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Intertemporal discrete choice

Daniele Pennesi1

Abstract

Random utility models are widely used to estimate preference parameters. In
the case of intertemporal choice, the two most common models are the dis-
counted logit and one we call the discounted Luce. Due to their apparent simi-
larity, the choice to use one model or the other seems irrelevant. In this paper,
we argue that the discounted Luce is superior to the discounted logit in two sig-
nificant aspects. First, in relevant applications, the discounted Luce is mono-
tone in the sense of Apesteguia and Ballester (2018), while the discounted logit
is not. Second, we show that the discounted logit is incompatible with a prop-
erty of choice probabilities we call “weak stationarity”. The latter is compati-
ble with common assumptions on the random nature of choices and is often
not falsifiable with commonly available data. Fitting a logit model to weakly
stationary choice probabilities biases the time-preference estimates. On the
contrary, the discounted Luce can be safely used when choice probabilities are
weakly stationary. An application to an existing dataset supports the theoretical
results.

Keywords: Random Choice, Intertemporal Choice, Logit
JEL CLASSIFICATION: D9, D8

Random utility models (RUMs) represent a standard approach to estimate pref-
erence parameters, in both field and laboratory experiments. In RUMs, each
option is associated with a numerical value that depends on a deterministic
component called structural utility and a random shock. The recent wave of
empirical research on intertemporal choice has mostly employed two mod-
els: the discounted logit (henceforth, Dlogit), and one we call the discounted
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Luce (henceforth, DLuce).2 The two models are qualitatively similar: both sat-
isfy the independence of irrelevant alternatives property and both determine
choice probabilities by a “relative weight” functional form.3 The choice to use
one model or the other thus seems irrelevant and it is often not adequately jus-
tified in applied works. In this paper, we argue that this similarity is only su-
perficial, and that the DLuce is superior to the Dlogit in two significant aspects.
First, when choices are binary4 and under fairly general conditions, the DLuce
is monotone (see Section 3.1) in the sense of Apesteguia and Ballester (2018).
Monotonicity allows us to meaningfully interpret the estimated parameters as
measures of patience, an interpretation that is invalid in non-monotone mod-
els such as the Dlogit.

Second, we introduce a property of choice probabilities, called “weak sta-
tionarity” (see Section 3.1), which is compatible with common interpretations
of the random nature of choice, for example, from unobserved heterogeneity
in a population of individuals. We show that choice data generated by a Dlogit
cannot be weakly stationary. Consequently, fitting the Dlogit to weakly station-
ary data biases the estimates of the patience parameters. The result is relevant
because weak stationarity is often not falsifiable with the data typically avail-
able to the analyst (see the empirical Section 4). In this case, an analyst whose
interpretation of random choice is consistent with weak stationarity should not
use the Dlogit. On the contrary, the DLuce can be safely applied to weakly sta-
tionary choice probabilities. Indeed, the DLuce is the unique model that satis-
fies weak stationarity and the independence of irrelevant alternatives (IIA), plus
two technical axioms. Therefore, our results can inform the analyst’s choice of
which model to use in the estimation exercise.

In the empirical Section 4, we corroborate our theoretical results using an
existing dataset, in which the weak stationarity property cannot be falsified.
We exploit the experimental data of Tanaka et al. (2010) and we estimate time
preference parameters with both the DLuce and the Dlogit. The results show

2The Dlogit is used, among others, in Chabris et al. (2008); Louie and Glimcher (2010);
Tanaka et al. (2010). The DLuce is used in Harrison et al. (2002); Andersen et al. (2008); Meier
and Sprenger (2010); Andreoni et al. (2015); Meier and Sprenger (2015).

3They differ in how the shocks are distributed and how the shocks affect the discounted
utility: additively in the Dlogit and multiplicatively in the DLuce (see Section 2).

4Binary choices are the type of data collected with the popular Multiple Price List method
employed among the others in Harrison et al. (2002) Andersen et al. (2008), Tanaka et al. (2010),
Meier and Sprenger (2010), Bauer et al. (2012), Halevy (2015).
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that the Dlogit systematically estimates a “higher patience” with respect to the
DLuce under all the specifications of the discounting regime. For example,
when fitting quasi-hyperbolic discounting, the Dlogit estimates a δ= 0.99 and
a present bias factor β = 0.644, while the estimates of the DLuce are δ = 0.98
and β= 0.529.

While the main results are provided for the simplified setting of choice among
dated rewards, we show that the differences between Dlogit and DLuce partly
extend to the case of choice among consumption streams. As in the case of
dated outcomes, the DLuce satisfies a notion of weak stationarity (suitably adapted
to consumption streams) while the Dlogit violates it. Strengthening weak sta-
tionarity allows identifying geometric and quasi-hyperbolic discounting in the
DLuce. The latter results are also relevant for the application of dynamic ran-
dom utility models common in the IO literature (see, e.g., Rust, 1987; Aguirre-
gabiria and Mira, 2010).

The paper is structured as follows: after a literature review, in Section 2 we
introduce the setting and provide a preview of the results. In Section 3.1, we
illustrate the consequences of applying the Dlogit to weak stationary choice
probability. In Section 3.2, we prove that the DLuce is essentially the only model
that satisfies weak stationarity and the IIA axiom. In Section 3.4, we character-
ize geometric and quasi-hyperbolic discounting in the DLuce model. In Sec-
tion 3.5, we study the “weak stationarity-like” properties of the Dlogit. Section
4 contains the empirical assessment of the Dlogit and the DLuce. Lastly, Sec-
tion 5 provides the extension to consumption streams. Appendix A contains all
the proofs of the results in the paper, and Appendix B contains an extension of
the characterization of the DLuce dealing with zero-probability choices.

1. Related literature

There is growing interest in the relationship between stochastic choice and
time preferences. Blavatskyy (2017) extended Fechner’s model to intertemporal
choice, hence focusing on binary choices. Proposition 6 in Section 5 is com-
parable to Proposition 3 in Blavatskyy (2017) even if the setting and axioms
are rather different. Blavatskyy (2018) extends Fechner’s model to account for
multiple alternatives. Recently, Lu and Saito (2018) introduced a model of in-
tertemporal stochastic choice in the spirit of Gul and Pesendorfer (2006). In
their theory, random choice follows from the unobservable heterogeneity of
the discount factors. They characterize geometric and quasi-hyperbolic dis-
counting using discrete choice among lotteries over consumption streams. In
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their model, random choice arises from random time preferences, and the util-
ity over payoffs is deterministic. There are some differences with the DLuce:
first, their model is always monotone in the sense of Apesteguia and Ballester
(2018). Second, in the DLuce, choices are random even in the absence of in-
tertemporal trade-offs, while in their model, choices among immediate options
are deterministic. Third, our setting is more general, since we do employ lotter-
ies over consumption streams.

In the dynamic setting, Fudenberg and Strzalecki (2015) axiomatized a gen-
eral version of the recursive logit in which larger menus may be disliked due
to choice aversion. The dynamic logit, widely used in applied works (e.g, Rust,
1987), is a particular case of their model. The aim of their paper is different from
ours since we are interested in studying the properties of discounted logit and
discounted Luce models. Frick et al. (2019) study a general dynamic extension
of the random expected utility model of Gul and Pesendorfer (2006). They pro-
vide observable restrictions that characterize gradual learning, consumption
persistence, and habit formation. Differently from their paper, we focus on the
relationship between time preferences and random choice. Like Lu and Saito
(2018), Frick et al. (2019) consider choices over lotteries, whereas our frame-
work is more general. For a different approach to dynamic stochastic choice,
Dagsvik (2002) and Cerreia-Vioglio et al. (2017) extended the logit to dynamic
choices in continuous time, focusing on the dynamic of choice probabilities.

Concerning a more general critique of random utility models, Apesteguia
and Ballester (2018) show that common classes of random utility models have
paradoxical properties. The probability of selecting, for example, more imme-
diate options, is not necessarily decreasing if the patience parameter increases.
They show that the class of random parameter models is free of their critique.
Apesteguia et al. (2017) provide testable restrictions to identify a monotone
class of random utility models called single-crossing (SCRUM). SCRUM, how-
ever, violate the IIA, so, the DLuce is not a single-crossing random utility model
despite being monotone when applied to binary choices over dated outcomes.

2. DLuce and Dlogit: a preview

In this section, we introduce our setting and present a preview of the main
results. The first part of the paper focuses on discrete choice over dated rewards,
the type of choices that experimental subjects face in the common Multiple
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Price List (MPL) method.5 We consider a finite set of rewards X and denote by
(x, t ) a reward x ∈ X delivered in t periods, for some t ∈ N. We denote by Z
the set of all the possible dated rewards. A choice set is a non-empty and finite
subset of Z and we denote by A the set of all choice sets. Choice probabilities
are functions P : A×A → [0,1], such that

∑
(x,t )∈A P ((x, t )|A) = 1.

