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Abstract
In his 1916 review paper on general relativity, Einstein made the often-quoted oracu-
lar remark that all physical measurements amount to a determination of coincidences,
like the coincidence of a pointer with a mark on a scale. This argument, which
was meant to express the requirement of general covariance, immediately gained
great resonance. Philosophers such as Schlick found that it expressed the novelty
of general relativity, but the mathematician Kretschmann deemed it as trivial and
valid in all spacetime theories. With the relevant exception of the physicists of Lei-
den (Ehrenfest, Lorentz, de Sitter, and Nordström), who were in epistolary contact
with Einstein, the motivations behind the point-coincidence remark were not fully
understood. Only at the turn of the 1960s did Bergmann (Einstein’s former assis-
tant in Princeton) start to use the term ‘coincidence’ in a way that was much closer
to Einstein’s intentions. In the 1980s, Stachel, projecting Bergmann’s analysis onto
his historical work on Einstein’s correspondence, was able to show that what he
started to call ‘the point-coincidence argument’ was nothing but Einstein’s answer
to the infamous ‘hole argument’. The latter has enjoyed enormous popularity in the
following decades, reshaping the philosophical debate on spacetime theories. The
point-coincidence argument did not receive comparable attention. By reconstructing
the history of the argument and its reception, this paper argues that this disparity of
treatment is not justified. This paper will also show that the notion that only coinci-
dences are observable in physics marks every critical step of Einstein’s struggle with
the meaning of coordinates in physics.
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I was too much a prisoner of the idea that our equations must fully reproduce
[...] the relations between the phenomena and the chosen coordinate system,
whereas we can be happy if they duly reproduce the mutual relations between
the phenomena

—Lorentz to Ehrenfest, Jan. 11, 1916

1 Introduction

In one of the opening sections of his 1916 review paper on general relativity, Ein-
stein (1916a, 776–777) made the often-quoted remark that all our measurements
amount to the determination of spacetime coincidences, like the coincidence of a
pointer with a mark on a scale. Such statements did not entail any reference to
coordinates, lending support to Einstein’s stance that there is no reason to privilege
one coordinate system over another. The sudden appearance of the ‘coincidences’-
parlance in Einstein’s writings gained immediate resonance. Philosophers such as
Moritz Schlick (1917) found that Einstein’s coincidence remark aptly expressed the
conceptual novelty of general relativity with respect to previous spacetime theories.
On the contrary, the young mathematician Erich Kretschmann (1917) deemed the
argument as trivial and actually applicable in all spacetime theories. Kretschmann’s
objection was quite serious but was initially neglected; on the contrary, Schlick’s
interpretation was essentially off-track but enjoyed significant success (Giovanelli
2013). However, in hindsight, despite the fact that both Schlick (Engler and Renn
2013) and Kretschmann (Howard and Norton 1993) have been credited for suggest-
ing this argument to Einstein, both readings could not fully grasp the problem that
Einstein’s remark was trying to address, a problem that remained hidden in Einstein’s
private correspondence.

Nevertheless, led astray by Einstein’s elliptic formulation, philosophers of the
most disparate schools, in a case of intellectual pareidolia, believed to see a confir-
mation of their views in Einstein’s reduction of all measurements for the assessment
of coincidences (Cassirer 1921, 83; Petzoldt 1921, 64; see Howard 1991). Not sur-
prisingly, the argument continued to enjoy certain popularity among philosophers
for several decades (e.g., Reichenbach 1924, 1928; Popper 1929). On the contrary,
although physicists continued to struggle with the physical meaning of coordinates
in general relativity (Darrigol 2015), there is no evidence that Einstein appealed to
the observability of coincidences again besides a cursory remark in his 1919 Berlin
lectures on general relativity.1 While he was moving toward the unified field the-
ory project, the positivist undertones of the language of ‘coincidences’ had probably
become a liability rather than an asset (Giovanelli 2016; 2018). As far as I can see,
it was not until the turn of the 1960s that Peter G. Bergmann (1961), former assistant
of Einstein at Princeton, used the language of ‘coincidences’ in order to address the
problem of observables in general relativity.

1This is at least the last instance I was able to find.
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In the early 1980s, John Stachel (1980), in a famous talk at the University of
Jena, applied the gist of Bergmann’s ‘measurability analysis’ (Bergmann and Smith
1982) to his archival work on Einstein’s correspondence (Stachel 1993). Stachel
realized that what he started to call the ‘point-coincidence argument’ was nothing
but an attempt to overcome the infamous ‘hole argument’, Einstein’s refutation of
the predictability of a set of field equations holding in any coordinate system. The
argument was first mentioned in print by Roberto Torretti (1983), but a detailed his-
torical reconstruction was laid down by John Norton (1984, 1987) in his pioneering
investigations on Einstein’s path to the 1915 field equations. Starting from a clas-
sical paper that Norton wrote soon thereafter with John Earman (1987), the ‘hole
argument’ has started to enjoy enormous popularity in philosophical (see Rickles
2007, for an overview) and, to a lesser extent, physical literature (see Stachel 2014,
for an overview). In particular, it was pivotal for the revival of the substantival-
ism/relationalism debate that dominated the philosophical discussions in the ensuing
decades (Pooley 2013). By contrast, the point-coincidence argument seemed to have
been relegated to the rank of antiquarian curiosity. The literature on this topic has
usually focused on philosophers’ misunderstanding of Einstein’s remark (Ryckman
1992; Howard et al. 1999) rather than on the actual impact of the point-coincidence
argument on the history of physics. Over a century has now passed since the argu-
ment was last used by Einstein. Thus, this might be a good opportunity to try and
reassess the meaning of Einstein’s declaration that only coincidences are observable
in physics, also in light of additional textual evidence that has recently emerged.

The goal of the present paper is to provide a reasonably self-contained and his-
torically accurate overview of the history of the ‘point-coincidence argument’. For
this purpose, the paper attempts (a) to insert some sparse material with which Ein-
stein scholars might already be familiar into a broader and unitary narrative arc.
In particular, it will be shown that the appearance of the point-coincidences par-
lance in Einstein’s writings marks all the main stages of Einstein’s struggle with the
meaning of coordinates in physics: from Einstein’s reliance on the idea of a coor-
dinate scaffolding (Section 2.1) to its Aufhebung within the framework of special
relativity (Section 2.3); from his recognition of the physical insignificance of coordi-
nates (Section 2.3) to his concerns about its consequences for physics’ predictability
(Section 3.1); and from his apparent full acceptance of the immateriality of the coor-
dinate systems (Section 5) to the reemergence of never-fading nostalgia for the idea
of a physically preferred class of coordinates (Section 6.1).

Moreover, (b) the paper will integrate this material with a recently published
correspondence2 with (Section 4.1) and within (Section 4.2) the Leiden physics com-
munity (Hendrik A. Lorentz, Paul Ehrenfest, Willem de Sitter, Johannes Droste, and
Gunnar Nordström)—besides Berlin, the most important center of relativistic stud-
ies in Europe at that time. These documents demonstrate that Einstein’s confusion
about the meaning of coordinates was not simply an idiosyncratic blunder, but the
result of widespread and deep-seated prejudices with which early relativists could
not easily dispense. Through the point-coincidence argument, Einstein successfully

2This correspondence has recently appeared in the second volume of Lorentz’s correspondence edited by
A.J. Kox, to whom I am deeply grateful for giving me access to this material in advance.
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convinced the Leiden group to recognize that the choice of coordinates was com-
pletely arbitrary in general relativity. However, it was the Leiden group that pressured
Einstein to resist the sirens of the privileged coordinate system in his search for grav-
itational wave solutions. It has seldom been noticed that, using the point-coincidence
argument once again in correspondence with Gustav Mie, Einstein could entirely
eliminate the last remnant of the materiality of the coordinate system (Section 6.2).
Soon after that, (c) countering Kretschmann’s ‘triviality objection’, Einstein raised
the point-coincidence argument to the status of a fundamental selection principle
(Section 7). While pre-general-relativistic theories can be always formulated in a
way that more than spacetime coincidences were observable, general-relativistic the-
ories are singled out by the fact that such formulations are impossible. Nothing but
coincidences are observable in general relativity.

Modern relativists are already used to thinking of coordinates as meaningless
parameters and find early ‘reification’ of the coordinate network hard to fathom.
In this sense, the idea of ‘coordinate scaffolding’ can be probably regarded as an
instance of what Gaston Bachelard (1938) has called an ‘epistemological obstacle’.3

These obstacles are not of a technical (i.e., either mathematical or experimental)
nature, but rather of a ‘conceptual’ one. Once they are overcome, it appears sur-
prising that they might have constituted a hindrance in the first place. To capture
this discrepancy, this paper makes large use of original texts and private correspon-
dences in which these prejudices are recorded more or less immediately, when the
information obtained post facto, after the ‘obstacle’ was removed, was not available.
Breaking an epistemological obstacle is ultimately a philosophical act, despite being
entangled in the technical details of a theory as complex as general relativity, an
act that, in Bachelard’s nomenclature, creates an ‘epistemological rupture’. Indeed,
Einstein insisted until the end of his life that, minor new predictions aside, the great-
est achievement of general relativity was the ‘overcoming’ of the concept of inertial
frame (Einstein to Besso, Aug. 10, 1954; Speziali 1972, Doc. 210). By showing that
physics was still possible without a material reference frame, the point-coincidence
argument had a third function, which, moving beyond Bachelard’s terminology,
might be called an ‘epistemological reconciliation’, the reestablishment of continu-
ity after the rupture. Previous theories aimed to predict the position of point particles
with respect to material scaffolding. However, on closer inspection, what these the-
ories were actually predicting has always been the reciprocal coincidences of two
physical systems. Ultimately, had the theory been sufficiently powerful, it would have
been able to describe the dynamics of both systems conjointly (Giovanelli 2014).

Modern presentations of the mathematical apparatus of relativity theory start at
the end of this process where nothing but a manifold of points is left. They attempt to
grasp the nature of actual physical spacetime by adding further geometrical structure
(topological, differential, affine, metric, etc.) without ever making essential reference
to particular coordinates (Friedman 1983; Earman 1989). From the perspective of this
coordinate-free approach, many of the problems discussed in this paper might appear

3Here, I use Bachelard’s terminology with some freedom.
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technically trivial (Weatherall 2018). However, for the historically minded philoso-
pher of science, it is within the very process of ‘becoming trivial’ that most relevant
conceptual issues are hidden. As a matter of fact, the history of physics has actually
moved in the opposite direction (Norton 2002). It started by introducing coordinates
as readings on a material rods-and-clocks network, and it was subsequently pres-
sured to progressively deprive them of any unnecessary structure. These two opposite
strategies, the additive and subtractive strategies as they might be called (Norton
1999), complement each other. Often in the history of physics, one needs to first
enlarge the space of possibilities (as exemplified by the discovery of non-Euclidean
geometries, non-Riemannian geometries, etc.) in order to be able to restrict it once
again. As is seldom noticed, the point-coincidence argument played a central role in
every relevant step of the process of liberating physics from the prison of the coor-
dinate grid. At every step of the process, it was thinking of measurements in terms
of ‘coincidences’ that allowed Einstein to chip away yet another “remnant of the
materiality (physikalischer Gegenständlichkeit)”4 of space and time (Einstein 1916a,
776).

2 Themateriality of the coordinate system: a proto-version
of the point-coincidence argument

2.1 Coordinates as readings on rods and clocks

In January 1911, when Einstein received a call to Prague (Illy 1979) and was on the
verge of leaving the University of Zurich, he was invited to give a farewell lecture on
relativity at the local Naturforschende Gesellschaft (Einstein 1911b). This lecture—
in which Einstein used the term ‘Relativity Theory’ in a title for the first time–turned
out to be a good opportunity to make some simple epistemological considerations.
In particular, Einstein offered a pedagogical account of the role of the coordinate
system in physics, presenting it as an extension of practices common in everyday
experience. In a world with the electromagnetic field but without gravitational field,
objects that carry no electric charge move in straight lines. Thus, one can measure
the strength of various forces in terms of how much they cause charged objects (i.e.,
objects subject to the forces) to deviate from uniform, straight-line motion. Of course,
this claim is meaningless if the successive positions of the moving objects are referred
to an arbitrarily moving coordinate system (e.g., one undergoing arbitrary rotation).
What does it mean, however, to describe the position of a material point relative to a
coordinate system?

In mathematical physics, it is customary to relate things to coordinate systems
[...] What is essential in this relating-to-something is the following: when we
state anything whatsoever about the location of a point, we always indicate the
coincidence of this point with some point of a specific other physical system.

4In translating Gegenständlichkeit with ‘materiality’ rather than with the customary ‘objectivity’ I follow
Darrigol (2015).
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If, for example, I choose myself as this material point, and say, ‘I am at this
location in this hall,’ then I have brought myself into spatial coincidence with a
certain point of this hall, or rather, I have asserted this coincidence. This is done
in mathematical physics by using three numbers, the so-called coordinates, to
indicate with which points of the rigid system, called the coordinate system,
the point whose location is to be described coincides (Einstein 1911b, 2; my
emphasis).

At this point, the use of the term ‘coincidence’ is still an isolated instance in Einstein’s
writings. Einstein seems to have introduced it merely to illustrate that, in his view,
‘space’ did not play for the physicist the role of an independent metaphysical entity
but is embodied in a concrete, material scaffolding of some sort.

Ultimately, Einstein pointed out, to establish where an object is in space means to
specify the ‘coincidence’ of a point of the object with the point of another physical
system, a ‘body of reference’ (Bezugskörper); it might be the surface of the Earth,
the city of Zurich, or the walls of the hall in which Einstein was giving his lecture.
To communicate which point of the hall one is referring to, one might place there
a material body of sufficiently small dimensions, say the podium of the speaker, as
a ‘label’ that makes the point recognizable. However, if one wants to locate a point
in the empty space over the podium, no such marks are available. Then, one might
erect a bar perpendicular to the podium, one end of which coincides with the podium
and the other with the point in question. The length of the bar, measured with a unit
rod, allows marking the point in question so as to communicate its position to others.
Proceeding in this way, one can progressively discard the specific characteristics and
even the presence of a particular rigid body (the Earth, the hall, the podium, etc.).

As a ‘body of reference’, one might choose three mutually perpendicular rigid
material lines issuing from one point, the origin of the coordinate system, which
define three planes. We construct perpendiculars to the coordinate planes (Fig. 1)
and count how many times a given unit measuring rod can be laid along these per-
pendiculars, marking off the values of such counting on the scaffolding. Wherever a
point may be located, one can always think of a rigid rectangular system of unit rods
that eventually coincide with the point under consideration. The position of a point
can then be univocally identified by means of three numbers, the so-called ‘coordi-
nates’ x, y, z that are the results of measurements made by rigid measuring rods,

Fig. 1 From Einstein and Infeld
(1938, 212)
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that is, rods having a sequence of marks at regular intervals. The numbering system
thus obtained is called a ‘Cartesian coordinate system’. We will designate coordinate
systems with the letter K .

If one wants to describe the motion of the material point, one needs to give the
values of x, y, z, as three functions of time, that is, one needs to introduce a fourth
parameter t . A point is at rest relatively to our reference body if these three functions
are constant. To define the physical meaning of t , one might place clocks at each
intersection of rods on the coordinate systemK . A clock is a system which undergoes
a physical process passing periodically through identical phases indicated by some
kind of counter, e.g., a fixed-numbered dial. The numerical values of t correspond to
the number of such oscillations marked off by the displacement of the clock hands
on the dial. We can predict the position, at any time, of a body falling parallel to
the y-axis (x = const, z = const), and confirm our prediction by observation. If a
graduated rod is placed beside the y-axis, we can establish with what mark y on the
rod the falling body will coincide at any given moment when the hand of a clock will
coincide with the mark t . One might, e.g., predict that the coincidence of the particle
with the earth is characterized by t = 4 and y = 0.

As one can see, Einstein appears to have conceived physical space and time that
corresponds to the mathematical space and time as fully ‘arithmetized’. A point in
space is nothing but a triple of numbers x, y, z and instant of time is nothing but
a number t (Norton 2002). It thus becomes possible to treat spatial and temporal
relations in a purely algebraic manner. The choice of the parameters x, y, z, t is, in
principle, arbitrary. If the geometry of space is Euclidean, although one can resort to
other numbering systems (polar, cylindrical coordinates, etc.),5 Cartesian coordinates
x, y, z, are singled out by the fact that, given a unit of length, coordinate numbers
directly indicate perpendicular distances from the origin. Formally, it means that it is
advisable to chose the coordinate numbers so that the distance ds between any two
arbitrarily close points x, y, z, and x + dx, y + dy, z + dz satisfies the condition

ds2 = dx2 + dy2 + dz2 . (1)

If, for instance, one chooses a different point of origin, or orients the coordinate axes
in different directions, to the same point might be assigned a different set of coordi-
nate numbers x, y, z,. However, the distance ds between any two close points will
be expressed by the same (1). Such substitutions of variables are called ‘coordinate
transformations’, and the equations relating them might be called ‘transformation
equations’. Euclidean geometry is concerned with the substitutions of spatial coor-
dinates x, y, z,; classical kinematics considers coordinate transformations involving
the time variable t as well.

What Einstein used to call the geometric configuration of a three-dimensional
body with respect to K (Einstein 1908, 439; , 28; 1911e, 510) is the totality of
distances s between any pair of its points x, y, z, as calculated using Eq. 1. The

5Cf. below footnote 11.
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geometry of the rigid body is the set of substitutions of x, y, z, that leaves the
geometric configuration of a body unchanged.6 All Cartesian coordinate systems
K, K ′, K ′′ related by such coordinate transformations are geometrically equivalent.
All one can say about them is that each Cartesian coordinate system has a different
position or orientation with respect to the other systems. In an analogous way, Ein-
stein labeled the kinematic configuration of a three-dimensional body with respect
to K (Einstein 1908, 439; , 28; 1911a, 510) the totality of the distances between any
two of its points x, y, z, at the same time t as calculated using Eq. 1. The kinematics
of the rigid body is the set of substitutions of the coordinates x, y, z, t that leaves
the kinematic configuration of a body unchanged. All Cartesian coordinate systems
K, K ′, K ′′ related by such transformations are kinematically equivalent. All one can
say about them is that each Cartesian coordinate system is moving or at rest with
respect to the other systems. If it is tacitly assumed that t = t ′ = t ′′, . . . , then the
geometric and kinematic configurations of a three-dimensional body are the same in
all kinematically equivalent coordinate systems.7

However, the kinematic equivalence of the Cartesian coordinate systems in arbi-
trary relative motion does not necessarily hold from a dynamical point of view. In
particular, it can be shown that, if Newton’s laws of motion for point particles can be
written in the simplest form with respect to a coordinate system K , then they can be
written in the same form only in the Cartesian coordinate systems K ′, K ′′, K ′′′, . . .
that are in uniform translational motion with respect to K . Such coordinate systems
are singled out by the fact that if zero net forces act on a moving particle, its spatial
coordinates x, y, z, change as a linear function of t . True net forces cause parti-
cles to deviate from this ‘standard’ path. Although other coordinate systems can be
used, only in such Cartesian coordinate systems can coordinate numbers x, y, z, t

be considered as the result of measurements made with ‘good’ rods and clocks. If
one describes the motion of the same force-free particles with respect to a Cartesian
coordinate system K ′ coinciding with K at t = 0, but rotating with angular velocity
ω around the z-axis, the particle’s coordinates x, y, z, appear to change as nonlin-
ear functions of t and extra terms depending on ω must be added to Newton’s laws.
Multiplied by the mass of the particles, these terms can be interpreted as fictitious
forces deflecting all free particles from their uniform motion. Rods and clocks at rest
in these coordinate systems do not reliably measure coordinates differences. Philipp
Frank (1908, 192) named the set of transformation equations relating dynamically
equivalent coordinate systems ‘Galilean transformations’. The Galilean transforma-
tions constitute the algebraic expression of the Newtonian kinematics of the rigid
body in uniform parallel translation.

