
14 December 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Modeling MTC and HTC Radio Access in a Sliced 5G Base Station

Published version:

DOI:10.1109/TNSM.2020.3034688

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1760921 since 2021-03-09T11:25:40Z

Modeling MTC and HTC Radio Access
in a Sliced 5G Base Station

Vincenzo Mancuso1, Paolo Castagno2, Matteo Sereno2, and Marco Ajmone Marsan1,3

1IMDEA Networks Institute, Madrid, Spain; 2University of Turin, Italy; 3Polytechnic of Turin, Italy
vincenzo.mancuso@imdea.org, matteo.sereno@unito.it, paolo.castagno@unito.it, ajmone@polito.it

Abstract—In this article, we develop a modeling framework
to describe the uplink behavior of a sliced cell radio access,
including most features of the standard 3GPP multiple access
procedures. Our model allows evaluating throughput and latency
of each slice, as a function of cell parameters, when resources
are in part dedicated to individual slices and in part shared.
The availability of an accurate model is extremely important
for the automated run time management of the cell and for the
correct setting of its parameters. Indeed, our model considers
most details of the behavior of sliced 5G cells, including Access
Class Barring (ACB) and Random Access CHannel (RACH) pro-
cedures, preamble decoding, Random Access Response (RAR),
and Radio Resource Control (RRC) procedures.

To cope with a number of slices devoted to serve various co-
deployed tenants, we derive a multi-class queueing model of
the network processor. We then present (i) an accurate and
computationally efficient technique to derive the performance
measures of interest using continuous-time Markov chains, which
scales up to a few slices only, and (ii) tight performance bounds,
which are useful to tackle the case of more than a fistful of
slices. We prove the accuracy of the model by comparison
against a detailed simulator. Eventually, with our performance
evaluation study, we show that our model is very effective in
providing insight and guidelines for allocation and management
of resources in cells hosting slices for services with different
characteristics and performance requirements, such as machine
type communications and human type communications.

Index Terms—Radio access network; 5G; Base station; Slicing;
Queuing networks; HTC and MTC coexistence.

I. INTRODUCTION

Network slicing is a defining feature of the 5G technology.
It allows the presence of several tenants on one infrastructure,
and the effective coexistence of services with quite different
characteristics and requirements in different virtual slices of
the same network. The NGMN (Next Generation Mobile
Network) Alliance [2], formed by mobile network operators
and equipment manufacturers, gives the following definition
of network slice instance [3]: “a set of network functions, and
resources to run these network functions, forming a complete
instantiated logical network to meet certain network character-
istics required by the service instance(s).” Network slicing is
thus based on the allocation of a shared or dedicated portion

This work is partially supported by the Region of Madrid through the
TAPIR-CM project (S2018/TCS-4496), by a Ramon y Cajal grant (ref: RYC-
2014-16285) from the Spanish Ministry of Economy and Competitiveness,
and by HOME (Hierarchical Open Manufacturing Europe) project supported
by the Regione Piemonte, Italia (framework program POR FESR 14/20).
A preliminary version of this work appeared in the proceedings of IEEE
Infocom’19 [1].

of the network resources to each slice, to achieve the best
possible Quality of Service (QoS) for each slice, expressed by
means of the relevant key performance indicators (KPIs) like
throughput, latency, service availability, etc. ETSI Technical
Specification 123 501 [4] defines three classes of slices. The
first class refers to slices “suitable for the handling of 5G
enhanced mobile broadband” (eMBB). The second class refers
to slices “suitable for the handling of ultra-reliable low latency
communications” (URLLC). The third class refers to slices
“suitable for the handling of massive IoT” (mIoT). Several
slices of the same class can coexist on one infrastructure.

The allocation of resources to the individual slices and their
real-time management can be implemented with the support of
Software Defined Networking (SDN) and Network Function
Virtualization (NFV) approaches, hence with management and
orchestration (MANO) functions, and in particular with a
resource orchestrator that monitors KPIs on different slices
and properly manages resources, so as to avoid Service Level
Agreement (SLA) violations.

While several papers already looked at the issues related
to resource orchestration (as we discuss in the Related Work
Section), in this paper we look at the problem of uplink radio
resource allocation to slices on the radio interface of one cell,
an issue which, to the best of our knowledge, has not yet
been considered in the technical literature1. In particular, we
develop a detailed stochastic model of the behaviour of the
sliced cell radio access, including: (i) Access Class Barring
(ACB) techniques, (ii) Random Access CHannel (RACH)
procedures, (iii) preamble decoding and Random Access
Response (RAR), and (iv) Radio Resouce Control (RRC)
procedures.

The development of a model capable of predicting the QoS
achieved by services using the different slices available in the
cell as a function of the cell parameters is extremely important
for the automated run time management of the cell and for the
correct setting of its parameters, aiming at the simultaneous
fulfillment of SLAs in all slices.

Our model builds on the approach we presented in [5] and
extends it to account for the presence of slices. It allows the
computation of the throughput achieved by each slice, as well
as the distribution of delays for each service in each slice. We
focus in particular on the case of HTC (human-type communi-
cations) and MTC (machine-type communications), the former
including the eMBB slice type and the latter including both

1Except for a preliminary version of this work that appeared in [1],

2

the URLLC and mIoT slice types. This is because today one
of the key questions about 5G KPIs concerns the possibility
of coexistence of eMBB for the provision of an increasingly
rich gamut of services to human end users, together with the
services required by either massive or critical MTC necessary
for implementing smart factory, industry 4.0 and IoT concepts.

Our main contributions are as follows:
• We develop a flexible detailed analytical model for the

performance analysis of one cell hosting several slices.
• We provide expressions for the computation of relevant

KPIs, such as slice throughput and latency distribution.
• We apply the model to the investigation of the perfor-

mance of one cell hosting up to six slices for HTC and
MTC.

• We provide insight and guidelines for the allocation and
management of resources in cells hosting HTC and MTC
slices.

The rest of this paper is organized as follows. Section II pro-
vides a detailed description of the studied system. Section III
presents our analytical model and derives expressions for KPIs.
Section IV describes and comments results for the case of
two to six MTC/HTC slices, validates them by comparison
against simulation, and discusses the main model’s insights.
Section V positions our work with respect to previous work.
Finally, Section VI concludes the paper.

II. SLICING RADIO ACCESS RESOURCES

Here we describe radio resource sharing among slices, using
the notation of Table I.

A. Access and Connection Procedures

All devices that need to access a service, of both MTC and
HTC types, must execute the random access procedure, that
starts when a RACH (Random Access CHannel) opportunity
(RAO) is offered by the BS. Before accessing the RACH, a
terminal may be delayed by the ACB (Access Class Barring)
procedure, that allows a prioritization in the RACH access.
Barring a service request of a service class happens with a
given probability.

The RACH procedure consists in a packet handshake to
synchronize BS and terminal and to assign a unique identifier
to the terminal service request. A request is successful only
when resources are actually allocated to the terminal with
the signaling messages that are exchanged after the random
access success. Indeed, the standard 3GPP access procedure
includes the RACH access phase and the RRC (Radio Re-
source Control) connect phase, with four messages exchanged
in total. In case of failure during one of the two stages, the
terminal repeats its attempt after a random backoff delay,
possibly with different transmission power, according to the
standard 3GPP power ramping mechanism that defines how
nodes progressively increase their transmission power after
each failed attempt [6]. Different backoff values can be defined
for failures in different points of the procedure.

In the RACH access phase, the terminal chooses one out of
Np available preambles, and transmits it at the next available

TABLE I
NOTATION USED IN THE ARTICLE

Notation Description Notation Description

A(i) ACB backoff for slice i p
(i)
R RACH failure prob. with-

out collision (slice i)

B(i) RACH backoff for slice i τ RAO interval

C BS capacity Tmin Minimum time needed to
get a RACH reply

C(i) BS capacity dedicated to
slice i

Tmax RACH timeout

Cs shared BS capacity T
(i)
O application timeout for

slice i

k
(i)
max max number of RACH at-

tempts (slice i)
Y

(i)
k time elapsed when leav-

ing stage k (slice i)

M max number of
RRC CONNECTED
terminals

Z time spent in a RACH
stage waiting for an ACK

M(i) guaranteed
RRC CONNECTED
positions (slice i)

ζ(i) exogenous arrivals for
slice i

Ms shared
RRC CONNECTED
places

λ(i) RACH request arrivals
for slice i

Np number of random access
preambles

Θ RACH limit per RAO
(slice-oblivious)

o(i) power ramping offset for
slice i

σ(i) flow of acknowledged
RACH requests (slice i)

p
(i)
A barring probability for

slice i
φ(i) flow of decoded RACH

requests for slice i

pB blocking probability
(same for all slices)

ψ(i) RACH throughput for
slice i

p
(i)
C RACH collision probabil-

ity observed by slice i
ξ(i) Network processor

throughput for slice i

RAO. If several terminals choose the same preamble, a colli-
sion occurs, and the access request cannot be decoded. If just
one terminal chooses a given preamble, its request is decoded,
provided the terminal transmission power is high enough. If
a collision occurs, or the power is too low, the RACH access
must be repeated.

If a request is decoded, the terminal can receive an ac-
knowledgment from the BS. There is a limit (denoted by Θ
in this article) to the maximum number of ACKs that can
be transmitted by the BS for each RAO, so that a decoded
request can receive no ACK if the limit is reached. If no
ACK is received, the terminal must repeat the RACH access
procedure.

Terminals that complete the access procedure can move to
the RRC CONNECTED state and receive service from the
BS. A limit exists to the maximum number of terminals that
can be in the RRC CONNECTED state (we call it M), so
that there is a possibility that the terminal request is blocked
even after receiving an ACK. In this case, the terminal notifies
the user with an error message equivalent to the busy tone in
the voice phone system.

A maximum number of repetitions for the RACH access
procedure is defined, called kmax, After kmax attempts, a
request is dropped. A repetition can be due to collision (with
probability pC) and to no ACK received (with probability
pR(k) at the k-th attempt, with the associated power level).

3

ACB RACH Decoder Limiter Network
z(i)	 l(i)	 y(i)	 f(i)	 s(i)	 x(i)	

Blocking Barring Collision Error Clip

ACB	backoff	

Timeout or
max retry limit reached

Timeout

RACH	backoff	
(at	most	k(i)max-1	5mes)	

Drop	

Fig. 1. System blocks representing sliced network functions for the i-th slice
hosted by a base station

In addition, a maximum amount of time is defined for the
completion of an access procedure instance. When this time
is reached, a timeout expires, and the instance is dropped.