To simplify the exposition, this section considers only binary choices, i.e.
all the choice sets A = {

(x, t ), (y, s)
}

for some x, y ∈ X and t , s ∈ N and we de-
note by P ((x, t )|(y, s)) the probability of selecting (x, t ) over (y, s). The choice
probabilities in the Dlogit6 are given by:

P Dlog((x, t )|(y, s)) = eD(t )w(x)

eD(t )w(x) +eD(s)w(y)
(Dlogit)

where w : X → R and D is a discount function: a function D : N→ (0,1], with
D(0) = 1 and D(t ) ≥ D(t + 1). The function D(·) virtually includes all the dis-
count functions proposed in the literature. For example, geometric D(t ) = δt ,
hyperbolic D(t ) = 1

1+ρt , quasi-hyperbolic D(0) = 1, D(t ) = βδt (e.g Laibson,

1997), risk-adjusted D(t ) = g ((1− r )t )δt (Halevy, 2008), non-hyperbolic (Ble-
ichrodt et al., 2009) and, the generalized discount function of Bisin and Hind-
man (2013), D(t ) =β(1− (1−θ)ρt )1/(1−θ).

The choice probabilities in the DLuce model7 are given by:

P DLuce((x, t )|(y, s)) = D(t )v(x)

D(t )v(x)+D(s)v(y)
(DLuce)

where D is a discount function and v : X →R++.

Remark 1. The models used in applications contain an extra parameter λ ∈
[0,∞) often interpreted as a rationality measure. Choice probabilities of the

Dlogit are given by P Dlog((x, t )|(y, s)) = eλD(t )w(x)

eλD(t )w(x)+eλD(s)w(y) and in the DLuce by

5In the MPL design, each subject faces a list of binary choices between earlier/lower and
later/larger rewards.

6The Dlogit belongs to the class of additive random utility models (RUM) denote by P a:
P a((x, t )|(y, s)) =P(

D(t )w(x)+εx,t ≥ D(s)w(y)+εy,s
)

where the shocks are i.i.d. and distributed

according to a type I GEV distribution. The c.d.f. of a type I GEV is F (z) = e−e−σ(z−µ)
where µ ∈R

and σ> 0.
7The DLuce belongs to the class of multiplicative RUMs denoted by P m (Fosgerau and Bier-

laire, 2009): P m((x, t )|(y, s)) = P
(
D(t )v(x)εx,t ≥ D(s)v(y)εy,s

)
where the shocks are i.i.d. and

distributed according to a random variable ε such that ln(ε) is a type I GEV.
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P DLuce((x, t )|(y, s)) = (D(t )w(x))λ

(D(t )w(x))λ+(D(s)w(y))λ
. The parameter λ is immaterial for

the analysis of our paper, hence we set it equal to one.

When applied to intertemporal choice, the different structure of the Dlogit
and the DLuce models becomes relevant. Consider a standard interpretation
of random choice: the probability P ((x, t )|(y, s)) represents the portion of ex-
perimental subjects preferring (x, t ) to (y, s) in the reference population. The
subjects have deterministic preferences that are unobservable to the analyst.
Namely, each subject i has a utility function ui and a discount function Di

and she chooses by maximizing her discounted utility Di (t )ui (x). Consider the
probability of selecting (x,0) over (y,0) and the probability of selecting (x, t )
over (y, t ). It is clear that under the previous unobserved heterogeneity interpre-
tation of random choice:

P ((x, t )|(y, t )) = P ((x,0)|(y,0)) (1)

for all x, y ∈ X and t ≥ 0. The subjects preferring x immediately to y imme-
diately (or y to x) will prefer (x, t ) to (y, t ) ((y, t ) to (x, t ) respectively). Indeed,
ui (x) ≥ ui (y) if and only if Di (t )ui (x) ≥ Di (t )ui (y) and the equality (1) is satis-
fied regardless of the individual utility and discount functions. It is not difficult
to observe that the DLuce8 satisfies the equality (1), whereas the Dlogit, gener-
ally, does not. For instance, if we apply the Dlogit with geometric discounting
D(t ) = δt to choice data satisfying the equality (1), we will force δ to be equal to
1 when w(x) 6= w(y):

P Dlog((x,0)|(y,0)) = 1

1+ew(y)−w(x)
= 1

1+eδt (w(y)−w(x))
= P Dlog((x, t )|(y, t ))

holds only if δt = 1 or w(x) = w(y). Therefore, the Dlogit applied to choice
data satisfying Eq. (1) mechanically forces the estimated parameter δ to be
unitary (see Theorem 1), even if Eq. (1) is consistent with a non-unitary dis-
count function. Consequently, the Dlogit cannot be used when data satisfy Eq.
(1). However, equality (1) is often not falsifiable with the data collected in field
or laboratory experiments. In this case, we suggest that the Dlogit should not be
used when random choice arises from unobservable heterogeneity in the pool of
subjects. Similarly, it should not be used when individual random choice arises

8More generally, any multiplicative RUM satisfies equality (1): P m((x,0)|(y,0)) =
P

(
v(x)εx,0 ≥ v(y)εy,0

)=P(
D(t )v(x)εx,t ≥ D(t )v(y)εy,t

)= P m((x, t )|(y, t )).
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from noise in the evaluation of payoffs alone (see Section 3.1). For example,
an individual with deterministic time preferences but a stochastic utility over
rewards, will display choice probabilities that satisfy Eq. (1).9

A second advantage of the DLuce with respect to the Dlogit is that, when ap-
plied to binary choices, the DLuce is free of the critique advanced in Apesteguia
and Ballester (2018). They show that a broad class of stochastic choice models,
including the Dlogit, is not monotone with respect to parameters measuring
impatience (or risk aversion). In these models, an increase in the impatience
parameter is not necessarily followed by a larger probability of selecting a more
immediate option (see Fig. 1). Failures of monotonicity induce biases in the
estimation of preference parameters and prevent the interpretation of D(t ) as
a measure of time preferences. Differently from the Dlogit, the DLuce is mono-
tone when choices are binary and when the ratio D(t )/D(s) is monotone in the
preference parameters determining D (see Proposition 2). Figure 1 illustrates
monotonicity and its failure.

P

1

0.5

1 δ

Figure 1: Choice probabilities generated by a Dlogit (red line) and a DLuce (blue line) for (2,2)
vs (5,7) with w(x) = v(x) = x and D(t ) = δt .

9In section 3.5, we introduce a form of weak stationarity satisfied by the Dlogit. Although
this restricts certain ratios of log-odds, it is sufficient to characterize a more general version of
the Dlogit. The testable restrictions of the Dlogit are still unknown in the literature.
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3. Weak Stationarity, discounted logit and discounted Luce

3.1. Weak stationarity and the discounted logit

Motivated by the discussion in the previous section, we now formalize the
notion of weak stationarity for choice probabilities. For a given A ∈A and r ≥ 0,
we define Ar = {(x, t + r ) : (x, t ) ∈ A}, the set of all the dated rewards in A post-
poned by r periods. The following definition generalizes equality (1):

((x, y |t ,r )-Weak Stationarity). For all A ∈A such that (x, t ), (y, t ) ∈ A:

P ((x, t )|A)

P ((y, t )|A)
= P ((x, t + r )|Ar )

P ((y, t + r )|Ar )
.

(x, y |t ,r )-Weak Stationarity imposes invariance of the relative probability of
choosing between two rewards x, y ∈ X , when they are delivered at the same
dates, but only for two dates t and t + r . Intuitively, these ratios are unaffected
by intertemporal trade-offs. When the previous property holds for any pair of
payoffs and for any delay, we say that choice probabilities are weakly stationary:

(Weak Stationarity). Choice probabilities satisfy Weak Stationarity if they are
(x, y |t ,r )-weakly stationary for all x, y ∈ X and all t ,r ≥ 0.

There are at least two relevant interpretations of stochastic choice that are plau-
sibly consistent with Weak Stationarity:

a. Random choice generated by a population of individuals with determin-
istic preferences that are unobservable to the analyst (as discussed in Sec-
tion 2).

b. Random choice of an individual with deterministic time preferences but
a stochastic evaluation of payoffs: for example, P ((x, t )|A) =P(D(t )(u(x)+
εx) ≥ D(s)(u(y)+εy ) ∀(y, s) ∈ A).

In both cases, relative choice probabilities are not affected by identical shifts
along the time axes.

The following result generalizes the intuition provided in Section 2: apply-
ing the Dlogit to (x, y |t ,r )-weakly stationary choice probabilities mechanically
biases the estimated discount function.

Theorem 1. The equality P Dlog((x,t+r )|Ar )
P Dlog((y,t+r )|Ar )

= P Dlog((x,t )|A)
P Dlog((y,t )|A)

holds for some x, y ∈ X

with w(x) 6= w(y) and some t ,r ∈N if and only if D(s) = k for all s ∈ [t , t + r ].
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Theorem 1 shows that, if the choice data are (x, y |t ,r )-weakly stationary for
some x, y with w(x) 6= w(y), the structure of the Dlogit forces the discount func-
tion to be constant in an interval, even if (x, y |t ,r )-Weak Stationarity is consis-
tent with arbitrary discounting. Notice that, if t = 0 and w(x) 6= w(y) in Theo-
rem 1, then 1 = D(0) = D(s) for all s ∈ [0,r ]. The estimated patience parameter
will thus be unitary between 0 and r . Such a restriction depends on the struc-
ture of the Dlogit and not on the property of being (x, y |t ,r )-weakly stationary,
indeed any discount function is compatible with the latter property under the
above interpretations. Therefore, applying the Dlogit to (x, y |t ,r )-weakly sta-
tionary data gives potentially biased estimates, because they have to satisfy the
condition of Theorem 1. Moreover, most discount functions have the following
property: they are either unitary or strictly decreasing, e.g. D(t ) = δt is either
strictly decreasing in t when δ ∈ (0,1) or unitary when δ= 1. A similar property
is satisfied by hyperbolic discounting D(t ) = (1+ρt )−1.10 For these functions,
the result of Theorem 1 is stronger:

Corollary 1. Under the conditions of Theorem 1, if D(t ) is either strictly decreas-
ing or unitary, D(t + r ) = D(t ) for some t ≥ 0 and r > 0 implies D(t ) = 1 for all
t .