As is well known, Maxwellian electrodynamics is not compatible with this kine-
matics. It seemed to be possible to write Maxwell’s equations in their simplest form

6E.g., the geometric configuration of a sphere of radius r centered at the origin of K is given by the
equation x2 + y2 + x2 = r2. This equation is the same for all other Cartesian coordinate systems however
positioned or oriented.
7A sphere of radius r whose coordinates x, y, z, satisfy x2 + y2 + x2 = r2 with respect to K will be a
sphere with respect to all coordinate systems moving with respect to K ′.
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only with respect to one Cartesian coordinate system K , the coordinate system with
respect to which the velocity of light is c, but not with respect to all other coordi-
nate systems moving differently. A coordinate scaffolding is necessary not only for
the description of locations but also for the representation of vectors, like the electric
and magnetic vector fields E(x, y, z) and B(x, y, z). At each of the points x, y, z,

at the time t one can decompose each field into in its three components Ex, Ey, Ez

and Bx, By, Bz along the three axes of K . Once one has established where the point
x, y, z, is physically located, one can bring a suitable measuring device in coinci-
dence with that point. It might be a spring balance, so graduated to measure force
in an unaccelerated system, provided with an electric charge. The acceleration expe-
rienced by the charge in the x-direction will bring a pointer on a dial to coincide
with a mark; the number one reads is the value of the component Ex of the elec-
tric field at x, y, z, at the time t . A similar procedure can be used to measure the
components of B. One can then check whether the values of E and B predicted by
Maxwell’s equations at x, y, z, t correspond to the measured ones. If one carries out
the transformation laws of the field vectorsE andBwith respect to the Galilean trans-
formations, one can calculate the components of E and B with respect to a moving
system K ′. The transformed quantities do not obey Maxwell’s equations in the same
form, with respect to the new coordinate system K ′, i.e., E and B are not the same
functions of the new coordinates. The fields Ex, Ey, Ez and Bx, By, Bz measured
with respect to K represented the ‘real’ state of the ether; the transformed field com-
ponents E′

x, E
′
y, E

′
z and B ′

x, B
′
y, B

′
z with respect to a coordinate system K ′ moving

in uniform translation with respect to K were deemed as calculational tools.

2.2 Questioning the physical meaning of coordinates

However, this theoretical asymmetry between the rigid ether system K and the sys-
tem K ′ moving in parallel translation with respect to it had no physical counterpart.
Einstein (1905) realized that the apparent inconsistency between mechanics and elec-
trodynamics could be removed by challenging an unanalyzed prejudice implicit in
the Newtonian kinematics of the rigid body in parallel uniform translation. It could
be surmised that the result of rods-and-clocks measurements in two different coor-
dinate systems will assign not only different numbers to x, y, z,, but also different
numerical values to the time coordinate t . In this way, Einstein was able to reshape
the traditional relations between the geometry and kinematics of the rigid body. “We
obtain the shape of a body moving relative to the system K with respect to K ′ by
finding the points of K ′ with which the material points of the moving body coin-
cide at a certain time t of K ′” (Einstein 1911e, 510). Thus, the assertion about the
shape of a moving body acquires quite a complicated meaning since this shape can
be ascertained only with the aid of determinations of time. As it turned out, the geo-
metric configuration of a rigid body with respect to K is not necessarily identical to
its kinematic configuration with respect to K ′ as it was tacitly assumed in classical
kinematics.8

8A sphere moving along the x-axis whose coordinates satisfy x2 + y2 + x2 = r2 with respect to K will
be a flattened ellipsoid whose coordinates satisfy x2/

√
1 − v2/c2 + y2 + x2 = r2 with respect to K ′.
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A rigid body is defined thereby with respect to a coordinate system K , which, in
turn, must be regarded as a rigid body. Therefore, Einstein’s introduction of a new
kinematics of the rigid body implies at the same time a redefinition of what counts
as a rigid coordinate system K . Einstein could then introduce a new set of linear
transformation equations, the famous Lorentz transformations, relating the numeri-
cal values of the coordinates x, y, z, t of a point in K and the values x′, y′, z′, t ′
that the same point in K ′ satisfying the condition that the velocity of light in vacuum
is expressed by the same numerical value c in the two systems. Once we interpret
coordinates x, y, z, t as measurable with identical rods and clocks (which have the
same length and run at the same rate when compared with each other at relative
rest), the introduction of the Lorentz transformations is not simply a conventional
step, but implies predictions concerning the actual behavior of existing physical sys-
tems, predictions that can be experimentally verified or falsified, independently of
any dynamical laws. However, since coordinates enter in the formulation of all funda-
mental laws of physics, the Lorentz transformations could be elevated to a criterion to
judge well-establish dynamical laws, and a heuristic tool to find new ones (Einstein
1911c, 13). As it turned out, Maxwell’s equations happen to already satisfy this con-
dition. The vectors (Ex, Ey, Ez) and (Bx, By, Bz) play the same role in Maxwell’s
equations with respect to K as the vectors (E′

x, E
′
y, E

′
z) and (B ′

x, B
′
y, B

′
z) play in

Maxwell’s equations referred to K ′. Newton’s law of motion had to be modified
(Giovanelli 2020).

The impact of relativity theory on our conceptions of space and time was indeed
deep. In classical mechanics the claim that two occurrences take place ‘at the same
place in different times’ makes no sense unless a rigid ‘body of reference’ is pointed
out. Relativity theory forced us to recognize that the claim that two occurrences
take place ‘at the same time in different places’ also depends on the ‘body of ref-
erence’. Nevertheless, ‘where’ and ‘when’ something occurs were always meant as
a physical ‘coincidence’ with some material, non-accelerated ‘body of reference’.
Relativity theory ultimately only changed our definition of what counts as as ‘good’
‘rigid coordinate scaffolding’ K . As is well known, Einstein (1908) felt that the the-
oretical asymmetry between a ‘good’ acceleration-free K(x, y, z, t) and the ‘bad’
coordinate systemK ′(x′, y′, z′, t ′) accelerating with respect to the former was at least
questionable from an epistemological point of view. Thus, he sought a more encom-
passing set of transformation equations that would include Cartesian coordinate
systems that are accelerating (and rotating) relative to each other.

However, Einstein soon started to realize that the usual definition of coordinates in
terms of cubical scaffolding of rigidly connected rods and clocks had become prob-
lematic in uniformly accelerating and rotating coordinate systems. As we have seen,
relativity theory was ultimately conceived by Einstein as a new kinematics of the
rigid body in uniform parallel translation; but Einstein immediately started to suspect
that the development of full relativistic rigid body kinematics, which would include
accelerations and rotations, might lead to unexpected consequences (Einstein 1907a;
1907b). Indeed, Max Born (1909) soon showed that in relativity the kinematic def-
inition of a three-dimensional rigid body, even in the simple case of linear uniform
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acceleration, was a delicate matter. Rigidity, which was a kinematic ‘property’ of a
three-dimensional body in the classical theory, turned to be a dynamic ‘instruction’
of how to apply forces to different points of a body so that the reciprocal distances
between the body’s points remain constant in the comoving frame. Paul Ehrenfest
(1909) immediately pointed out that a ‘Born rigid body’ could not be put into rotation
(Einstein 1911e). Einstein sensed that the question of the rigid body in special rela-
tivity might have significant implications for the very definition of the coordinates in
accelerated frames (Stachel 1989; Maltese and Orlando 1995).

After some years of work on the quantum problem Einstein (1909a, b, 1910a, c), in
June 1911, while in Prague, Einstein (1911b) got back to the problem of gravitation.
A few years earlier, Einstein (1908) had singled out the well-known empirical fact
that the ratio between gravitational ‘charge’ and inertial mass is constant, in contrast
to, say, the ratio of electric charge and inertial mass. Making a particle more massive
does not make it more resistant to gravitational attraction since it also increases its
gravitational charge. Thus, it becomes impossible to single out a ‘good’ unaccelerated
coordinate system in which force-free particles move uniformly on straight lines. The
same reference system can be interpreted, with equal justice, as a ‘good’ coordinate
system K at rest in which there is a (homogeneous) gravitational field directed along
the −z-axis (with gravitational acceleration γ ) or as a noninertial, ‘bad’ frame K ′
accelerating in the z-direction (with acceleration −γ ). “If we accept this assumption”
“we obtain a principle that possesses great heuristic significance” (Einstein 1911d,
900).

It becomes possible to transfer the results obtained in an accelerated system to a
system with a uniform gravitational field. If a clock in an inertial system K(x, y, z)
reads time t , by a coordinate transformation one can infer that the same clock would
read time t ′ = t (1 + γ x′/c2) in a coordinate system K ′(x′, y′, z′) in uniform accel-
eration with respect to K . However, such a system is indistinguishable from a system
at rest in a uniform gravitational field. Thus, one can predict that the time t ′ measured
by an identical clock would be 1+�/c2 times slower if it is placed in an inertial sys-
tem K at rest in a gravitational field (where � = x′γ is the gravitational potential).
With respect to K ′ not only all free particles but also light rays no longer travel along
straight lines, because their x′-coordinates are no longer linear functions of t , etc.;
thus the theory predicts that one should observe the same in a uniform gravitational
field. In general, if one knows the laws of nature (electrodynamics, thermodynamics,
etc.) with respect to a gravitation-free system K , then one can, by a mere coordinate
transformation, derive the laws relative to K ′ and, thus, the behavior of such a system
in a uniform gravitational field.

In February and March, 1912, Einstein (1912a, c) published two papers attempt-
ing to find the gravitational field equations for a theory of the static gravitational field
with a variable velocity of light. Einstein expressed for the first time in a published
paper his concerns regarding the physical significance that one can attribute to coor-
dinates in an accelerating system. He considered an unaccelerated rigid framework
of rods K , together with a set of suitably synchronized clocks at rest at each point
of the framework. He then introduced a system K ′(x′, y′, z′, t ′) accelerating relative



   45 Page 12 of 64 European Journal for Philosophy of Science           (2021) 11:45 

to the inertial system K(x, y, z, t). Einstein specified that K ′ is linearly accelerated
with respect to K in “Born’s sense” (Einstein 1912a, 356), that is, in such a way it
undergoes a rigid motion, in spite of not being a rigid body (Born 1909). In such a
system, differences of spatial coordinates x, y, z, can still be measured by Euclidean
rods at relative rest with respect to K ′; however, one has to abandon the assumption
that clocks directly measure the time coordinate t .

However, a Born rigid body cannot be put into rotation without stresses, deforma-
tions which will be different for different materials. Therefore the rigid scaffolding
used in classical mechanics and relativity theory cannot be used as a model for an
accelerated frame of reference in the theory of gravitation. Euclidean geometry “most
probably does not hold in a uniformly rotating system” (Einstein 1912a, 356; see
Kaluza 1910). If the coordinate system K ′(x′, y′, z′) rotates around the axis z = z′
with respect to K(x, y, z), a rigid unit rod with the same length in every position and
every orientation would not directly measure spatial coordinate differences x′, y′, z′.
Nevertheless, Einstein provisionally considered the interpretation of the coordinate
system as a rigid material scaffolding as to be “permitted despite the fact that, accord-
ing to the theory of relativity, the rigid body cannot possess real existence” (Einstein
1912a, 356). In general, stresses always emerge if the motion is non-Bornian (Her-
glotz 1911). However, at least in the case of linear acceleration, following Born’s
instructions, one can imagine “the rigid measuring body being replaced by a great
number of nonrigid bodies arranged in a row in such a manner that they do not exert
any pressure on each other in that each is supported separately” (Einstein 1912a,
356). This way, since distances do not change for the comoving observer, one can
still resort to the direct definition of spatial coordinates.

In a subsequent paper that was received in March of the same year (Einstein
1912c), Einstein investigated the influence of the static gravitational field on the
electromagnetic field. He started from Maxwell’s equations, which hold relative to a
nonaccelerated coordinate system K(x, y, z, t). “The physical meaning of the quan-
tities appearing in these equations is a perfectly determinate one” (Einstein 1912c,
150), he wrote. In such a system, x, y, z, are measured by rods laid along the rigid
system K and t is measured by identically constituted clocks arranged at rest at the
points of the system K . The vector fields E and B might be measured by spring
balances and so on. One can obtain the form of Maxwell’s equations in a system
K ′(x′, y′, z′, t ′) uniformly accelerated (in Born’s sense), by applying the transforma-
tion laws for E and B corresponding to the coordinate transformations for a system
accelerating along the x-axis, so that x′ = x + ac/2t2, where a is the acceleration.
According to the equivalence hypothesis, these transformed equations also deter-
mined how the electromagnetic processes occur in a static gravitational field. In
principle, if this theory must have an empirical content, the transformed quantities
should still have a defined physical meaning (Einstein 1912b, 446). For example, one
can measure the components of E′ with respect to K ′ with a ‘pocket’ spring balance
that can be transported to the point x′, y′, z′ in K ′ with different gravitational poten-
tials and check whether the predictions of the theory concerning the components of
E and B are correct (Einstein 1912b, 447).
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This provisional compromise did not last long. Einstein soon realized that, in the
general case of nonuniform gravitational fields, the statement of the principle of
equivalence “can be valid only for infinitely small fields”; thus, “Born’s accel. finite
system cannot be considered a static gravitational field” (Einstein to Ehrenfest, Jun.
20, 1912; CPAE, Vol. 5, Doc. 409), as Einstein initially thought. In a further paper
(Einstein 1912b), by addressing some objections of Max Abraham (1912a), Einstein
started to realize that the role of coordinates in physics as readings on rods and clocks
had to be completely abandoned. Following Abraham (1912b), Einstein implemented
for the first time (Minkowski 1909) formalism, in which the three-dimensional kine-
matics was translated into four-dimensional geometry (Renn 2007b). The spatial
coordinates x, y, z, and the time coordinate t were treated on an equal footing. In
analogy with Eq. 1, the interval ds between two infinitesimally closed spacetime
points can be expressed as function of the spacetime coordinates as:

ds2 = dx2 + dy2 + dz2 − c2dt2 , (2)

where c(x, y, z) is variable and plays the role of a scalar potential of the gravita-
tional field.9 The equivalence principle opens up the possibility that the equations of
the relativity theory that would also include gravitation may also be invariant with
respect to acceleration and rotation transformations, that is, to nonlinear transforma-
tions. Einstein might have realized that, just as the coefficient c of the time coordinate
is not constant in a linearly accelerating system, transforming the line element (2) to
rotating Cartesian spatial coordinates depends on coefficients that involve the angu-
lar frequency of rotation ω. This dependency has the consequence that also spatial
coordinates do not directly correspond to rods-and-clocks readings. Already in a
static gravitational field, Einstein commented that “the spacetime coordinates will
lose their simple physical meaning” (Einstein 1912b, 1064; my emphasis).

Einstein, like most physicists, considered the very notion of a massive rigid ‘coor-
dinate scaffolding’ an indefeasible condition for the possibility of physics. When
one claims ‘a particle will be at x, y, z, at t’, the latter numbers must be translated
into something like ‘the particle coincides with the southeast corner of the lab at 5
o’clock’. If an interpretation of this sort is not possible, the prediction does not seem
to have any verifiable meaning. However, the ‘materiality’ of the coordinate scaf-
folding was put in serious danger by his theory of gravitation. This tension is clearly
recognizable in a little-known remark appended to a manuscript on special relativity
on which Einstein worked in Prague and Zurich starting from 1912 (Rowe 2008):

One might ask whether such fastidious physical definitions for the time and
space coordinates are really necessary, that is whether it is really necessary to
burden the gentle and airy concepts of space and time with heavy rigid bodies
and clocks. In my opinion, it is not necessary, but it is advantageous to do so. It
is also possible to regard the x, y, z, t as mere mathematical variables (param-
eters), which have only a meaning in facilitating the formulation of physical

9The variability of c is actually only a coordinate effect.
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laws. The laws formulated with the help of such parameters then have con-
tent only in so far as these parameters can be eliminated from several of them.
This method of treatment does not alter the law by introducing arbitrary func-
tions of these variables in the same way as x, y, z, t . Our definitions for these
coordinates can be regarded as a convenient method of elimination. However,
I believe that the considerations and definitions given here are sufficient for
space and time only as long as one forgoes the introduction of gravitation into
the system of relativity (Einstein 1912; fn. 60; my emphasis)

Already in this early passage, Einstein stated clearly that there are two possible ways
to consider coordinates: (a) coordinates have physical significance, informing us of
the measurable space and time intervals; (b) coordinates are just parameters, catalog
numbers that serve only to distinguish a point from another (Westman and Sonego
2008). As Einstein conceded (for which see also Einstein , 25-26; fn. 1), all physical
theories, including mechanics and electrodynamics, in principle allow for both inter-
pretations of the coordinates. It is possible to express the equations of physics using
polar or cylindrical coordinates or other arbitrary parametrizations. However, in gen-
eral dynamical laws cannot be expressed in the simplest form in such systems.10 As
it turns out, only those coordinate systems for which these laws assume their simplest
form happen to be directly related to space and time measurements made by rods
and clocks (a). In that case, the coordinate system can be replaced by the material
coordinate scaffolding. Using (a) thus has a clear advantage over (b). If one follows
(a), expressions like E(x, y, z, t) and B(x, y, z, t) are not just a mathematical func-
tions, but physically significant quantities. As Einstein seemed to allude at the end
of the passage just quoted, the universal nature of gravitation made the interpreta-
tion (a) impossible. The influence of, say, the electromagnetic field on the reference
body can be made as small as one wants; on the contrary the action of gravitation
on the reference body can never be neglected. A nonaccelerated reference system K

behaves in the presence of a homogeneous gravitational field in the same way as if
it were a suitably chosen accelerated reference frame K ′. It becomes impossible to
establish whether K is a ‘good’ coordinate system in which nonaccelerated rods and
clocks at rest reliably read coordinate differences or a ‘bad’ one K ′ accelerating in
the opposite direction, in which coordinate numbers do not directly denote distances.
Thus, one lacks a direct procedure to ‘eliminate the parameters’ and substitute them
with physically meaningful numbers.

2.3 Coordinates as physically meaningless parameters

By 1912, Einstein had reached the worrying conclusion that the meaning of coor-
dinates as directly determined by measurements with rods and clocks had to be
abandoned in a theory of gravitation. The further steps from a scalar to a tensor theory

10E.g., extra terms appear in the acceleration of a particle when writing Newton’s laws of motion in polar
coordinates.
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of gravity are usually reconstructed relying on Einstein’s later recollections (Einstein
1923; 1933) but remain little documented by direct textual evidence. Einstein, at
some point, while still in Prague, must have seen the analogy between Minkowski’s
line element ds2 = −dx2

1 − dx2
2 − dx2

3 + dx2
4 (setting x4 = ct) in an accelerated or

rotational coordinate system and the line element in Gauss’s theory of surfaces, the
quadratic differential form:

ds2 = Edp2 + Fdpdq + Gdq2 . (3)

Einstein might have learned about it in Carl Friedrich’s (1897) lectures that he had
attended at the ETH (Reich 1994, 163ff.). In Gauss’s approach, one can cover a
curved surface using two families of nonintersecting curves so that, within each fam-
ily, each curve is distinguished by the parameters p (p = 1, p = 2, etc.) and q

(q = 1, q = 2, etc.). If these two families are selected to be infinitely dense, one can
in principle label any point on the surface through their intersections p = const and
q = const. For example, the point (5,3) is where the coordinate lines p = 5, q = 3
intersect. If one is dealing with a plane surface, one can always introduce a regular
network in which, given a unit of measure, these numbers directly represent actual
lengths from the origin p = 0, q = 0 using Eq. 1. However, in the general case, one
needs to know the three coefficients E, F , and G at every point (p, q) in order to
convert small coordinate differences dq and dp into actual distances ds on the sur-
face.11 Different surfaces are represented by different quadratic forms; however, the
converse is not true; the same surface can be covered with different grids of lines. In
order to decide whether two quadratic forms determine the same surface, one needs
to calculate the Gaussian curvature from E, F , and G and its first and second deriva-
tives. Nevertheless, Einstein did not seem to be interested in Eq. 3 inasmuch as it

11In Cartesian coordinates, once the origin and a unit of measure have been fixed, these numbers also
denote distances. Thus, the small distance ds between any two neighboring points can be directly calcu-
lated from the difference between their coordinates ds2 = dq2 + dp2(E = 1, F = 0,G = 1). This is not
the case in other coordinate systems, like polar coordinates p = r, q = ϑ on a flat surface, in which the
line element takes the form ds2 = dr2 + r2dϑ2 (E = 1, F = 0,G = r2 sin2). Equal increments in radial
distance dr correspond to real distances ds2 = dr2 from the center; however, small increments in angu-
lar coordinates dϑ correspond to 1/

√
G real distances. On a flat surface, one can always switch back to

Cartesian coordinates, in which the parameters p, q have a direct metrical meaning. However, this is not
true in the general case. The fact that a sphere cannot be projected onto a plane without distortion can be
expressed analytically by the fact that it is impossible to convert the quadratic differential form that holds
on a sphere into the one holding on a plane through a mere transformation of the independent variables.
On a sphere, it is suitable to introduce coordinates p = ϑ and q = ϕ, which are the customary latitude
(counted from the equator) and longitude (counted from the meridian of Greenwich) measured in radians.
Constant angular increments dϑ do not denote constant distance increments ds. Increments ds are related
to coordinate increments by ds2 = R2dϑ2 + R2 cos2 ϑdϕ2, where R is the radius of the sphere, which,
without loss of generality, can be set equal to 1 (E = 1,G = cos2 ϑ, F = 0). While differences in longi-
tude dϑ correspond to actual distances ds, differences in latitude dϕ correspond to 1/