Once a terminal is in the RRC CONNECTED state, it
receives its share of the BS capacity, in terms of allocated
resource blocks.

This whole procedure is illustrated in Fig. 1, where we see
new service request generation on the left, the ACB subsystem,
followed by the RACH, the Decoder and the Limiter,
all with their backoffs, timeout possibilities and maximum
number of retries. The Network subsystem corresponds to
service by the BS, if no blocking occurs. In the system, the
following events lead to drop the connection attempt: network
blocking, timeout, and exceeding the RACH retry limit.

B. Sliced System
In case of a sliced system, it is necessary to define an

allocation of the BS resources to the different slices (identified
in this paper with a superscript denoting the slice index).

In the spirit of the 3GPP LTE standard, we assume that the
barring probability is a characteristic of a service, but since
we allocate one service to each slice, the barring probability
p

(i)
A depends on the slice. The power ramping offset can

provide a significant differentiation among slices, increasing
the probability of decoding for the slices using higher power.
For this reason we will consider different values for different
slices. The subset of RACH preambles that can be used by a
slice significantly impacts the collision probability. We will
thus consider the case of different subsets (possibly with
non-empty intersection) of preambles for different slices. We
will instead assume that the ACKs provided by the BS to
service requests that succeed on the RACH and at the decoder
are equally available to all slices. Obviously, the maximum
number of terminals in the RRC CONNECTED state is a key
aspect for governing the slice KPIs, and we will thus consider
cases where values are different for different slices. These
values have an impact on the bandwidth share obtained by
each terminal. Specifically, we assume that the BS allocates
portions of bandwidth to each slice, and that the bandwidth
is then equally shared within the slice among terminals in the
RRC CONNECTED state. Out of the M available positions,
we reserve M (i) for unique use of slice i, with the sum of the
M (i) less or equal to M . The remaining positions are shared
by all slices. The values of backoff delays and access timeouts
must be tailored to the types of service and the KPI goals of
each slice, so they must be carefully set by the operator.

III. ANALYSIS

We model a sliced system that represents the uplink chain
that goes from the end user terminal, to the radio connection
to the BS, to network service within a cell. We leave out of
the analysis the connection from the BS to the core network
and study in detail BS resource slicing.

A. System Flows

The reference system is the one illustrated in Fig. 1, which
includes the network functions described in the previous sec-
tion. As shown in the figure, each block can either promote a
connection request to the next level, until service is completed,
or yield a failure event. The figure only indicates flows and
some configuration parameters for slice i, although we assume
the presence of S slices.

The ACB block sees a flow ζ(i) as input. Barring at the ACB
happens with probability p(i)

A and yields backoffs A(i) for slice
i, with no limit on the number of consecutive backoffs (up
to the timeout values). We assume that, within a slice, ACB
backoff durations are i.i.d. and exponentially distributed.

The RACH block receives the flow λ(i) from the ACB,
which is no higher than ζ(i) due to the possibility of timeout
in the ACB. Failures on a RACH access attempt can be
due to collision, decoding errors or clipping at Limiter.
A user cannot distinguish which type of failure occurred,
it simply observes that the BS does not acknowledge its
request in an interval Tmax and then it schedules a RACH
backoff before another attempt will start (if the timeout has
not expired). We call stage k the k-th RACH access attempt.
We assume that the RACH backoff durations B(i) are i.i.d.
random variables (r.v.’s) with exponential distribution. Each
RACH stage k produces a flow ψ

(i)
k of successes, which feeds

Decoder. Of course, the total flow of successes leaving RACH
is ψ(i) =

∑k(i)max

k=1 ψ
(i)
k .

The Decoder block introduces losses based on a decoding
probability that depends on the RACH stage, because of
power ramping (with specific per-slice offset). The output of
Decoder is a flow φ(i) ≤ ψ(i), which feeds Limiter.

The Limiter block causes failures due to the cap Θ on
the number of RACH acknowledgments per RAO. This is a
hard limit for the ensemble of slices running on the same BS.
The output of Limiter is a set of flows σ(i), one per slice,
such that

∑S
i=1 σ

(i) ≤ Θ/τ .
If a service request eventually reaches Network, it can still

be blocked if the BS network processor has no position left
for that slice (and in the shared pool). Blocking happens with
probability p(i)

B . Conversely, successful requests are served by
the network, with a per-slice throughput denoted by ξ(i) =

(1− p(i)
B)σ(i).

The busy tone can therefore be caused by network blocking
as well as excessive RACH access attempts (after k(i)

max back-
to-back RACH failures) or by specific application timeouts
(the app running on the terminal and trying to send a message
will not wait forever). The busy tone is directly returned to
the user as the service request is dropped.

4

For the framework described above, we now derive ex-
pressions for the flows (loads and throughputs) and for the
distribution of time spent in the system.

B. Access Time

Let us consider a request from slice i that arrives at ACB.
We denote by Y

(i)
k−1 the time spent by that request from its

arrival to ACB to the moment it enters stage k. Y (i)
k−1 consists

of a random number L(i) of barring backoffs, (k − 1) times
the interval Tmax and k − 1 RACH backoffs.

If there is a success at the k-th stage, the time spent by
the request before leaving is Y (i)

k−1 + Z, where the random
interval Z ≤ Tmax is needed to model the delay between
RACH request and network grant and it is independent from
all r.v.’s Y (i)

j , j = 1, 2, . . . , k
(i)
max, i = 1, 2, . . . , S. In this case,

the request is served with probability 1 − p
(i)
B or otherwise

dropped. Therefore the time spent for a network blocking is
the same as for a success (because we are not counting the
network service in the access time).

If there is a failure due to the maximum number of RACH
attempts, the time spent is Y (i)

k
(i)
max

and the request is dropped.
Instead, in case of timeout, the time spent is the timeout value
selected for slice i, namely T

(i)
O , and the request is dropped

as well. The distribution of Y (i)
k is

F
Y

(i)
k

(x)=Pr

L(i)∑

n=1

A(i)
n + kTmax +

k∑

n=1

B(i)
n ≤ x

, (1)

where L(i) ≥ 0 is the random number of back-to-back
deferrals experienced because of ACB, due to the barring
probability p

(i)
A associated to slice i, and the subscript n

indicates the n-th passage through either the backoff of ACB
or RACH. Similarly, the distribution of Y (i)

k−1 + Z is

F
Y

(i)
k−1+Z

(x)=Pr

L(i)∑

n=1

A(i)
n +(k−1)Tmax+

k−1∑

n=1

B(i)
n +Z≤x

(2)

Because of the independence of the r.v.’s used in the above
expressions, denoting by fZ the p.d.f. of Z, the following
useful result holds:

F
Y

(i)
k−1+Z

= F
Y

(i)
k−1

∗fZ . (3)

Moreover, the sum of a fixed number of exponential RACH
backoffs is an Erlang r.v., and the sum of a geometrically
distributed number of ACB exponential backoffs with ACB
backoff probability p

(i)
A and average ACB backoff E[A] ex-

hibits the following cumulative distribution:

Pr

L(i)∑

n=1

A(i)
n ≤ x

 = 1− p(i)

A e
−
(

1−p(i)A

)
x

E[A] , ∀x ≥ 0.

(4)

The above considerations tell that the distribution (1) can be
obtained as the convolution of (4) with an Erlang distribution
with shape parameter equal to k and average k E[B(i)] (i.e.,
the average of k backoff intervals), and a time shift k Tmax.

C. RACH Stages

A request enters RACH stage 1 if its timeout does not
expire during the ACB backoffs. We denote such probability as
P

(i)
N (1), which is computed through (4) evaluated at x = T

(i)
O .

Subsequently, and while the timeout does not expire, a
request leaves the RACH stage with either a success, or
progress to the next stage upon a collision, or a failure in
Decoder or in Limiter. We indicate the probability to
access stage k as P (i)

N (k), for which we derive the following
recursive expression:

P
(i)
N (k+1)=P

(i)
N (k)

[
1−
(
1−p(i)

C

)(
1−p(i)

R (k)
)]
F
Y

(i)
k

(T
(i)
O). (5)

In the above expression, p(i)
C indicates the collision proba-

bility in RACH, p(i)
R (k) is the probability of failure in either

Decoder or Limiter in stage k, and F
Y

(i)
k

(T
(i)
O) is the

probability that a timeout does not occur before the end of the
backoff of stage k. We will derive such quantities later in this
section. Before that, we need to derive the general expressions
for the probabilities of the following events to occur: excess
RACH retries, success, blocking, and timeout. Those events
fully characterize the success of the access attempt.

D. Event Probabilities

RACH retry limit exceeded. The quantity P (i)
N

(
k

(i)
max+1

)
,

formally defined as for other values of k in (5), represents the
fraction of ζ(i) that exceeds the RACH retry limit.

Access attempt success. The fraction of ζ(i) that observes
a success in stage k is derived as the fraction of requests that
enters stage k and experiences no failure:

P
(i)
S (k)=P

(i)
N (k)

(
1−p(i)

C

)(
1−p(i)

R (k)
)(

1−p(i)
B

)
F
Y

(i)
k−1+Z

(T
(i)
O). (6)

The total success probability of slice i, i.e., the fraction of ζ(i)

requests that succeeds, is therefore P (i)
S =

∑k(i)max

k=1 P
(i)
S (k).

Network blocking. This is similar to the case of success in
stage k, but with a network blocking failure:

P
(i)
B (k)=P

(i)
N (k)

(
1−p(i)

C

)(
1−p(i)

R (k)
)
p

(i)
B F

Y
(i)
k−1+Z

(T
(i)
O). (7)

The fraction of access requests ζ(i) that experiences network
blocking is thus P (i)

B =
∑k(i)max

k=1 P
(i)
B (k).

Timeout. A timeout can occur either during ACB backoffs,
with probability P

(i)
TO(0) = 1 − P

(i)
N (1), or during RACH

operations. In the k-th stage, a fraction of requests suffer a
timeout while waiting for the network grant or during the
backoff. Hence, for k ≥ 1:

P
(i)
TO(k)=P

(i)
N (k)

{(
1−p(i)

C

)(
1−p(i)

R (k)
)[

1−F
Y

(i)
k−1+Z

(T
(i)
O)
]

+
[
1−
(

1−p(i)
C

)(
1−p(i)

R (k)
)] [

1−F
Y

(i)
k

(T
(i)
O)
]}
.

(8)

The total timeout probability observed by a slice is therefore

P
(i)
TO =

k(i)max∑

k=0

P
(i)
TO(k); (9)

5

Busy tone. Access requests that exceed the RACH retry
limit, experience a network blocking event, or a timeout, are
dropped. Therefore, the busy tone is sent with probability 1−
P

(i)
S = P

(i)
N

(
k

(i)
max + 1

)
+ P

(i)
B + P

(i)
TO.

