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ABSTRACT
Orchids are highly dependent on symbiotic microorganisms during their entire life cycle. Whereas an
important role in orchid seed germination and early plant development is well established for mycor-
rhizal fungi, the influence of endophytic bacteria on orchid growth has been less investigated. Here,
we report the isolation of endophytic bacteria from different organs of three terrestrial Mediterranean
orchid species (Spiranthes spiralis, Serapias vomeracea and Neottia ovata), the investigation of their
potential Plant Growth-Promoting (PGP) traits and their interaction with the orchid mycorrhizal (OM)
fungus Tulasnella calospora in vitro. Little overlap was found among endophytic bacteria isolated from
the different organs of the three orchid species. Taxonomic identification, based on the 16S rRNA
gene, of fifty dereplicated bacterial isolates revealed that they belong to the genera Pseudomonas,
Pantoea, Rahnella, Staphylococcus, Sphingomonas, Microbacterium, Streptomyces, Fictibacillus and
Bacillus. Most bacterial isolates exhibited some potential PGP traits, such as nutrient solubilization, ACC
deaminase activities and/or IAA biosynthesis. Although some Pseudomonas reduced growth of the OM
fungus Tulasnella calospora, most isolates did not affect fungal growth. These results increase our
understanding of the diversity and potential PGP functions of bacterial endophytes in terrestrial
orchids, and suggest a role as beneficial partners in the orchid microbiota.
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Introduction

Plant-bacteria interactions have been studied for several dec-
ades. Hiltner (1904) was the first to observe that microorgan-
isms were more abundant in the soil surrounding the roots
(the rhizosphere) than in the bulk soil far from the root.
Subsequent investigations have clearly demonstrated that
several plant-associated bacteria positively influence plant
health and growth (Hardoim et al. 2008; Liu et al. 2017).
Moreover, plants can select beneficial bacteria, including
those living within their tissues as endophytes (Marasco
et al. 2012; Rashid et al. 2012; Agnolucci et al. 2019).

Beneficial plant-associated bacteria, including endophytic
ones, are also known as Plant Growth-Promoting Bacteria
(PGPB). PGPB can affect plant growth through direct as well
as indirect mechanisms (Gamalero and Glick 2011; Glick
2015). Direct mechanisms include mobilization of plant
nutrients, such as iron and phosphorus, nitrogen fixation,
and production of various phytohormones such as auxin,
cytokines or ethylene (Patten and Glick 2002; Battini et al.
2017). Indirect mechanisms involve, for example, the ability
of PGPB to reduce the deleterious effects of plant pathogens

by producing antibiotics, lytic enzymes and siderophores, or
by strengthening the plant defense responses by triggering
induced systemic resistance (Thomashow et al. 1990; Arora
et al. 2001; Whipps 2001).

In orchids, the largest family of monocotyledonous plants,
the study of microbial endophytes has been mainly focused
on mycorrhizal fungi because of their important role in
orchid seed germination and early plant development
(Rasmussen and Rasmussen 1991; Smith and Read 2008).
Mycorrhizal fungi colonize the roots of both terrestrial and
epiphytic orchids, where they form intracellular hyphal coils
named “pelotons”. Their taxonomic position largely reflects
the habitat and photosynthetic abilities of the host.
Basidiomycetes in the form-genus Rhizoctonia (a polyphyletic
group comprising Tulasnellaceae, Ceratobasidiaceae and
Serendipitaceae) are commonly found in the roots of photo-
synthetic orchid species, whereas Asco- and Basidiomycetes
able to form ectomycorrhizal symbioses with neighbouring
plants usually colonize the roots of non-photosynthetic
or partially photosynthetic orchid species (Selosse and
Roy 2009). Various studies on mycorrhizal interactions in
orchids have highlighted the role of the mycorrhizal fungal
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symbionts as plant growth promoters (Yeh et al. 2019). By
contrast, the diversity and role of endophytic bacteria have
not been extensively explored in orchids, although bacterial
endophytes have been identified in commercially valuable
epiphytic orchids, such as Vanilla (White et al. 2014),
Dendrobium (Yang et al. 2014; Pei et al. 2017) and
Cymbidium (Gontijo et al. 2018) species or hybrids. A role in
promoting orchid seed germination (Tsavkelova et al. 2016)
and plant growth (Faria et al. 2013; Gontijo et al. 2018) was
demonstrated in vitro for some of these bacterial endo-
phytes, indicating their potential PGP activity. For terrestrial
orchids, investigations have mostly focused on root-associ-
ated bacteria. Wilkinson et al. (1989, 1994) were the first to
isolate endophytic bacteria from the roots of terrestrial
Australian orchids, and Tsavkelova et al. (2007) more
recently isolated bacterial endophytes from the roots of a
Vietnamese orchid species. To our knowledge, no informa-
tion is currently available on the bacteria inhabiting the tis-
sues of Mediterranean orchids.