√
G real differences

ds. The distance between any two arbitrarily distant points can be measured by the minimal number of
links of a chain of ds joining the two points.
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defines the intrinsic geometrical structure of the surface, but because it offers a sort
of ‘algorithm’ to convert meaningless parameters into measurable distances.12

After getting back to Zurich in August 1912, with the help of Marcel Grossmann
(Sauer 2015), Einstein became familiar with Ricci and Levi-Civita’s ‘absolute dif-
ferential calculus’ (Levi-Civita and Ricci-Curbastro 1900; see Reich 1994), which
provides a general method to deal with quadratic differential forms like Gauss’s line
element. At the same time, he realized the fundamental importance of the ‘world ten-
sor’ Tμν to represent the source of the gravitational field (Norton 1992). Just like
someone who, knowing only electrostatic and magnetostatic phenomena, attempts to
develop a field theory encompassing all electromagnetic phenomena, Einstein aimed
to develop a field theory of gravitation starting only from Poisson’s equations valid
for static fields and slow-moving particles. The Zurich Notebook (CPAE, Vol. 4,
Doc. 10) documents how Einstein was able to move from Newton’s scalar theory of
gravitation to one based on a quadratic differential form:

ds2 =
∑

Gμνdxμdxν , (4)

where ds is a scalar. Gμν was later written as gμν , a notation that we will adopt
from now on. It indicates a tensor that can be written as a matrix with four rows and
four columns, or 16 components in total, as μ and ν range from 1 to 4. The number
of independent components reduce to 10 if gμν = gνμ. Einstein’s struggles (Renn

12Cartography provides an excellent analogy (Janssen 1998) to which we will return throughout the paper.
Indeed, most of the confusions about coordinates analyzed in this paper make sense if we make the hypoth-
esis that physicists thought in terms of map projections, rather than in terms of the intrinsic structure of
surfaces. Let us say that one wants to draw a flat map of the Earth. Since a map of the earth at 1 : 1 scale
is impossible, one substitutes the earth with a globe, which is an exact replica of the earth in scale. The
problem of a perfect map is expressed by the demand that one should be able to establish a one-to-one
correspondence between the two surfaces such that ds2 of the globe and ds2 of the map coincide in corre-
sponding points. One can map a sufficiently small portion of the globe, say a city, without distortions on a
flat paper (or onto a surface developable into a plane, such as a cylinder or a cone) covered by a Cartesian
coordinate grid x, y. If one measures the coordinate difference dx between two streets on the map parallel
to the the vertical y-axis with a ruler, the distance measured will correspond to the actual distance between
the two cities on the globe. The same procedure is not possible for maps of larger portions of the globe
in which distortions necessarily occur. In translating latitude and longitude into Cartesian coordinates by
some projection function x = f (ϑ, ϕ), y = f (ϑ, ϕ), one can see that equal coordinate differences on the
map do not correspond to equal distances on the surface. In order to recover real distances ds between two
close cities on the globe from their coordinates on the map x, y and x + dx, y + dy, one needs to know
the three functions E,F,G at every point of the map. Let us consider a cylindrical projection. It can be

shown that, in such projection, E =
(
1 − y2

R2

)
,G =

(
1 − y2

R2

)−1
, F = 0. The functions E,F,G are the

‘legend’ of the map. If one measures equal distances dx = 1 along the x-axis on the map, one will get real
distances on the globe ds = √

Edp, which are �= 1. The results become more distorted toward the poles.

In a stereographic projection, the map legend is different: E′ = G′ = 4
(
1 + x2

R2 + y2

R2

)−2
, F ′ = 0. As

one can see, the same coordinate difference dx = 1 measured on the projection plane is multiplied by a
different factor: ds = √

E′dx. Therefore, the same coordinate differences dx and dy might correspond to
vastly different real differences on the globe, depending on the projection used. Thus, without knowing the
‘map legend’—that is, the functions E,F,G—it is impossible to predict the actual distance ds between
two close cities from the small differences dx and dy of their coordinates on the map (see footnote 14).
Needless to say, the relation is actually reversed: the same ds corresponds to different dx, dy in different
maps projections; dx, dy are meaningless without a legend.
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and Sauer 2007) finally led to a two-part Entwurf (that is, ‘Outline’) of a theory of
relativity and gravitation coauthored with Grossmann, which was published in June
1913 (Einstein and Grossmann 1913).

In the physics part of the Entwurf paper, Einstein formulated the equivalence
principle in the following way. Introduce a system of reference K(x, y, z, t) in
a sufficiently small region of spacetime. With respect to this frame, a body moves
uniformly in a straight line according to the equation δ(

∫
ds) = 0, whereas

ds2 = −dx2
1 − dx2

2 − dx2
3 + dx2

4 ,

where the coefficient c in x4 = ct is the constant velocity of light. Einstein conceived
a transformation from the inertial frameK to the accelerated frameK ′ as a coordinate
transformation. Thus, if one describes the motion of a body from the perspective of a
system K ′(x′, y′, z′, t ′) moving with acceleration a in the direction along x, one has
to introduce new coordinates x′, y′, z′, t ′, which are nonlinear functions of x, y, z, t .
The simplest transformation leads to the line element

ds2 = −dx2
1 − dx2

2 − dx2
3 + x2

1a
2x2

4 .

In this system, all free objects and light rays appear to be uniformly accelerated in a
direction opposite that of the acceleration of K ′ so that their free motion according
to δ(

∫
ds) = 0 will appear as curvilinear with respect to K .

In Minkowski’s formalism, the difference between K and K ′ is easy to spot. In
K , given an appropriate choice of the coordinates, the matrix gμν has constant val-
ues, with −1, −1, −1 and c2 as diagonal terms, and all other terms are equal to 0.
In K ′, gμν are functions of the coordinates; in particular, g44 = a2x2

1 is a function
of x1. In pre-general-relativistic physics, the Cartesian coordinate system K would
be regarded as a ‘good’ coordinate system, with respect to which light rays and free
particles move on straight lines; the non-Cartesian system K ′ would be regarded as
a ‘bad’ coordinate system (as the appearance of fictitious forces reveals), and the
curvilinear nature of paths of light rays and free particles with respect to K ′ had
no physical meaning. The equivalence principle eliminates the asymmetry between
‘good’ and ‘bad’ coordinate systems. A linearly accelerated coordinate system K ′ is
indistinguishable from an inertial system K with a gravitational field. Thus, Einstein
drew the following conclusion: The variability of gμν with respect to the coordi-
nates x1, x2, x3, x4, which mathematically tells us that we are using non-Cartesian
coordinates, could be identified physically with the presence of a homogeneous
gravitational field.

This suggested that the components gμν could take the place of the single New-
tonian gravitational potential ϕ also in the general case, in which non-constant gμν

cannot be transformed away by a simple coordinate transformation. Einstein arrived
at the view that the gravitational field is characterized by 10 spacetime functions gμν ,
which acquire a double meaning. On the one hand, gμν are the potential of a phys-
ical field, comparable to the electromagnetic field, which assumes particular values
at certain points identified by their coordinates xν . At the same time, gμν are geo-
metrical quantities, conversion factors that relate coordinate differences dxν and real
distances ds according to Eq. 4. Consequently, the direct relationships between the
coordinate differences x1, x2, x3, x4 and rods-and-clocks measurements is lost:
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From the foregoing, one can already infer that there cannot exist relationships
between the space-time coordinates x1, x2, x3, x4 and the results of measure-
ments obtainable by means of measuring rods and clocks that would be as
simple as those in the old relativity theory. With regard to time, this has
already found to be true in the case of the static gravitational field. The
question therefore arises, what is the physical meaning (measurability in prin-
ciple) of the coordinates x1, x2, x3, x4 [...] From this one sees that, for given
dx1, dx2, dx3, dx4, the natural distance that corresponds to these differentials
can be determined only if one knows the quantities gμν that determine the
gravitational field. This can also be expressed in the following way: the gravita-
tional field influences the measuring bodies and clocks in a determinate manner
(Einstein and Grossmann 1913, 8)

In previous theories, there was a privileged class of rectangular coordinate systems
such that, knowing the difference dx1, dx2, dx3, dx4 between the coordinates of any
two points, one could predict the distance ds between them as it would be mea-
sured by nonaccelerated rods and clocks, and vice versa. In the Entwurf Theory, by
contrast, once one knows the coordinates of two spacetime points x1, x2, x3, x4 and
x1 + dx1, x2 + dx2, x3 + dx3, x4 + dx4, without knowing the functions gμν , one
cannot predict the rods-and-clocks distance ds. However, in order to determine gμν ,
one must already know the measured distance ds between two points of coordinates
x1, x2, x3, x4 and x1 + dx1, x2 + dx2, x3 + dx3, x4 + dx4. There seems to be a circle.
Einstein famously broke the circle by relying on the fact that, in a sufficiently small
region of spacetime, one can always introduce a coordinate system in which gμν can
be taken to be constant in the first approximation, that is, in which special relativity
holds.13

One can switch from the given arbitrary coordinate system to a rectangular coordi-
nate system and determine the length ds2 using rods and clocks at relative rest. This
is called the ‘natural’ four-dimensional interval, as opposed to the ‘coordinate’ inter-
val. This natural length is, by definition, a scalar and can be set equal to ±1, up to
an arbitrary choice of unit, and directly measured with rods and clocks. One can set,
say, n1 spacings between the atoms of a rock-salt crystal as = −1 and n2 electromag-
netic wave crests emitted by a cadmium atom as = 1. One can then switch back to
the originally given coordinate system. Since the numerical value of ds2 per defini-
tion does not change, from Eq. 4, one can read off gμν for known ds2 and dxν . Over
larger regions of spacetime, it might be impossible to introduce a coordinate system
in which coordinate differences denote actual distances. In the general case, gμν can
be measured as the numbers by which coordinate differences have to be multiplied
so that ds2 = 1 in every position and in every orientation. For example, a unit rod
laid along the x1-axis (dx2 = 0, dx3 = 0, dx4 = 0) will measure −1 = √

g11dx1; a
unit clock at rest will measure 1 = √

g44dx4. This measurement procedure is mean-
ingful under the condition that the ratio n1/n2 is not influenced by the gravitational
field so that equally constructed unit rods and unit clocks always measure the same

13This is usually taken as a stronger version of the equivalence principle. For the different meanings of the
equivalence principle, see Lehmkuhl (2019).
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±ds = 1. If this is the case, we can determine g11 = −ds2/dx2
1 , g44 = ds2/dx2

4 and
in general all values of the gμν .

The key to Einstein’s success in the electrodynamics of moving bodies was his
careful analysis of the procedure through which physics, using rods and clocks, gives
physical meaning to kinematic variables before any dynamics. However, the intro-
duction of gravitation forced Einstein to ‘unlearn’ precisely the strategy which had
led to him striking success a decade earlier (Stachel 1993). Rods and clocks, the same
instruments that serve to measure distances and time intervals, also serve to mea-
sure the gravitational field gμν . Since the quantities gμν enter into this relationship,
the coordinates themselves have no independent physical meaning and are reduced
to mere numbers. The fact that coordinate parameters, beside serving as labels, also
measure distances turned out to be an accident. As Einstein soon came to realize, the
kinematic variables x1, x2, x3, x4 and the dynamical variables gμν became entangled
into an inextricable knot. As with any other field theory, general relativity aims to
predict the components of the gravitational field gμν at a point x1, x2, x3, x4. How-
ever, gμν are also the ‘measurement’ field that allows calculating the distance of
x1, x2, x3, x4 with respect to any other point. Einstein struggled for several years to
make peace with the fact that one does not know where x1, x2, x3, x4 is before the
gμν field is introduced. However, as we shall see, Einstein would need at least three
more years to realize that the location of x1, x2, x3, x4 is lost again after the gμν field
has been removed.14

3 The (nearly) last remnant of materiality of coordinate system

3.1 From the besso-einstein argument to the §12 argument

In the Entwurf paper, Einstein and Grossmann (1913) were able to show that the
equation of motion of a mass point in a gravitational field could be written in a
coordinate-independent way, without introducing an otherwise nonaccessible privi-
leged class of coordinate systems. However, they were not able to put forward a set
of field equations with these covariance properties. In the Zurich notebook, we can
follow in great detail Einstein’s tentative search for of a set of differential equations
connecting the source Tμν and with a second-rank tensor 	μν depending on gμν at
most up to its second derivatives:

	μν = κTμν .

14As a comparison, one can think of the coordinates x, y on a map, the legend of which has become
unreadable. If one knows that, according to a map, a treasure is buried at x = 45, y = 85 in the middle of
the ocean (where no other ‘marks’ are available if not coordinate numbers), there would be no way to find
the latitude and longitude p, q of the treasure on the globe. The numbers x, y are meaningless without the
map legend. Thus, independently of the coefficients E, F , and G, the point x, y on the projection plane
is, so to speak, nowhere (see footnote 12). In general relativity, difficulties emerge from the fact that the
gμν are both the map legend (the metric tensor) and the treasure to be found (the gravitational field). Cf.
footnote 20.
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The static limit of these equations was supposed to yield Poisson’s equation with a
single potential, as the static limit of Maxwell’s theory yields the Coulomb law. In
other terms, the field equations must be reduced to the case in which only the compo-
nent g44 of the gravitational field is variable, that is, a function of spatial Euclidean
coordinates. To obtain this result, Einstein started from an expression in which 	μν is
a two-index contraction of the Riemann tensor.15 These equations hold in all coordi-
nate systems, whereas Poisson’s equation does not. Thus, Einstein needed to impose
some coordinate requirement to eliminate unwanted terms and yield only a single
potential. In particular, as a modern relativist would do (Norton 1984), he considered
the requirement

gμν

{
α

μν

}
= 0 , (5)

where the curly bracket is the Christoffel symbol of the second kind.16 These kinds
of coordinate requirements, besides ensuring that the field equations reduce to their
Newtonian limit, were also supposed to guarantee energy-momentum conservation,
at the same time leaving enough freedom to include accelerating systems. Einstein
seemed to consider coordinate requirements of this sort as a general restriction
(Janssen and Renn 2007) on the class of allowable coordinate system introduced once
and for all and not simply as a condition imposed provisionally to solve a particular
problem.17 Therefore, all attempts to proceed in this way lead to considerable diffi-
culties. Switching from the mathematical to the physical strategy (Janssen and Renn
2007), Einstein decided to settle with a set of field equations valid for arbitrary but
linear transformations. Thus, ultimately, Einstein and Grossmann were not able to
cast the Entwurf field equations in a form that would allow for arbitrary substitutions
of the independent variables. Nevertheless, Einstein was convinced that he was on the
right track. “The conviction to which I have slowly struggled through is that there are
no preferred coordinate systems of any kind,” Einstein wrote to Ehrenfest. “However,
I have only partially succeeded, even formally, in reaching this standpoint” (Einstein
to Ehrenfest, May 28, 1913; CPAE, Vol. 5, Doc. 441).

In June 1913, just around the time the Entwurf Theory appeared in print, Einstein,
with the help of Besso, had already started applying the new theory to calculate the
gravitational field of the Sun using a weak field approximation, as documented in
a manuscript found among Besso’s papers after his death (CPAE, Vol. 4, Doc. 14).
Einstein and Besso aimed to calculate deviations γμν from Minkowski’s values δμν

(δμν = 1 for μ = ν and δμν = 0 for μ �= ν) so that gμν = −δμν + γμν .18 Thus,

15This is the so-called Ricci tensor; see eg., Janssen and Renn (2015a) for a recent account of Einstein’s
path toward field equations.
16Equation 5 corresponds to the so-called ‘harmonic coordinate condition’. In modern notation: 	α

μνg
μν =

0.
17The editors of Renn (2007a) have introduced the illuminating distinction between ‘coordinate condi-
tions’ and ‘coordinate restrictions’. I will use ‘coordinate requirements’ to indicate the general category,
including both coordinate conditions and restrictions (for which see footnote 23). For a different
interpretation, see Norton (2005).
18For the sake of uniformity, the notation adopted here is different from Einstein’s, who used Latin letters
for covariant components and Greek letters for contravariant components of tensors.



European Journal for Philosophy of Science           (2021) 11:45 Page 21 of 64   45 

Einstein believed that it was possible to obtain a good approximation by taking these
deviations into consideration, along with their derivatives, only where they appear
linearly. Imposing the condition (5), the field equations take the following form:

�γμν = −∂2γμν

∂x2
− ∂2γμν

∂y2
− ∂2γμν

∂z2
+ 1

c2

∂2γμν

∂t2
= κTμν , (6)

where � is the d’Alembertian operator19 and Tμν is the stress-energy tensor for a
dust of particles (that is, particles which do not directly interact with each other); the
field is treated as a static field, with slow particle motion, and γμν are assumed to
vanish at infinity. The gμν with μ and ν ranging from 1 to 3 were expected to be
constant = −1, so at a certain instant in time dx4 = 0, a rod would directly measure
spatial coordinates and would not be distorted by the Newtonian gravitational field.
By contrast, a clock at rest in such coordinate system (dx1 = dx2 = dx3 = 0)
measures dτ 2 = g44dx2

4 ; that is, the greater the masses arrayed in its vicinity, the
slower the clock runs. The approximate value of the component g44 was calculated
using the Entwurf equations in first- and second-order approximations. Once one
knows g44, one can calculate the path of light rays and the planets’ orbits. However,
Einstein and Besso were not able to account for Mercury’s perihelion anomaly. Thus,
these calculations were never published (Janssen 2003).

For our limited purposes, this manuscript is interesting for the following consider-
ations. On [p. 1], Besso writes the matrix of the covariant values of gμν in first-order
approximation:

gμν = −1 (μ, ν = 1, 2, 3), g44 = 1
c20

(
1 + A

r

)
, where A = κM

4π . (7)

A remark in Besso’s hand seems to reveal that Einstein and Besso might have
become aware of the problem of the uniqueness of the solution they had obtained,
as a remark in Besso’s hand reveals: “Is the static gravitational field in Eq. 7
gμν = 1 to 3 g44 = f (x, y, z) a particular one? Or is it the general one expressed
in spec. coordinates?” (CPAE, Vol. 4, Doc. 14[p. 16]). Thus, Besso seems to have
been somehow puzzled by the fact that gμν are determined only up to a coordinate
transformation, that is, that one introduces different values of the components of the
gravitational field by switching to a different coordinate system. For a weak field on
a background Cartesian coordinate system, one can introduce an infinitesimal coor-
dinate transformation xν + ξν (where ξν is similar in size to γμν) and obtain different
values for γ ′

μν = −δμν +γ ′
μν . On the contrary, Einstein and Besso probably expected

that, given initial and boundary conditions, the field equations determine g44(x, y, z)
unambiguously (i.e., as a single-valued function), just like how Poisson’s equation
determines the gravitational potential φ(x, y, z) in a Cartesian coordinate system.

Besso left Zurich for Gorizia and got back to Zurich around August 1913. Proba-
bly during this second visit, he jotted down some notes (the so-called Besso memo)
about a discussion that he had with Einstein (Janssen 2007). These notes seem to
contain an objection against the very possibility of general covariance of such equa-

19The d’Alembertian operator is the four-dimensional equivalent of the Laplacian ∇2 = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
.
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tions. Besso argued that, in the case of a central mass, such as the Sun, surrounded by
empty space, due to the arbitrary choice of the coordinate system, the field equations
(together with boundary conditions imposed at infinity) do not guarantee a unique
gμν-system in the empty region. Besso’s notes (see Janssen 2007, 792, fig. 2) seem
to reproduce a dialog between him and Einstein:

[Besso:] The requirement of 〈general〉 covariance of the gravitational equations
under arbitrary transformations cannot be imposed: if all matter 〈is given〉 were
contained in one part of space and for this part of space a coordinate system 〈is
given〉, then outside of it the coordinate system could still 〈essentially〉 except
for boundary conditions be chosen arbitrarily, 〈through which the g arbitrarily〉
so that a unique determinability of the g’s cannot be obtained

[Besso:] It is, however, not necessary that the g themselves are determined
uniquely, only the observable phenomena in the gravitation space, e.g., the
motion of a material point, must be.

[Einstein:] Of no use, since with 〈the〉 a solution a motion is also fully given. If
in coordinate system 1, there is a solution K1, then this same construct is also a
solution in 2, K2; K2 however, also a solution in 1 (Besso Memo p. 2; quoted
and translated in Janssen 2007, 819–821)

As Besso pointed out, once one calculates a solution gμν = K1, one could obtain a
different solution g′

μν = K2 by simply introducing a new coordinate system 2. In a
generally covariant theory, this solution is just as good as the first since a coordinate
system 2 is just as good as 1. Besso suggested that this might not be a problem. It
is not necessary that the field equations determine gμν in a unique way; it is only
necessary that the theory correctly predicts the observable phenomena, for example,
that tomorrow morning, when the Sun is five degrees over the horizon, Venus will
be visible at 12 degrees over the horizon (Rovelli 2002). In the second part of the
quote, Besso probably wrote down Einstein’s critique of Besso’s counterargument:
the new solution K2 in the coordinate system 2 ‘is also a solution in 1’, that is, the
components of the solution K2 can be calculated as functions of the 1-coordinate
numbers. Thus, under the given initial and boundary conditions, the Entwurf field
equations do not determine the gravitational field univocally with respect to the same
coordinate system 1.