E. Derivation of throughputs and loads with cycles

With the expressions derived so far, we have characterized
the trajectory of the exogenous access requests that feed the
system for slice i, i.e., ζ(i). However, the expressions derived
are functions of three parameters that we need to derive next:
p

(i)
C , p(i)

R (k), and p(i)
B .

RACH collision probability and throughput. The input of
RACH is the flow λ(i) that arrives from ACB. However, RACH
has internal cycles, and λ(i) is just the input to the first stage.
With the definitions of Section III-C, we have the following
input flows for each successive stage (note that λ(i)

1 =λ(i)):

λ
(i)
k = ζ(i)P

(i)
N (k), k = 1, 2, . . . k(i)

max. (10)

We model RACH as a slotted Aloha system with multiple
channels. The load of the system is the sum of the requests
arriving to the various stages, whereas the number of channels
is the number of preambles assigned by the BS to the slice.

Specifically, each slice receives a set of N (i) dedicated
preambles. In addition, the BS keeps a pool of Ns shared
preambles that can be accessed by all slices. The total number
of preambles is Np = Ns +

∑S
i=1N

(i).
In each RACH attempt, according to the standard, a terminal

selects a preamble uniformly at random, so that the per-
preamble RACH load generated by slice i is

`(i) =
ζ(i)

N (i) +Ns

k(i)max∑

k=1

P
(i)
N (k). (11)

The collision probability over a single preamble j, from
slotted Aloha results with slots of duration τ , is as follows:

pC,j =

{
1− e−τ`(i) , 1 ≤ i ≤ S, dedicated preamble;

1− e−τ
∑S

i=1 `
(i)

, shared preamble.
(12)

The resulting per-slice RACH collision probability is de-
rived as the average of (12) over the preambles used by a
slice and selected uniformly at random at each attempt:

p
(i)
C = 1− N (i)e−τ`

(i)

+Ns e
−τ∑S

q=1 `
(q)

N (i) +Ns
. (13)

The throughput of RACH (for slice i and stage k) is:

ψ
(i)
k =

(
1− p(i)

C

)
λ

(i)
k , ψ(i) =

k(i)max∑

k=1

ψ
(i)
k . (14)

Throughput of Decoder. At each stage of the RACH,
Decoder has a different failure probability, due to power
ramping in RACH message transmissions [6]. The Decoder
failure probability is expressed as e−k−o

(i)

, where k is the
RACH attempt stage and o(i) is the slice offset. Therefore, at
stage k, slice i observes the following Decoder throughput:

φ
(i)
k = ψ

(i)
k

(
1− e−(k+o(i))

)
(15)

which sums up to a flow φ(i) =
∑k(i)max

k=1 φ
(i)
k .

Losses due to Limiter. The BS can only grant Θ requests
per RAO, shared between the slices. Therefore there are losses
when the output of Decoder in a RAO interval is higher
than Θ requests. With the RACH preamble partition described
above, we can compute the distribution of successes per RAO
and hence compute the average loss due to Limiter.

In a pool of W preambles subject to homogeneous per-
preamble load—e.g., in a pool of shared preambles, or in a
pool of preambles dedicated to a single slice—the probability
ωa to have exactly a decoded messages in a RAO is approx-
imated with the probability of having a successes over W
i.i.d. Bernoulli experiments (one per RACH preamble, which
can only output no or one decoded request). The success
probability of each Bernoulli experiment is computed from
the aggregate number of messages decoded in an interval τ ,
as shown next.

For a pool of dedicated preambles N (i), the collision
probability is the same for all preambles and it is given by (12).
Thus, for each preamble, the average output per RAO, after
decoding, is

p(i) = τe−τ`
(i)

k(i)max∑

k=1

(
1− e−(k+o(i))

) λ
(i)
k

N (i) +Ns
, (16)

which can be regarded as the Bernoulli success probability of
dedicated preambles. For the shared pool, the result is similar:

ps=τe−τ
∑S

i=1 `
(i)

S∑

i=1

k(i)max∑

k=1

(
1−e−(k+o(i))

) λ
(i)
k

N (i) +Ns
. (17)

For a dedicated pool we have the following distribution:

ω(i)
a =

{(
N(i)

a

) (
p(i)
)a(

1−p(i)
)N(i)−a

, a ∈ {0, .., N (i)};
0, otherwise;

(18)

while for the shared pool of preambles we have

ωsa =

{(
Ns

a

)
(ps)

a
(1− ps)Ns−a , a ∈ {0, .., Ns}

0, otherwise.
(19)

Finally, putting together the different pools, the probability
Ωa to have exactly a messages decoded (from any slice) is

Ωa=

Np∑

a1=0

Np∑

a2=0

. . .

Np∑

aS=0

ω(1)
a1 ω

(2)
a2 . . . ω

(S)
aS ωs(a−

∑S
r=1 ar). (20)

Overall, the average number of losses is

E [NL] =

Np∑

a=Θ+1

(a−Θ) Ωa, (21)

and we can assume that losses are spread over slices propor-
tionally to their load at Limiter:

E
[
N

(i)
L

]
= E [NL]

φ(i)

∑S
q=1 φ

(q)
; (22)

The resulting per-slice Limiter throughput is

σ(i) = φ(i) −
E
[
N

(i)
L

]

τ
= φ(i)

(
1− E [NL]

τ
∑S
q=1 φ

(q)

)
. (23)

6

Since losses at Limiter do not discriminate between RACH
stages, the Limiter throughput per-stage, σ(i)

k , is obtained
by replacing φ(i)

k for φ(i) in (23).
Computation of p(i)

R (k). This quantity is the aggregate loss
rate due to the combined action of Decoder and Limiter
for requests at stage k:

p
(i)
R (k)=1− σ

(i)
k

ψ
(i)
k

=1−
(
1−e−(k+o(i))

)

1−

E
[
N

(i)
L

]

τφ(i)

. (24)

F. A model for the Network subsystem in a Sliced BS

The Network subsystem is a BS network processor. It can
serve at most M users at the same time, and the M available
positions in service must be shared among slices. Each slice
is granted exclusive access to M (i), i = 1, 2, · · · , S positions,
with

∑S
i=1M

(i) = M −Ms, and Ms ≥ 0. If not all positions
are dedicated (i.e., Ms > 0), remaining positions are shared
among all slices. Arrivals that do not find available service
positions are dropped, thus originating the network blocking
probability.

The Network subsystem has total service capacity C
services per second, out of which C(i), i = 1, 2, · · · , S,
is reserved for slice i, and Cs is shared among slices. If
Network is serving up to M (i) users for slice i, they equally
share C(i). However, when there are m(i) > M (i) customers,
the i-th queue obtains a service rate equal to C(i) plus a portion
of the shared capacity Cs proportional to m(i)−M (i). Hence,
the i-th queue service rate depends on the total number of
services of all slices, i.e., the service rate when m(i) > M (i)

is Ci+Cs/
∑S
i=1 max

(
0,m(i) −M (i)

)
. This service policy is

reasonable when most of resources are dedicated to slices, and
the fraction of shared capacity is small. Other policies can be
considered in different scenarios, and studied with approaches
similar to what we describe below.

The above service policy description resembles the opera-
tions of a multi-class processor sharing (PS) queue in which
a class receives part of what cannot be used by other classes.
Thus, we model the network processor of the BS with a PS
queue with S classes of customers and hard limits on the
number of customers in service given by M (i) +Ms for each
class, with a global limit at M . The capacities of such classes
are their dedicated capacity C(i) plus a portion of the shared
capacity Cs. The intensities of the arrival rates are the values
of the σ(i), but the shared resources are accessed only when
all dedicated positions are busy.

Since the resulting queueing system, where the service rate
of one class depends not only on the number of customers in
that class, but also in other classes, does not admit a product-
form solution (PFS) [7], we study this queue by means a
continuous-time Markov chain with S-dimensional state space
(one dimension per class, to count the number of services in
the class) whose transitions are depicted in Fig. 2 for the case
of two slices (S = 2), hence two customer classes. In the
figure, each state of the chain reports the number of customers
m(1) ≤M −M (2) in slice 1 and m(2) ≤M −M (1) in slice
2, subject to the constraint that m(1) +m(2) ≤M . The chain

å	

0, 0 0, 1 0, M(2) 0, M-M(1)

1, 0 1, 1 1, M(2) 1, M-M(1)

M(1), 0 M(1), 1 M(1), M(2)

M-M(2), 0

… …

…

…

… … …

…

… …

M-M(2), 1 M-M(2),
M(2)

M(1),
M-M(1)

M-M(2)-k,
M(2)+k

…

…

…

…

Fig. 2. CTMC describing the operation of Network for S = 2. Top-to-
bottom transitions have rate σ(1), while left-to-right transitions have rate σ(2).
Bottom-to-top transitions have rate C(1) in the first M(1) rows and C(1) +
Q(1)(a, b) in the remaining rows. Right-to-left transitions have rate C(2) in
the first M(2) columns and C(2) +Q(2)(a, b) otherwise.

has a precise symmetry and a pentagonal shape, which is due
to the above constraints.

If we denote by (a, b) the chain’s state, where a is the
number of services in slice 1 and b is the number in slice 2,
the transition rates in Fig. 2 from state (a, b) to other states
are as follows:

(a+ 1, b) : σ(1) ∀a ≤M (1)−1, b ≤M (2)

and ∀a ≤M −M (2)−b−1

(a, b+ 1) : σ(2) ∀b ≤M (2)−1, a ≤M (1)

and ∀b ≤M −M (1)−a−1

(a− 1, b) : C(1) ∀a ≤M (1)

(a− 1, b) : C(1) +Q(1)(a, b) ∀M (1)< a ≤M−M (2)

(a, b− 1) : C(2) ∀b ≤M (2)

(a, b− 1) : C(2) +Q(2)(a, b) ∀M (2)< b ≤M−M (1)

(25)

For simplicity of notation, we used the following quantities:

Q(1)(a, b) =

{
a−M(1)

a−M(1)+max(0,b−M(2))
if a > M (1);

0 otherwise;
(26)

Q(2)(a, b) =

{
b−M(2)

b−M(2)+max(0,a−M(1))
if b > M (2);

0 otherwise.
(27)

Note that different service policies (i.e., different approaches
to access the shared capacity) can be accommodated in this
Markov chain by just modifying transition rates.

