a normal 
and noetherian scheme S, and which satisfies the generalized Theorem of the Cube for a prime number �
distinct from the characteristics of S. Then the �-primary component of the kernel of the homomorphism 
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H2
ét(ε) : H2

ét(G, Gm,G)) → H2
ét(S, Gm,S) induced by the unit section ε : S → G of G, is contained in the 

Brauer group of G:

ker
[
H2

ét(ε) : H2
ét(G,Gm,G)) −→ H2

ét(S,Gm,S)
]
(�) ⊆ Br(G).

Proof. In order to simplify notations we denote by ker(H2
ét(ε)) the kernel of the homomorphism H2

ét(ε) :
H2

ét(G, Gm,G) → H2
ét(S, Gm,S). We identify étale and fppf cohomologies for the smooth group schemes μ�n

and Gm.
(1) First we show that H2

f (G, τ∗μ�n) is isomorphic to H2
ét(G, μ�n)f . By definition, R1τ∗μ�n is the sheaf 

on G associated to the presheaf U → H1(Ufppf , μ�n). This latter group classifies torsors in Ufppf under the 
finite locally free group scheme μ�n . Since any μ�n-torsor is trivialized by using itself as an f -cover, we have 
that R1τ∗μ�n = (0). The Leray spectral sequence for the morphism of sites τ : Sfppf → Sf (see [32, page 
309]) gives then the isomorphism

H2
f (G, τ∗μ�n) ∼= ker

[
H2

ét(G,μ�n) π−→ H0
f (G,R2τ∗μ�n)

]
= H2

ét(G,μ�n)f

where the map π is the edge morphism which can be interpreted as the canonical morphism from the 
presheaf U → H2

ét(Ufppf , μ�n) to the associated sheaf R2τ∗μ�n .
(2) Now we prove that H2

ét(G, μ�∞)f maps onto ker(H2
ét(ε))(�). Let x be an element of ker(H2

ét(ε)) with 
�nx = 0 for some n. The filtration on the Leray spectral sequence for τ : Sfppf → Sf and the Kummer 
sequence gives the following exact commutative diagram

Pic(G) π′

d

H0
f (G, (R1τ∗Gm)�n)

d′

0 H2
ét(G,μ�n)f H2

ét(G,μ�n) π

i

H0
f (G,R2τ∗μ�n)

0 H2
ét(G,Gm)f H2

ét(G,Gm)

�n

H0
f (G,R2τ∗Gm)

H2
ét(G,Gm,G)

(6.1)

where (R1τ∗Gm)�n is the cokernel of the multiplication by �n. Since �nx = 0, we can choose an y ∈
H2

ét(G, μ�n) such that i(y) = x. By Corollary 5.3, the isogeny �2n : G → G is a finite locally free covering 
which splits x, that is x ∈ H2

ét(G, Gm)f . Moreover i((l2n)∗y) = (l2n)∗i(y) = 0 and so there exists an element 
z ∈ Pic(G) such that d(z) = (l2n)∗y. In particular d′(π′(z)) = π((l2n)∗y) is an element of H0

f (G, R2τ∗μ�n). 
By the Theorem of the Cube for the extension G (see [11, Prop 2.4]), we have that (l2n)∗z = l2nz′ for some 
z′ ∈ Pic(G), which implies that π′(z) = 0 in (R1τ∗Gm)�n(Gf ). From the equality π((l2n)∗y) = d′(π′(z)) = 0
follows π(y) = 0, which means that y is an element of H2

ét(G, μ�n)f .
(3) Here we show that ker(H2

ét(ε))(�) ⊆ τ∗H2
f (G, Gm). By the first two steps, H2

f (G, τ∗μ�n) maps 
onto ker(H2

ét(ε))(�). Since H2
f (G, τ∗μ�n) ⊆ H2

f (G, τ∗Gm), we can then conclude that ker(H2
ét(ε))(�) ⊆

τ∗H2
f (G, Gm).