Fitting the Dlogit to weakly stationary choice probabilities and specifying
a discount function with the property of Corollary 1 will force the discount
function to be completely patient. Therefore, if the choice data are (x, y |t ,r )-
weakly stationary for some x, y with w(x) 6= w(y), they are incompatible with a
non-trivial Dlogit under common specifications of the discounting function D .
Meaning that (x, y |t ,r )-weakly stationary choice data cannot be generated by a
Dlogit. Theorem 1 and Corollary 1 can be used to inform the choice of a model
in applications. If the data satisfy (x, y |t ,r )-Weak Stationary, the Dlogit will pro-
duce biased estimates. More importantly, the two results offer guidance when
Weak Stationarity cannot be falsified, a situation that occurs with choice data
that are typically collected in field or laboratory experiments. For example, the
subjects never choose between two rewards delivered on the same date when
time preferences are elicited with the Multiple Price List method. In this case,
the Dlogit should not be used if randomness in the data is generated according
to the interpretations a or b above (or any other interpretation consistent with
Weak Stationarity).

10For an example of a discount function that is weakly decreasing but not constant, take a
β-δ model with β ∈ (0,1) and δ= 1.
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The results of Theorem 1 and Corollary 1 are particular cases of a more
general feature of the Dlogit. If choice probabilities are “almost”-weakly sta-
tionary, fitting the Dlogit potentially generates bounds to the slope of the es-
timated discount function. “Almost”-weak stationarity may occur, for exam-
ple, if some subjects in a population have deterministic preferences while the

remaining subjects have random preferences. Consider the product P ((y,t )|A)
P ((x,t )|A) ·

P ((x,t+r )|Ar )
P ((y,t+r )|Ar ) . Its distance from 1 is a measure of how far choice probabilities are

from being (x, y |t ,r )-weakly stationary. For the Dlogit the product P Dlog((y,t )|A)

P Dlog((x,t )|A)
·

P Dlog((x,t+r )|Ar )
P Dlog((y,t+r )|Ar )

is equal to e(w(y)−w(x))(D(t )−D(t+r )), and this number is “close” to

1 (as in the (x, y |t ,r )-Weak Stationarity condition) when the exponent (w(y)−
w(x))(D(t ) − D(t + r )) is “close” to zero.11 Hence, when w(y) − w(x) and/or
D(t )−D(t + r ) are close to zero. Formally:

Theorem 2. Take some w(y) ≥ w(x), some t ,r ∈N and consider ε≥ 0 such that,∣∣∣ P ((y,t )|A)
P ((x,t )|A) · P ((x,t+r )|Ar )

P ((y,t+r )|Ar ) −1
∣∣∣ ≤ ε, then fitting a Dlogit implies (w(y)−w(x))(D(t )−

D(s)) ≤ ε for all s ∈ [t , t + r ].

The result follows directly from the fact that, under the condition w(y) ≥
w(x) and the properties of D(t ), (w(y)−w(x))(D(t )−D(t + r )) ≥ 0. Then, the
inequality ex −1 ≥ x for x ≥ 0 implies

(w(y)−w(x))(D(t )−D(t + r )) ≤ e(w(y)−w(x))(D(t )−D(t+r )) −1 ≤ ε

and the monotonicity of D gives the final result.
The condition D(t )−D(t + r ) “close to zero”, however, may not be binding.

For example, when t is large, any discount function is almost flat. The situation
is different when t = 0, namely when choice probabilities are “almost”-weakly
stationary at t = 0. Indeed, the inequality in Theorem 2 mechanically forces
the discount function in the Dlogit toward high patience, as formalized in the
following corollary:

Corollary 2. Take some w(y) ≥ w(x), some r ∈ N and consider ε ≥ 0 such that∣∣∣ P ((y,0)|A)
P ((x,0)|A) · P ((x,r )|Ar )

P ((y,r )|Ar ) −1
∣∣∣≤ ε, then fitting a Dlogit implies D(s) ≥ 1− ε

w(y)−w(x) for

all s ∈ [0,r ].

11Using a first-order Taylor expansion e(w(y)−w(x))(D(t )−D(t+r )) ≈ 1+(w(y)−w(x))(D(t )−D(t +
r )) which is approximately equal to 1 when (w(y)−w(x))(D(t )−D(t + r )) is close to zero.
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The lower the ε and the larger the difference between w(y) and w(x), the
higher the estimated patience. Therefore, the Dlogit estimates of time pref-
erences will be constrained, even if the property of being “almost” (x, y |t ,r )-
weakly stationary should not restrict intertemporal preferences. The next ex-
ample numerically illustrates Corollary 2:

Example 1. Consider the inequality in Corollary 2 for w(y) = 1, w(x) = 0. Take
ε= 0.1 and r = 1. Then fitting the Dlogit, implies D(0)−D(1) ≤ 0.1, hence D(1) ≥
0.9. For example, if D(s) = δs and r = 1, then D(1) = δ ≥ 0.9 (see the blue line
in the top-left panel of Figure 2). If discounting is quasi-hyperbolic D(0) = 1
and D(s) = βδs for s ≥ 1, ε = 0.1 implies βδ ≥ 0.9 which also bounds β ≥ 0.9
(the green line in the top-left panel of Figure 2 represents D(t ) = 0.85 ·δt as a
function of δ. In this case, no δ ∈ (0,1] can satisfy the inequality of Corollary 2).
For hyperbolic discounting D(s) = (1+ρ·s)−1, 1−D(1) = 1−(1+ρ)−1 ≤ 0.1 holds if
ρ ≤ 0.111 (see the red line in the top-left panel of Figure 2)), which corresponds to
high patience. The bottom-left and bottom-right panels in Figure 2 have similar
interpretations. For example, with r = 3 and ε= 0.2, D(3) = δ3 ≥ 1−0.1 implies
δ≥ 0.92831 (see the blue line in the bottom-right panel of Figure 2).

In the empirical section (Sec. 4), we use the data of Tanaka et al. (2010)
in which the Weak Stationarity axiom is not falsifiable, and we show that the
Dlogit always estimates higher patience than the DLuce in any specification of
the discounting regime. According to the previous results, such a difference is
potentially driven by the very structure of the Dlogit.

3.2. Weak Stationarity and the discounted Luce

It is straightforward to observe that the DLuce necessarily satisfies the Weak
Stationarity axiom. In this section, we show the converse implication: jointly
with the independence of irrelevant alternatives and two technical axioms, the
Weak Stationarity axiom is also sufficient to characterize the DLuce model. This
means that the DLuce is the only model that is consistent with Weak Stationar-
ity within the class of models satisfying the IIA and two technical axioms. The
first technical axiom is

(Positivity). For all A ∈A and (x, t ) ∈ A, P ((x, t )|A) > 0.

A small but positive probability is empirically indistinguishable from a zero
probabilit; therefore, positivity is a rather weak requirement. We will relax it
in Section Appendix B. The standard Luce’s choice axiom or Independence of
Irrelevant Alternatives (IIA) assuming Positivity becomes:

11



1−
D(1)

0.1

δ=
0.9

ρ
= 0.1111

1−
D(7)

0.1

δ=
0.9851

ρ
= 0.0159

1−
D(3)

0.2

δ=
0.9283

ρ
= 0.0833

1−
D(12)

0.2

δ=
0.9815

ρ
= 0.0208

Figure 2: The blue lines correspond to geometric discounting as a function of δ. The red lines
correspond to hyperbolic discounting as a function of ρ. The green lines corresponds to quasi-
hyperbolic discounting with β= 0.85 as a function of δ.
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(IIA). For all A,B ∈A and (x, t ), (y, s) ∈ A∩B ,

P ((x, t )|A)

P ((y, s)|A)
= P ((x, t )|B)

P ((y, s)|B)
.

The relative probability of choosing a reward x in t periods over a reward y in
s periods is constant across menus. Positivity and the IIA axiom are necessary
and sufficient for the existence of a positive random scale12 u : Z → R++, such
that

P ((x, t )|A) = u(x, t )∑
(y,s)∈A

u(y, s)
.

The last condition imposes a stochastic form of impatience: the probability of
choosing a reward decreases when it is delayed.

(Stochastic Impatience). For all x ∈ X , t ,r ≥ 0 and A ∈A , with (x, t ), (x, t +r ) 6∈
A, P ((x, t )|A∪ (x, t )) ≥ P ((x, t + r )|A∪ (x, t + r )).