The solution of the Markov chain can be obtained numer-
ically with specialized tools like SMART [8]. We therefore
solve the Markov chain numerically to compute p

(i)
B as the

sum of the relevant state probabilities. In the case of Fig. 2,

7

σi

condi

¬ condi
lossi

µi(m)

Fig. 3. Representation of the i-th queue: arrivals from Limiter are queued
if condition (29) is satisfied, and dropped otherwise.

for slice 1 we sum over states that lay on the bottom and
diagonal edges, whereas for slice 2 we sum over states on the
edges on the right and on the diagonal. This is because the
diagonal edge at the right-bottom part of the chain in Fig. 2
contains states in which both slices suffer blocking.

The state space size of the Markov chain in Fig. 2,
is O(MS), where M is the maximum number of
RRC CONNECTED terminals and S is the number of slices.
Hence, being M of the order of few hundreds in real sys-
tems, the numerical solution of the Markov chain is a viable
approach only for a (very) small number of slices.

G. Bounds on the performance of the Network subsystem

To mitigate the computational complexity problem, and thus
be able to handle a higher number of slices, we can observe
that the queuing model has, for each customer class, one
queue with finite capacity constraints, Poisson arrivals, and
state dependent processor service discipline. Recalling that the
arrival rate at the i-th queue is equal to σ(i) and the available

buffer size is equal to M −
S∑

j=1,j 6=i
M (j), and denoting by

m = [m(1),m(2), . . . ,m(S)] the S-dimensional vector of the
current states of queues, and by µi(m) the state dependent
service rate of the i-th processor sharing queue, we have that

µi(m)=

C(i) if m(i) ≤M (i)

C(i)+ Cs
m(i)−M(i)

S∑
j=1

max{0,m(j)−M (j)}
otherwise. (28)

The previous expression for the service rate accounts for the
two cases; (i) for m(i) ≤ M (i) the reserved capacity C(i)

of the i-th slice is equally shared among the m(i) customers;
(ii) when there are m(i) > M (i) customers, the i-th queue
obtains a service rate equal to C(i) plus a portion of the shared
capacity Cs proportional to m(i) − M (i). Moreover, since
Network can serve at most M customers, for all feasible
states m = [m(1),m(2), . . . ,m(S)] of the queueing system, we
have that

∑S
i=1m

(i) ≤M and
∑S
j=1 max{0,m(j)−M (j)} ≤

Ms.

Arriving customers that cannot enter the i-th queue because
of lack of space in the reserved positions in the queue (i.e.,
because they find m(i) = M (i)), or because all the shared
positions are full (i.e., because they find

∑S
j=1 max{0,m(j)−

M (j)} = Ms) are lost.
Fig. 3 depicts the i-th queue (for i = 1, . . . , S) of a queueing

system with these features. The two vertical bars labeled as

‘condi’ and ‘¬condi’ represent the two situations that an
arriving customer can encounter. In particular,

condi=
(
m(i)<M (i)

)
or

S∑

j=1

max{0,m(j)−M (j)} < Ms

.

(29)

If the first part of the condition does not hold, the arriving
customer might be served by using the shared resources (Ms

and Cs), but if the whole condition condi does not hold
(case ‘¬condi’), the arriving customer is lost, as pictorially
illustrated in Fig. 3.

Several features of this model make it a non-standard multi-
class queueing system (i.e., a queuing system which does not
admit a PFS), where the main non-product-form characteristic
concerns the rate dependency in (28). In particular, the rate
of the i-th queue (for i = 1, . . . , S) depends on the number
of customers in all the S queues. From this follows that the
derivation of the blocking probabilities requires the solution
of the underlying continuous-time Markov chain (CTMC), but,
as we already noted, this is feasible only for very small S (in
[1] we solved the model for S = 2).

To avoid the complexity of a solution based on the gen-
eration of the entire state space of the Network model, we
propose a simple modification of the model that allows to
come up with a PFS queuing network. With this transformation
we will be able to derive a lower and an upper bound on the
blocking probabilities.

To derive the PFS bounds we modify the rate µi(m) of the
processor sharing server for each slice i = 1, . . . , S defined in
(28) by removing the dependency on the number of customers
in all the other S−1 queues. In other words, we replace µi(m)

with µ
(l)
i (m(i)) (resp. µ(u)

i (m(i))) to derive a lower bound
(resp. an upper bound) on the loss probability. We derive a
lower bound on the loss probability by assuming that when
m(i) > M (i) customers are in the queue, M (i) of them get
a service rate C(i)

M(i) and the remaining m(i) −M (i) customers
access shared resources with no competition from the users
of other slices. Thus, we assume that Network allocates all
shared bandwidth resources to slice i, i.e., that slice i is the
only one accessing the shared bandwidth:

µ
(l)
i (m(i))=

C(i) if m(i) ≤M (i)

C(i)+ Cs otherwise.
(30)

To derive an upper bound for loss probabilities we focus
our attention on the second case of (28). In particular, we can
see that M −∑S

j=1M
(j) ≥∑S

j=1 max{0,m(j)−M (j)}, and
hence we can write that

µ
(u)
i (m(i))=

C(i) if m(i) ≤M (i)

C(i)+ Cs
m(i)−M(i)

Ms
otherwise.

(31)

In this case we assume that all slices are using the shared
bandwidth resources. Note that the two bounds are reached
for some of the possible states of the queuing system.

By using (30), and (31) instead of (28), we can then
derive lower and upper bounds for the loss probabilities (that

8

generate, respectively, upper and lower bounds on throughput).
Remarkably, the computation of the bounds can be done by
exploiting their PFS. Indeed, to compute the measures we are
interested in, we can use the efficient normalization constant
computation algorithm proposed in [9]2 whose computational
complexity is O(S ·M2), where M is the maximum number
of users in the RRC CONNECTED state and S is the number
of slices.

Note that the bounds are not directly applicable to different
service disciplines (i.e., different algorithms for accessing the
shared BS capacity), but approaches similar to the one just
described can be devised also for other cases.

The main question of any bounding technique concerns the
tightness of the provided bounds. To answer this question
we will show various numerical examples in the performance
evaluation section. Here we remark the fact that the bounds
are different only if the slices can use shared resources, and
the distance between lower and upper bounds depends on the
quantity of shared capacity and positions in the Network
subsystem. However, for all those cases in which the RACH
subsystem constitutes the main performance bottleneck, shared
resources at Network remain unused, so that the bounds
(practically) coincide and yield the exact solution.

H. Access Time Distributions

The cumulative distribution of the time T (i) spent in one
access attempt in slice i is the one resulting from the following
events that partition the space of probabilities: timeout, success
or network blocking in stage k, and excess RACH retries. In
case of timeout, the time spent is T (i)

O . In case of success
or network blocking in stage k, the time spent in the access
attempt is the r.v. Y (i)

k−1 + Z, conditional to the event that the
timeout does not expire. In case of excess RACH retries, the
time is Tmax (for the last retry with no BS answer) plus the
r.v. Y (i)

kmax−1 (which accounts for previous retries), conditional
to the event that the time at the end of the last but one attempt
allows for an extra Tmax in the last attempt. The result is as
follows:

FT (i) (x) = P
(i)
TO U

(
x−T (i)

O

)

+

k(i)max∑

k=1

F
Y

(i)
k−1+Z

(x)

F
Y

(i)
k−1+Z

(
T

(i)
O

)
(
P

(i)
S (k) + P

(i)
B (k)

)

+ P
(i)
N

(
k(i)

max + 1
) F

Y
(i)

k
(i)
max−1

(x−Tmax)

F
Y

(i)

k
(i)
max−1

(
T

(i)
O −Tmax

) , (32)

where U
(
x−T (i)

O

)
is a unit step at time T (i)

O . As a corollary
of (32), note that the CDF of the time spent in one attempt in
case of success is

FT (i)(x|Success)=
1

P
(i)
S

k(i)max∑

k=1

F
Y

(i)
k−1+Z

(x)

F
Y

(i)
k−1+Z

(
T

(i)
O

)P (i)
S (k). (33)

2That paper presents a computational efficient algorithm for a class of
product-form models that represent a generalization of the PFS queuing
networks with population size constraints.

IV. NUMERICAL RESULTS

In this section we study a few cases of sliced BS resources,
which correspond to realistic application scenarios. In all cases
we consider a BS with user plane capacity equal to 100 Mb/s
that must transmit packets of HTC type with average length
1.2 Mb, and with average length 8 kb in case of MTC; the
number of RACH preambles is equal to 54, and the number
of positions in the RRC CONNECT state is 200.

In Table II we provide, for four instances of a BS with
two slices, one carrying MTC traffic and one HTC, the
shares of traffic (referred to the intensity of access requests),
population (referred to the number of devices) and BS ca-
pacity dedicated to the two slices. The table also reports
the number of dedicated RACH preambles and positions in
the RRC CONNECTED state, and the timeout values. The
resources which are not dedicated to slices can be evenly
shared. Later we will also address the case of coexistence
of larger numbers of slices, considering examples with three
and six slices, respectively. The two-slice scenarios that we
consider are as follows:
• Sparse IoT – A BS serving a urban cell with mostly

HTC traffic, and a small slice for IoT (MTC) traffic.
• Dense IoT – A BS serving a cell with mostly MTC access

requests characterized by low traffic, so that a large part
of the capacity is used by a slice with few HTC devices.

• Small Factory – A BS serving a urban area with mostly
HTC traffic, but devoting a slice to serve a urban indus-
trial settlement, with MTC traffic.

• Big Factory – A BS serving a private area (such as a
smart factory) with mostly MTC traffic, and a slice to
handle HTC traffic.

In the numerical evaluation, we assume that HTC devices
on average, considering video, voice and data applications,
generate one packet per second—i.e., each device offers a
traffic of 1.2 Mb/s—while for MTC devices the timeout
corresponds to the packet generation interval, so to emulate the
process of updating the status of a system. This corresponds
to generating 8 to 80 kb/s per MTC device in the settings
of Table II, but we will also explore more extreme cases,
generating 0.8 to 800 kb/s per MTC device. Table II reports,
for each slice and each scenario, both the share of access
requests and the corresponding share of population of devices,
computed according to the message generation rate of each
HTC or MTC device.

A. Validation

In order to validate the analytical model, we used an ad hoc
simulator written in C++. This is an event-based simulator
that represents with high accuracy the standard operations
necessary to register the terminal at the BS, and to access
and use the BS resources. The fact that the simulator closely
follows the standard 3GPP procedures allows us to validate the
simplifying assumptions introduced in the analytical model for
the sake of tractability.