(4) Let x be an element of ker(H2
ét(ε)) with �nx = 0 for some n. Using the morphism of sites τ : Sfppf →

Sf , in [27, Lem 3.2] Hoobler built a commutative diagram where upper and lower lines give rise to spectral 
sequences comparing Čech and sheaf cohomology for Sfppf and Sf . Using this diagram he showed that the 
group τ∗H2

f (G, Gm) is contained in the Čech cohomology group Ȟ2
ét(G, Gm). Thus, from step (3), x is an 
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element of Ȟ2
ét(G, Gm). By Corollary 5.3, the isogeny �2n : G → G is a finite locally free covering which 

splits x, that is x ∈ Ȟ2
ét(G, Gm)f . In fact x is an element of ker

[
Ȟ2

ét(ε) : Ȟ2
ét(G, Gm) → Ȟ2

ét(S, Gm)
]
f
. 

Finally by [27, Prop 3.1.] we can then conclude that x is an element of Br(G). �
Finally we can prove

Theorem 6.2. Let M = [u : X → G] be a 1-motive defined over a normal and noetherian scheme S. 
Assume that the extension G underlying M satisfies the generalized Theorem of the Cube for a prime 
number � distinct from the residue characteristics of S. Then the �-primary component of the kernel of the 
homomorphism H2

ét(ε) : H2
ét(M, Gm,M) → H2

ét(S, Gm,S) induced by the unit section ε : S → M of M , is 
contained in the Brauer group of M :

ker
[
H2

ét(ε) : H2
ét(M,Gm,M) −→ H2

ét(S,Gm,S)
]
(�) ⊆ Br(M).

Proof. We have to show that if G satisfies the generalized Theorem of the Cube for a prime �, then

ker
[
H2

ét(ε) : H2
ét(M,Gm,M)) −→ H2

ét(S,Gm,S)
]
(�) ⊆ Br(M).

In order to simplify notations we denote by ker(H2
ét(ε)) the kernel of the homomorphism H2

ét(ε) :
H2

ét(M, Gm,M)) → H2
ét(S, Gm,S). Let x be an element of ker(H2

ét(ε)) such that �nx = 0 for some n. Let 
y = ι∗x the image of x via the homomorphism ι∗ : H2

ét(M, Gm,M) → H2
ét(G, Gm,G) induced by the quotient 

map ι : G → [G/X]. Because of the commutativity of the following diagram

H2
ét(M,Gm,M)

H2
ét(ε)

ι∗ H2
ét(G,Gm,G)

H2
ét(εG)

H2
ét(S,Gm,S) H2

ét(S,Gm,S)

(6.2)

(since ε : S → M is the unit section of M and εG : S → G is the unit section of G, ι ◦ εG = ε), y is in fact an 
element of ker(H2

ét(εG))(�). By Proposition 6.1, we know that ker(H2
ét(εG))(�) ⊆ Br(G), and therefore the 

element y defines a class [A] in Br(G), with A an Azumaya algebra on G.
Via the isomorphisms Gerbe2

S(M)(Gm,M) ∼= H2
ét(M, Gm,M) and Gerbe2

S(Gm,G) ∼= H2
ét(G, Gm,G) obtained 

in Corollary 2.4, the element x corresponds to the Gm,M-equivalence class H of a Gm,M-gerbe H on M, and 
the element y corresponds to the Gm,G-equivalence class ι∗H of the Gm,G-gerbe ι∗H on G, which is the 
pull-back of H via the quotient map ι : G → [G/X]. By the effectiveness of the 2-descent of Gm-gerbes with 
respect to ι proved in Lemma 4.3, we can identify the Gm,M-gerbe H on M with the triplet (ι∗H, ϕ, γ), where 
(ϕ, γ) is 2-descent data on the Gm,G-gerbe ι∗H with respect to ι. More precisely, ϕ : p∗2ι∗H → μ∗ι∗H is an 
equivalence of gerbes on X×SG and γ :