Stochastic Impatience bounds the rewards in X to be goods and not bads. We
have the following result:

Proposition 1 (DLuce). The choice probabilities P satisfy Positivity, the IIA ax-
iom, Stochastic Impatience and Weak Stationarity if and only if there exist a ran-
dom scale v : X → R++ and a unique discount function D :N→ (0,1] such that:

P ((x, t )|A) = D(t )v(x)∑
(y,s)∈A

D(s)v(y)

for all A ∈A .

Positivity and the IIA axiom give the Luce’s relative weight form choice prob-
abilities. The Weak Stationarity axiom imposes separability between the dis-
count function and the value function.

Remark 2. The interpretation of the DLuce (or the Dlogit) as arising from a pool
of subjects with potentially different time preferences may seem at odds with

12A random scale is a value function which is unique up to positive multiplication, i.e. if u
and u′ define the same probabilities, there exists an α> 0 such that u =αu′.
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the unique discount function D in the DLuce (or Dlogit). However, as is com-
mon in applications, the estimated discount function depends on the observ-
able characteristics of the subject (e.g. age, income, sex). For example, to esti-
mate δ of a geometric discount function, one can fit the following model:

P DLuce((x,0)|(y, t )) = x

x + (δ0 +∑
δi Ci )t y

where the Ci ’s are the observable characteristics of the subjects and δi their
coefficients. The estimate δ̂ is correlated with observables and each subject in
the pool can be mapped to a discount factor.

3.3. Apesteguia and Ballester’s monotonicity

A second fundamental difference between the DLuce and the Dlogit is that
the former may be monotone in the sense of Apesteguia and Ballester (2018),
while the latter is not. In the intertemporal choice domain, monotonicity means
that the probability of selecting a delayed reward cannot decrease if the pa-
tience parameter increases. For models violating the monotonicity property,
such as the Dlogit (see Figure 1), the interpretation of D as a measure of in-
tertemporal preference is flawed. For example, if D(t ) = δt in the Dlogit, an
increase of δ is not necessarily followed by an increase in the probability of se-
lecting a more delayed option. On the contrary, we show that the DLuce is (in
general) monotone when restricted to binary choices.

To highlight the dependency of the discount function D from a parameter,
we denote it by D(t ,α). For instance, we write D(t ,ρ) = 1

1+ρt . We have the fol-

lowing result, in which the partial derivative of D(t ,α) is denoted by Dα(t ,α):13

Proposition 2. If the choice probabilities have a DLuce representation P DLuce((x, t )|(y, s)) =
1

1+D(s,α)v(y)
D(t ,α)v(x)

, then for all t , s ≥ 0 and all x, y ∈ X ,

∂P DLuce((x, t )|(y, s))

∂α
≥ (≤)0 ⇐⇒ Dα(t ,α)

D(t ,α)
≥ (≤)

Dα(s,α)

D(s,α)
.

13Indeed, ∂P DLuce((x,t )|(y,s))
∂α = −K

[
∂D(s,α)
∂α D(t ,α)−D(s,α) ∂D(t ,α)

∂α

]
where K =(

1+ D(s,α)v(y)
D(t ,α)v(x)

)−2 v(y)
v(x)

1
D(t ,α)2 .

14



The condition in Proposition 2 is satisfied, for example, by the following
discount functions:14

1. D(t ,δ) = δt .

2. D(0,δ) = 1 and D(t ,δ) =βδt .

3. D(t ,ρ) = (1+ρt )−1.

Therefore, in the DLuce model, one can correctly interpret D as a measure of
intertemporal preference under all the common specifications of the discount
function.

Remark 3. The structure of the DLuce model permits identification of the “de-
gree of impatience” directly from choice probabilities. Indeed, the square root
of the following ratio,

rx,y (t , t +1) = P DLuce((x, t )|(y, t +1))

P DLuce((x, t +1)|(y, t ))

P DLuce((y, t )|(x, t +1))

P DLuce((y, t +1)|(x, t ))

is a number that can be interpreted as a measure of impatience, when the con-
dition of Proposition 2 is satisfied. Indeed,

√
rx,y (t , t +1) = D(t )

D(t+1) for all t ≥ 0
and all x, y ∈ X .

3.4. Geometric and quasi-hyperbolic discounting

In this section, we show that strengthening the Weak Stationarity axiom
allows us to identify geometric and quasi-hyperbolic discounting within the
DLuce model.

Consider again the unobservable heterogeneity interpretation of choice prob-
abilities. Each subject has a deterministic preference that is unobservable to
the analyst. Suppose that all subjects discount the future geometrically. Namely,
each subject i has a utility function ui and a discount factor δi and decides to
maximize her discounted utility δt

i ui (x). Alternatively, consider an individual
with noisy perception of the payoffs but geometric discounting of future utili-
ties, e.g. P ((x, t )|(y, s)) =P(δt (u(x)+εx) ≥ δs(u(y)+εy )). Take the probability of

14For geometric discounting, ∂δt

∂δ
1
δt = tδ−1 ≥ sδ−1 = ∂δs

∂δ
1
δs , if t ≥ s (the opposite inequality

holds for s ≥ t as expected). For quasi-hyperbolic discounting the proof is identical to geomet-

ric discounting. For hyperbolic discounting, ∂D(t ,ρ)
∂ρ D(t ,ρ) = −(1+ρt )−1t , which is decreasing

in t , hence the condition is satisfied.
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selecting (x,0) over (y, s) and the probability of selecting (x, t ) over (y, t + s). It
is clear that, under both the previous interpretations of random choice

P ((x,0)|(y, s)) = P ((x, t )|(y, t + s)) (2)

for all x, y ∈ X and t , s ≥ 0. The subjects preferring x immediately to y in s peri-
ods will prefer (x, t ) to (y, t + s), indeed, ui (x) ≥ δs

i ui (y) if and only if δt
i ui (x) ≥

δt+s
i ui (y) and the equality is satisfied regardless of the individual utility and

discount factor. A similar consideration is valid for the individual with random
tastes over payoffs and geometric discounting. The following axiom formalizes
the previous intuition:

(Stationarity). For all A ∈A , x, y ∈ X and all t , s,r ≥ 0 such that (x, t ), (y, s) ∈ A,

P ((x, t )|A)

P ((y, s)|A)
= P ((x, t + r )|Ar )

P ((y, s + r )|Ar )
.

The relative probability of selecting (x, t ) and (y, s) from A is unaffected if all
the rewards in A are equally postponed. Notice that the Dlogit cannot satisfy
the Stationarity axiom even when D(t ) = δt , indeed

P Dlog((x, t )|A)

P Dlog((y, s)|A)
= eδ

t w(x)

eδs w(y)
6=

(
eδ

t w(x)

eδs w(y)

)δr

= eδ
t+r w(x)

eδs+r w(y)
= P Dlog((x, t + r )|Ar )

P Dlog((y, s + r )|Ar )

only if δ = 1 or w(x) = w(y). The Stationarity axiom characterizes geometric
discounting:

Proposition 3 (Geometric DLuce). The choice probabilities P satisfy Positivity,
the IIA axiom, Stochastic Impatience and Stationarity if and only if there exist a
random scale v : X → R++ and a unique δ ∈ (0,1] such that:

P ((x, t )|A) = δt v(x)∑
(y,s)∈A

δs v(y)

for all A ∈A .

A weakening of the Stationarity axiom permits characterization of the pop-
ular quasi-hyperbolic discounting model in the DLuce:

(Quasi-hyperbolic Stationarity). For all A ∈A and all x, y ∈ X :
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1. (Quasi-stationarity): P ((x,t )|A)
P ((y,s)|A) = P ((x,t+r )|Ar )

P ((y,s+r )|Ar ) , for all t , s > 0,r ≥ 0

2. (Present Bias): P ((x,0)|A)
P ((y,s)|A) ≥ P ((x,r )|Ar )

P ((y,s+r )|Ar ) , for all s > 0,r ≥ 0.

All the intuitive features of quasi-hyperbolic discounting affect relative choice
probabilities. For non-immediate outcomes, the relative choice probabilities
are constant when outcomes are equally delayed. However, the relative proba-
bility of choosing an immediate payment over a delayed one is strictly greater
than the same proportion when both payments are equally delayed, this is the
present bias. We have the following result:

Proposition 4 (Quasi-hyperbolic DLuce). The choice probabilities P satisfy Pos-
itivity, the IIA axiom, Stochastic Impatience, Weak Stationarity and the Quasi-
hyperbolic Stationarity axiom, if and only if, there exist a random scale v : X →
R++ and unique β,δ ∈ (0,1] such that:

P ((x, t )|A) = D(t )v(x)∑
(y,s)∈A

D(s)v(y)

and D(t ) =βδt if t > 0 and D(0) = 1.

Alternative restrictions, in the same spirit of Stationarity and Quasi-hyperbolic
Stationarity, can be devised to characterize diminishing impatience (i.e. D(t )/D(t+
1) ≥ D(t + 1)/D(t + 2) for all t ) or variations of quasi-hyperbolic discounting,
such as D(t ) = 1 for all t ≤ t∗ and D(t ) =βδt , for all t > t∗ and some t∗ ∈N.