Fig. 4 compares analytical and simulation results, with their
95% confidence intervals. Notwithstanding the approximations
introduced in the model, the figure shows a very good match

9

TABLE II
SLICE PARAMETERS FOR THE CONSIDERED APPLICATION SCENARIOS WITH TWO SLICES (COLUMNS LABELED AS ‘H’ REFER TO HTC DEDICATED

RESOURCES, ‘M’ IS USED FOR MTC AND ‘S’ FOR SHARED RESOURCES)

Scenario Access request Population Capacity Preambles Positions Timeout
share share [Mb/s] [s]

H M H M H M S H M S H M S H M

Sparse IoT 0.95 0.05 0.79 0.21 80 2 18 40 5 9 100 10 90 5 5
Dense IoT 0.05 0.95 0.05 0.95 75 5 20 10 40 4 40 100 60 3 1

Small factory 0.75 0.25 0.97 0.03 50 20 30 30 10 14 50 50 100 5 0.1
Big factory 0.3 0.7 0.81 0.19 10 50 40 10 30 14 20 150 30 5 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

 100 1000 10000 100000

[
s
-
1
]

Total offered load ζ
1
 + ζ

2
 [s

-1
]

Total number of devices

ξ
1

ψ
1

φ
1

ξ
2

ψ
2

φ
2

Fig. 4. Small Factory throughput (in services per second) at RACH
(Ψ), Decoder (φ) and Network (ξ) vs. offered load (in requests per
second and in number of devices); lines represent the model, markers
with confidence intervals are for simulations; HTC in blue, MTC in red.

 1

 10

 100

 1000

 10000

 10 100 1000 10000

 100 1000 10000

[
s
-
1
]

Total offered load ζ
1
 + ζ

2
 [s

-1
]

Total number of devices

ξ
1

ψ
1

φ
1

ξ
2

ψ
2

φ
2

Fig. 5. Sparse IoT throughput (in services per second) at RACH (Ψ),
Decoder (φ) and Network (ξ) vs. offered load (in requests per second
and in number of devices); HTC in blue, MTC in red.

 1

 10

 100

 1000

 10000

 10 100 1000 10000

 100 1000 10000

[
s
-
1
]

Total offered load ζ
1
 + ζ

2
 [s

-1
]

Total number of devices

ξ
1

ψ
1

φ
1

ξ
2

ψ
2

φ
2

Fig. 6. Dense IoT throughput (in services per second) at RACH (Ψ),
Decoder (φ) and Network (ξ) vs. offered load (in requests per second
and in number of devices); HTC in blue, MTC in red.

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

 100 1000 10000

[
s
-
1
]

Total offered load ζ
1
 + ζ

2
 [s

-1
]

Total number of devices

ξ
1

ψ
1

φ
1

ξ
2

ψ
2

φ
2

Fig. 7. Big factory throughput (in services per second) at RACH (Ψ),
Decoder (φ) and Network (ξ) vs. offered load (in requests per second
and in number of devices); HTC in blue, MTC in red.

between model and simulation, up to very high offered loads
(ten thousands arrivals per second, as shown in the x-axis
of the figure), which corresponds to large device populations
(up to a few tens of thousands of devices, as shown in
the secondary x-axis, which maps the offered load onto the
number of devices).

B. Throughput

Figs. 4 to 7 illustrate the behavior of the system throughput
(at RACH, Decoder and Network) for the four considered

two-slice scenarios. In the Sparse IoT case, HTC saturates
first, and the HTC load on RACH has only a minor impact
on the traffic of MTC. This indicates that light MTC traffic
with non-stringent delay requirements is not hard to accom-
modate. The Dense IoT case is more interesting. It shows that
the MTC and HTC saturation regions superpose. Here, the
activity of MTC in RACH heavily affects HTC performance.
Therefore, supporting the coexistence of HTC and MTC slices
in such scenarios is challenging. If we go back to the Small
Factory case used above for validation, we notice only minor

10

differences with the Sparse IoT case. However, in this case,
the limited resources allocated to HTC make it easier to avoid
impairments for MTC. More critical is the Big Factory case, in
which the MTC traffic is predominant and yet a small amount
of HTC connections can seriously hinder MTC performance at
relatively low aggregate traffic rates, while under heavy traffic
the impact of HTC on the throughput of MTC is less relevant.

The figures also show that the losses due to Decoder are
negligible for MTC, while they have to be taken into account
for HTC. This is due to the fact that we have set a power
ramping offset for MTC (o(1) = 2), while HTC does not use
any offset. This tells of the importance of the power ramping
offset in the slice configuration.

Due to the heterogeneity of slices, there are no clear
optimal device population sizes at which all slices receive
the maximal throughput. In all cases, the HTC slice works
better with a few hundreds of devices, while MTC achieves
the highest Network throughput with a few thousands of
devices. Considering the Dense IoT scenario, which shows
the highest density of MTC devices (95% of the total), our
study shows that a cell can sustain about 2000 MTC devices.
In we consider instead the Small Factory case, with the highest
density of HTC devices (97%), we can observe that the
Network subsystem of a cell saturates with as few as 300
HTC devices.

C. Access Delay

The numerical results of access delay for MTC and HTC
traffic are shown in Figs. 8 and 9, respectively. In the case
of MTC, the two curves for Small Factory and Big Factory
saturate at 100 ms, which is the timeout for those cases. The
other two cases remain well below their timeout values which
are much less stringent. In the case of HTC, we see that all
curves saturate at the same value, which is close to 2.25 s,
due to the maximum permitted number of retries, and the
average backoff delay equal to 0.25 s. To this we must add 10
Tmax, which is however just about 0.13 s. The Small Factory
scenario saturates first because a large fraction of the BS traffic
is associated with only a small portion of dedicated resources.
The Dense IoT scenario yields the lowest delays because its
traffic share is very low, and the reserved resources prove to
be sufficient to achieve low delay.

D. Success Probability

Success probabilities for the four considered scenarios are
presented in Figs. 10 and 11 for MTC and HTC traffic,
respectively. In the MTC case, Small Factory and Big Factory
suffer from the very low timeout values, but achieve good
success probabilities up to about 1000 requests/s. Beyond
this value, the RACH subsystem approaches saturation, and
retrials make timeouts more likely. In the case of HTC, we
see very high success rates in the Dense IoT scenario, due to
the fact that the HTC traffic share in this case is very low, and
resources reserved to HTC are largely sufficient.

E. Lesson Learnt from the Two-slice Scenarios

One of our key observations is that the saturation of RACH
is a critical issue, and unexpected behaviors are observed for
the traffic loads that bring the RACH to saturation. In Fig.
12 we plot the probability of reaching the timeout for MTC
traffic versus the HTC traffic load in the Big Factory scenario,
assuming that the MTC traffic is fixed at 1000 requests/s, and
that the number of preambles reserved for MTC is varied
between 20 and 40. We clearly see a bump in the timeout
probability that corresponds to HTC traffic values that lead
to RACH saturation. After this point, HTC consumes little
Network resources, but saturates the RACH, so that there
is a clear need to protect MTC by allocating a large number
of dedicated preambles. If the number of dedicated preambles
is too small, the timeout probability settles at unacceptable
values.

Moreover, considering throughput and delay figures, with
the parameters used in the discussed experiments—which are
typical of networks slowly evolving towards 5G—we can
expect to sustain populations of at most a few hundreds of
HTC devices or a few thousands of MTC devices. Of course,
as we can see from Figs. 10 and 11, approaching such limit
numbers implies lower success probabilities. This gives rise to
a tradeoff for the network operator, that can exploit accurate
modeling techniques, like the one we propose in this paper, to
select the operational point for the network.

F. Increasing the Number of Slices

We now analyze more complex scenarios, involving the
coexistence of more than two slices. Since the complexity of
the corresponding CTMC describing the Network subsys-
tem scales exponentially, we use these examples to validate
the alternative approach proposed in Section III-G, which is
based on the use of smart, non-trivial bounds. We performed
an extensive set of numerical experiments to compare the
performance measures obtained with the bounding technique
against those that can be derived by using (when feasible) the
CTMC approach.

1) A first three-slice scenario: We first consider a scenario
with light MTC traffic and two highly loaded HTC slices. The
scenario could represent a cell with two tenants for public data
access plus an IoT operator, with the realistic parameter set
shown in Table III.

Note that, since it can be expected that the bounds are
extremely tight when the fraction of shared resources is
small, we leave unassigned 30% of capacity and two thirds
of Network positions. Like for previous experiments with
two slices, the BS capacity is set to 100 Mb/s, HTC service
requests correspond to 1.2 Mb packets on average, and MTC
traffic corresponds to small packets of 8000 bits. In this case,
the packet arrival rates fractions for the three slices are 0.6 and
0.3 for HTC slices, and 0.1 for the MTC slice (this corresponds
to having 99% of devices on the HTC slices). The reserved
capacities for the three slices are respectively 40, 20 and 10
Mb/s, so that 30 Mb/s are shared. Note that the share of traffic
offered by MTC is less than the share of capacity reserved to
MTC at the Network, so MTC is not expected to use much

11

0.01

0.1

1

10

 2000 4000 6000 8000 10000A
v

a
c
c
e
s
s

d
e
l
a
y

[
s
]

(
f
o
r

M
T
C
)

Total offered load ζ1 + ζ2 [s
-1
]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 8. Average access delays for slice 1 (MTC) in seconds for the
four different scenarios versus the total load offered to the BS in service
requests per second

0.1

1

10

 2000 4000 6000 8000 10000A
v

a
c
c
e
s
s

d
e
l
a
y

[
s
]

(
f
o
r

H
T
C
)

Total offered load ζ1 + ζ2 [s
-1
]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 9. Average access delays for slice 2 (HTC) in seconds for the four
different scenarios versus the total load offered to the BS in service
requests per second

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000

P
S
(
1
)

(
f
o
r

M
T
C
)

Total offered load ζ1 + ζ2 [s
-1
]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 10. Success probability for MTC for the four different scenarios
versus the total load offered to the BS in service requests per second

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000

P
S
(
2
)

(
f
o
r

H
T
C
)

Total offered load ζ1 + ζ2 [s
-1
]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 11. Success probability for HTC for the four different scenarios
versus the total load offered to the BS in service requests per second

TABLE III
CONFIGURATION FOR THE CASE OF THREE SLICES WITH HIGHLY LOADED HTC SLICES AND LIGHT MTC TRAFFIC

Slice Access request Population Capacity Preambles Positions Timeout Duty Cycle
share share [Mb/s] [s] [s]

HTC (operator 1) 0.6 0.66 40 30 40 5 1
HTC (operator 2) 0.3 0.33 20 15 20 5 1

MTC (IoT) 0.1 0.01 10 5 5 0.1 0.1
Shared N/A N/A 30 4 135 N/A N/A

of shared capacity unless all slices are overloaded. Out of the
54 available RACH preambles, 30 plus 15 are allocated to
HTC slices, and 5 to the MTC slice. Of the 200 positions
in the RRC CONNECTED state, 40 and 20 respectively are
allocated to the two HTC slices, and 5 to the MTC slice, so that
135 positions are shared. The timeouts for the access requests
of the two HTC slices are equal to 5 s, while the timeout for
the MTC slice is 0.1 s.