From June to early July, Ehrenfest and his wife came to Zurich from Leiden, where
they discussed Einstein’s new theory (Yavelov 2002) together with the Finnish physi-
cist Gunnar Nordström (1912, 1913a, b), who had presented an alternative theory of
gravity, which Einstein considered as a serious alternative to the Entwurf Theory. As
a letter to Lorentz in August 1913 revealed, at that time, Einstein was still unsatis-
fied with the field equations of limited covariance. It seemed questionable that all
equations of physics could be formulated without reference to a specific coordinate
system, except for the field equations that regulate the behavior of gμν . Thus, the
theory was like “hanging in the air” (Einstein to Lorentz, Aug. 14, 1913; CPAE, Vol.
5, Doc. 467). At some point, Einstein might have realized that his reply to Besso’s
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argument could turn out to be useful. The discovery of the Besso memo (Janssen
2007) revealed that the argument, far from being a refined reflection of the nature of
spacetime, was more of a ‘the Fox and the Grapes’ kind of argument. The generally
covariant field equations that he was not able to find were after all not desirable in
the first place. Field equations that are valid in all coordinate systems do not uniquely
determine the gravitational field (Einstein to Lorentz, Aug. 16, 1913; CPAE, Vol. 5,
Doc. 470).

In the printed summary of a lecture delivered in September of 1913 at the 96th
annual meeting of the Schweizerische Naturforschende Gesellschaft in Frauenfeld,
Einstein pointed out for the first time that it is logically impossible to introduce
generally covariant field equations (Einstein 1913a, 8). In a footnote of the printed
version of a lecture delivered at the Gesellschaft Deutscher Naturforscher und Ärzte
in Vienna a few weeks later, Einstein already hinted that “in the last days” he had
found “a proof that such a generally covariant solution to the problem cannot exist
at all” (Einstein 1913b, 1257; fn. 2). Since the lecture was published in December, it
is hard to say whether this remark was added later. Only in November did Einstein
explain to Ludwig Hopf (Einstein to Hopf, Nov. 2, 1913; CPAE, Vol. 5, Doc. 480) that
he was now satisfied with his field equations of limited covariance, since generally
covariant field equations were actually impossible. As Einstein wrote more explicitly
to Ehrenfest in the ensuing weeks, “a unique determination [eindeutige Bestimmung]
of the gμν out of the Tμν” was not possible without a special choice of the coordinate
system. According to Einstein, this was “rigorously provable” (Einstein to Ehren-
fest, Nov. 15, 1913; CPAE, Vol. 5, Doc. 484). Thus, as he wrote to Ehrenfest, the
spacetime variables were completely arbitrary, but one can use the conservation laws
for energy and momentum to restrict the admissible coordinate transformations to
the linear ones (Einstein to Ehrenfest, Nov. 15, 1913; CPAE, Vol. 5, Doc. 484). The
‘good’ coordinate systems are, so to speak, tailored to the physical world instead of
being given a priori (Einstein to Mach, Dec. 15, 1913; CPAE, Vol. 5, Doc. 497). At
that time, the Leiden community started to become one of Einstein’s most impor-
tant ‘sounding boards’. Einstein was even thinking about hiring Adriaan Fokker or
Johannes Droste as assistants since they both showed “Lorentz’s excellent training”
(Einstein to Ehrenfest, Nov. 15, 1913; CPAE, Vol. 5, Doc. 484).

As is well known, Einstein would reproduce the argument against general covari-
ance in published writings on four occasions (Einstein and Grossmann 1914a, b;
Einstein 1914a, b). Starting from the first published on January 30, 1914, in some
‘Comments’ added to the reprint of the Entwurf paper (Einstein and Grossmann
1914a), to avoid imposing arbitrary additional boundary conditions at infinity, Ein-
stein might have inverted Besso’s argument (Janssen 2007). Instead of an insular
matter distribution surrounded by an empty space, Einstein introduced an empty
region L (which might stand for Loch, hole) surrounded by matter. In this region, no
material process occurs (no electromagnetic field, no particles, etc.); that is, Tμν van-
ishes. In general, points in space are identifiable using some material element that
one can use to ‘mark’ the place in question. However, in empty space, points can
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be identified only by their coordinate numbers.20 Given a solution gμν of the field
equations within L, the general covariance of the equations allows us to introduce a
new coordinate system x′

μ so that xν = x′
μ at the boundary of L, but xν �= x′

μ inside
of it (Einstein and Grossmann 1914a, 260). One now relates everything to this new
primed system, in which matter outside of L is represented by T ′

μν = Tμν
21 and the

gravitational field inside of L by g′
μν �= gμν . Thus,

T ′
μν = Tμν outside of L

does not imply
g′

μν = gμν inside of L.

In other terms, it is possible that “more than one system of [gμν] pertains to the sys-
tem [Tμν]” (Einstein and Grossmann 1914a, 260; my emphasis). In order to achieve a
unique determination of gμν (gravitational field) by Tμν (matter), Einstein concluded
that one has to restrict the choice of the coordinate system.

Einstein’s argument against general covariance of the field equations appeared for
quite a long time based on a trivial misunderstanding. Of course, it is not surpris-
ing that the components gμν change in a definite manner as the coordinates xν are
changed to x′

ν , for example, by switching from Cartesian to polar coordinates and
from polar to cylindrical coordinates and so on (Hoffmann 1982). However, the point
that Einstein wanted to make appears to have been more subtle (Stachel 1980). This
is revealed by a remark added to a footnote. Einstein pointed out that “the indepen-
dent variables xν” must be attributed to “the same numerical values of x′

ν” (Einstein
1914b, 178; fn.; my emphasis). This amounts to the same maneuver introduced in the
Besso memo: the new solution g′

μν , obtained by switching to the coordinate system
x′
ν , is evaluated with respect to the old coordinate system xν , that is, g′

μν(xν). It is
important to emphasize that Einstein talked about the numerical values of variables.
As we have seen, in Einstein’s and most physicists’ view at that time, the numbers xν

do not simply serve to label points; the coordinate values xν are the points (see, e.g.,
Study 1914, 82,91). Thus the same numerical value xν with respect to the same coor-
dinate system K is the same point. Switching from a coordinate system to another is
nothing but switching from a set of numbers xν to another set of numbers x′

ν so that
x′
ν is some smooth function of xν . In the generally covariant theory, all substitutions

are allowed.
As we have seen, these numbers are meaningless. One needs to know gμν to be

able to compute the relative distances of any point xν within the hole with respect
to each material point xν on the boundary of the hole. Letting xν outside of the hole

20Following footnote 14 one could say that, before solving the field equations, physicists are in possession
of a map with the treasure’s coordinates x = 45, y = 85, but do not know the map’s legend. The peculiarity
of Einstein’s theory of gravitation is that the legend of the map (the metric tensor) is, so to speak, hidden
in the treasure chest (as it is a solution of the field equations). The theory aims to find the values of the
coefficients E,F,G at x, y in the open ocean (the treasure); however, knowing E,F,G (the map legend)
as functions of x, y is the precondition for physically locating x, y on the globe. This is the root of all sorts
of confusions, if one thinks in terms of the map and not in terms of the intrinsic geometrical structure of
the globe.
21The coordinate system, as well as the components of the matter tensor, have remained unchanged outside
of L.
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remain unchanged, one can introduce a new coordinate system x′
ν within the hole and

thus a new corresponding set of g′
μν(x

′
ν). One might also calculate the new numerical

values of the coefficients g′
μν as functions of the old coordinate values xν . If the field

equations are generally covariant, this will be an equally admissible solution. Thus,
the field equations seem to predict two different sets of gμν components at the same
point xν , that is, the point at the same relative distances from the material points xν

on the border of the hole.22 In principle, one could apply the same reasoning to a
non-generally covariant theory of gravitation, but the predictability issue would not
emerge. In fact, Einstein did not raise the Besso-Einstein argument against Nord-
ström’s scalar theory of gravitation (Stachel 1987), which, at that time, he considered
as a good alternative to the Entwurf Theory (Einstein and Fokker 1914).

When Einstein left Zurich for Berlin in March 1914, he had fully convinced him-
self that a generally covariant theory was not desirable in the first place, since it
violates the “condition that the fundamental tensor gμν should be completely deter-
mined” by the gravitation equations (Einstein and Grossmann 1914b, 216). In a paper
with Grossmann, submitted in May, Einstein derived the field equations from a vari-
ational principle (Einstein and Grossmann 1914b) and convinced himself that the
form of the Lagrangian was uniquely fixed by energy and momentum conservation.
Einstein’s results were summarized in the first systematic review of the Entwurf The-
ory that was presented in October of 1914 before the Prussian Academy of Sciences
(Einstein 1914a) in Berlin. In §12 of this paper, Einstein reformulated more clearly
the ‘proof’ of a ‘necessary restriction’ in the choice of coordinates. Given the matter
distribution Tμν �= 0 outside of an empty region � within which Tμν = 0, the field
equations determine the quantities gμν as functions of xν relative to the coordinate
system K . Even if gμν and their first partial derivatives ∂gμν/∂xν are given on the
boundary of �, we can still change the coordinates inside the region and thus obtain
a different solution. Einstein used the nonstandard notation G(x) to indicate these
functions. His argument runs as follows:

Let us introduce a new coordinate system K ′ which coincides with K outside
of �, but deviates from K inside of � such, however, that the g′

μν relative to
K ′ as well as the gμν (including their derivatives) are everywhere continuous.
The totality of the g′

μν is symbolically denoted by G′(x′), G′(x′) and G(x)

describe the same gravitational field. When we replace the coordinates x′
ν by

the coordinates xν in the functions g′
μν , i.e., when we form G′(x), then this

G′(x) also represents a gravitational field relative to K , which however, is not
the same field as the factual (that is, the originally given) gravitational field. If

22A simplified version of the argument in terms of geographical maps might be the following. We want
to calculate the values of the components E(x, y), F (x, y),G(x, y) at the point x = 45, y = 85 in the
middle of the ocean where no other marks are present (see footnote 14). Since the values of the components
E(45, 85), F (45, 85),G(45, 85), depends on the projection, cartography seems to attribute two different
sets of components E,F,G and E′, F ′,G′ at the same point x = 45, y = 85. Thus, cartography cannot
predict the values of E,F,G univocally. The predictability of cartography can be saved once one realizes
that the Cartesian coordinate numbers x = 45, y = 85 on the projection plane correspond to very different
physical points on the globe depending on whether the calculations are made using the stereographic
E,F,G or the cylindrical E′, F ′,G′.
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we assume the differential equations of the gravitational field to be everywhere
covariant, then they are satisfied for G′(x′) relative to K ′ whenever they are
satisfied for G(x) relative to K . Therefore, they are also satisfied for G′(x)

relative to K . There are then two different solutions G(x) and G′(x) relative
to K , even though the solutions coincide on the boundary of the domain �

(Einstein 1914a, 1067)

I have reported here this very well-known formulation of the argument since Einstein
and his interlocutors repeatedly referred to ‘the §12-argument’. Thus, it is useful to
have it at hand. The two-step scheme G(x) → G′(x′) → G′(x) described in this
passage would indeed become from now on the standard formulation of Einstein’s
argument against general covariance. It shows that generally covariant field equations
seem to attribute different values G(x) and G′(x) of the gravitational potentials to
the same xν within � with respect to the same coordinate system K . As a matter
of fact, if one considers the four numbers xν as being physically the same point of
K , throughout a three-step calculation, the theory cannot predict the components
of the gravitational potential at that point unequivocally. Thus, in Einstein’s view,
the argument provided a valid reason to introduce specialization in the choice of
coordinates. Einstein imposed four non-covariant coordinate requirements written
compactly as Bμ = 0 that guarantee the validity of the conservation laws (on which
see Janssen and Renn 2015b, for more details). These relations were to hold in all
those coordinate systems that Einstein called ‘adapted’ to a given gravitational field.
In this way, Einstein was able to restrict the range of allowable gμν inside of �

and at the same time to leave it sufficiently large to comply with requirement of the
equivalence principle (Abraham, 1914, 514).

3.2 Embracing themathematical overdetermination of the field equations

The Entwurf Theory started to spark considerable interest. Lorentz insinuated that
Einstein’s use of ‘adapted’ coordinates was nothing but the introduction of privileged
coordinate systems from the backdoor (Lorentz to Einstein, Jan. 1, 2015; CPAE, Vol.
8, Doc. 43).23 Nevertheless, he derived the Entwurf field equations from Hamilton’s
principle (Lorentz 1915). Moreover, he instructed his student Droste to calculate
the gravitational field of a single mass point (Droste 1914) and two spherical fixed
centers from the Entwurf equations (Droste 1915). After his Wolfskehl lectures his

23Einstein tried to convince Lorentz that this was not the case (Einstein to Lorentz, Jan. 23, 2015; CPAE,
Vol. 8, Doc. 47). The situation, he claimed, was similar to the theory of surfaces. If one says that the line
element is only allowed to take the form ds2 = dp2 + dq2, then one will indeed say that the surface is
flat. However, if one imposes the restriction ds2 = E(p, q)dp2 + G(p, q)dq2, then one will say nothing
about the nature of the surface. F = 0 only imposes the choice of orthogonal coordinates. Spherical polar
coordinates on a sphere and Cartesian coordinates on a plane are both orthogonal. Thus, Einstein did not
think in terms of the intrinsic geometry of the surface, but in terms of the ‘good’ coordinate system in
which the field equations are valid. The requirement F = 0 does not fix the coordinate system uniquely as
Cartesian inertial coordinates in pre-general-relativistic theories. However, the fact that the restriction F =
0 is imposed once and for all is another instance of Einstein’s confusion between ‘coordinate restrictions’
and modern ‘coordinate conditions’ discussed in footnote 17. This confusion will persist for at least two
years after the final version of general relativity; see Sections 6.1 and 6.2.
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Wolfskehl lectures (CPAE, Vol. 6, appendix B) in Göttingen, which started to attract
David Hilbert’s interest in the theory, Einstein exchanged a few letters with the
Göttingen physicist Paul Hertz and tried to convince him that his argument against
general covariance was analogous to the case of two surfaces that are ‘developable’
into each other and thus geometrically identical (see Howard and Norton 1993).
However, Einstein still considered Hertz’s requirement “‘that the world be able to be
developable upon itself’” atrocious (Einstein to Hertz, Aug. 14, 1915; CPAE, Vol.
8, Doc. 108).24 A few months later, his confidence in the Entwurf Theory started to
deteriorate (CPAE, Vol. 8, Doc. 123), (CPAE, Vol. 8, Doc. 129). Einstein was lost
again in the “chaos of possibilities” and started to reexamine the problem from the
ground up (Einstein to Hertz, Aug. 22, 1915; CPAE, Vol. 8, Doc. 111).

On November 11, 1915, Einstein returned to a set of generally covariant vacuum
field equations that he had introduced in 1913 (Einstein 1915c):

Rμν = κTμν ,

where Rμν is what we now call the Ricci tensor. He replaced the restriction imposed
by the conservation laws with the requirement that the determinant of the met-
ric satisfied the condition

√−g = 1 (Einstein 1915c). Covariance with respect to
transformations that preserve this condition is sufficiently broad to include trans-
formations between inertial and accelerated coordinate systems. However, g is a
constant only if the scalar (the sum of the diagonal terms).25 of the energy tensor of
matter Tμν vanishes, �T

μ
ν = T = 0, as in the case of the electromagnetic stress-

energy tensor (Einstein 1915d). This way, Einstein arrived at field equations that are
equivalent to generally covariant ones but specialized by the requirement

√−g = 1.
If the determinant g of the metric tensor is −1, these field equations (with the Ricci
tensor as a gravitational tensor) can be written in terms of the Christoffel symbols
	τ

μν , which are now interpreted as the components of the gravitational field. For the
vacuum field equations,

∑

a

∂	α
μν

∂xα

+
∑

αβ

	α
μβ	β

va = 0 , (8)

where the determinant of the metric is
∣∣gμν

∣∣ = −1 . (9)

On November 18, Einstein reported to the Prussian Academy of Sciences an approx-
imate static spherically symmetric solution to these truncated field equations, which

24This shows, again, that Einstein did not think in terms of the intrinsic geometry of the surface, but in
terms of the relations between meaningless coordinate numbers and real distances, that is, in terms of
distortions performed by different map projections. Using different map projections, one can obviously
calculate the values ofE′, F ′,G′ andE,F,G as functions of the same numbers x = 45, y = 85; however,
x = 45, y = 85 is not the same physical point on the globe in both cases. What Hertz tried in vain to
explain to Einstein was that all these ‘maps’ represent the same intrinsic properties of the surface. All
intrinsic information—like which are the great circles, where they intersect, and so forth—is the same in
all mappings, and it is preserved when the surface (or part of it) is bent without stretching.
25This is what we would now call the ‘trace’.
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explained the anomalous advance of the perihelion of Mercury and the slight rotation
of its elliptic orbit in addition to its elliptic motion. Before proceeding to solve the
equations, he introduced the following remarks:

A point mass, the sun, is located at the origin of the coordinate system. The
gravitational field this point mass produces can be calculated from these equa-
tions by means of successive approximations. Nevertheless, we should consider
that the gμν are still not completely determined mathematically by the Eqs. 8
and 9, because these equations are covariant with respect to arbitrary trans-
formations of determinant 1. Yet we are justified in assuming that all these
solutions can be reduced to one another by such transformations that they
are distinguished (by the given boundary conditions) formally but not, how-
ever, physically, from one another. Consequently, I am satisfied for the time
being with deriving here a solution, without discussing the question whether
the solution might be unique (Einstein 1915a, 832)

The case described is identical to that of the Besso memo, and indeed Einstein could
rely on the calculations he had made with Besso (Janssen 2007). However, Ein-
stein was now ready to accept that the field equations do not fix the solutions gμν

uniquely, but only up to a coordinate transformation that respects the condition that
the determinant of the metric is 1. All such intertransformable solutions are only for-
mally but not physically different. A genuine underdetermination would arise only if
the solution remained underdetermined with respect to a definite coordinate system.
However, Einstein must have now realized that this was not the case. For the given
initial conditions, the worldlines of free-falling particles are geodesics of the gμν .
Since both the field equations and the equations of motion are generally covariant, if
one switches to another coordinate system, the particle will cover the same path with
respect to the new coordinate system.

Einstein’s calculations revealed that the theory was able to account for the resid-
ual advance of 43′′ of arc per century that was unexplained in the Newtonian theory.
This was a path-breaking result and Fokker reported that Einstein suffered heart pal-
pitations following the discovery (Pais 1982, 253). A few days later, on November
25, 1915, Einstein (1915b) arrived at the field equations that today we can read in
textbooks (albeit in slightly different notation). Imposing the condition

√−g = 1
again, Einstein could write the equations in terms of the Christoffel symbols and
showed how they satisfied the conservation laws. Einstein’s “boldest dreams have
now been fulfilled” (Einstein to Besso, Dec. 10, 1915; CPAE, Vol. 8, Doc. 162).
On December 14, he wrote to Schlick his “newly found result”: an empirically
sound theory, “whose equations are covariant with arbitrary transformations in the
spacetime-variables” (Einstein to Schlick, Dec. 14, 1915; CPAE, Vol. 8, Doc. 165).
As a consequence, space and time are now deprived of the “last vestiges [Rest] of
physical reality [Realität]” (Einstein to Schlick, Dec. 14, 1915; CPAE, Vol. 8, Doc.
165; my emphasis).

The fact that the theory’s equations could be simplified a posteriori by selecting
and imposing the condition

√−g = 1 was deemed “of no epistemological signif-
icance” (Einstein to Schlick, Dec. 14, 1915; CPAE, Vol. 8, Doc. 165). Somehow
crowning Einstein’s triumph, on December 22, Karl Schwarzschild sent Einstein a
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letter from the eastern front communicating that he had already managed to find an
exact solution for a ‘mass point’ (Einstein to Schwarzschild, Dec. 22, 1915; CPAE,
Vol. 8, Doc. 169). Schwarzschild kept the condition

√−g = 1. After introducing the
most general line element in rectangular coordinates, he went over to polar coordi-
nates ϕ, ϑ, r , which however do not satisfy the condition

√−g = 1 (for even in flat
spacetime in spherical coordinates, g = −r4 sin2 ϑ). He found a trick to circumvent
this problem by defining a new radial coordinate x = r3/3 and a new angular coor-
dinate ϕ = − cosϑ . He then obtained a new set of variables, ‘polar coordinates with
the determinant 1’, that might be called the Schwarzschild coordinate system.26 Pre-
senting his solutions in these coordinates, he found that the equations for planetary
orbits remain exactly the ones that Einstein had obtained in first-order approximation.