Notice that the Present Bias (point 2. of the Quasi-hyperbolic Stationarity
axiom) is consistent with the Dlogit even when discounting is geometric. In-
deed,

P Dlog((x,0)|A)

P Dlog((y, s)|A)
= ew(x)

eδs w(y)
≥

(
ew(x)

eδs w(y)

)δr

= eδ
r w(x)

eδs+r w(y)
= P Dlog((x,r )|Ar )

P Dlog((y, s + r )|Ar )

wheneverδs w(y) ≤ w(x). Therefore, the Dlogit may fail to detect non-stationary
structural preferences.

3.5. Weak Stationarity in the Dlogit
A natural question arises at this point, what are the “weak stationary-like”

properties satisfied by the Dlogit? Before answering, we introduce the log-odds
of choosing between x and y when both are delivered in t periods:

lx,y (t ) = ln
P ((x, t )|A)

P ((y, t )|A)
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for some A ∈A . Note that by assuming the IIA log-odds are independent of the
set A. The following property of log-odds is (necessarily) satisfied by the Dlogit:

(Log-odds Stationarity). For all t ,r ≥ 0:

lx,y (t )

lx,y (t + r )
= lx ′,y ′(t )

lx ′,y ′(t + r )
. (3)

for all x, x ′, y, y ′ ∈ X such that either ratio is well defined.

Indeed, if P Dlog((x, t )|A) = eD(t )w(x)∑
(y,s)∈A eD(s)w(y) , lx,y (t ) = D(t )(w(x)−w(y)). Since the

ratio is well-defined, it must be that w(x) 6= w(y), hence:

lx,y (t )

lx,y (t + r )
= D(t )(w(x)−w(y))

D(t + r )(w(x)−w(y))
= D(t )(w(x ′)−w(y ′))

D(t + r )(w(x ′)−w(y ′))
= lx ′,y ′(t )

lx ′,y ′(t + r )
.

As for the interpretation of Log-odds Stationarity, the log-odds are delay-dependent
utility differences, hence the axiom means that relative differences in utility are
delay-independent in the Dlogit. While necessary, the Log-odds Stationarity
axiom is sufficient to characterize a generalized version of the Dlogit. We say
that x, y ∈ X are 0-distinguishable if lx,y (0) 6= 0.15

Proposition 5 (Generalized logit). There are x, y ∈ X that are 0-distinguishable
and he choice probabilities P satisfy Positivity, the IIA axiom and Log-odds Sta-
tionarity if and only if there exist a function w : X → R not identically zero and
two functions λ,D :N→R+ such that:

P ((x, t )|A) = λ(t )eD(t )w(x)∑
(y,s)∈A

λ(s)eD(s)w(y)

for all A ∈A .

4. DLuce vs Dlogit: an application

In this section, we apply the DLuce and the Dlogit to a dataset in which the
Weak Stationarity property cannot be falsified, and compare their estimates.
We use the data of Tanaka et al. (2010), where time preferences are elicited

15Equivalently, P ((x,0)|A) 6= P ((y,0)|A).
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through the multiple price list method. The authors ask experimental subjects
to choose between immediate/smaller versus later/larger monetary rewards
(i.e. (x,0) versus (y, t ) where x, y are dong, the Vietnamese currency), letting
the rewards x, y and the delay t of the rewards vary (from 30,000 to 300,000
for the rewards, from three days to three months for t ). Each subject made 75
choices, for a total of 5340 observations. The Weak Stationarity axiom is not fal-
sifiable because t > 0 in all the pairwise choices. Tanaka et al. (2010) estimate
the following Dlogit model:

P Dlog((x,0) ≥ (y, t )) = 1

1+expλ
(
−x + yβ(1− (1−θ)ρt )

1
1−θ

)
corresponding to a Dlogit with w(x) = x. The discount function D(0) = 1, D(t ),
β(1− (1−θ)ρt )

1
1−θ for t > 0, where ρ is the discount rate, β the present bias fac-

tor and θ the hyperbolic coefficient, encompasses geometric, hyperbolic and
quasi-hyperbolic discounting. For θ→ 1, it corresponds to the quasi-hyperbolic
discounting model, D(t ) = βe−ρt . If θ→ 1 and β = 1, it becomes the standard
geometric discounting, D(t ) = e−ρt . For θ = 2 and β= 1, it gives the hyperbolic
discounting model, D(t ) = 1/(1+ρt ). We estimate our DLuce model:

P DLuce((x,0) ≥ (y, t )) = x

x + yβ(1− (1−θ)ρt )
1

1−θ
.

We fitted the DLuce and the Dlogit by using non-linear least-squares. Table
4 reports the estimates provided by the two models.16 In the exponential dis-
counting model D(t ) = e−ρt , the DLuce rule produces a higher discount rate
ρ, hence more impatient individuals, than the Dlogit. The same is true for the
hyperbolic discounting, D(t ) = 1

1+ρt . Moving to the quasi-hyperbolic discount-
ing model, the DLuce rule estimates a smaller present-bias coefficient β= 0.53
with respect to the discounted logit where β = 0.64, as well as a higher dis-
count rate (0.013 vs 0.008). Therefore, for to the DLuce, individuals are more
impatient and more present-biased with respect to the Dlogit. In the last spec-
ification, the shape parameter θ is considerably smaller in the DLuce, hence

16In Table 4, we have omitted the estimates of the parameter λ (see Remark 1) for the Dlogit,
which can be found in Tanaka et al. (2010, Table 6). For completeness, they are λ = 6.26 ·10−6

for exponential discount, λ = 7.60 ·10−6 for the hyperbolic discount, λ = 8.58 ·10−6 for quasi-
hyperbolic discount and λ= 8.70 ·10−6 for the general discount function D (all coefficients are
significantly different from zero).
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Exponential Hyperbolic Quasi-hyperbolic General

DLuce Dlogit DLuce Dlogit DLuce Dlogit DLuce Dlogit

ρ 0.025∗∗∗ 0.021∗∗∗ 0.076∗∗∗ 0.046∗∗∗ 0.013∗∗∗ 0.008∗∗∗ 0.056∗∗∗ 0.078
(0.001) (0.001) (0.008) (0.004) (0.001) (0.001) (0.018) (0.074)

β 0.529∗∗∗ 0.644∗∗∗ 0.673∗∗∗ 0.820∗∗∗

(0.023) (0.019) (0.043) (0.070)

θ 2.715∗∗∗ 5.070∗∗∗

(0.268) (0.659)

R̂2 0.522 0.515 0.534 0.519 0.535 0.522 0.536 0.523

Table 1: Comparison of the discounted Luce and discounted logit estimates of time preference
parameters. Data from Tanaka et al. (2010). Robust standard errors in parenthesis. R̂2 is the
adjusted R2. *** means significant at the 1 percent level.

the discount function is closer to hyperbolic discounting in the DLuce than in
the Dlogit. Overall, the time preference parameters estimated by the DLuce
model are uniformly more impatient than those estimated by the Dlogit. The
difference is substantial and should be taken into account in applications, for
example, if such estimates are used to inform public policies. Andreoni et al.
(2016), for example, used time preference estimates to customize vaccination
incentives in Pakistan. Different point estimates imply different calibration of
incentives, and the choice of one model over another ultimately affects the suc-
cess of a policy based on the estimates.

5. Consumption streams

The dated reward setting is rather restrictive and, intertemporal choices,
beyond experimental settings involving simple choices (such as the MPL), of-
ten concern consumption streams. For example, Warner and Pleeter (2001) use
choices between consumption streams, lump sum payments versus annuities,
to estimate discount rates. Alternatively, choices over consumption streams are
observed in the Convex Time Budget design of Andreoni and Sprenger (2012).
In this setting, subjects are given an amount of “tokens" and decide how to
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allocate them between a sooner and a later date yielding different “token ex-
change rates." For example, a subject given 100 tokens can assign N tokens to a
sooner time yielding at per token and 100−N to a later time yielding at+k per
token. The experimenter exogenously fixes the “exchange rates" at and at+k .
This translates into a choice from a menu containing, for example, the follow-
ing options: a choice between a consumption stream paying $19 now and $0
in 5 weeks, one paying $15.2 now and $4 in 5 weeks and one paying $11.4 now
and $8 in 5 weeks.

The first consideration is that, differently from the dated outcomes case, the
DLuce is no longer monotone in the sense of Apesteguia and Ballester (2018).17

However, the intuition concerning the Weak Stationarity property is still valid.
Indeed, the Dlogit is incompatible with the (suitably adapted version of the)
weak stationarity condition, while the DLuce is the only model that satisfies
Weak Stationarity plus some additional technical axioms.

Before characterizing the DLuce in the consumption streams case, we need
to formalize the setting. We enlarge the set X of rewards by an element z that
will play a special role in the following analysis, and we denote by W the set
of all rewards W = X ∪ z. For some T > 0, let W T+1 = W ×W × ·· ·W be a T +
1 product of W . An element of W T+1 represents a consumption stream x =
(x0, x1, . . . , xT ). A choice set is an element of A = 2W T+1

\{;}. In the consumption
stream setting, the DLuce has the following form:

P DLuce(x|A) =

T∑
t=0

D(t )v(xt )

∑
y∈A

T∑
t=0

D(t )v(yt )

where D is a discount function. The probability of selecting a consumption
stream x from A is given by its relative weight in the choice set A. The weight of
x is its discounted value. The first two axioms are standard:

(Positivity). For all A ∈A with x ∈ A and x 6= z, P (x|A) > 0.