The curves in Fig. 13 plot the throughput—in terms exact
values and bounds, expressed in services per second—of the
three slices as a function of the total service request arrival
rate and, in the secondary x-axis, the total number of devices.
The two HTC slices saturate their available capacity, as shown
by the flat part of the curves, while the MTC slice, because of

its much smaller packet size and its dedicated resources, does
not reach saturation. Since we have a net predominance of
HTC devices, the population that can be efficiently sustained
includes at most about one hundred devices.

The bounds are indistinguishable from the exact solution in
the case of the MTC slice, as well as for the two HTC slices
before saturation. The bounds can be seen to be tight also
for the two HTC slices when in saturation, where the exact
solution almost overlaps with the lower bound. This is because
the two slices saturate at the same arrival rate value, so that
the condition in (31) is satisfied with high probability. The
upper bound is not far either, at least in this case in which the
MTC does not practically use shared resources, while the two
HTC slices contend for shared resources. Fig. 14 shows that

12

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 500 1000 1500 2000

N
(1)

=20

N
(1)

=25

N
(1)

=30

N
(1)

=35

N
(1)

=40

P
T
O

(
1
)

(
M
T
C
)

HTC arrivals ζ
(2)

 [s
-1
]

Fig. 12. Timeout probability for MTC at fixed MTC service request rate
ζ(1) = 1000 req/s versus the load offered by MTC in service requests per
second

blocking probability bounds are very tight for the HTC slice
with higher throughput, while they are slacker for the other
HTC slice. Note that the lower bound for throughput is an
upper bound for the blocking probability and vice versa (for
consistency, the terms ‘lower’ and ‘upper’ used in the labels
of the figures refer to throughput bounds). The only region in
which bounds can be large is a small interval around the first
knee of the throughput curve, where the blocking probability
is however low.

2) A second three-slice scenario: We now consider a dif-
ferent three-slice scenario, one in which HTC and MTC traffic
are comparable, no slice receives enough dedicated resources
to serve all its traffic as it grows, and in which shared resources
are abundant (i.e., 95% of capacity and 50% of positions are
shared). Specifically, we consider one slice for HTC and two
for MTC, with the parameters described in Table IV. Here the
number of MTC devices is not negligible, as it accounts for
more than 10% of the population. The scenario could represent
the case of an industrial site with a public data service on HTC
and two MTC slices for two separate factories. We assume half
of access requests are for HTC and the other half is equally
split across the two MTC slices, although one MTC slice
receives more resources than the other. Most of the capacity
is left in the shared pool, because we have assumed that the
HTC slice does not need stringent guarantees and the MTC
devices need little capacity. The scenario was deliberately
chosen with a large amount of shared capacity, so to stress
the differences between bounds in the computation of the
throughput of Network (cf. the impact of Cs on the bounds
(30)–(31)).

Notwithstanding the large amount of shared resources,
Fig. 15 shows that, for this case, the two bounds are very
close. Limited differences can be noted for the HTC slice, in
the region of saturation of Network. Similarly, the bounds
calculated on the blocking probability, shown in Fig. 16, are
quite tight for HTC and the MTC with less reserved resources,
while being looser for the other MTC slice. This behavior is
due to the aggressive access to shared resources by HTC only,

which makes shared resources highly utilized. In contrast,
MTC slices do not overload the Network subsystem even
when they have little dedicated resources. However, shared
positions are used by all slices. Note in fact that when the
HTC RACH throughput reaches its peak for the HTC slice (not
shown in the figure, it can be however intuitively identified
at around 1000 arrivals per second from the shape of the
throughput before and after the flat zone imposed by the
Network), the pressure of HTC diminishes, and MTC slices
obtain more resources. Although they do not saturate the
Network subsystem throughput, still this behavior indicates
that MTC devices use more shared positions, which are the
ones freed by HTC after the RACH subsystem cuts off. The
total population that can be served in this mixed slice case
with little dedicated resources is quite low, of the order of
200 devices (about 180 for HTC and 20 for MTC) before the
Network throughput saturates for all slices. This means that
a large pool of shared resources has negative impact on the
size of the sustainable population.

If we now increase the amount of bandwidth allocated to
slices to 25, 15 and 10 Mb/s for the HTC, MTC1 and MTC2
slices, respectively, we obtain the results shown in Figs. 17
and 18. We can see that, as expected, by reducing the amount
of shared resources the bounds have become even tighter than
before. In addition, we can observe an improvement in the
performance of the two MTC slices, both in throughput and
loss probability, which is natural, since we have increased
the amount of resources for their exclusive use. In particular,
no loss is now observed for MTC traffic. This comes at the
cost of a slight reduction in the performance of HTC traffic,
in terms of both saturation throughput and number of users.
This reduction is better appreciated in Fig. 19, where we
show the throughput of the HTC slice with 95, 50 and 1
Mb/s of shared capacity (while the rest of parameters remain
unchanged, see Table IV). We clearly see that a reduction of
the shared capacity penalizes the HTC slice, whose saturation
throughput decreases from 170 to 130 and to 90 Mb/s. In
the first case the decrease brings a benefit to the two MTC
slices, at least in terms of loss probability. Instead, the second
decrease does not impact the MTC slices performance. This
implies that in the case of several competing slices, the choice
of the amount of resources to allocate to individual slices, and
consequently of the amount of resources shared among them,
is a critical management issue. Too many statically allocated
resources imply less flexibility, and penalize the high traffic
slices. On the other hand, too many shared resources penalize
the low traffic slices, because the high traffic slices tend to grab
most of the shared bandwidth. A careful balance is necessary,
which depends on the specific slice configuration, and requires
simple but accurate models, like the one we presented in this
paper, to predict the performance outcome of the resource
partitioning.

3) A six-slice scenario: So far, we have observed a very
good accuracy of our proposed bounds in many tested configu-
rations. This allows us to conclude that the bounds offer a good
approximation for the case of three slices. However, this does
not exclude a different behavior for a higher number of slices.
Thus, in order to show the ability of our approach to cope

13

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

 10 100 1000

ξ[
M
b
/
s
]

Total offered load ζ1 + ζ2 + ζ3 [s
-1
]

Total number of devices

HTC (op.1)
HTC (op.2)

MTC

L. bnd
L. bnd
L. bnd

U. bnd
U. bnd
U. bnd

Fig. 13. Exact Network throughput values and bounds for the three-
slice scenario of Table III vs. the total load (in service requests per
second). The secondary x-axis reports the total number of devices
resulting from the composition of the three slices.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

 10 100 1000

B
l
o
c
k
i
n
g

p
r
o
b
a
b
i
l
i
t
y

Total offered load ζ1 + ζ2 + ζ3 [s
-1
]

Total number of devices

HTC (op.1)
HTC (op.2)

MTC

L. bnd
L. bnd
L. bnd

U. bnd
U. bnd
U. bnd

Fig. 14. Exact values and bounds for blocking probability in the three-
slice scenario of Table III (MTC slices incur no blocking) vs. the total
load (in service requests per second). The secondary x-axis shows the
total number of devices resulting from the composition of the three
slices.

TABLE IV
CONFIGURATION FOR THE CASE OF THREE SLICES WITH HIGH MTC TRAFFIC AND ABUNDANT DEDICATED RESOURCES

Slice Access request Population Capacity Preambles Positions Timeout Duty Cycle
share share [Mb/s] [s] [s]

HTC (public) 0.5 0.90 from 2.5 to 49.5 25 50 5 1
MTC (operator 1) 0.25 0.045 from 1.5 to 29.7 10 30 0.1 0.1
MTC (operator 2) 0.25 0.045 from 1 to 19.8 5 20 0.1 0.1

Shared N/A N/A from 95 to 1 14 100 N/A N/A

with more challenging cases, Fig. 20 shows the throughout
(here reported in Mb/s) for a case with six slices, with the
configuration shown in Table V, and with the data volume of
requests associated to HTC and MTC traffic specified for the
previously described experiments.

This scenario could represent the case of a cell covering
a city hospital and its neighborhood. Here we selected two
HTC slices (e.g., one for public access and one reserved to
the personnel of the hospital) plus four MTC slices (e.g., one
for a factory, one for generic IoT, one for coordinating vehicles
in the neighborhood, and one for hospital devices). The slices
are very heterogeneous and they are assigned realistic amounts
of dedicated resources, in a very heterogeneous way. Shared
resources are limited in terms of capacity, while they are more
generous in terms of RACH preambles and service positions
in Network. Here, one HTC slice saturates before the other
because of the different number of reserved RACH preambles,
being the rest of parameters for HTC slices the same. MTC
slices are basically of two kinds. Three of the four MTC
slices are access-intensive and have large portions of capacity,
preambles and positions reserved for their exclusive use. They
behave similarly, although experiencing a different cutoff,
due to different numbers of dedicated positions. However,
one more MTC slice has very little traffic and no dedicated
resources. For this slice, we observe saturation effects at
Network. Although here the MTC population covers about
20% of the total, most of the BS resources are dedicated,
which allows to serve up to 500 devices before the MTC slice
without dedicated resources collapses.

As in the cases with three slices, here we observe non-
coincident bounds only in the regions in which slices saturate
on Network. In all cases, bounds are close enough to
provide decent approximations. Similarly, Fig. 21 shows close
bounds for the blocking probability of HTC slices and for the
MTC slice with no dedicated resources (other slices incur no
blocking)

Note that bounds are very important because, although
on the one hand they introduce some uncertainty, on the
other hand they allow the analysis to scale to otherwise
unfeasible cases. For instance, with the above-discussed six-
slice configuration, it took less than an hour to compute the
590 points per bound per slice (about 7k points in total) that
compose Fig. 20, while it took more than a week to solve the
CTMC for the much simpler case with three slices, and it was
not conceivable to use the CTMC for the case of six slices
with a machine equipped with an Intel Xeon CPU E5-1620
v3 @ 3.50GHz.