4 The return of the point-coincidence argument in einstein’s private
correspondence

4.1 The einstein-ehrenfest correspondence

Some of Einstein’s closest interlocutors, such as Ehrenfest, were puzzled: “The day
before yesterday,” he wrote to Lorentz, “I received from Einstein the offprints of
his latest papers on the theory of gravitation” (Ehrenfest to Lorentz, Dec. 23, 1915;
SCHAL, Vol. 2, Doc. 247). Ehrenfest had always found it hard to make sense of
Einstein’s ‘adapted coordinates’ (see above Section 3.1). “But if I have properly
understood what Einstein now intends, then his theory of November 25, 1915, claims
to be entirely free of ‘adaption’-restrictions of the coordinates. Is that so?!” (Ehren-
fest to Lorentz, Dec. 23, 1905; SCHAL, Vol. 2, Doc. 247). In particular, Ehrenfest
noticed that “[i]n 1914 Einstein developed an almost philosophical proof for the
necessity of the ‘adaptedness’ of the coordinate system (I mean, e.g., §12 of his paper
of 19.XI.1914.) Is this proof correct?” (Ehrenfest to Lorentz, Dec. 23, 1905; SCHAL,
Vol. 2, Doc. 247). Einstein must have sensed that he owed an explanation to his corre-
spondents (Ehrenfest to Lorentz, Dec. 23, 1905; SCHAL, Vol. 2, Doc. 247). In a letter
to Ehrenfest, he described himself jokingly as the guy who each year “retracts what
he wrote in the preceding year” (Einstein to Ehrenfest, Dec. 26, 1915; CPAE, Vol.
8, Doc. 173). Einstein was in a somewhat embarrassing situation of having to justify
yet another retraction. Possibly at around that time, Einstein may have found an apt
‘rhetorical device’ to escape from his own argument against general covariance.27

This argument, the point-coincidence argument, made its first explicit appearance in
a letter to Ehrenfest. This letter is well known in Einstein’s scholarship:

26This nomenclature is not the usual one since what we call Schwarzschild were actually introduced by
Droste; see Section 6.1.
27One can speculate that a paper by Kretschmann (1915; see Howard and Norton 1993) that was published
on December 21 or discussions with Schlick (Engler and Renn 2013) might have suggested to Einstein a
suitable ‘turn of phrase’. As far as I can see, it has never been noticed that Einstein used the same turn of
phrase as early as 1911; see Section 2.1.
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In §12 of my paper of last year, everything is correct (in the first 3 para-
graphs) [...] A contradiction to the uniqueness of the event does not follow at
all from the fact that both systems G(x) and G′(x), related to the same frame
of reference, satisfy the conditions of the grav. field. [...]

1. the reference system has no real meaning
2. that the (simultaneous) materialization of two different g systems (more

aptly put, two different grav. fields) within the same area of the continuum
is [...] impossible.

In place of §12 the following consideration must appear. Whatever is phys-
ically real in events in the universe (as opposed to that which is dependent on
the choice of a reference system) consist in spatio-temporal coincidences* For
ex., the intersection points of two worldlines are real, or the statement that they
do not intersect each other. [...] When two systems in the gμν’s (or gen., the
variables used to describe the world) constituted in such a way that the sec-
ond can be obtained from the first by mere spacetime transformation, then they
are entirely equivalent. This is because they have in common all the spatial-
temporal point coincidences, that is, all the observables (Einstein to Ehrenfest,
Dec. 26, 1915; CPAE, Vol. 8, Doc. 173; my emphasis)
* and in nothing else!

The apparent nonuniqueness of generally covariant equations would be objectionable
only if more than one gμν system would be possible in the same coordinate system
K . However, this is in principle impossible. Not only do the gμν constitute a physi-
cal field with a respect to a coordinate system, but also they tell us which coordinate
system we are using. Therefore, the theory cannot predict the gμν at a point identi-
fied by its four coordinate numbers x. Changing coordinates, one obtains not only
a new set of G′(x′), but also a different physical meaning of the same quadruple of
numbers x = x′. Two worldlines that intersect at x = x′ of K according to G(x) will
indeed not intersect at the same point x of K according to G′(x). However, Einstein
came to realize that this not a problem: the same point should be defined physically
as where the same worldlines meet. Coordinate numbers x serve only as a book-
keeping device for such coincidences. Thus, any choice of coordinate numbers is just
good as any other (Einstein to Ehrenfest, Dec. 26, 1915; CPAE, Vol. 8, Doc. 173).
Ultimately, according to Einstein, the point-coincidence argument showed “how nat-
ural the requirement of general covariance is” (Einstein to Ehrenfest, Dec. 26, 1915;
CPAE, Vol. 8, Doc. 173). The specialization of

√−g = 1, Einstein insisted, does not
change the essence of the matter.

Thus, Einstein was convinced that he had sufficiently refuted his own “‘philosoph-
ical’ consideration” (Einstein to Ehrenfest, Dec. 29, 1915; CPAE, Vol. 8, Doc. 174).
He wrote to Lorentz that he was “conducting a discussion with Ehrenfest” (Einstein
to Lorentz, Jan. 1, 1916; CPAE, Vol. 8, Doc. 177), who was rather skeptical. As a
matter of fact, Ehrenfest confessed to Einstein that Lorentz was not convinced either
that his field equations with the condition

√−g = 1 were sufficient to determine
das Geschehen, the events (Ehrenfest to Einstein, Jan. 1, 1916; CPAE, Vol. 8[12],
Doc. 177a). However, Lorentz, differently from Ehrenfest, did not know about Ein-
stein’s letter with the point-coincidence argument, yet. Nevertheless, Ehrenfest, even
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after having discussed Einstein’s counter-§12-argument with his wife Tatjana and
with Fokker, was still not convinced: “I will defend the philosophy of §12 against
your refutation” (Ehrenfest to Einstein, Jan. 1, 1916; CPAE, Vol. 8[12], Doc. 177a).
After having repeated nearly literally some of the lines from Einstein’s letter, he tried
to explain his point of view with a thought experiment, concerning the curvature of
light rays passing in the vicinity of the Sun. It was sort of an astronomical version of
Young’s double-slit experiment.

To make the rather abstract matter intuitive, Ehrenfest drew a picture of infinitely
weak (i.e., of negligible self-gravitational energy) light waves coming from a star
passing through the empty space around the Sun and reaching two telescope apertures
that combine light waves to form a fringe pattern on a photographic plate (Fig. 2).
The only “object of observation” is the “blackening or not blackening of a photo-
graphic plate behind both telescopes” (Ehrenfest to Einstein, Jan. 1, 1916; CPAE,
Vol. 8[13], Doc. 177a). The physical situation is parametrized by the coordinate sys-
tem x1, . . . , x4, and fields Tμν, gμν . Let us assume that the field equations predict a
destructive interference on part of the plate: “Bravo the photrogr. plate is darkened (a
true ‘coincidence (explanation’) claim” (Ehrenfest to Einstein, Jan. 1, 1916; CPAE,
Vol. 8[13], Doc. 177a). However, one can proceed further and “see the philosophy of
§12 at work,” that in Ehrenfest’s notation G(x) → G′(x′) → G′(x):

In the cross-hatched region occupied by matter, we kept fix the description of
the world-happening, whereas in the non-cross-hatched empty space (where
there is only ∞ weak light!) the latter is strongly changed You look at me
laughing quietly and you say ‘go ahead, young friend, and describe if you like,
the empty space

with old coordinates x

and brand new G′(x)

nothing observable, no ‘coincidence’ would change!? Now I’m astonished and
angry over your laugh and

I claim with a clenched fist :
‘If with the old x and the old G(x) and the new G′(x) one calculates the
darkening of the plate, then one should calculate the non-darkening of the plate

Fig. 2 Diagram in Ehrenfest’s hand (Ehrenfest to Einstein, Jan. 1, 1916; CPAE, Vol. 8[12], Doc. 177a)
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with old x and new G′(x)’ [The star, the sun and the telescope and the plate are
not in empty but in matter space] (Ehrenfest to Einstein, Jan. 1, 1916; CPAE,
Vol. 8[13], Doc. 177a).

The position of the star, the telescope aperture, and the plate in the matter-filled
regions are fixed in a provisionally chosen coordinate system K with x. One cal-
culates a solution to the field equations and obtained G(x); once one knows such
coefficients, one can extract from the coordinate numbers x the reciprocal distances
of the Sun, the stars, the aperture, and the photographic plates and, in general, of any
points x with respect to K . Subsequently, the coordinates in the matter-free region
are changed to the coordinate system K ′ so that x′ = f (x). Following the instruc-
tions of Einstein’s §12, one can produce a series of different solutions G(x), G′(x),
G′′(x), and so forth on the same coordinate system x: “Symbols are used precisely
in the sense of your §12!—Thus G′(x) �= G(x)” (Ehrenfest to Einstein, Jan. 1, 1916;
CPAE, Vol. 8[13], Doc. 177a). The trajectories of light rays appear to pass through
different values of the same coordinate system x in each case. “Do you concede this
point or do you dispute it?”, Ehrenfest asked Einstein rhetorically (Ehrenfest to Ein-
stein, Jan. 1, 1916; CPAE, Vol. 8[13], Doc. 177a). If Einstein accepts Ehrenfest’s
reconstruction, then he has to admit that if the positions of the Sun, stars, aperture,
and photographic plates are given and the theory cannot predict the interference pat-
terns on the plate, which are precisely the ‘coincidences’ Einstein was talking about.
Einstein should concede “with an icy polite smile” the failure of his “solemn formula
[Beschwörungsformel]” in his Mercury-perihelion paper, that is, the claim that inter-
transformable solutions are formally different, but physically identical (Ehrenfest to
Einstein, Jan. 1, 1916; CPAE, Vol. 8[13], Doc. 177a).28

However, by that time, Einstein had become fully confident that the Lochbetrach-
tung was flawed (Einstein to Besso, Jan. 3, 1916; CPAE, Vol. 8, Doc. 174). As he
explained to Besso, the meeting of coordinate lines of K is not real; real are only the
“encounters [Begegnungen] of worldlines. In other terms: “nothing more” that point-
coincidences (Einstein to Besso, Jan. 3, 1916; CPAE, Vol. 8, Doc. 174). This was the
root of Ehrenfest’s difficulties as well. Ehrenfest “instinctively treat[ed] the reference
system as something ‘real’” (Einstein to Ehrenfest, Jan. 5, 1916; CPAE, Vol. 8, Doc.
180). Einstein considered this prejudice fully natural: “I myself needed so long to
arrive at total clarity on this point” (Einstein to Ehrenfest, Jan. 5, 1916; CPAE, Vol. 8,
Doc. 180). In order to convince Ehrenfest, Einstein invited him to depict a simplified
version of his thought experiment (a star, an aperture, and a plate) on a tracing paper
superimposed onto a flat letter paper. On the flat tracing paper, one can trace a regu-
lar graph in which coordinates directly represent actual lengths (the time coordinate
is not taken into account). A coordinate transformation, which introduces curvilin-
ear coordinates and a new set of gμν , is represented as a deformation of the tracing
paper. The boundary conditions at infinity, the coordinates of the star, the material
point at the aperture, and the plate remain unchanged. The result is summarized in an
often-quoted passage:

28The reference is to the passage cited above in Section 3.2.
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In the above special case you obtain all the solutions that are a consequence
of general covariance in the following way. Trace [the star, the aperture and
the plate] onto completely deformable tracing paper. Then deform the tracing
paper arbitrarily in the plane of the paper. Then make another tracing on the
letter paper [...] When you relate the figure once again to the orthogonal writing
paper coordinates, the solution is mathematically different from the original,
and naturally also with respect to the gμν . But physically it is exactly the same,
since the writing paper coordinate system is only something imaginary. Always
the same points are illuminated on the plate [...] The essential thing is: as long
as the drawing paper, i.e. ‘space’, has no reality, then there is no difference
whatever between the two figures. It all depends on coincidences, e.g., whether
the plate points are hit by the light or not. Thus, the distinction between your
solutions A and B is merely a difference in presentation [Darstellung] with
physical concordance [Übereinstimmung] (Einstein to Ehrenfest, Jan. 5, 1916;
CPAE, Vol. 8, Doc. 180; my emphasis)

In pre-general-relativistic theories, we know in advance that the orthogonal tracing
paper is flat and that rectangular coordinates (flat tracing paper) are a ‘good’ coordi-
nate system, which is physically realizable in the form of a material scaffolding. The
goal of physics was ultimately to correctly predict the paths of particles and light rays
with respect to this coordinate system.We could, of course, use a different curvilinear
coordinate system (the distorted tracing paper). Free particles would still follow time-
like geodesics, and light rays would still follow null geodesics. However, they would
impress different paths onto the letter paper. Nevertheless, before general relativity,
we knew how to go back to the ‘good’ regular graph coordinate system, with respect
to which the ‘real’ path of particles and light rays is defined. Since the deformed
tracing paper was regarded as a ‘bad’ coordinate system, the theory’s predictability
was safe. By contrast, by abolishing the distinction between ‘good’ and ‘bad’ coor-
dinate systems, at first sight, general relativity seems to be incapable of determining
uniquely the paths of light rays with respect to the writing paper coordinate system.
The illusion disappears once one realizes that the regular graph paper has no inde-
pendent physical reality. Thus, there is no reason to complain that the same diagram’s
lines do not intersect at the ‘same point’ of the latter paper. The ‘same point’ is there
where the same diagram worldlines intersect.29

4.2 The Lorentz-Ehrenfest correspondence

Einstein’s and Ehrenfest’s conceptual difficulties might surprise the modern reader
who is already accustomed to considering coordinates as essentially arbitrary sys-

29The deformation of the tracing paper described by Einstein is equivalent to the introduction of different
maps on the same projection plane x, y, which corresponds to the letter paper. On the map, the Greenwich
meridian intersects the equator (as both are ‘great circles’, the largest circle that can be drawn on any given
sphere) at different points x, y and at different angles in different mappings, in stereographic, cylindrical,
or other projections. However, this is not a problem for cartographers since they define the ‘same point’
as where the Greenwich meridian intersects the equator. This information is the same in all mappings.
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tems of parameters. However, these difficulties were clearly not idiosyncratic. Even a
physicist of the status of Lorentz struggled to overcome the very same ‘epistemologi-
cal obstacle’ (Kox 1985). On January 9, 1915, just a few days after Einstein’s answer
to Ehrenfest (Einstein to Ehrenfest, Jan. 5, 1916; CPAE, Vol. 8, Doc. 180), Lorentz
sent a long letter expressing his concerns regarding general relativity and presenting
his own argument against general covariance. Lorentz considered the truncated vac-
uum field equations, Eq. 8. He argued that, given one solution (I), gμν = F(xα),
one can obtain a new one (II), g′

μν = F ′(x′
α), where g′

μν = gμν + δμν . This is
done by introducing a small change of the spatial coordinates x1, x2, x3 in the form
x′
ν = xν + ζν (where ζν is a small quantity of the ‘first’ order), whereas x′

4 = x4. He
imposed a condition on ζν that lets |g| = −1 remain unchanged. The result was the
following:

If, e.g., I have the solution gμν = F(xα) (symbolically expressed), and replace
xα by x′

α , then by the transformation formulas, I can provide the values of g′
μν .

I can express them in x′
α; suppose g′

μν = F ′(x′
α). Then gμv = F ′ (xα) will

also satisfy equations (8). This is a new solution, differing from the first. [...]
(I) and (II) now, in fact, differ physically, since in field (I) a material point
moves uniformly along a straight line, whereas one can easily see that this is
not the same in field (II). [...] One can also, taking (II) as a starting point [...]
[and] derive a third solution; one can continue in this way [...] From the above
it follows, it seems to me, that in the case we are considering of the matter-free
field, equations (8) are, with continuity and the conditions at infinity, insuffi-
cient to determine the field; in contrast with Laplace’s equation �ϕ = 0, which
in connection with the additional conditions requires that ϕ = 0 (Lorentz to
Ehrenfest, Jan. 9, 1916; SCHAL, Vol. 2, Doc. 230).

Lorentz insisted that one would find a similar overdetermination by considering the
Sun’s gravitational field calculated by Einstein. The coordinate transformation x′

ν =
xν + ζν can be applied to it as well. One can also make the case that ζν differs from
0 also in the space occupied by the Sun, so then field (II) will pertain to a ‘changed’
Sun. However, one can also set ζν = 0 within the Sun and change only the external
field so that the same distribution of matter would produce different fields. To escape
this overdetermination, one could try to introduce additional conditions (e.g., that the
field is Minkowskian at infinity, symmetric, etc.). However, in Lorentz’s view, this
would not limit our freedom of choosing ζν in the general case.

Ehrenfest replied immediately on the very same day (Ehrenfest to Lorentz, Jan. 9,
1916; SCHAL, Vol. 2, Doc. 230), with a letter written in German and a brief
introduction and conclusion written in Dutch, “under the pressure of orthographical-
grammatical boundary conditions” (Ehrenfest to Lorentz, Jan. 9, 1916; SCHAL, Vol.
2, Doc. 230). The day before, he had just received Einstein’s answer to his question
about the curvature of light beams (Einstein to Ehrenfest, Jan. 5, 1916; CPAE, Vol.
8, Doc. 180). Ehrenfest enclosed Einstein’s letter within the letter he sent to Lorentz.
Ehrenfest did not find Einstein’s reply very clear; however, thanks to a long discus-
sion with his wife, he came to realize that Einstein was “entirely right” (Ehrenfest
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to Lorentz, Jan. 9, 1916; SCHAL, Vol. 2, Doc. 230). Ehrenfest relied again on the
example of the curvature of light beams, which he meant to be “Ganz im Sinn des
§12” (Ehrenfest to Lorentz, Jan. 9, 1916; SCHAL, Vol. 2, Doc. 230).

He considered a material space made by a star, the Sun, an aperture, and a pho-
tographic plate on Earth (Fig. 3). Exactly like in Einstein’s §12, in the matter-free
region around this material system, two observers A and B introduced two tensor
fields gA

μν(x) and gB
μν(x) on the same coordinate system x1, x2, x3, x4, whereas the

g0
μν(x) field in the matter region remained the same. When light rays coming from

a star enter into the matter-free region, they go through different coordinate values
x1, x2, x3, x4 according to gA

μν(x) and gB
μν(x). In fact, the path of light rays is noth-

ing but the shortest chain of ds whose links are null space-time length so that small
increments dx have natural spacetime distance ds2 = 0. Which small increments dx

correspond to such a natural distance depends on the gμν systems, gA
μν(x) or gB

μν(x),
that one uses to make the calculations. Thus, ultimately, given the coordinate sys-
tem x, light rays will go through different values of x, since the same coordinate
differences dx correspond to different real distances ds. However, in the meantime,
Einstein had managed to convince Ehrenfest that the paths of light rays, calculated
according to gA

μν(x) and gB
μν(x), will meet again at the same point x1, x2, x3, x4

on the matter region in which the coordinate system has remained unchanged and
that they will do so with the same angle in both cases. Thus, one obtains the same
darkening of the photographic plate.

Ehrenfest realized a key point. Many conceptual confusions emerged because
physicists were not thinking ‘geometrically’ in terms of the intrinsic structure of

Fig. 3 Diagram in Ehrenfest’s hand (Ehrenfest to Lorentz, Jan. 9, 1916; SCHAL, Vol. 2, Doc. 230)
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spacetime, but rather algebraically in terms of transformations of variables.30 Thus,
he suggested to represent the ‘world’ as a four-dimensional E surface embedded in
a five-dimensional Z space. The transformation considered by Einstein was noth-
ing but bending without stretching of the parts of the surface between the stars and
the aperture. The remaining parts of the surface were kept unchanged. This bend-
ing produced a different surface: “This is, geometrically speaking, the result of §12”
(Ehrenfest to Lorentz, Jan. 9, 1916; SCHAL, Vol. 2, Doc. 230). The two surfaces look
differently in the embedding space (like a plane, a cone, and a cylinder look differ-
ently). However, since they are developable onto each other, they share all intrinsic
geometrical properties (like a plane, a cone, and a cylinder have the same flat geom-
etry). The distance between two points, measured along the surface (i.e., along the
shortest line joining them), is unchanged, and so is the angle between two lines that
meet at a point. The paths of light rays are nothing but some of such lines. Thus,
although observers A and B bend the central part of the surface differently in the
matter-free region, inasmuch as that this does not stretch the surface, the light rays
will meet again at the same angle with the telescope.