Choice probabilities are always strictly positive except for the probability of se-

17Take, for example v(x) = x, D(t ) = δt and two consumption streams x = (2,0,0,1) and y =
(1,2,0,0). Then P DLuce(x|A), with A = x∪y is equal to 0.53 for δ= 0.4, to 0.4913 for δ= 0.8 and
to 0.498 for δ= 0.99.
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lecting the stream z = (z, z, z, . . . , z). The standard Luce choice axiom or Inde-
pendence of Irrelevant Alternatives (IIA) with Positivity becomes:

(IIA). For all A,B ∈A and x,y ∈ A∩B with x,y 6= z,

P (x|A)

P (y|A)
= P (x|B)

P (y|B)
.

Before introducing the adapted version of the Weak Stationarity axiom, we in-
troduce additional notation. For an arbitrary x ∈W , we denote by x(t ) the con-
sumption stream x(t ) = (z, z, . . . , x, z, . . . , z) that pays x at time t and z otherwise.
For any x ∈W T+1, we denote by (x−t, z) a consumption stream equal to x for all
s 6= t and equal to z in t , i.e. (x−t, z) = (x0, x1, . . . , xt−1, z, xt+1, . . . , xT ). Lastly,
for each A ∈ A , we define A+1 = {(z,x) : x ∈ A}, where the consumption stream
(z,x) is a push-forward of x, (z,x) = (z, x0, . . . , xT−1). Extending the argument
from dated rewards to consumption streams, we introduce the weak stationar-
ity axiom:

(Weak Stationarity). For all x, y ∈ X , 0 ≤ t ≤ T −1 and all A ∈A :

P (x(t )|A)

P (y(t )|A)
= P ((z,x(t ))|A+1)

P ((z,y(t ))|A+1)
.

Suppose that v(z) = 0, then the discounted Luce rule satisfies the Weak Station-
arity axiom, indeed:

P DLuce(x(t )|A)

P DLuce(y(t )|A)
=

∑t−1
s=0 D(s)v(z)+D(t )v(x)+∑T

s=t+1 D(s)v(z)∑t−1
s=0 D(s)v(z)+D(t )v(y)+∑T

s=t+1 D(s)v(z)
= D(t )v(x)

D(t )v(y)

= D(t +1)v(x)

D(t +1)v(y)
= P DLuce((z,x(t ))|A+1)

P DLuce((z,y(t ))|A+1)
.

Notice that we did not assume v(z) = 0, however the following axiom, akin to
additive separability, implies v(z) = 0 (see Lemma 1).

(Separability). For all x,y ∈W T+1, with y 6= z, and all 0 ≤ t ≤ T :

P (x|A)

P (y|A)
= P (xt(t )|B)+P (x−t, z|B)

P (y|B)
.
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Separability implies that the relative probability of choosing x from a menu
A containing y can be decomposed into the probability of choosing its “compo-
nents" xt(t ) = (z, z, . . . , xt , z, . . . , z). To gain intuition, consider two periods T = 1,
x = (x0, x1), y = (y0, y1), A = {

(x0, x1), (y0, y1)
}

and B = {
(x0, z), (z, x1), (y0, y1)

}
.

Separability implies

P ((x0, x1)|A)

P ((y0, y1)|A)
= P ((x0, z)|B)+P ((z, x1)|B)

P ((y0, y1)|B)
.

It is straightforward to observe that the Dlogit violates Separability as well as
Weak Stationarity. Lastly, we define a stochastic notion of impatience similar to
that presented in the delayed rewards setting:

(Stochastic Impatience). For all x, y 6= z ∈ X , t ≥ 0 and A ∈ A , with x(t ),x(t +
1) 6∈ A, P (x(t )|A∪x(t )) ≥ P (x(t +1)|A∪x(t +1)).

The next theorem characterizes the DLuce model in the domain of consump-
tion streams:

Theorem 3. The choice probabilities P satisfy Positivity, the IIA axiom, Weak
Stationarity, Separability and Stochastic Impatience if and only if there exists
a random scale v : X → R++ with v(z) = 0 and a (unique) discount function
D : {0,1, . . . ,T } → (0,1] such that:

P (x|A) =

T∑
t=0

D(t )v(xt )

∑
y∈A

T∑
t=0

D(t )v(yt )

.

As for dated rewards, applying the Dlogit to weakly stationary choice data
will result in a biased estimation of the preference parameters. Indeed, even if

w(z) = 0, the equality P Dlog(x(t )|A)
P Dlog(y(t )|A)

= P Dlog((z,x(t ))|A+1)
P Dlog((z,y(t ))|A+1)

is equivalent to eD(t )(w(x)−w(y)) =
eD(t+1)(w(x)−w(y)), that holds only if w(x) = w(y) or D(t ) = D(t +1). Again, the
Dlogit is incompatible with weakly stationary choice probabilities.

5.1. Geometric and quasi-hyperbolic discounting

Similarly to the case of dated outcomes, axioms that strengthen the Weak
Stationarity condition identify geometric and quasi-hyperbolic discounting in
the DLuce model. Intuitively, we deem a stochastic choice rule to be stationary
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if the relative probability of choosing a consumption stream x over y in a set A
remains unvaried when all the elements in A are “shifted" by one period. For
x ∈ W T+1, we denote by (x, z), the consumption stream (x0, x1, . . . , xT−1, z) and
by (z,x, z) the stream ((z,x), z) = (z, x0, x1, . . . , xT−2, z). We say that a stochastic
choice rule satisfies Fishburn Stationarity if:

(Fishburn Stationarity). For all x,x′ ∈W T+1 with x′ 6= z, all A ∈A with (x, z), (x′, z) ∈
A:

P ((x, z)|A)

P ((x′, z)|A)
= P ((z,x)|A+1)

P ((z,x′)|A+1)
.

This definition is the stochastic counterpart of Fishburn’s definition of station-
arity for deterministic choice over finite-horizon consumption streams (see Fish-
burn, 1970, Def. 7.3). Suppose that v(z) = 0, then the DLuce rule satisfies Fish-
burn Stationarity when the discount function is geometric, indeed:

P DLuce((z,x)|A+1)

P DLuce((z,x′)|A+1)
= v(z)+δv(x0)+δ2v(x1)+∑T

t=3δ
t v(xt−1)

v(z)+δv(x ′
0)+δ2v(x ′

1)+∑T
t=3δ

t v(x ′
t−1)

= P DLuce((x, z)|A)

P DLuce((x′, z)|A)
.

The converse result is also true: replacing Weak Stationarity with Fishburn Sta-
tionarity characterizes geometric discounting.

Proposition 6. The choice probabilities P satisfy Positivity, the IIA axiom, Fish-
burn Stationarity, Separability and Stochastic Impatience if and only if there ex-
ists a ratio scale v : X →R+, with v(z) = 0 and a (unique) δ ∈ (0,1] such that:

P (x|A) =

T∑
t=0

δt v(xt )

∑
y∈A

T∑
t=0

δt v(yt )

.

In the consumption stream setting, too, we are interested in determining
the observable restrictions of quasi-hyperbolic discounting. Indeed, although
v(z) = 0, quasi-hyperbolic discounting violates Fishburn Stationarity.18 The
following relaxation of Fishburn Stationarity is parallel to that introduced in
the delayed rewards setting and includes all the intuitive features of a present-
biased stochastic choice rule. These features are comparable with the axioms

18In general, P DLuce((x,z)|A)
P DLuce(x′,z)|A)

= v(x0)+β∑T−1
t=1 δ

t v(xt )+βδT v(z)

v(x′
0)+β∑T−1

t=1 δ
t v(x ′

t )+βδT v(z)
6= v(z)+β∑T

t=1 δ
t v(xt−1)

v(z)+β∑T
t=1 δ

t v(x′
t−1)

= P DLuce((z,x)|A+1)
P DLuce((z,x′)|A+1)

.
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characterizing quasi-hyperbolic discounting in deterministic choice (e.g. Mon-
tiel Olea and Strzalecki, 2014). The axiom establishes two properties: Quasi-
stationarity and Present Bias.

(Quasi-hyperbolic Stationarity).

1. (Quasi-stationarity): for all A ∈A , with (z,x), (z,x′) ∈ A, if P ((z,x′, z)|A) >
0 and P ((z, z,x′)|A+1) > 0:

P ((z,x, z)|A)

P ((z,x′, z)|A)
= P ((z, z,x)|A+1)

P ((z, z,x′)|A+1)
.

2. (Present Bias): for all A ∈A , with (x, z, z), (z,x′, z) ∈ A, if P ((z,x, z)|A+1) >
0 and P ((z, z,x′)|A+1) > 0:

P ((x, z, z)|A)

P ((z,x′, z)|A)
≥ P ((z,x, z)|A+1)

P ((z, z,x′)|A+1)
.

We have the following result:

Proposition 7. The choice probabilities P satisfy Positivity, the IIA axiom, Weak
Stationarity, Quasi-hyperbolic Stationarity, Separability and Stochastic Impa-
tience if and only if there exists a ratio scale v : X → R++ with v(z) = 0 and
(unique) β,δ ∈ (0,1] such that:

P (x|A) =
v(x0)+β

T∑
t=1

δt v(xt )

∑
y∈A

[
v(y0)+β

T∑
t=1

δt v(yt )

] .