Besides good accuracy of the bounds, the figures for sce-
narios with multiple slices show that the interaction between
slices becomes evident only when one or more slices, but not
all of them, experience a bottleneck in Network and the
RACH drops requests aggressively. This has negative impact
on the affected slices but also frees resources for other slices
(see, e.g., the changes of slope for the throughput with more
than 2000 arrival/s in Fig. 15 and for more than 1000 arrivals/s
in Fig. 20). Most importantly, some slices can incur RACH or
Network bottlenecks well before other slices, so that it is
not easy to correctly dimension the resources to be allocated

14

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

 10 100 1000

ξ[
M
b
/
s
]

Total offered load ζ1 + ζ2 + ζ3 [s
-1
]

Total number of devices

HTC L. bnd
MTC (op.1) L. bnd
MTC (op.2) L. bnd

U. bnd
U. bnd
U. bnd

Fig. 15. Network throughput bounds for the three-slice scenario of
Table IV with 2.5, 1.5, and 1 Mb/s of capacity assigned to the three
slices (i.e., 95 Mb/s of shared capacity) versus the total load in service
requests per second (lower x-axis) and total number of users (upper
x-axis)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

 10 100 1000

B
l
o
c
k
i
n
g

p
r
o
b
a
b
i
l
i
t
y

Total offered load ζ1 + ζ2 + ζ3 [s
-1
]

Total number of devices

HTC L. bnd
MTC (op.1) L. bnd
MTC (op.2) L. bnd

U. bnd
U. bnd
U. bnd

Fig. 16. Blocking probability bounds for the three-slice scenario of
Table IV with 2.5, 1.5, and 1 Mb/s of capacity assigned to the three
slices (i.e., 95 Mb/s of shared capacity) versus the total load in service
requests per second (lower x-axis) and total number of users (upper
x-axis); MTC incurs no blocking

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

 10 100 1000

ξ[
M
b
/
s
]

Total offered load ζ1 + ζ2 + ζ3 [s
-1
]

Total number of devices

HTC L. bnd
MTC (op.1) L. bnd
MTC (op.2) L. bnd

U. bnd
U. bnd
U. bnd

Fig. 17. Network throughput bounds for the three-slice scenario of
Table IV with 25, 15, and 10 Mb/s of capacity assigned to the three
slices (i.e., 50 Mb/s of shared capacity) versus the total load in service
requests per second (lower x-axis) and total number of users (upper
x-axis)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

 10 100 1000

B
l
o
c
k
i
n
g

p
r
o
b
a
b
i
l
i
t
y

Total offered load ζ1 + ζ2 + ζ3 [s
-1
]

Total number of devices

HTC L. bnd
MTC (op.1) L. bnd
MTC (op.2) L. bnd

U. bnd
U. bnd
U. bnd

Fig. 18. Blocking probability bounds for the three-slice scenario of
Table IV with 25, 15, and 10 Mb/s of capacity assigned to the three
slices (i.e., 50 Mb/s of shared capacity) versus the total load in service
requests per second (lower x-axis) and total number of users (upper
x-axis); MTC incurs no blocking

to each slice. However, our model, and our bounds, offer a
powerful tool to identify and test suitable configurations with
limited computational complexity.

V. RELATED WORK

An overview of network slicing concepts, architectures and
algorithms was recently provided by two special issues of
the IEEE Communications Magazine [10], [11]. Moreover,
network slicing in the RAN and heterogeneous traffic types
are being investigated under different perspectives, although
not yet from the point of view of their compound requirements
and interactions.

Resource allocation is one of the key challenges to tackle,
and, accordingly, a number of proposals are sprouting these
days. For instance, the authors of [12] propose an orchestration
system that leverages deep learning techniques, so as to follow
traffic fluctuations and allocate resources to slices accordingly.
A study of the dynamic allocation of base station resources
to network slices is considered in [13]. The selected resource

sharing model is a Fisher Market in economics terms. It is
shown to provide each slice with the same or better utility than
a static resource allocation and to admit a Nash equilibrium.
The performance of the proposed approach is again investi-
gated by simulation. More practical studies like [14] show
via simulation that earliest deadline first (EDF) scheduling
represents a practical and effective solution for performance
isolation with dynamic resource allocation in RAN slicing
scenarios. The optimal allocation of resources to slices is
addressed in [15], where a distributed algorithm is proposed
and analyzed by simulation, considering a dense small cell
deployment, and showing that substantial capacity savings
can be achieved while providing a given QoS to end users.
Furthermore, the authors of [16] show that physical transmis-
sion resources can be sliced using millimeter wave techniques,
while the authors of [17] demonstrate that physical resources
assigned to slices need to be coordinated across multiple cells,
otherwise slices cannot fully exploit the properties of physical
level protocols. Other studies show the importance of per-slice

15

TABLE V
CONFIGURATION PARAMETERS FOR THE CASE OF SIX SLICES

Slice Access request Population Capacity Preambles Positions Timeout Duty Cycle
share share [Mb/s] [s] [s]

HTC (public) 0.27 0.3985 10 5 10 5 1
MTC (factory) 0.15 0.0221 20 10 20 0.1 0.1

MTC (IoT) 0.01 0.1476 0 0 0 10 10
MTC (vehicular) 0.15 0.0221 20 10 30 0.01 0.01
HTC (hospital) 0.27 0.3985 10 10 10 5 1
MTC (hospital) 0.15 0.0111 20 10 40 0.05 0.05

Shared N/A N/A 20 8 90 N/A N/A

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

 10 100 1000

ξ[
M
b
/
s
]

Total offered load ζ
1
 + ζ

2
 + ζ

3
 [s

-1
]

Total number of devices

95 Mb/s shared L. bnd
50 Mb/s shared L. bnd
1 Mb/s shared L. bnd

(170,97.5)

(130,75)

(90,50.5)

Fig. 19. Network throughput lower bounds (upper bounds are undistinguish-
able) for the HTC slice in the three-slice scenario of Table IV with different
amounts of shared capacity (i.e., 95, 50, and 1 Mb/s) versus the total load in
service requests per second (lower x-axis) and total number of users (upper x-
axis). The inset shows the portion of the curves where the network throughput
saturates

resource allocation to satisfy non-trivial performance indica-
tors [18]. There are also active initiatives devoted to develop
concepts and implementations of network slicing, e.g., the Eu-
ropean Commission-founded projects 5G-CROSSHAUL [19],
5G-TRANSFORMER [20], and 5G-NORMA [21]. However,
the existing approaches somehow neglect the role of network
access procedures, which, as we have shown in this article, can
introduce unexpected behavioral trends in the access network.

Besides resource allocation, there are several works point-
ing at performance issues of network slicing, and proposing
optimization schemes. E.g., in [22], a dynamic RAN cell
slicing controller was proposed and evaluated by simulation
in a urban setting comprising 19 microcells, showing that the
proposed controller performs better than a distributed static
slicing solution and a centralized load balancing solution. The
authors of [23] further present radio slicing implementation
with 5G NR and discuss potential slice configurations, while
the use of machine learning to manage the resources of 5G
radio slices is discussed in [24]. An optimization problem for
radio resource sharing among slices in a cell is studied in
[25], that also proposes an efficient algorithm for optimization.
Simulation results show good isolation and an increase in
the multiplexing gain by sharing unused resources. The joint
optimization of admission control, user association, baseband

and radio resource allocation is proposed in [26]. Simulation
results show that the proposed scheme achieves better perfor-
mance than baseline schemes. The authors of [27] propose to
use a Cross Layer Controller to orchestrate SDN and SDR
technologies, so to unify the control of radio and transport
protocols; they use simulations to show that significant gain
stems from the coordination of slicing in different network
segments. The analysis of the market composed by one in-
frastructure provider and several tenants that rent a network
slice to provide service to their customers is tackled in [28].
A slice admission control algorithm is designed to maximize
the revenues of the infrastructure provider while providing the
expected performance to the slice users. The performance of
the proposed algorithm is evaluated by simulation. The sharing
of resources among slices is investigated in [29]. Each slice
is assigned a fixed portion of available resources, which are
then equally distributed to slice users. Newly arriving users
are accepted by slices with autonomous decisions based on a
game that admits a Nash equilibrium. The effectiveness of the
proposed solution is studied by simulation. The introduction
of a limit on the number of resource blocks allocated to each
slice in a base station (BS) to guarantee resource isolation
is proposed in [30]. The authors show that this approach
combined with slight modifications of the ordinary packet
scheduling algorithm can provide the desired isolation. In
some cases an improvement in throughput with respect to a
static bandwidth partitioning is observed in simulation results.
This body of work is important, although we claim that the
techniques proposed in there should be revisited to take in
consideration the presence of potential RACH bottlenecks. Our
model could be used to enable such study.

More specifically, our work is different from the previous
literature because we consider for the first time network
slicing together with the details of the algorithms that rule
the operations on the radio interface of a base station. In
addition, our analysis is based on a detailed analytical model
of the base station operations, which allow for the derivation
of exact—through computationally complex—expressions for
the key performance indicators, given a slice-set configuration.
They also allow to derive non-trivial tight bounds for blocking
probability and throughput, which scale efficiently in the
analysis of several slices. Note that, in our case, simulation just
serves the purpose of validating the accuracy of the analytical
model. Note also that our results are not meant to contrast
the findings of other works, neither they are proposing novel
resource management methods. Instead, our model and bounds

16

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

 10 100 1000 10000

ξ[
M
b
/
s
]

Total offered load Σ ζi, i=0..6 [s
-1
]

Total number of devices

HTC (public)
MTC (factory)

MTC (IoT)

MTC (vehicular)
HTC (hospital)
MTC (hospital)

Fig. 20. Network throughput bounds for the six-slice scenario of
Table V (Solid lines for lower bounds - dashed lines for upper bounds)
vs. the total load (in service requests per second, lower x-axis) and total
number of users (upper x-axis)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 100 1000 10000

10 100 1000 10000

B
l
o
c
k
i
n
g

p
r
o
b
a
b
i
l
i
t
y

Total offered load Σ ζi, i=0..6 [s
-1
]

Total number of devices

HTC (public)
MTC (factory)

MTC (IoT)

MTC (vehicular)
HTC (hospital)
MTC (hospital)

Fig. 21. Blocking probability bounds for the six-slice scenario of
Table V (Solid lines for upper bounds - dashed lines for lower bounds)
vs. the total load (in service requests per second, lower x-axis) and total
number of users (upper x-axis)

shed light on the intricacies of RAN sharing mechanisms in an
interpretable manner, and are instrumental in enhancing and
speeding up resource management optimization tools like the
ones mentioned in this section.