Ehrenfest was eager to know whether Lorentz considered his two solutions (I) and
(II) as equivalent in this sense. Lorentz replied immediately; he “had read only a part
of [Einstein’s letter] [Einstein to Ehrenfest, Jan. 5, 1916; CPAE, Vol. 8, Doc. 180”]
and he had realized that “he was entirely right”. “I wrote to him straight away to
withdraw my objections of yesterday,” he concluded (Lorentz to Ehrenfest, Jan. 10,
1916; SCHAL, Vol. 2, Doc. 231). Lorentz described to Ehrenfest with great clarity
the ‘epistemological obstacle’ he had found difficult to overcome:

In connection with this I now realize that in the two fields I and II that I spoke
of in my last letter [Lorentz to Ehrenfest, Jan. 9, 1916; SCHAL, Vol. 2, Doc.
230], it is true that the separate phenomena do not take the same course in
relation to the coordinate system, but that in both of them the coincidences
do occur in the same way [...] I was too much a prisoner of the idea that our
equations must fully reproduce [...] the relations between the phenomena and
the chosen coordinate system, whereas we can be happy if they duly reproduce
the mutual relations between the phenomena. In physics, one has up to the
present (though it appears to be unnecessary) aimed at drawing up equations
that fully determine the phenomena in relation to a chosen coordinate system
[...] But it now turns out that the ‘field equations’ are of a different nature. We
cannot claim that they determine the gμν . Instead, we must say that when for the
gμν we take arbitrary functions that satisfy the equations, and then calculate all
phenomena with these gμν , we shall reproduce all coincidences well (Lorentz
to Ehrenfest, Jan. 11, 1916; SCHAL, Vol. 2, Doc. 231; my emphasis).

For practical purposes, one should perhaps restrict the choice of gμν through suitable
additional conditions. This restriction “would, however, now have no sort of deeper
meaning and could be brought about in an arbitrary way” (Lorentz to Ehrenfest, Jan.

30In other terms, they reasoned in terms of different map distortions and not of the unique shape of the
globe.
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11, 1916; SCHAL, Vol. 2, Doc. 231; my emphasis). Thus, Lorentz realized that also
the condition

√−g = 1 has nothing special. We chose “the coordinate system such
that g = −1,” only for the reason that this would give us “the simplest possible
solution (i.e., the values of gμν) of the field equations” (Lorentz to Ehrenfest, Jan.
11, 1916; SCHAL, Vol. 2, Doc. 231). However, a less simple solution would be just
as legitimate. “As far as the reproducing of the coincidences is concerned, the choice
of the coordinate system must be entirely indifferent” (Lorentz to Ehrenfest, Jan. 11,
1916; SCHAL, Vol. 2, Doc. 231). Worldlines do not take the same course in relation
to the coordinate system, but in both of them, coincidences do occur in the same way.
Indeed, at closer inspection, a worldline is not a succession of coordinate values, but
a succession of (possible) coincidences. “Theoretical physics, ”Lorentz concluded,
“now begins to resemble the geometria situs” (Lorentz to Ehrenfest, Jan. 11, 1916;
SCHAL, Vol. 2, Doc. 231).

Lorentz “congratulated Einstein on his brilliant results” (Lorentz to Ehrenfest, Jan.
11, 1916; SCHAL, Vol. 2, Doc. 231; see also Lorentz to Ehrenfest, Jan. 12, 1916;
SCHAL, Vol. 2, Doc. 232). However, as Ehrenfest pointed out in his reply, Lorentz’s
comparison of relativity theory to the geometria situs was too hasty (Ehrenfest to
Lorentz, Jan. 12, 1916; SCHAL, Vol. 2, Doc. 233). “I know very well that you mean
only to indicate a direction, not a point: the development from a lesser to a greater
‘deformability’” (Ehrenfest to Lorentz, Jan. 12, 1916; SCHAL, Vol. 2, Doc. 233).
According to Ehrenfest, general relativity was indeed “more ‘topological’ than ordi-
nary theories, yet still not fully topological” (Ehrenfest to Lorentz, Jan. 12, 1916;
SCHAL, Vol. 2, Doc. 233). The two solutions of the field equations that can be
‘deformed’ into one another in the sense of §12, that is, through a mere coordinate
transformation, are equivalent (Ehrenfest to Lorentz, Jan. 12, 1916; SCHAL, Vol. 2,
Doc. 233). This sort of deformation “causes the Einsteinian theory to resemble anal-
ysis situs, it is true, but to remain very certainly infinitely more limited” (Ehrenfest
to Lorentz, Jan. 12, 1916; SCHAL, Vol. 2, Doc. 233). The correct analogy, according
to Ehrenfest, was with Gauss’s theory of surfaces. The four-dimensional world can-
not be arbitrarily deformed like the rubber band of the geometria situs; it can only be
“deformed ‘without being stretched’” (Ehrenfest to Lorentz, Jan. 12, 1916; SCHAL,
Vol. 2, Doc. 233) like how a cylinder can be developed onto a flat surface. This was
precisely what Einstein stubbornly refused to accept from Hertz in August 1915: the
world is developable onto itself (as discussed in Section 2.2). Einstein thought of
E, F, G as a calculational device that, given dq and dp, spits out ds, and at the same
time E, F, G are fields with certain values at p, q. However, this way, he seems to
have missed the key point: the entire class of inter-transformable E, F, G represents
the same curved surface, with the same Gaussian curvature.

Einstein agreed with the “truly Ehrenfestian description of the telescope affair”
(Einstein to Ehrenfest, Jan. 17, 1916; CPAE, Vol. 8, Doc. 182). In general, he was
pleased with the reception that the theory had within the Leiden community, “a
brilliant nook on this barren planet” (Einstein to Ehrenfest, Jan. 17, 1916; CPAE,
Vol. 8, Doc. 182). Einstein wrote to Lorentz a few days later: “I see that you have
thought over the theory entirely and have familiarized yourself with the idea that
all of our experiences in physics refer to coincidences” (Einstein to Lorentz, Jan.
17, 1916; CPAE, Vol. 8, Doc. 245). This point of view quite consequently requires
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the formulation of generally covariant equations. Einstein read the Ehrenfest-Lorentz
correspondence and confirmed that he himself “had hit upon this erroneous stance
that corresponds to the standpoint held by you in the first of your letters” (Einstein
to Lorentz, Jan. 17, 1916; CPAE, Vol. 8, Doc. 245). Einstein conceded that although
he had presented the field equations in the

√−g = 1 coordinates, it was important
to present the field equations in a generally covariant form to avoid any arbitrariness.
However, he also insisted that it was necessary to specialize the coordinate systems
in some natural way, although he did not find a proper way to do so (Einstein to
Lorentz, Jan. 17, 1916; CPAE, Vol. 8, Doc. 245). Einstein was particularly fond of
how Lorentz had presented the point-coincidence-general covariance relations and
he asked him to make these “considerations available to other physicists as well”
(Einstein to Lorentz, Jan. 17, 1916; CPAE, Vol. 8, Doc. 245).

Lorentz agreed that a systematic presentation of the theory was a worthy endeavor
(Lorentz to Ehrenfest, Jan. 22, 1916; SCHAL, Vol. 2, Doc. 235). As he suggested to
Ehrenfest, he “could talk on this subject on Mondays at 10 o’clock for a few weeks,
and use these lectures as the basis for a short paper or a little book” (Lorentz to
Ehrenfest, Jan. 22, 1916; SCHAL, Vol. 2, Doc. 235). Indeed, it was Lorentz who
used for the first time the point-coincidence argument in a public lecture in February
1916, explicitly referring to a correspondence that he had with Einstein (Lorentz,
1917b, 1342; fn. 3). Lorentz suggested that we could investigate the gravitational
field of the Sun and we could perform a sort of ‘scattering’ experiment in a finite
region surrounded by detectors. Given certain initial conditions, we would send a
great number of material points and light rays, moving in all directions and with
different velocities, and note all coincidences recorded by the detectors, that is, all
“data by astronomical observations” that one could imagine to be infinitely detailed
(Lorentz 1917b, 1343).

One can represent these coincidences in a four-dimensional diagram, as a ‘field
figure’, a maze of worldlines and of light rays and their intersections, which can
ultimately be everywhere dense, a sort of continuously distributed matter without
internal forces. This way, “each observed coincidence could be represented by an
intersection of worldlines” (Lorentz 1917b, 1343). The claim that Mars (M) is at a
certain point at a certain instant with respect to the Sun (Z) means that an astronom-
ical sight lines up the planet, a fixed star (S) and the telescope on A. This implies
that the trajectory of a light ray joining the star and the orbit of the planet, passing
through a telescope comoving with Earth (A), and leaving marks on a photographic
plate is interrupted by the passage of Venus (V ) when the handles of a clock are on a
certain position on the dial (Fig. 4). In previous theories, there was only one correct
field figure; in general relativity, any deformation that allowed all intersections, and
thus all coincidences and all observational data, to remain unchanged is just as good
as any other (field-figure-I and field-figure II in Fig. 4).31 Mars (M) is at the same
point at the same time in all cases.

31Once again, Lorentz seems to conceive a field figure as a map projection on a flat projection plane (see
footnote 12, above). A change of the coordinate system corresponds to a different map projection and thus
to a deformation of the field figure as in Fig. 4.
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Fig. 4 Two equivalent field figures (Lorentz 1917a)

5 The point-coincidence argument in Einstein’s 1916 paper: getting
rid of the last remnant of materiality of the coordinate system

As most readers might recall, Einstein used the point-coincidence argument for the
first time in a published writing in his 1916 review paper (Einstein 1916a; see Sauer
2005; Janssen 2005; Gutfreund and Renn 2015), which was submitted in March.
“I have worked very hard on a final formulation of general relativity that has now
been fully developed” (Einstein to Zangger, Mar. 1, 1916; CPAE, Vol. 8[12], Doc.
196a). The argument appears in one of the first sections of the paper at the conclusion
of what might appear as a sort of autobiographical, ‘rational’ reconstruction of the
evolution of Einstein’s attitude toward coordinates. “In classical mechanics, as well
as in the special theory of relativity, the coordinates of space and time have a direct
physical meaning” (Einstein 1916a, 773). To say that a point event has coordinate
x1 means measuring off with a unit rod x1 times from the origin of the coordinate
system K along the axis of x1. To say that an event has coordinate x4 means that a
unit clock at rest in K measured off x4 periods at the occurrence of the event starting
from x0. Coordinates are labels that tell us which spacetime points we are referring
to and at the same time they tell us where those points are, their relative spacetime
distances from other points with respect to a ‘good’ coordinate system K . “This view
of space and time has always been in the minds of physicists, even if, as a rule, they
have been unconscious of it” (Einstein 1916a, 774).

Working within the framework of special relativity, Einstein realized that this con-
ception of coordinates could not be extended to accelerated systems. A coordinate
system K ′(x′, y′, z′, t ′) accelerating relative to a ‘good’ system K(x, y, z, t) can be
in principle maintained in a Born rigid motion, allowing for a direct measurement of
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x, y, z. However, one has to abandon the direct measurement of t with a clock (Ein-
stein 1916g). A coordinate system K ′(x′, y′, z′, t ′) rotating around the z = z′-axis
with respect to K , on the contrary, defies even this criterion of rigidity and does not
allow for the measurement of x, y, z, by means of rigid rods (Stachel 1989). Since
Einstein considered a uniformly rotating frame K ′ as equivalent to a system at rest
K in a static gravitational field, he had to abandon the comfortable setting in which
coordinate numbers meant also distances. One might ask what the physical content
of a theory is in which the positions of material points and the values of field quan-
tities are expressed as functions of the coordinates, but the latter are not measurable.
In an enormously famous but quite elliptic passage, which does not betray the con-
ceptual struggle needed to achieve the result, Einstein reminded his readers of what
is actually observable in a physical theory:

That this requirement of general covariance, which takes away from space and
time the last remnant of physical materiality [Gegenständlichkeit], is a natural
one, will be seen from the following reflexion. All our spacetime assessments
[Konstatierungen] invariably amount to a determination of spacetime coinci-
dences. If, for example, events consisted merely in the motion of material
points, then ultimately nothing would be observable but the meetings [Begeg-
nungen] of two or more of these points. Moreover, the results of our measurings
are nothing but assessments [Konstatierungen] of such meetings of the material
points of our measuring instruments with other material points, coincidences
between the hands of a clock and points on the clock dial, and observed
point-events happening at the same place at the same time.
The introduction of a system of reference serves no other purpose than to

facilitate the description of the totality of such coincidences (Einstein 1916a,
771; translation modified).

One might read this passage as saying that the result of any measurement should ulti-
mately ascertain whether a mark on one scale (a movable pointer or such) coincides
with a certain mark on another scale. This statement does not entail any reference
to coordinates. In a given coordinate system, two events are coincident if their coor-
dinates are the same, but the relationships between space-time coincidences are
independent of the coordinate system used (Ohanian 1976, 253). Thus, coordinate
numbers serve as individual ‘names’ for such coincidences (as they tell which coin-
cidence is referred to) and do not carry any further ‘metrical’ information (as they do
not tell us where this coincidence is).

The relationships between coordinate numbers and real distances can be extracted
from the formula for the line element, which is now written so that the summation
over repeated indices is assumed:

ds2 = gμνdxμdxν . (10)

This formula tells us that when ds and dx1, dx2, dx3, dx4 are known numbers, the
expression of the line element represents one equation for the determination of the
unknowns gμν . On the contrary, if gμν and dx1, dx2, dx3, dx4 are known, the equa-
tion spits out the number ds. The circular way in which these two operations are



European Journal for Philosophy of Science           (2021) 11:45 Page 41 of 64   45 

connected is at the origin of Einstein’s difficulties of illustrating the relation between
the predicted values of gμν and the observed ones, the ones that are measured
with rods and clocks. This is revealed by the surprisingly misleading way in which
Einstein presented the latter relations in the review paper.

After an introduction to the absolute differential calculus (PartB), Einstein derived
the gravitational field equations (Part C) from a Lagrangian δ

∫
Hdτ = 0, and

by imposing the condition
√−g = 1. He then obtained the field equations in the

following form:

∂
∂xα

	α
μν + 	α

μβ	
β
να = −κ

(
Tμν − 1

2gμνT
)

,

√−g = 1 .

(11)

After a discussion of the form that Tμν assumes in particular cases, in the last section,
Einstein discussed the Newtonian approximation of weak fields, Minkowski’s flat
boundary conditions, and the slow motion of particles. He applied this approximat-
ing procedure to obtain an approximate solution to his field equations for the exterior
field of a static, spherically symmetric mass. In the first Newtonian approximation,
Einstein obtained the following values for gμν , written in arbitrary Cartesian coordi-

nates, so that r =
√

x2
1 + x2

2 + x2
3 is the radial distance between the Sun and a certain

point. In this coordinate system, the approximate solution of the field equations takes
the following form:

gρσ = −δρσ − α
xρxσ

r3
(ρ, σ = 1, 2, 3) ,

gρ4 = g4ρ = 0 ,

g44 = 1 − α
r

,

(12)

where α = κM/4π , with M being the mass of the Sun. It can be shown that this
solution satisfies the condition

√−g = 1. What remains now is to show how these
predicted values can be compared with experience. Einstein’s approach was some-
how puzzling. As we have seen, it can be assumed that, in a small region of space
(over a single space-like hypersurface), we can introduce a Cartesian coordinate sys-
tem in which g11 = −1, g22 = −1, and g33 = −1, so that coordinates are measurable
by unit rigid rods that have the same length in every position and every orientation.
In the presence of the gravitational field, however, this construction would fail over a
large region of space. Even in first approximation, the coefficients g11, g22, and g33
are not constant, as Einstein had initially believed, but just like the coefficient g44,

functions of the coordinates. If we want to check whether the calculated gμν values
are ‘true’, we will need to measure the observed gμν values using rods and clocks.
Einstein described an idealized measurement procedure as follows. A unit rod laid
along the radius x1 satisfies

ds2 = −1 , dx2 = dx3 = dx4 = 0,

but does not measure directly the coordinate x1,

−1 = g11dx2
1 , g11 = − (

1 + α
r

)
.
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On the contrary, a rod laid in the perpendicular direction reads directly the coordi-
nates since it satisfies

ds2 = −1 , dx1 = dx3 = dx4 = 0 ,

−1 = g22dx2
2 , g22 = 1 .

A clock placed at rest in the gravitational field satisfies

ds = 1 dx1 = dx2 = dx3 = 0 ,

and measures
1 = g44dx2

4 , g44 = − (
1 + α

r

)
.

It is indeed unsettling that, in Einstein’s view a rod measured in coordinates is short-
ened by the gravitational field by a factor of

√
g11 and a clock is slowed down by a

factor of
√

g44 as if equal differences in coordinates x1 and x4 had a physical mean-
ing, denoting equal distances from the origin. This approach is visible in Einstein’s
‘backward derivation’ of the red shift, in which equal differences in time coordi-
nates give unequal proper time differences dx4 = 1/

√
g44 (Earman and Glymour

1980b). A similar issue emerges, which follows Einstein’s derivation of light deflec-
tion (Earman and Glymour 1980a). Einstein introduced the velocity of light γ = 1
“in the sense of Euclidean geometry” (Einstein 1916a, 806), and then he calculated
the distorted values:

γ =
√(

−g44

g22

)
= 1 − a

2r

(

1 + x 2
2

r2

)

.

Thus, again, light rays follow paths in which small differences dxν of the successive
values of xν are always ds = 0 in Cartesian coordinates. These paths are distorted by
the gravitational field gμν . However, this way, γ would depend on the value of g44
and g22.

In the approximation procedure adopted by Einstein, in which one starts from
Cartesian coordinates, it seems natural to interpret coordinate differences as distances
(e.g., r as the distance from the Sun) and gμν as a field that distorts such measure-
ments. However, this approach has an obvious drawback. Since the components of
gμν are defined only up to a coordinate transformation, with a different choice of
coordinates, rods and clocks would be shortened and slowed down differently by dif-
ferent factors gμν . However, at this point, Einstein must have been aware that the
relationships between coordinates and rods and clocks measurements are actually
reversed, as he more aptly wrote a few lines later. Instead of measuring in terms of
coordinates and considering the rod distorted, one should take “one and the same
rod, independently of its place and orientation, as a realization of the same interval
[−ds]” (Einstein 1916a, 820; my emphasis). As it turned out, “Euclidean geometry
does not hold even to a first approximation in the gravitational field” (Einstein 1916a,
820). That is, near the Sun, it is impossible to cover a sufficiently large region of
space with a coordinate system in which g11 = g22 = g33 = −1, and ds = −1 in
every position and every orientation. This is like trying to wrap a flat piece of paper
around a sphere. If we assume that identical clocks (say, identical atoms) always mea-
sure the same ds without being influenced by the gravitational field, in general, it is
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impossible to choose a coordinate system in which time coordinates are the result of
clock measurements, that is, where g44 = 1. Similarly, identical rods and identical
clocks, wherever they are placed in the gravitational field, always measure the same
velocity of light c.

Einstein’s presentation of the practice of rods and clocks measurement in general
relativity in terms of a field that distorts rods and clocks, and thus the paths of parti-
cles and light rays, reveals the fact that he seemed to vacillate between two different
mental models: (a) a practically useful mental model in which gμν extract different
‘natural’ differences ds from equal differences in coordinates and (b) a theoretically
more adequate mental model in which equal natural distances ds correspond to dif-
ferent coordinate distances according to different gμν systems. Since Einstein did
not think in geometrical terms (the intrinsic curvature of spacetime) but saw (10) as
a calculation tool to translate coordinate distances into real distances and vice versa,
he seemed to switch from one mental model to the other depending on the circum-
stances. More precisely, although Einstein knew that (b) is, ‘in theory’, the correct
approach, he often reasoned ‘in practice’ in terms of (a). Given the coordinate differ-
ences of two points, what is the distance between them? The line element (10) gives
different answers to this question depending on the components of the gμν . In my
view, this way of posing the question is the source of most of the difficulties that we
have encountered so far.