(
(idX×μ)∗ϕ

)
◦
(
(p23)∗ϕ

)
⇒ (mX×idG)∗ϕ is a natural isomorphism 

which satisfy the compatibility condition (4.2). Moreover via the inclusions ker(H2
ét(εG))(�) ↪→ Br(G) δ

↪→
H2

ét(G, Gm,G), in Gerbe2
S(Gm,G) the class ι∗H coincides with the class δ(A) of the gerbe of trivializations 

of the Azumaya algebra A.
Now we will show that the 2-descent data (ϕ, γ) with respect to ι on the Gm,G-gerbe ι∗H induces a 

descent datum ϕA : p∗2A → μ∗A with respect to ι on the Azumaya algebra A, which satisfies the cocycle 
condition (4.1). Since the statement of our main theorem involves classes of Azumaya algebras and Gm-
equivalence classes of Gm-gerbes, we may assume that ι∗H = δ(A), and so the pair (ϕ, γ) are canonical 
2-descent data on δ(A). The equivalence of gerbes ϕ : p∗2δ(A) → μ∗δ(A) on X×SG implies an equivalence of 
categories ϕ(U) : p∗2δ(A)(U) → μ∗δ(A)(U) for any object U of Sét and hence we have the following diagram
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EndOX×SG
(p∗2L1)

Endϕ(U)

a1
p∗2A|U

EndOX×SG
(μ∗L2)

a2
μ∗A|U

(6.3)

with L1 and L2 objects of Lf(G)(U). For any object U of Sét, we define ϕA
|U := a2 ◦ Endϕ(U) ◦ a−1

1 :
p∗2A|U → μ∗A|U . It is an isomorphism of Azumaya algebras over U . The collection (ϕA

|U )U of all these 
isomorphisms furnishes the expected isomorphism of Azumaya algebras ϕA : p∗2A → μ∗A on X ×S G. For 
any object U of Sét, the natural isomorphism γ :

(
(idX × μ)∗ϕ

)
◦
(
(p23)∗ϕ

)
⇒ (mX × idG)∗ϕ induces (

(idX ×μ)∗Endϕ(U)
)
◦
(
(p23)∗Endϕ(U)

)
= (mX × idG)∗Endϕ(U) and so ϕA satisfies the cocycle condition 

(4.1).
By Lemma 4.2 the descent of Azumaya algebras with respect to ι is effective, and so the pair (A, ϕA)

corresponds to an Azumaya algebra A on M, whose equivalence class [A] is an element of Br(M). �
Corollary 6.3. Let M be a 1-motive defined over an algebraically closed field of characteristic zero. Then 
Br(M) ∼= H2

ét(M, Gm,M).

Proof. First we prove that H2
ét(M, Gm,M) is a torsion group: in fact, as already observed, H2

ét(G, Gm,G)
is a torsion group and by Corollary 2.4 Gerbe2

S(M)(Gm,M) ∼= H2
ét(M, Gm,M) and Gerbe2

S(Gm,G) ∼=
H2

ét(G, Gm,G). Now by Lemma 4.3, the 2-descent of Gm-gerbes with respect to the quotient map ι : G →
[G/X] ∼= M is effective and so also the group H2

ét(M, Gm,M) is torsion. Finally, if S is the spectrum of an al-
gebraically closed field of characteristic zero H2

ét(S, Gm,S) = 0, and therefore the statement is a consequence 
of Theorem 6.2. �
Appendix A. A communication from P. Deligne on 2-descent theory for stacks

Let S be a site. For our applications, S will be the site of a scheme S for a Grothendieck topology, that 
is the category of S-schemes endowed with a Grothendieck topology.

Here we describe the 2-descent theory for stacks over S following Deligne’s indications. We will consider 
two different points of view in order to describe this 2-descent.