VI. CONCLUSIONS

In this paper we described a detailed stochastic model of the
behavior of radio access in a sliced RAN cell, including most
features of the standard access procedures. Our model allows
the investigation of the effect of the allocation of resources
to slices on the radio interface of one cell, hence the correct
setting of the slice parameters.

Looking at the case of one typical cell comprising one
HTC and one MTC slice, we observed the mutual effects of
slice traffic increases on performance, exposing unexpected
behaviors for the traffic values at which the RACH is close
to saturation. With more slices, the interaction becomes more
cumbersome to predict and more complex to evaluate in detail.
However, efficient bounds allow to scale the analysis up to
several heterogeneous slices with limited computational power.

We have studied a cell with standard 5G configurations for
what concerns the RACH and the number of service positions
at the base station. With these parameters, we have shown that
current technologies allow to sustain a few hundreds of HTC
devices and a several thousands of MTC devices, which calls
for protocol enhancements in order to scale 5G networks to
more massive use cases.

REFERENCES

[1] V. Mancuso, P. Castagno, M. Sereno, and M. Ajmone Marsan, “Slicing
Cell Resources: The Case of HTC and MTC Coexistence,” in IEEE
Conference on Computer Communications (IEEE INFOCOM 2019),
2019.

[2] “The NGMN alliance - at a Glance,” http://www.ngmn.org, 2011.
[3] The NGMN Alliance. (2016, Jan.) Description of Network Slicing

Concept. [Online]. Available: https://www.ngmn.org/uploads/media/
160113 Network Slicing v1 0.pdf

[4] “System Architecture for the 5G System,” 3GPP TS
23.501 Version 15.2.0 - Release 15, 2018. [Online].
Available: https://www.etsi.org/deliver/etsi ts/123500 123599/123501/
15.02.00 60/ts 123501v150200p.pdf

[5] P. Castagno, V. Mancuso, M. Sereno, and M. Ajmone Marsan, “A Simple
Model of MTC in Smart Factories,” in IEEE Conference on Computer
Communications (IEEE INFOCOM 2018), 2018.

[6] “Technical Specification Group Radio Access Network; Study on RAN
Improvements for Machine-type Communications,” 3GPP, TR 37.868
Release 11, 2011.

[7] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open,
Closed, and Mixed Networks of Queues with Different Classes of
Customers,” J. ACM, vol. 22, no. 2, pp. 248–260, Apr. 1975.

[8] G. Ciardo et al., “Logical and stochastic modeling with smart,” in
Computer Performance Evaluation. Modelling Techniques and Tools.
Springer, Berlin, 2003, pp. 78–97.

[9] M. Sereno, “Computational algorithms for product-form of competing
Markov chains,” in Proc. of the 10-th International Workshop on Petri
Nets and Performance Models (PNPM ’03), 2003.

[10] K. Samdanis et al., “5G Network Slicing - Part 1: Concepts, Principles,
and Architectures,” IEEE Communications Magazine, vol. 55, no. 5, pp.
70–71, 2017.

[11] ——, “5G Network Slicing - Part 2: Algorithms and Practice,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 110–111, 2017.

[12] D. Bega et al., “AZTEC: Anticipatory Capacity Allocation for Zero-
Touch Network Slicing,” in in Proc. of IEEE INFOCOM, 2020.

[13] P. Caballero et al., “Network slicing games: Enabling customization in
multi-tenant networks,” in in Proc. of IEEE INFOCOM, 2017.

[14] T. Guo and A. Suárez, “Enabling 5g ran slicing with edf slice schedul-
ing,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp.
2865–2877, March 2019.

[15] P. Caballero et al., “Multi-Tenant Radio Access Network Slicing:
Statistical Multiplexing of Spatial Loads,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 3044–3058, 2017.

[16] M. Pagin et al., “Enabling RAN Slicing Through Carrier Aggregation
in mmWave Cellular Networks,” in in Proc. of MedComNet, 2020.

[17] S. D’Oro et al., “The slice is served: Enforcing radio access network
slicing in virtualized 5G systems,” in in Proc. of IEEE INFOCOM, 2019.

[18] J. Martı́n Pérez et al., “OKpi: All-KPI Network Slicing Through
Efficient Resource Allocation,” in in Proc. of IEEE INFOCOM, 2020.

[19] X. Li et al., “5G-Crosshaul Network Slicing: Enabling Multi-Tenancy in
Mobile Transport Networks,” IEEE Communications Magazine, vol. 55,
no. 8, pp. 128–137, 2017.

[20] C. Casetti et al., “Network slices for vertical industries,” in Proc. of
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), 2018, pp. 254–259.

[21] F. Z. Yousaf et al., “Network slicing with flexible mobility and QoS/QoE
support for 5G Networks,” in Proc. of IEEE International Conference
on Communications Workshops (ICC Workshops), 2017, pp. 1195–1201.

[22] P. C. Garces et al., “RMSC: A Cell Slicing Controller for Virtualized
Multi-Tenant Mobile Networks,” in Proc. of IEEE 81st VTC Spring,
2015, pp. 1–6.

[23] S. E. Elayoubi, S. B. Jemaa, Z. Altman, and A. Galindo-Serrano, “5g ran
slicing for verticals: Enablers and challenges,” IEEE Communications
Magazine, vol. 57, no. 1, pp. 28–34, January 2019.

17

[24] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “Gan-powered
deep distributional reinforcement learning for resource management in
network slicing,” IEEE Journal on Selected Areas in Communications,
pp. 1–1, 2019.

[25] C. Y. Chang et al., “Radio access network resource slicing for flexible
service execution,” in IEEE INFOCOM WKSHPS, 2018, pp. 668–673.

[26] Y. L. Lee et al., “Dynamic Network Slicing for Multitenant Heteroge-
neous Cloud Radio Access Networks,” IEEE Transactions on Wireless
Communications, vol. 17, no. 4, pp. 2146–2161, 2018.

[27] S. Barmpounakis, N. Maroulis, M. Papadakis, G. Tsiatsios, D. Soukaras,
and N. Alonistioti, “Network slicing - enabled ran management
for 5g: Cross layer control based on sdn and sdr,” Computer
Networks, vol. 166, p. 106987, 2020. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1389128619309776

[28] D. Bega et al., “Optimising 5G infrastructure markets: The business of
network slicing,” in in Proc. of IEEE INFOCOM, 2017.

[29] J. Zheng et al., “Statistical multiplexing and traffic shaping games for
network slicing,” in 15th WiOpt, 2017, pp. 1–8.

[30] D. Nojima et al., “Resource Isolation in RAN Part While Utilizing
Ordinary Scheduling Algorithm for Network Slicing,” in Proc. of IEEE
87st Vehicular Technology Conference (VTC Spring), 2018, pp. 1–6.

Vincenzo Mancuso is Research Associate Professor
at IMDEA Networks, Madrid, Spain, and recipient
of a Ramon y Cajal research grant of the Spanish
Ministry of Science and Innovation. Previously, he
was with INRIA (France), Rice University (USA)
and University of Palermo (Italy), from where he
obtained his Ph.D. in 2005. His research focus is
on analysis, design, and experimental evaluation
of opportunistic wireless architectures and mobile
broadband services.

Paolo Castagno is a Post-Doctoral researcher at the
Computer Science Department, University of Torino,
Italy. He received his Master and Ph.D. degrees
from the University of Torino, in 2014 and 2018,
respectively. His research focus is on performance
evaluation of computer systems and communication
networks, with a specific interest on wireless net-
works.

Matteo Sereno was born in Nocera Inferiore, Italy.
He received the Laurea degree in Computer Sci-
ence from the University of Salerno, in 1987 and
the Ph.D. degree in Computer Science from the
University of Torino, in 1992. He is currently Full
Professor at the Computer Science Department, Uni-
versity of Torino. His current research interests are
in the area of performance evaluation of computer
systems, communication networks, peer-to-peer sys-
tems, compressive sensing and coding techniques
in distributed applications, game theory, queueing

networks, and stochastic Petri net models.

Marco Ajmone Marsan is full professor at the
Electronics and Telecommunications Department of
the Politecnico di Torino in Italy, and part-time
research professor at IMDEA Networks Institute in
Leganes, Spain. He obtained degrees in EE from the
Politecnico di Torino in 1974 and the University of
California, Los Angeles (UCLA) in 1978. He re-
ceived a honorary doctoral degree from the Budapest
University of Technology and Economics in 2002.
Since 1974 he has been at Politecnico di Torino,
in the different roles of an academic career, with an

interruption from 1987 to 1990, when he was a full professor at the Computer
Science Department of the University of Milan. Marco Ajmone Marsan has
been doing research in the fields of digital transmission, distributed systems
and networking. He has been a member of the editorial board and of the
steering committee of the “ACM/IEEE Transactions on Networking”. He is
a member of the editorial boards of the journals “Computer Networks”and
“Performance Evaluation”of Elsevier, and of the “ACM Transactions on
Modeling and Performance Evaluation of Computer Systems”. He served in
the organizing committee of several leading networking conferences, and he
was general chair of INFOCOM 2013. Marco Ajmone Marsan is a Fellow of
the IEEE, a member of the Academy of Sciences of Torino, and a member
of Academia Europaea.

18

LIST OF CHANGES WITH RESPECT TO THE INFOCOM’19 PAPER

A preliminary version of this work, cited as [1], appeared in the proceedings of IEEE INFOCOM’19. This
manuscript that is now submitted to TNSM extends our previous conference publication in the following points:
• The analysis has been reviewed and extended, especially for what concerns the model used for the analysis

of the Network processor.
• We have formulated and validated non-trivial and tight performance bounds, which allow scaling up the

analysis to the case of several coexisting slices (see the new Section III-G). This addition is quite relevant,
since it overcomes the complexity issue inherent in the approach of [1], which limited the applicability of
the model to 3 slices max. Using the new formulation, it is possible to scale the analysis to large numbers
of slices, making the proposed approach applicable to realistic radio access network configurations.

• We have studied a number of slice configurations and explored the influence of traffic mix and device
population composition within the same scenarios.

• We have added the analysis of two different scenarios with three slices, with both exact analysis and bounds
(see the new Section IV-F).

• We have used a three-slice scenario to discuss the tradeoff between static allocation of resources to individual
slices and sharing of resources among slices.

• We have introduced the analysis of a scenario with six slices (included in the new Section IV-F).
• We have updated and restructured the section commenting on related work.
• We have revised the entire manuscript, and in particular we have adapted abstract, introductions and

conclusions to reflect the new scope and content of the manuscript.
The version of the work published in [1] is appended to this submission for ease of comparison.