It is of course not that, using different intertransformable gμν as conversion fac-
tors, we calculate different ds from the same coordinate increments as in (a); rather,
as in (b), using different gμν , we can recover the same ds from different coordinate
increments.32 In spacetime, worldlines are given by an infinitely large number of
subsequent values of x1, x2, x3, x4. Free-falling particles in an empty region of space-
time occupy the series of x1, x2, x3, x4, which satisfies the constraint that the chain
of time-like ds connecting two successive coordinate increments xν and xν + dxν is
the longest among all alternatives. If one remains attached to (a), then the same series
of coordinate numbers x1, x2, x3, x4 that represent the longest time-like worldline in
the gμν system will not in g′

μν . Thus, the worldlines of two colliding free-falling
particles A and B that intersect at the worldpoint x1, x2, x3, x4 according to gμν , in
general, will not according to g′

μν . However, according to (b), free-falling particles
follow the longest chain of ds = 1 in all gμν-systems; the fact that such world-lines
can be parametrized by different series of x1, x2, x3, x4 is meaningless. In all gμν sys-
tems, the same worldlines of A and B intersect at the same point, because the same
point is defined operationally as where the same worldlines intersects. “Every phys-
ical description resolves itself into a number of statements, each of which refers to
the spacetime coincidence of two events A and B” (Einstein 1916f, 65). Coordinates

32Darrigol (2015) labels (a) ‘perverted geodesy’ and (b) ‘concrete geodesy’. In our cartographic analogy,
model (a) corresponds to taking the Cartesian coordinate differences dx, dy on the projection plane as
meaningful as in footnote 12 and distances in different maps as distortions; (b) means that every map
represents the same latitude and longitude on the curved globe and that the projection distortions are
meaningless as in footnote 11. According to Valente (2018), Einstein embraced the perverted geodesy
point of view. However, to me, this claim seems to be too strong and in conflict with too many passages in
which Einstein declared coordinates as meaningless.
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x1, x2, x3, x4 do not tell us where such coincidences happen with respect to a given
coordinate system; the four numbers x1, x2, x3, x4 are only a bookkeeping system to
keep track of which coincidences we are referring to in a given coordinate system.

The convincing power of the point-coincidence argument ultimately depended
probably on the fact that it could present what was a radical redefinition of what is
observable in physics as if, in a more careful analysis, it were already implicit in
previous physics practices. This is probably a rational reconstruction of how Ein-
stein himself stumbled on the point-coincidence argument. As we have seen, as early
as 1911 (see Section 2.1), Einstein had pointed out that, in physics and in everyday
experience alike, “the position of an object in space is based on the specification of
the point on a rigid body with which that event or object coincides” Einstein 1916f,
4; my emphasis). Einstein used this very same parlance again in his popular book on
relativity (Einstein 1916f) that he started to plan at the beginning of 1916 (Einstein to
Besso, Jan. 3, 1916; CPAE, Vol. 8, Doc. 178) and concluded by the end of the year.
As he pointed out further in the booklet, one needed only to take this conception to
its extreme consequences.

Physicists used to think that the goal of a physical theory was to predict the
successive positions x, y, z, of, say, a material point with respect to a suitably cho-
sen reference frame at time t measured by clocks placed at fixed positions on such
scaffolding. At closer inspection, however, what they were actually able to predict
was only the “the encounters [Begegnungen] of this [material] point with particular
points” of a particular physical system that we have chosen as a “reference-body”,
at the moment of “the encounter of the hands of clocks with particular points on the
dials” (Einstein 1916f, 65). Thus, ultimately, even in pre-general-relativistic theo-
ries, spacetime predictions always referred to the encounters of at least two physical
systems.

Pre-general-relativistic physics considered one system as somehow ‘more impor-
tant’ than the other, i.e., the system that could be treated as an external, non-
accelerating system unaffected by the interactions being described. One wants to
know where the material point is on the scaffolding and not the other way around.
Thus, it was natural to think of the scaffolding as a three-dimensional rigid reference
body (endowed with clocks) which can be isolated from the phenomena under inves-
tigation. Where a material point is could be expressed unambiguously in terms of
relative distances from the origin. However, because of the ‘equivalence principle’,
there is no way to identify non-accelerating reference bodies external to the gravita-
tional system. But, using accelerating frames of reference in a relativistic framework
is riddled with difficulties. Already, in the case of uniform acceleration, the rigid
reference body had to be substituted with a three-dimensional deformable reference
body in Born rigid motion. Since this reference body could not be put into rotation,
Einstein had to capitulate and drop the very notion of a reference scaffolding. He
finally realized that physics could still get by with a more tenuous material medium,
a “reference-mollusk” (Einstein 1916f, 67), that is a non-rigid reference body—say,
a cloud of particles filling the space, each carrying a clock. Physics can make mean-
ingful predictions about the encounters of such particles: such and such free-falling
clock collides with such and such particle, as the hand of the clock coincides with
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a certain mark on the dial. This redefinition of what is observable in physics, how-
ever, implied a more subtle conceptual reorientation. The very question of where this
encounter happens has become meaningless. “The last remnant of physical mate-
riality [Gegenständlichkeit]” of the coordinate system, Einstein could triumphantly
claim, has been dissolved (Einstein 1916a, 776).

6 The (very) last remnant of materiality of the coordinate system

6.1 A Galilean coordinate system: the physical meaning of the requirement√−g = 1

In spite of his efforts to convince his readers of the viability of the requirements of
general covariance, it is somewhat surprising that, in his 1916 paper, Einstein did not
give the field equations in a generally covariant form but rather in the form Eq. 11,
that is, by imposing the coordinate condition

√−g = 1. As it was suggested by a
manuscript for an unpublished appendix to the review article (CPAE, Vol. 6, Doc. 31),
Einstein considered it possible to derive the field equations from a variational princi-
ple with the Ricci scalar R chosen as a Lagrangian without the

√−g = 1 condition.
He also knew already that the conservation laws are satisfied without introducing
such specialization. Thus, Einstein considered the field equations as generally covari-
ant but only presented them in a special coordinate system in which the distinction
between tensors and tensor densities disappears, simplifying the calculations. How-
ever, in May 1916, after sending to Ehrenfest the proofs of his review article (Einstein
to Ehrenfest, Apr. 29, 1916; CPAE, Vol. 8, Doc. 218), Einstein wrote to him that his
specialization of the coordinate system was “not just based on laziness,” seemingly
implying that the postulate

√−g = 1 was more than a calculation trick (Einstein to
Ehrenfest, May 24, 1916; CPAE, Vol. 8, Doc. 218). Even if the field equations should
be presented in a fully generally covariant form, Einstein, nevertheless, considered
that it is desirable to find a physical motivation for specializing the coordinate system
a posteriori.

Exacts solutions were of course of particular interest. Schwarzschild’s papers
delivering exact internal and external solutions were respectively issued in April
(Schwarzschild 1916b) andMay (Schwarzschild 1916a) in polar coordinates of deter-
minant 1. Hans Reissner (1916) soon found a generalization of the Schwarzschild
metric, including an electrical charge relying on Einstein’s generally covariant for-
mulation of Maxwell’s equations (Einstein 1916b). Nevertheless, approximation
schemes played an equally important role in the early application of the theory. At
that time, Einstein, like Schwarzschild himself, was searching for wave solutions of
field equations, which were expected in a field theory of gravitation by analogy to
electrodynamics. Einstein initially failed to find such a solution in

√−g = 1 coordi-
nates, raising doubts that it was even possible. Such coordinate systems were in fact
in conflict with the coordinate condition given by Eq. 5 that enable writing down a
wave equation (Einstein to Schwarzschild, Feb. 19, 1916; CPAE, Vol. 8, Doc. 220).

Einstein found a workaround in June, as one can infer from a letter to Lorentz: “I
myself worked on the integration of the field equations in first-order approximation
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and examined gravitational waves. The results are in part astonishing. There are three
kinds of waves, though only one type transports energy” (Einstein to Lorentz, Jun.
17, 1916; CPAE, Vol. 8, Doc. 226). The reason for the breakthrough was again a con-
tribution of the work of the Leiden community.33 Lorentz’s Monday morning lecture
played an important role in making the Leiden physicists familiar with the formalism
of general relativity (Kox 1992). In May, Droste (1917), Lorentz’s doctoral student,
found independently of Schwarzschild an exact spherical symmetric static solution
for the mass point, however, dropping the condition

√−g = 1. In June, (De Sitter
1917) started to calculate the motion of planets and the Moon using an approximate
solution of the field equations. De Sitter used yet another coordinate system that was
also used by Lorentz in his lectures (Lorentz 1917c), a coordinate system in which
the velocity of light depends on position but not on direction.34 De Sitter must have
managed to convince Einstein that gravitational wave solutions are easier to find in
such Lorentz coordinates than in Einstein coordinates. He communicated to him the
approximate values of the diagonal elements of the gravitational field of a mass point
in Lorentz coordinates in a private correspondence.

On June 22, Einstein presented to the Prussian Academy of Sciences a paper on
gravitational waves (Einstein 1916d). He calculated the approximation

gμν = −δμν + γμν δμν =
{
0 if μ �= ν,

1 if μ = ν .
(13)

Einstein introduced the trace-reversed tensor γ̄μν = γμν − 1/2δμνγ , which plays the
role of a four-vector potential in electrodynamics.35 The specialization contained in
Eq. 13 is conserved if one performs an infinitesimal transformation on the coordi-
nates x′

μ = xμ + ξμ. One can then impose the condition (5),36 which is a linearized
approximation that allows rewriting the field equations for weak fields in a form
familiar in electrodynamics:

∑

ν

∂2

∂x2
ν

γ̄μν = 2κTμν . (14)

For a given material system with energy-momentum Tμν at the origin of the coordi-
nate system, γ̄μν can then be determined “in a manner analogous to that of retarded
potentials in electrodynamics” (Einstein 1916d, 688). As the simplest example of
application, Einstein calculated the gravitational field of a mass point of mass M ,
resting at the point of origin of the coordinates, and obtained the diagonal values
of the gμν : “Mr. De Sitter sent me these values by letter; they differ from those
which I previously gave [in Eq. 12] only in the choice of the system of reference”
(Einstein 1916d, 692). Einstein further calculated the components of a gravitational

33For the first extensive analysis of this episode, see Kennefick (2007, 53ff.). More technical details are
discussed by Weinstein (2015, sec. 3.1).
34This coordinate system is therefore called ‘isotropic’. I will refer to it as the system of Lorentz
coordinates.
35See footnote 19.
36This is the harmonic coordinate condition, which corresponds to the electromagnetic Lorenz gauge.
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field stress-energy pseudotensor t
μ
ν in this coordinate system. De Sitter’s coordinate

choice did not satisfy the condition
√−g = 1; however, Einstein realized that this

choice of coordinates was advantageous in performing calculations. Indeed, in the
rest of the paper, Einstein derived solutions of Eq. 14 representing plane gravitational
waves (whose wavefronts are flat, rather than curved). Einstein classified the waves
into three types: longitudinal, transverse, and a new type of wave. Using the com-
ponent t44 of the stress-energy pseudotensor that he calculated in the first part of the
paper, he determined the energy transported by such waves.37 Einstein realized that
this component vanishes for longitudinal and transverse waves.

Einstein wrote the following to de Sitter on June 22, the day he submitted his paper
on gravitational waves (Einstein 1916d) to the academy: “Your solution for the mass
point [...] [o]bviously [...] differs from my old one in the choice of the coordinate
system, but not intrinsically” (Einstein to de Sitter, Jun. 22, 1916; CPAE, Vol. 8, Doc.
227). However, Einstein realized that the two types of waves that do not transport
energy in Lorentz coordinates could be transformed away using Einstein coordinates
satisfying

√−g = 1. Thus, in an appendix to the paper, Einstein suggested that the
latter have a “deep-seated physical justification” (Einstein 1916d, 696). Einstein’s√−g = 1 coordinate system K should be regarded as a ‘good’ preferred coordinate
system, whereas de Sitter’s Lorentz coordinate system K ′ is suitable for calculations
but ‘bad’ from a physical point of view. Einstein went so far as labeling these coor-
dinate systems ‘Galilean’. Indeed, to a certain extent, their role resembles that of an
inertial system, a system with respect to which the real position of particles and com-
ponents of fields are defined. As one can infer from a remark made on the margin of
Einstein’s letter, de Sitter was puzzled: “What is this ‘Galileischer Raum’?38 Could
one not just as well say the ‘Aether’?” (de Sitter’s margin note, in Einstein to de
Sitter, Jun. 22, 1916; CPAE, Vol. 8, Doc. 227).

De Sitter returned to this issue in a letter written at the beginning of July.39 He
pointed out that “in order to determine the coordinate system one needs in general
four conditions” (de Sitter to Einstein, Jul. 7, 1916; CPAE, Vol. 8[12], Doc. 227a). As
Hilbert (1915) had explained, no definite solution of generally covariant field equa-
tions can be found unless these four additional noncovariant equations are imposed
(e.g., those conditions given in Eq. 5). However, once a solution is obtained, one must
be able to transform the solution freely to other coordinate systems. On the contrary,
if the four conditions fixing the coordinate system are chosen once and for all, “this
would mean that one relinquishes relativity” and falls back to an absolute space and
time that exists “independently of any physical observation and from the entirety of
physics” (de Sitter to Einstein, Jul. 7, 1916; CPAE, Vol. 8[12], Doc. 227a). There-
fore, de Sitter found it unsuitable that Einstein in his letter “called the coordinate
system characterized through −g = 1 as a ‘Galileischer Raum40’” (de Sitter to Ein-

37The pseudotensor tμν , unlike a tensor, can vanish at a point in one coordinate system but not in others.
38Galilean space. Quoted in German in the original Dutch text.
39In the manuscript, the letter is dated June 7. However, since it refers to Einstein’s paper of June 26, the
correct date is probably July 7.
40See footnote 38
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stein, Jul. 7, 1916; CPAE, Vol. 8[12], Doc. 227a). De Sitter pointed out that, imposing
this requirement, one, like Schwarzschild, would be forced to exclude polar coordi-
nates; however, there is nothing ‘ungalileian’ in the usual polar coordinates (de Sitter
to Einstein, Jul. 7, 1916; CPAE, Vol. 8[12], Doc. 227a). As a matter of fact, Droste
was able to find the same solution as Schwarzschild without imposing the condition√−g = 1.

According to de Sitter, imposing four conditions on the coordinates is indeed “a
kind of freezing or immobilization of the space, so that the choice of coordinates is
independent of the matter which might be present in space or of its motion and energy
changes” (de Sitter to Einstein, Jul. 7, 1916; CPAE, Vol. 8[12], Doc. 227a). In princi-
ple, one might also call this choice of coordinates a “frozen space in Galileo’s name
and deem the other spaces as non-real or apparent”. However, in de Sitter’s view, it
must be emphasized that this distinction is “fully arbitrary” (de Sitter to Einstein, Jul.
7, 1916; CPAE, Vol. 8[12], Doc. 227a). “If other physicists had discovered in this or
other spaces something advantageous, they would have the same right to call their
space as the ‘true’ one and define it as ‘galileian’ or maybe even the ‘aether’” (de
Sitter to Einstein, Jul. 7, 1916; CPAE, Vol. 8[12], Doc. 227a). Hence, the role of the
four coordinate conditions is to help obtain a solution of a particular kind of problem.
For example, the coordinate condition (5) allows one to find especially simple solu-
tions in the case of linearized gravitational equations in empty space but might not
be suitable in other cases. Thus, once a solution is obtained, the coordinate condition
may be discarded, as one may throw away the proverbial ladder after climbing it up.

De Sitter interpreted Einstein’s preferences for
√−g = 1 coordinates in this way,

but he was not sure whether he had misunderstood Einstein’s stance. In his reply,
written a week later, Einstein insisted on the importance “of further specializ[ing] the
[coordinate] system in a natural way, even in the interests of better comparability of
the found solutions” (Einstein to de Sitter, Jul. 15, 1916; CPAE, Vol. 8, Doc. 235).
Indeed, without introducing a specialization of the coordinate system, no solution can
be found. However, Einstein admitted that it was “not good if in my letter I called the
system

√−g = 1 ‘Galilean’” (Einstein to de Sitter, Jul. 15, 1916; CPAE, Vol. 8, Doc.
235). Only a coordinate system in which all gμν’s are constant should be called that.
Einstein, in principle, agreed with de Sitter’s interpretation of the distinction between
‘real’ and ‘apparent’. If one finds a wave solution of the field equations, there are
two possibilities. Either this wave-like process is independent of the choice of the
coordinate system or it is just a coordinate effect. In the latter case, the wave motion
can be transformed away by switching to another coordinate system and it is non-
real. De Sitter’sK ′ coordinates, that is, Lorentz coordinates, were more advantageous
for calculation. However, Einstein’s K satisfying

√−g = 1 had ultimately a special
status from a physical point of view since it allows only waves that transport energy.
Gravitational waves with respect to K are ‘real’, whereas with respect to K ′ they are
‘unreal’ (Einstein to de Sitter, Jul. 15, 1916; CPAE, Vol. 8, Doc. 235).

However, Einstein’s Leiden interlocutors were puzzled. As Lorentz wrote to de
Sitter a day later, it was hard to avoid “the impression that E[instein] becomes some-
what unfaithful to his own doctrine now that he is going to privilege one particular
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kind of coordinate system and speak of a ‘Galilei’schen Raum’” (Lorentz to de Sit-
ter, Jul. 16, 1916). If the requirement

√−g = 1 is used exclusively, this seems to
violate the spirit of general relativity. Even if Einstein insisted that the field equa-
tions were still valid in all coordinates (Einstein to De Donder, Jul. 23, 16; CPAE,
Vol. 8, Doc. 240), the distinction between a set of ‘good’ coordinate systems with
respect to which phenomena look real and ‘bad’ one with respect to which they are
‘apparent’ is introduced again from the backdoor. The attitude of the Leiden group
toward this issue seemed to have been quite different. De Sitter wrote a little paper in
English in July, in which he put the problem of the choice of coordinates and notion
of coordinate condition in a way that is closer to the modern view (De Sitter 1916a).

De Sitter emphasized that the 10 differential equations Gμν = κTμν do not deter-
mine gμν completely. If some set of gμν is a solution to Einstein’s equations in one
coordinate system x1, x2, x3, x4, it should also be a solution in any other coordinate
system x1, x2, x3, x4. The coordinate system is specified by certain added coordinate
conditions, four equations for gμν that must not be covariant. Different choices of
these four conditions might suit different problems; however, choice among them is
fully conventional. In de Sitter’s words,

An important remark must still be made with respect to the equations [Gμν =
κTμν]. Since [G′

μν = G′
νμ] and [Tμν = Tνμ] there are 10 of these equations,

and there are also coefficients gik to be determined. However, the equations
[Gμν = κTμν] are not independent of each other, but four of them are conse-
quences of the other six. They, therefore, are not sufficient to determine the gμν .
This is essential. For the gμν determine the character of the four-dimensional
system of reference, and the principle of general relativity requires that this
system can be arbitrarily chosen [...] In order to determine the gμν completely
we must to the equations [Gμν = κTμν] add four additional conditions, which
can be arbitrarily chosen, and which determine the choice of the system of ref-
erence. According to the form of these additional conditions the gμν will be
different functions of the coordinates, the equations of motion will be differ-
ent, the course of rays of light will be different, but there will always be the
same intersections of world-lines, and consequently all observable phenomena
will be exactly the same: they will only be described by a different system of
space coordinates and a different time. One system may be more convenient
than another—this is a matter of taste; but we cannot say that one system is true
and another false (De Sitter 1916b, 418–419).41

Thus, de Sitter resorted to the point-coincidence argument to show that the choice of
the coordinate condition is arbitrary, and that no such condition, including Einstein’s
preferred condition

√−g = 1, is privileged. The observable phenomena, that is, the
‘coincidences’, are not affected by the coordinate system used, and this is all that
counts from a physical point of view.

41Latin indeces has been substituted by Greek indeces.
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After writing two fundamental papers on the emission and absorption of radia-
tion in quantum theory (Einstein 1916e, h), in the fall of 1916, Einstein stayed for a
few weeks in the Netherlands. In the “unforgettable hours” (Einstein to Besso, Oct.
31, 2016; CPAE, Vol. 8, Doc. 270) he spent with Lorentz, Ehrenfest, Nordström, and
younger physicists like Droste and Fokker, discussions regarding this issue must have
inevitably ensued. Besides starting to address questions of a cosmological nature with
de Sitter (de Sitter to Einstein, Nov. 1, 1916; CPAE, Vol. 8, Doc. 272), in Novem-
ber, Einstein sent to Ehrenfest the galley proofs of his paper in which he derived
the field equations from a Lagrangian without imposing the coordinate condition√−g = 1 and asked him to show them to ‘co-conspirators’ (X-Brüdern) in Leiden
(de Sitter to Einstein, Nov. 1, 1916; CPAE, Vol. 8, Doc. 272). The paper was nothing
but the March 1916 appendix (CPAE, Vol. 6, Doc. 31). Einstein was now satisfied
that the Hamiltonian function did not become heavily complicated even if one lets
the coordinate system be general, that is, without imposing the

√−g = 1 condition.
In particular, Einstein insisted that the derivation of the conservation laws that he
obtained before imposing the condition

√−g = 1 holds in all coordinate systems.
As he wrote to Hermann Weyl, “one can see how the free choice [Wählbarkeit] of the
reference system can be of advantage in the calculation” (Einstein to Weyl, Nov. 23,
1916; CPAE, Vol. 8, Doc. 278). Einstein’s flirtation with the existence of privileged
coordinate systems seems to have come to an end.