6. Conclusion

The choice of a random utility model to estimate time preferences is a cru-
cial step of the analysis. Often, such a choice is not properly justified and is
driven by heuristics or popularity. In our analysis, we argue theoretically and
support empirically the conclusion that the discounted logit may cause prob-
lems in estimating time preferences. Under common interpretations of stochas-
tic choice, the discounted Luce is more appropriate as a structural model.

25



Appendix A. Proofs

Proof of Theorem 1. Suppose that the equality P Dlog((x,t+r )|Ar )
P Dlog((y,t+r )|Ar )

= P Dlog((x,t )|A)
P Dlog((x,t )|A)

holds.

By the IIA axiom, the previous equality implies P Dlog((x,t+r )|(y,t+r ))
P Dlog((y,t+r )|(x,t+r ))

= P Dlog((x,t )|(y,t ))
P Dlog((y,t )|(x,t ))

or equivalently eD(t+r )w(x)−D(t+r )w(y) = eD(t )w(x)−D(t )w(y) which can be true only
if D(t + r ) = D(t ) or w(y) = w(x). In the former case, since D is weakly decreas-
ing, D(s) is constant for all s ∈ [t , t + r ]. The opposite direction is straightfor-
ward.

Proof of Proposition 1. Necessity is straightforward. For sufficiency, by the IIA
axiom and Positivity there exists a random scale u : Z →R++ such that P ((x, t )|A) =

u(x,t )∑
(y,s)∈A u(y,s) . For an arbitrary t ≥ 0 and x ∈ X , let us define Dx(t ) ≡ P ((x,t )|A)

P ((x,0)|A) =
u(x,t )
u(x,0) . Let us define v(x) ≡ u(x,0) for all x ∈ X , then u(x, t ) = Dx(t )v(x). Take

A = {
(x,0), (y,0)

}
, then by the Weak Stationarity axiom:

u(x,0)

u(y,0)
= u(x,r )

u(y,r )

or v(x)
v(y) = Dx (r )v(x)

D y (r )v(y) that implies Dx(·) = D y (·) for all x, y ∈ X . Hence we denote

by D(·) such a common function. By Stochastic Impatience, D(t ) is decreasing.
Substituting D(t )v(x) = u(x, t ) gives the result. Uniqueness of D(·) follows from
the fact that u is a ratio scale.

Proof of Proposition 3. The fact that the representation implies the axioms is
straightforward. We prove that the axioms are sufficient. By Positivity and the
IIA axioms there exists u : Z → R++ such that P ((x, t )|A) = u(x,t )∑

(y,s)∈A u(y,s) . Let us

consider A = {(x,1), (x,0)}. Then, for all t ≥ 1, the Stationarity axiom implies

P ((x,1)|A)

P ((x,0)|A)
= P ((x, t )|At−1)

P ((x, t −1)|At−1)

or
u(x,1)

u(x,0)
= u(x, t )

u(x, t −1)
(A.1)

Now, let us write

u(x, t ) = u(x,0)
u(x,1)

u(x,0)

u(x,2)

u(x,1)

u(x,3)

u(x,2)
· · · u(x, t )

u(x, t −1)
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By Eq. (A.1) and by defining δx ≡ u(x,1)
u(x,0) , we have u(x, t ) = u(x,0)δt

x . By Stochas-

tic Impatience for t = 0 δx = u(x,1)
u(x,0) ≤ 1. Plugging u(x, t ) = δt

xu(x,0) into the Sta-

tionarity axiom gives
δt

x
δs

y
= δt+r

x
δs+r

y
or 1 = δr

x
δr

y
that is true only when δx = δy . Hence,

defining v(x) ≡ u(x,0) gives the result. The uniqueness of δ follows from the
fact that u is a ratio scale.

Proof of Proposition 4. Necessity is straightforward. For sufficiency, by Positiv-
ity, the IIA axiom and Weak Stationarity, choice probabilities have a DLuce rep-
resentation, for some random scale v : X → R++ and some discount function
D . Let us define δ≡ D(2)

D(1) , Quasi-stationarity implies

D(2)v(x)

D(1)v(y)
= D(2+ r )v(x)

D(1+ r )v(y)

for all x, y ∈ X and r ≥ 0. Equivalently, δ = D(r+2)
D(r+1) for all r ≥ 0. For r = 1, δ =

D(2)
D(1) = D(3)

D(2) , or D(3) = D(2)δ = D(1)δ2. Repeating this argument gives D(t ) =
D(1)δt−1, for all t ≥ 1. Present Bias implies

1

D(1)
≥ 1

δ

then there exists β ∈ (0,1] with D(1) = δβ. Substituting in the previous equal-
ity, D(t ) = βδt for t ≥ 1 concludes the proof. The uniqueness follows from the
uniqueness properties of Proposition 1.

Proof of Proposition 5. Necessity is straightforward. For sufficiency, by Positiv-
ity and the IIA axioms, P ((x, t )|A) = u(x,t )∑

(y,s)∈A u(y,s) for some u : X → R++. Since

there is a pair x∗, y∗ ∈ X that is 0-distinguishable, let us define

Dx∗,y∗(t ) ≡ lx∗,y∗(t )

lx∗,y∗(0)

which is a well-defined real number. By Log-odds Stationarity, Dx∗,y∗(t ) = lx∗,y∗ (t )

lx∗,y∗ (0) =
lx′,y∗ (t )

lx′,y∗ (0) = Dx ′,y∗(t ), hence the function Dx∗,y∗ is independent of x∗. Now de-

fine w(x) ≡ lx,y∗(0) if x and y∗ are 0-distinguishable and w(x) ≡ 0 otherwise
(since there is a 0-distinguishable pair, w is not identically zero.) Define λ(t ) ≡
u(y∗, t ). It follows that λ(t )eD(t )w(x) = u(y∗, t )e

lx,y∗ (t )

lx,y∗ (0) lx,y∗ (0) = u(y∗, t )e lx,y∗ (t ) =
u(y∗, t ) P ((x,t )|A)

P ((y∗,t )|A) = u(x, t ), hence the conclusion.
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Before proving Theorem 3, we consider a consequence of Separability. Let
z = (z, z, . . . , z), then:

Lemma 1. For the z ∈ W satisfying Separability, P (z|A) = 0 for all A ∈ A with
x,z ∈ A and x 6= z.

Proof of Lemma 1. Take A = B , by Separability, P (z|A) = P (zt(t )|A)+P (zt, z|A)
for some A containing z, but zt(t ) = {zt, z} = z. Hence, P (z|A) = 2P (z|A) and this
can be true only if P (z|A) = 0.

Proof of Theorem 3. By the IIA and Positivity axioms, there exists a random scale
u : W T+1 → R+ such that u(x) > 0 for all x 6= z and P (x|A) = u(x0,x1,...,xT )∑

y∈A u(y0,y1,...,yT ) . By

Lemma 1, u(z, z, . . . , z) = 0. For an arbitrary x ∈ X , let define v(x) ≡ u(x, z, z, . . .) =
u(x(0)) and define Dx(t ) ≡ u(x(t ))

u(x(0)) . By Weak Stationarity, for all x, y ∈ X :

P (x(0)|A)

P (y(0)|A)
= P ((z,x(0))|A+1)

P ((z,y(0))|A+1)
.

The latter ratio is equal to

P ((z,x(0))|A+1)

P ((z,y(0))|A+1)
= P (x(1)|A+1)

P (y(1)|A+1)
= u(x(1))

uy(1)

Repeated applications of Weak Stationarity imply that, for all x, y ∈ X ,

u(x(t ))

u(x(0))
= u(y(t ))

u(y(0))

and this implies Dx(t ) = D y (t ) for all x, y ∈ X . Hence, we can write D(t ) for
Dx(t ). Lastly, let us define Dz(t ) ≡ D(t ) for z ∈ W and all t ≤ T . By Stochas-
tic Impatience D(t ) ≤ 1 for all t ≤ T . By definition u(x(t )) = u(x(0))

u(x(0)) u(x(t )) =
v(x)D(t ). To conclude, we need to prove that u(x0, x1, x2, . . .) = ∑T

t=0 D(t )v(xt ).
To see this, consider P ((x0, x1, . . . , xT )|A) for some A and apply Separability twice:

u(x0, x1, . . . , xT )

u(y0, y1, . . . , yT )
=v(x0)+u(z, x1, x2, . . . , xT )

u(y0, y1, . . . , yT )
=

= v(x0)

u(y0, y1, . . . , yT )
+ v(x1)D(1)

u(y0, y1, . . . , yT )
+ u(z, z, x2, x3, . . . , xT )

u(y0, y1, . . . , yT )

repeating the argument until T gives

u(x0, x1, . . . , xT ) =
T∑

t=0
u(xt(t )) =

T∑
t=0

D(t )v(xt )

28



The uniqueness of D follows from the fact that u is a ratio scale.

Proof of Proposition 6. By the IIA and Positivity axioms, there exists a random
scale u : W T+1 →R+ such that u(x) > 0 for all x 6= z and P (x|A) = u(x0,x1,...,xT )∑

y∈A u(y0,y1,...,yT ) .