We start with the point of view of covering sieves. Let Cr be a covering sieve of the final object of S. 
In the case of a scheme S, Cr is a sieve generated by a covering family of arrows (Xi → S)i, that is Cr
consists of the S-schemes T such that it exists a morphism T → Xi of S-schemes for an index i. With these 
notation, the 2-descent data for a stack X with respect to the functor Cr → S are the following:

• for any object T in Cr, a stack XT over T
• for any arrow a : T ′ → T between objects of Cr, an equivalence of stacks ϕa : a∗XT → XT ′ over T ′,
• for any composite T ′′ b→ T ′ a→ T in Cr, a natural isomorphism ϕab ⇒ ϕb ◦ b∗ϕa between equivalences of 

stacks over T ′′,
• for any triple composite T ′′′ c→ T ′′ b→ T ′ a→ T in Cr, a compatibility condition ϕbc ◦ (bc)∗ϕa = ϕc ◦ c∗ϕab

involving the above natural isomorphisms.

Now we describe the 2-descent of stacks from the point of view of Čech-coverings. Let S′ be a covering of 
the final object of the site S that we denote by S. In the case of the site of a scheme S for a Grothendieck 
topology, S′ is a covering of S for the chosen Grothendieck topology. The 2-descent data for a stack with 
respect to the covering S′ → S are the following:

(1) a stack X over S′
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(2) over S′ ×S S′, an equivalence of stacks ϕ : p∗1X → p∗2X, where pi : S′ ×S S′ → S′ are the natural 
projections,

(3) over S′×SS
′×SS

′, a natural isomorphism γ : p∗23ϕ ◦p∗12ϕ ⇒ p∗13ϕ, where pij : S′×SS
′×SS

′ → S′×SS
′

are the partial projections,
(4) over S′ ×S S′ ×S S′ ×S S′, the compatibility condition

p∗134γ ◦ [p∗34ϕ ∗ p∗123γ] = p∗124γ ◦ [p∗234γ ∗ p∗12ϕ], (A.1)

where pijk : S′ ×S S′ ×S S′ ×S S′ ×S S′ → S′ ×S S′ ×S S′ and pij : S′ ×S S′ ×S S′ ×S S′ → S′ ×S S′

are the partial projections.

A nice explanation of this last compatibility condition can be found in [12, page 442 diagram (6.2.8)]. The 
above 2-descent of stacks through Čech-coverings furnishes Breen’s semi-local description of gerbes cited in 
Section 2.3.

Now if G be an L-gerbe on S, with L an abelian band, the 2-descent data for G with respect to the 
covering S′ → S become in this case the following:

(1′) a neutral L-gerbe over S′, that is Tors(L), or a neutralization of a L-gerbe G′ over S′, that is an 
equivalence of S′-stacks Ψ : G′ → Tors(L),

(2′) over S′ ×S S′, an L-torsor T (1, 2). In fact by [20, Chp IV, Prop 5.2.5 (iii)] we have an equivalence of 
categories between the category of equivalences between p∗1Tors(L) and p∗2Tors(L) and the category of 
L-torsors.

(3′) over S′ ×S S′ ×S S′, an isomorphism γ : T (1, 2) ∧L T (2, 3) → T (1, 3) of L-torsors,
(4′) over S′ ×S S′ ×S S′ ×S S′, the compatibility condition is that the two isomorphisms of L-torsors from 

T (1, 2) ∧L T (2, 3) ∧L T (3, 4) to T (1, 4) should be equal.

Remark. If in (2′) the L-torsor T (1, 2) is trivial, that is T (1, 2) = L, then the datum (3′) becomes a section 
of L over S′×S S′×S S′ and the compatibility condition (4′) becomes that this section is in fact a 2-cocycle 
(see also end of [14, end of 2.3]). This is the heuristic explanation of the homological interpretation of gerbes 
proved in Theorem 2.2.
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