6.2 The point-coincidence argument again: the correspondence with Gustav Mie

At the beginning of December of 1916, Droste presented his spherically symmetric
solution with additional results in the form of a doctoral dissertation in Dutch, which
was published in the spring of 1917 (Droste 1917). Opening the dissertation, Droste
insisted that “he has not made use of the coordinate system often used by Einstein,
where

√−g = 1” (Droste 1917, XII). According to Droste, Einstein’s coordinate
choice, on the one hand, did not significantly simplify the calculations and, on the
other hand, diverted the attention from the particular characteristics of the equations
to that of the coordinate system (Droste 1917, XII). The choice of the coordinate
system was recognized as fully arbitrary, “although one choice will be more effec-
tive than the other” (Droste 1917, XII). As he wrote to Ehrenfest in the spring of
1917, Einstein found “Droste’s dissertation [...] extraordinarily beautiful” (Einstein
to Ehrenfest, May 25, 1917). Nevertheless, as late as the spring of 1917, he probably
still believed that

√−g = 1 coordinates somehow reflected the objective properties
of spacetime. The condition is, for example, used in Einstein’s cosmological work
(Einstein 1917a, 145). Einstein was again convinced to free himself of this last rem-
nant of materiality of the coordinate system through an exchange with the Leiden
community (for more details on which see Kennefick 2007, 63ff.; see also Weinstein
2015, 254ff.).

In June, Ehrenfest wrote to Einstein that Nordström, newly engaged, was “prepar-
ing to write you (Ehrenfest to Einstein, Jun. 14, 1917; CPAE, Vol. 8, Doc. 352).
Nordström got back to Einstein only in August after his marriage ceremony (Nord-
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ström to Einstein, Oct. 23, 1917; CPAE, Vol. 8, Doc. 393). He had calculated the
distribution of energy in a gravitational field with spherical symmetry, which is the
quantity t44 (for which see also Lorentz 1918, §48). Nordström relied on the notation
introduced by Droste in his dissertation but used Schwarzschild’s polar coordinates
satisfying

√−g = 1. He rewrote this equation in Cartesian coordinates so that√−g = 1 would be satisfied and calculated the components of the energy of the grav-
itational field using the formula of Einstein’s 1916 general theory of relativity review
paper (Einstein 1916b, 806, eq. 50). Einstein had not performed this calculation in
that paper since he made his calculations using Lorentz coordinates. Nordström hence
reached the unsettling conclusion that

t44 = 0 .

In other terms, “[t]he gravitational field, therefore, would have then no energy outside
of the body” (Einstein to de Sitter, Sep. 22, 1917; CPAE, Vol. 5, Doc. 382), which
was in disagreement with Einstein’s result in his 1916 gravitational wave paper. Puz-
zled, Nordström checked his results and attached an addendum to the letter, in which
he wondered whether “[t]he entire contradiction could lie in the fact that we are using
different coordinate systems” (Einstein to de Sitter, Sep. 22, 1917; CPAE, Vol. 5,
Doc. 382). In his 1916 gravitational wave paper, Einstein had used Lorentz coordi-
nates “characterized by the velocity of light being equal in all directions” (Einstein
to de Sitter, Sep. 22, 1917; CPAE, Vol. 5, Doc. 382). As Nordström pointed out, an
exact solution for the point mass in this coordinate system was also investigated by
Droste in his dissertation. Relying on Droste’s calculations, but keeping them at the
same level of approximation that one can find Einstein’s work, he found

t44 = 1

4

α2

r4
.

Thus, the energy density of the gravitational field does not vanish in Lorentz coor-
dinates but does in Einstein’s

√−g = 1 system. As a consequence, the coordinate
system that Einstein believed to be physically ‘privileged’ has a rather unphysical
implication that the gravitational field of a point mass has no energy.

Einstein must have suspected some computational mistake. However, in Octo-
ber, Nordström confirmed his calculations using the approximate values and again
obtained t44 = 0 (Nordström to Einstein, Oct. 23, 1917; CPAE, Vol. 8, Doc. 393)
when the system of coordinates is chosen so that the condition

√−g = 1 is satisfied.
Thus, Einstein’s preferred coordinate system had the counterintuitive implication that
there appears to be no energy in the gravitational field of a point mass (Nordström
1918a, b; see also Schrödinger 1918). Using a different system of coordinates, this
might not be the case, as in Lorentz-de Sitter’s coordinates. After discussing the mat-
ter with Fokker, Nordström came to the conclusion that there was no particular reason
why it was useful to impose such a condition. Indeed,

√−g = 1 coordinates have
a more direct physical interpretation, since they provide a fixed absolute measuring
unit (Anderson and Finkelstein 1971). The unit volume of a four-dimensional ele-
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ment is the same in coordinate units as in natural units.42 However, it does not seem
necessary for coordinate differences and natural distances to be expressed in the same
units, and the latter might be treated as pure numbers (Nordström to Einstein, Oct.
23, 1917; CPAE, Vol. 8, Doc. 393).

At about the same time, the physicist Gustav Mie, who had critically followed
the development of Einstein’s theory since 1913, sent to Einstein at his request (Ein-
stein to Mie, Dec. 14, 1917; CPAE, Vol. 8, Doc. 407) the published version of his
Göttingen Wolfskehl lectures on relativity (Mie 1917a, b, c). On December 22, Ein-
stein repaid the courtesy by sending Mie his 1916 ‘Hamiltonian’ paper (Einstein
1916c) and his 1916 paper on gravitational waves (Einstein 1916d). He admitted,
however, that the latter contained a computational error. By that time, Einstein must
have realized that in that paper he had used the trace-reversed tensor γ̄μν instead of
γμν to calculate the energy density of gravitational waves t44 (Einstein to Mie, Dec.
22, 1917; CPAE, Vol. 8, Doc. 416). Commenting on Mie’s lectures, Einstein pointed
out that he disagreed with Mie’s “considerations about the necessity of the existence
of preferred coordinate systems”. “They can easily cause confusion,” he added (Ein-
stein to Mie, Dec. 22, 1917; CPAE, Vol. 8, Doc. 416). He revealed to Mie that he
was preparing a new paper on gravitational waves, which he submitted by the end of
December. It was presented by Planck at the end of December (Einstein 1918c).

In this classic paper, besides providing the so-called quadrupole formula (Ken-
nefick 2007, 65ff.), Einstein presented the role of coordinates and coordinate
conditions in a way that appears closer to that of a modern textbook. Coordinate
transformations involve four arbitrary functions, he wrote, so that four coordinate
conditions must be added to the six independent equations to permit unique solutions
(Einstein 1918c, 155). This applies to linearized gravity as well. Given a solution
gμν = −δμν + γμν , one might obtain a different solution by an infinitesimal coordi-
nate transformation xν + ξν leading to g′

μν = −δμν + γ ′
μν . However, this does not

change the physical content of the solution. The freedom in the choice of the vec-
tor ξν is merely an expression of the freedom of choosing coordinates. Gravitational
waves that transport no energy can always be generated from a field-free system by
a mere coordinate transformation (Einstein 1918c, 161). As a matter of fact, one can
always introduce a sinusoidal behavior of γμν by introducing the Minkowski metric
in nonstandard coordinates. However, those waves are only apparent and should be
distinguished from real waves, which cannot be introduced in this way.

Einstein’s attitude toward the role of coordinates in physics at that time can be
better appreciated by considering how he reacted to Mie’s counterobjection (Mie to
Einstein, Feb. 5, 1918; CPAE, Vol. 8, Doc. 456). To make his case, Mie introduced a
paradox that he had used in his Göttingen lectures (Mie 1917a, b, c). He considered
a rod at rest in a certain coordinate system. Using light rays as a standard, the rod
appears to be straight. However, by introducing a fast-changing gravitational field
and thus a writhing coordinate system, the rod would appear to be curved and to move

42Hence, the label ‘unimodular’ that we use for such coordinates, where ‘modulus’ is the volume element.
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like a snake, without any physical cause (Illy 1988). The two coordinate systems are
indeed geometrically equivalent; however, physically, the first coordinate system is
clearly better than the second one (Mie to Einstein, Feb. 5, 1918; CPAE, Vol. 8, Doc.
456). However, at this point, Einstein considered Mie’s yearn for a ‘good’ coordinate
system unacceptable. To make is stance clear, Einstein resorted again to the point-
coincidence argument to reinstate his conviction that coordinates in general relativity
are meaningless:

I do not agree at all with your reflection about the bent (flapping) rod. All phys-
ical descriptions that yield the same observable relations (coincidences) are
equivalent in principle, provided that both descriptions are also based on the
same laws of nature. The choice of coordinates can have great practical impor-
tance from the point of view of clarity of description; in principle, though, it
is entirely insignificant. It means nothing that ‘arbitrary gravitational fields’
occur, depending on the coordinate choice; it is not the fields themselves that
lay claim to reality. They are merely analytical auxiliaries in the description
of realities; in principle, one can actually only learn something about the lat-
ter by eliminating the coordinates. The ghost of absolute space haunts your rod
example. The argument works ad hominem but does not hit the mark at all as
I interpret it. It is not a question of a violation of logic. That a rod must either
be straight or bent but cannot be both corresponds exactly to the objection
advanced by philosophers against the special theory of rel. that the same body
(at the same 〈instant〉 spacetime point) cannot be simultaneously at rest and in
motion (Einstein to Mie, Feb. 8, 1918; CPAE, Vol. 8, Doc. 460; my emphasis).

Mie’s mistake was after all a sort of a dynamical version of the same conceptual con-
fusions that we have encountered in the previous pages. In his lectures, Mie imagined
(Fig. 5) that someone constructed a rectangular coordinate net (net I) using light rays
(Mie 1917a, 599). One can substitute this net with another curvilinear coordinate sys-
tem (net II), which would correspond to the presence of a gravitational field. The light

Fig. 5 Two equivalent coordinate systems, net I and net II (Mie 1917a)
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rays that appear optically straight in the first coordinate system would appear curved
in the second coordinate system. According to the general relativity principle, net I
is just as good as net II. However, this cannot be true. If someone introduces a gravi-
tational field that changes periodically, light rays will appear as if they were moving
like a vibrating string.43 According to Mie, no one would take this result seriously. If
all coordinate systems are on the same footing mathematically, physically, the net I
will be a more reasonable coordinate system that represents the ‘real’ path of light
rays. Given this premise, it is not surprising that Einstein relied once again on the
point-coincidence argument to convince his interlocutor that this was not the case.
Light rays will follow the same paths and intersect at the same angles in all coordi-
nate nets, I and II, or whatever oscillation between them one can imagine. Thus, they
will produce the same interference patterns on a photographic plate, that is, the same
coincidences.

Mie had just discussed this issue with the young Königsberg mathematician,
Kretschmann (Mie to Einstein, Feb. 17, 1918; CPAE, Vol. 8, Doc. 465). Thus, in
his reply, Mie alerted Einstein that the latter had shown that the point-coincidence
argument was actually meaningless. In any theory, observations are reducible to
point-coincidences, and thus any theory can be presented in an arbitrary coordinate
system without changing its physical content (Mie to Einstein, Feb. 17, 1918; CPAE,
Vol. 8, Doc. 465). In a letter written in May, as Kretschmann’s paper (1917) was
already published, Mie tried to defend his point of view by pointing out that it was not
dissimilar to the one Einstein had introduced in his 1916 gravitational wave paper.
As we have seen, Einstein (1916d) had, in fact, insisted that there was ‘a deep phys-
ical justification’ for imposing the condition

√−g = 1. As Mie pointed out, it was
roughly the same attitude that he himself had taken in his Göttingen lectures. In par-
ticular, Einstein’s ‘deep physical justification’ was “also almost exactly the same one
I have explained with the slithering rod” (Mie to Einstein, Feb. 17, 1918; CPAE, Vol.
8, Doc. 465). Searching for gravitational wave solutions, Einstein simply came upon
a coordinate system in which such a vibrating rod would occur, and he rejected this
“‘undulatory oscillating coordinate system’ as nonphysical” (Mie to Einstein, Feb.
17, 1918; CPAE, Vol. 8, Doc. 532).

A mathematician, for sure, can consider all coordinate systems equivalent. After
all, they are arbitrary numbering systems. However, a physicist, extracting quanti-
ties measurable with rods and clocks, light rays, and so forth from those numbers, is
bound to prefer more reasonable coordinate systems over others (Mie 1920; 1921). In
particular, one can never ascribe the same legitimacy to a coordinate system in which
what Einstein called ‘apparent’ and Mie ‘fictitious’ gravitational phenomena exist—

43In our preferred analogy, Mie’s thought experiment corresponds to the case of a sort of a dynamical map
projection of Earth, which changes cyclically and smoothly from, say, cylindrical to stereographic, and
then back again to cylindrical, on the same flat projection plane. Three cities that lie on a vertical line do
not do the same in a stereographic projection. Thus, in our dynamical map, the line connecting them would
appear to move in a snake-like fashion on the projection plane. Again, the illusion emerges if one takes
the coordinates x, y on the projection place as real distances. All these maps represent the same intrinsic
geometrical structure of the globe. Most physicists seemed to think in terms of the maps, not in terms of
the globe.
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for example, gravitational waves that do not transport energy. All coordinate systems
are equivalent “‘in principle’”; by assuming the mathematician’s standpoint, one can
define everything “on sovereign authority” (Mie to Einstein, Feb. 17, 1918; CPAE,
Vol. 8, Doc. 465). However, from a physical point of view, the coordinate system in
which the rod is not flapping is clearly better than the one in which it is not: “one can
see clearly from this exactly why, as you say, ‘there is profound physical justification
for a coordinate choice’ according to the condition

√−g = 1s” (Mie to Einstein, Feb.
17, 1918; CPAE, Vol. 8, Doc. 465). However, Einstein seemed to have now aban-
doned even the last trace of the materiality of the coordinate system. By changing the
coordinates, one changes the form of the solution, but not its physical meaning. The
distinction between a coordinate system being ‘good’ only for calculations, and a
coordinate system being ‘good’ from a physical point of view could not be upheld. A
plane wave, obtained by imposing the coordinate condition (5), becomes more com-
plicated with a different choice of coordinates. Nevertheless, all gravitational waves
that differ only by a coordinate transformation are physically the same. They produce
the same elliptical oscillation in the distribution of suspended mirrored test masses,
thus the same interference patterns in a gravitational wave detector. Ultimately, they
produce the same ‘coincidences’.

7 Conclusion: the immateriality of the coordinate system

On May 24, the Annalen published a brief programmatic paper in which Ein-
stein, among other things, replied to Kretschmann’s ‘triviality-objection’ against the
point-coincidence argument. Einstein, so to speak, doubled down and elevated the
point-coincidence argument to a fundamental physical principle in physics, the rel-
ativity principle (Gutfreund and Renn 2015): “Nature’s laws are merely statements
about temporal-spatial coincidences” (Einstein 1918b, 241). The requirement that
only point-coincidences are observable, as the physical expression of the relativ-
ity principle, seems to have become independent of general covariance as a formal
requirement (Lehner 2005). It is indeed possible that Kretschmann’s objection did
not catch Einstein by surprise. As far as I can see, it was never noticed that Einstein
was aware early on that any theory can be trivially presented in a way in which coor-
dinates are meaningless parameters (as discussed in Sections 2.1 and 2.2) without an
operational interpretation.44 The point of issue was a different one.

In previous theories, there was a way to eliminate the parameters; thus, it was sim-
pler to formulate the laws of nature with respect to a class of privileged coordinate
systems in which coordinate differences are physically meaningful numbers result-
ing from rods-and-clocks measurements. If one “demands this, then one confers to
the magnitudes x, y, z, t physical meaning”; this is “convenient (although not log-
ically necessary)” (Einstein to Adler, Aug. 4, 1918; CPAE, Vol. 8, Doc. 594; my
emphasis). However, such ‘deparameterization’ is never possible in general relativ-
ity. Because of the equivalence principle, one has lost the ability to distinguish good,

44This corresponds to what Bergmann has called ‘weak general covariance’ (Bergmann 1957, 11).
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nonaccelerated rods and clocks that reliably measure coordinates from the bad accel-
erating ones whose measurement cannot be trusted. Einstein, with a creative leap
of logic, concluded that there was no reason to prefer one coordinate system over
another. The impossibility of formulating the theory with reference to a privileged
class of coordinate systems gave to the “the relativity postulate [...] a heuristic mean-
ing in spite of the apparent lack of real content” (Einstein 1918b, deleted passage).
While general-relativistic theories, as any other fundamental theory, cannot dispense
with coordinates, they are singled out by the fact that they can only use coordinates
as nonmeasurable variables (Einstein 1918a, 699).45 A solution of Maxwell’s equa-
tions ϕμν(xν) is physically meaningful only once one specifies how the parameters
xν are measurable; on the contrary, the physical meaning of a solution of Ein-
stein’s equations gμν(xν) is what remains once the dependence on the variables xν is
eliminated.

The fact that Einstein’s answer to Kretschmann appears to be nearly incompre-
hensible to the modern reader is possibly the consequence of our unfamiliarity with
Einstein’s algebraic, nongeometrical way of thinking. Einstein reasoned in terms of
(kinematic and dynamic) variables that enter into the equations of physics and of
the procedures through which these variables can be measured. In general-relativistic
theories “the connection between quantities in equations and measurable quantities
is far more indirect than in the customary theories of old” (Einstein 1918a, 700). In
general relativity, it is impossible to devise an experiment that will measure whether
the Ricci scalar R = 0 at a point with the coordinates xν , because the values of
the coordinates by themselves are not measurable. However, one can ask whether
or not R = 0 at the point where two geodesics intersect. The point-coincidence
argument was the operationalist answer to what was perceived as an operationalist
conundrum, the impossibility to interpret the coordinates as readings on rods and
clocks. The components gμν of the gravitational field at a certain location x, y, z, t

are not measurable; they represent “nothing physically real”; only “the gravitational
field together with other data” is real (Einstein 1918a, 701).

In this sense, the point-coincidence argument, far from being a mere trick to
escape from the hole argument, can be considered as Einstein’s mature stance toward
what is actually observable in physics. “Physical experiences [are] always assess-
ments of point-coincidences (spacetime coincidences)” (Einstein 1919, [p. 3]). As
far as I can see, this was Einstein’s last formulation of the point-coincidence argu-
ment. A nonrelativistic theory, one might say, contains not only statements about
coincidences, but also statements about the coordinate systems that serve for their
description. On the contrary, a general-relativistic theory entails only relationships
between coincidences, the statements of which are independent of the choice of coor-
dinates. Although confusions about the role of coordinates in general relativity seem
to have been quite widespread among relativists for several years (Darrigol 2015),
the battle could be considered won (Einstein 1920). Einstein, moving beyond general
relativity toward the unified field theory program, seems to have lost interest in the
‘operationalist’ rhetoric of the observability of coincidences. The point-coincidence

45This is ‘strong general covariance’ in Bergmann’s parlance (Bergmann 1957, 11).
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argument is not mentioned in his Princeton lectures (Einstein 1922), Einstein’s only
presentation of the theory in textbook form.

Operationalism was for Einstein a ‘throwaway philosophy’ designed to be dis-
carded once it played its iconoclastic role. As I plan to show elsewhere, it was
Einstein’s former assistant, Bergmann, who, in the 1950s, brought the language of
‘coincidences’ to the fore again. Einstein’s ‘operationalist’ notion of ‘coincidence’
as the encounters of light rays and material particles was transformed into the ‘real-
istic’ notion of ‘coincidence’ as joint reading of field values (Bergmann 1961, 1962;
Bergmann and Komar 1962). The value of the Ricci scalar R at a worldpoint with
coordinates xν is not an observable quantity in general relativity. However, if there is
matter, one can measure the value of the scalar R where four scalar functions of some
matter field take such-and-such values. Where no matter is present, in principle one
can construct four scalars from the independent degrees of freedom of the pure gravi-
tational field (Komar 1958). In this sense, “[a] physically meaningful statement about
events is necessarily a statement about coincidences,” the joint measurements of the
values of at least five scalars (Bergmann and Komar 1962, 315; see also Bergmann
1961, 1962). The worldpoints and their labels xν have no physical meaning behind
these readings. “Perhaps this recognition will turn out to be of value in the years to
come . . . ” (Bergmann 1980, 176).
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Einstein, A. (1916f). Über die spezielle und die allgemeine Relativitätstheorie (gemeinverständlich). Line
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Janssen, M. (1998). Einstein-De Sitter debate. https://www.ilorentz.org/research/vanbaal/DECEASED/

ART/E-dS.pdf.
Janssen, M. (2003). A glimpse behind the curtain of the wizard/Un coup d’oeil derriére le rideau du
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