For an arbitrary x ∈ X , let us define v(x) ≡ u(x, z, z, . . .) = u(x(0)). By Lemma 1,
u(z, z, z, . . . , z) = 0. For an x ∈ X , let us define δx ≡ u(x(1))

u(x(0)) . By Fishburn Station-
arity and x, y ∈ X ,

P (x(1)|A+1)

P (y(1)|A+1)
= P (x(0)|A)

P (y(0)|A)

or equivalently,

P (x(1)|A+1)

P (x(0)|A)
= P (y(1)|A+1)

P (y(0)|A)
=⇒ u(x(1))

u(x(0))
= u(y(1))

u(y(0))

and this implies δx = δy = δ for all x, y ∈ X and define δz ≡ δ for z ∈ W . By
Stochastic Impatience δ≤ 1. Fishburn Stationarity implies

P (x(1)|A)

P (x(0)|A)
= P (x(2)|A+1)

P (x(1)|A+1)

another application of Fishburn Stationarity implies

P (x(2)|A+1)

P (x(1)|A+1)
= P (x(3)|(A+1)+1)

P (x(2)|(A+1)+1)

equivalently,
u(x(1))

u(x(0))
= u(x(2))

u(x(1))
= u(x(3))

u(x(2))

The first equality implies u(x(2)) = u(x(1)) · u(x(1))
u(x(0)) and the second, u(x(3)) =

u(x(2))· u(x(1))
u(x(0)) , and together u(x(3)) = u(x(1))·

(
u(x(1))
u(x(0))

)2
. Repeating the argument

up to t gives

u(x(t )) = u(x(1)) ·
(

u(x(1))

u(x(0))

)t−1

multiplying and dividing by u(x(0)), gives

u(x(t )) = u(x(0)) ·
(

u(x(1))

u(x(0))

)t

(A.2)

in our notation this becomes u(x(t )) = δt v(x). The proof that u(x0, x1, x2, . . .) =
v(x0)+∑T

t=1δ
t v(xt ) follows the same steps of the proof of Theorem 3.
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Proof of Proposition 7. By the IIA and Positivity axioms, there exists a random
scale u : W T+1 → R such that u(x) > 0 for all x 6= z and P (x|A) = u(x0,x1,...,xT )∑

y∈A u(y0,y1,...,yT ) .

By Lemma 1, u(z, z, z, . . . , z) = 0. For a given x ∈ X , let us define v(x) ≡ u(x, z, z, . . .)
and δx = u(x(2))

u(x(1)) By Quasi-stationarity,

P (x(2)|A+1)

P (y(2)|A+1)
= P (x(1)|A)

P (y(1)|A)

or equivalently,

P (x(2)|A+1)

P (x(1)|A)
= P (y(2)|A+1)

P (y(1)|A)
=⇒ u(x(2))

u(x(1))
= u(y(2))

u(y(1))

and this implies δx = δy = δ for all x, y ∈ X and define δz ≡ δ. By Stochastic
Impatience δ≤ 1. Quasi-stationarity again implies

P (x(2)|A)

P (x(1)|A)
= P (x(3)|A+1)

P (x(2)|A+1))

and another application of Quasi-stationarity implies

P (x(3)|A+1)

P (x(2)|A+1))
= P (x(4)|(A+1)+1)

P (x(3)|(A+1)+1)

which is equivalent to u(x(2))
u(x(1)) = u(x(3))

u(x(2)) = u(x(4))
u(x(3)) . The first equality implies u(x(3)) =

u(x(2)) · u(x(2))
u(x(1)) and the second, u(x(4)) = u(x(3)) · u(x(2))

u(x(1)) , and together u(x(4)) =
u(x(2)) ·

(
u(x(2))
u(x(1))

)2
, repeating the same argument for an arbitrary t > 1, gives

u(x(t )) = u(x(2)) ·
(

u(x(2))

u(x(1))

)t−2

multiplying and dividing by u(x(1)), gives

u(x(t )) = u(x(1)) ·
(

u(x(2))

u(x(1))

)t−1

(A.3)

for all t > 0. By Present Bias, with x′ = y(0) and x = x(0):

u(x(0))

u(x(1))
≥ u(y(1))

u(y(2))
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hence u(x(1))
u(x(0)) ≤ u(y(2))

u(y(1)) = δ. Then, there exists βx ∈ [0,1] such that u(x(0)) =
βxδu(x(1)). Multiplying and dividing Eq. (A.3) by u(x(0)) and using the equality
u(x(0)) =βxδu(x(1)), gives

u(x(t )) = u(x(0)) ·βx

(
u(x(2))

u(x(1))

)t

for all t > 0. In our notation u(x(t )) = βxδ
t v(x) for t > 0 and u(x(0)) = v(x). By

Weak Stationarity,
P (x(1)|A+1)

P (x(0)|A)
= P (y(1)|A+1)

P (y(0)|A)

and,
u(x(1))

u(x(0))
= u(y(1))

u(y(0))
⇐⇒ v(x)βxδ

v(x)
= v(y)βyδ

v(y)

that implies βx = βy for all x, y ∈ X . Lastly, let us define βz ≡ β. The fact that
u(x0, x1, x2, . . .) = v(x0)+β∑T

t=1δ
t v(xt ) follows from the same argument in the

proof of Theorem 3. The uniqueness of δ and β are guaranteed by the fact that
u is a ratio scale.

Appendix B. Dealing with zero probabilities

In the DLuce, we assumed that all options are selected with non-zero prob-
ability. However, in experiments using the Multiple Price List method, however,
some options are strictly dominated. For example, the subjects had to choose
between (x, t ) and (x,0). Despite the potential randomness of choices, a strictly
dominated option is rarely chosen, therefore zero-probabilities cannot be ex-
cluded. It is well known that the Luce model does not satisfactorily handle zero
probabilities. If (x,0) is selected in A with zero probability, the Luce model pre-
dicts that it will be selected with zero probability in any choice set. Various gen-
eralizations of the Luce model have recently been proposed to satisfactory han-
dle zero probability.19 In this section, we use the approach of Cerreia-Vioglio
et al. (2017). We write P (B |A) = ∑

(x,t )∈B P ((x, t )|A), for any B ⊆ A. The next
axiom is the well-known Luce Choice axiom of Luce (1959).

19Cerreia-Vioglio et al. (2017); Dogan and Yildiz (2019); Echenique and Saito (2019); Horan
(2018)
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(Luce Choice Axiom). For all B ⊆ A in A and (x, t ) ∈ B :

P ((x, t )|A) = P ((x, t )|B)P (B |A)

We denote by r ((x, t )|(y, s)), P ((x,t )|(y,s))
P ((y,s)|(x,t )) the odds ratio between (x, t ) and (y, s).

The next axiom is the desired restriction characterizing the generalized dis-
counted Luce rule:

(Strong Stationarity). For all (x,0), (y, s), (x,1) ∈ Z with r ((x,1)|(y,s))
r ((x,0)|(y,s)) ∈ (0,∞):

r ((x,1)|(y, s))

r ((x,0)|(y, s))
= r ((x, t +1)|(y, s))

r ((x, t )|(y, s))

for all t ≥ 0.

The axiom has two consequences: it imposes a restriction similar to Stationar-
ity and it forces certain positive probabilities to remain positive: if P ((x,0)|(y, s)) >
0, then P ((x, t )|(y, s)) > 0 for all t ≥ 0.

Theorem 4. Choice probabilities P satisfy the Luce Choice Axiom and Strong
Stationarity if and only if there exist v : X → R++, a correspondence Γ : A → A

and δ> 0 such that:

P ((x, t )|A) =


δt v(x)∑

(y,s)∈Γ(A)
δs v(y)

if (x, t ) ∈ Γ(A)

0 otherwise

(B.1)

Proof of Theorem 4. By Cerreia-Vioglio et al. (2017), if choice probabilities sat-
isfy the Luce choice axiom, then there exist a ratio scale u : Z → R++ and a
correspondence Γ : A ⇒A such that P ((x, t )|A) = u(x,t )∑

(y,s)∈Γ(A) u(y,s) if (x, t ) ∈ Γ(A)

and P ((x, t )|A) = 0 otherwise. By the properties of Γ (see Cerreia-Vioglio et al.
(2017)), the binary relation<defined as (x, t )< (y, s) if and only if (x, t ) ∈ Γ(

{
(x, t ), (y, s)

}
is a weak order. Moreover, (x, t ) ∼ (y, s) if and only if P ((x, t )|(y, s)) > 0 and
P ((y, s)|(x, t )) > 0 if and only if r ((x, t )|(y, s)) ∈ (0,∞). Again following Cerreia-
Vioglio et al. (2017), we consider the partition of Z induced by < and for each
cell Zi of the partition we take (xi , ti ) ∈ Zi . Any (x, t ) ∈ Z belongs to one cell and
we define u(x, t ) = P ((x,t )|(xi ,ti ))

P ((xi ,ti )|(x,t )) = r ((x, t )|(xi , ti )) for the selected (xi , ti ) ∼ (x, t ).
By Strong Stationarity,

u(x, t )

u(x, t −1)
= r ((x, t )|(xi , ti ))

r ((x, t −1)|(xi , ti ))
= r ((x,1)|(xi , ti ))

r ((x,0)|(xi , ti ))
= u(x,1)

u(x,0)

Therefore, the same argument in the proof of Theorem 3 can be repeated.
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