The aim of this work was to isolate and characterize
endophytic bacteria colonizing different plant organs (roots,
stems, leaves and capsules) of three Mediterranean orchid
species. We hypothesized that each orchid species would
harbor a fraction of potentially beneficial bacteria in some
or all of their tissues, and that different tissues would be
colonized by a different microbiota. Isolation and sequenc-
ing of the 16S rRNA was used to identify the bacterial iso-
lates, while PGP-and antimicrobial tests were performed
in vitro to identify possible beneficial functions of the
orchid bacterial microbiota. We also investigated the influ-
ence of endophytic bacteria on the growth of the orchid
mycorrhizal fungus Tulasnella calospora (Boud.) Juel, in
order to understand possible interactions between bacterial
and fungal orchid endophytes.

Materials and methods

Plant species

The plant species investigated in this work were Spiranthes
spiralis, Serapias vomeracea and Neottia ovata (Figure 1).
Spiranthes spiralis (L.) Chevall. is an herbaceous orchid that
flowers in autumn with a particular spiral-shaped inflores-
cence. It is widely distributed in Southern Europe and in the
Mediterranean region, where it grows in pine, oak, chestnut,
hornbeam and birch forests, dry meadows as well as in flat
grasslands and semi-rocky areas. The preferred substrate is
both calcareous and siliceous, with neutral pH. The biological
form of this orchid is rhizomatous geophyte, the rhizome is
periodically generated every year with new roots and stems
(Arditti 2002).

Serapias vomeracea (Burm. f.) Briq. is a bulbous herb-
aceous plant, with two underground globose rhizotubers
and erect stems of purplish-vinous color and varying in
height from 20 to 60 cm. The inflorescence, loose and elon-
gated, is composed of a few spaced flowers. It can be found
in sunny and wet meadows, on the edges of paths, in bushy
environments from the plain up to 1200m of altitude. It is
the most widespread species in the genus Serapias and it is
distributed in most Europe (Arditti 2002).

Neottia ovata (L.) Bluff & Fingerh. (homotypic synonym:
Listera ovata (L.) R.Br) is a perennial rhizomatous orchid regu-
larly found in a wide range of habitats including woods,
shrubs, hedges, calcareous pastures, dunes and marshes and,
to a lesser extent, meadows. It grows on acid and calcareous
substrates in damp and cold woods, mainly conifers, on
sphagnum moss and carpets, often together with blueberry
(Vaccinium myrtillus L.) from 900 to 2100m a.s.l. The lower
capsules in the inflorescence can mature and disperse
the seeds even before the flowers placed higher in the

Figure 1. Photographs of the three Mediterranean orchids in their natural environment: a) Spiranthes spiralis. b) Serapias vomeracea. c) Neottia ovata.
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inflorescence are pollinated. It is common throughout
Europe (Arditti 2002).

Sampling and isolation of endophytic bacteria

The roots, stems, leaves and capsules of the three different
orchids were harvested in autumn 2016 and spring 2017 in
three areas in the Imperia (Serapias vomeracea), Savona
(Spiranthes spiralis) and Genova (Neottia ovata) provinces
(Liguria, Italy), stored on ice in sterile plastic bags or falcon
tubes, transported to the laboratory and kept at 4 �C before
processing, no later than two days after sampling. The plant
samples from aerial organs (stems, leaves and capsules) were
surface–sterilized by stepwise immersion in 70% ethanol for
1min, then in 2.5% sodium hypochlorite for 2min and finally
in 70% ethanol for 1min (Alibrandi et al. 2018), followed by
five rinses in sterile distilled water. The root samples were
thoroughly rinsed with sterile water, sonicated and surface-
sterilized with 95% ethanol for 20 s followed by a treatment
in 5% sodium hypochlorite for 3min and washed seven
times with sterile distilled water. In order to confirm that the
sterilization process was successful, the last washing water
(1ml) and an imprinting of sterilized surfaces were incubated
on different culture agar media (Alibrandi et al. 2018) for
bacteria (Luria Bertani - LB, King’B) and examined for growth
after 4–7 days at 28 �C. Five different individuals for each
plant species were used for isolation.

To isolate endophytic bacteria, the surface–sterilized sam-
ples were individually immersed in falcon tubes with sterile
distilled water for 1 h, grounded with a homogenizer, resus-
pended in 50ml phosphate buffer saline (PBS: 140mM NaCl,
3mM KCl, 10mM Na2 HPO4, 2mM KH2PO4, pH 7.4) per 7.5 g
of tissues, and finally shaken for 1 h. Fifty ll of the undiluted
homogenates, as well as of 10–1 and 10–3 dilutions, were
plated in duplicate on LB and King’s B agar and incubated at
28 �C for 4 days.

The colonies obtained from each homogenized sample
were selected on the basis of morphology and pigmentation,
and individually replicated on the same agar medium to
obtain pure cultures. The isolates were dereplicated first
according to colony phenotype, and subsequently by com-
paring the 16S rRNA sequences. They were named according
to the orchid species they were isolated from (SP for
Spiranthes spiralis, SV for Serapias vomeracea and NO for
Neottia ovata), followed by a number indicating the bacterial
isolate and by a letter indicating the plant organ (R for root,
L for leaf, S for stem, C for capsule).

Colony-PCR of the 16S rRNA gene and identification
of isolates

The bacterial isolates were identified taxonomically on the
basis of their 16S rRNA gene sequence, obtained by colony
PCR with the universal bacterial primers 27 F and 1492 R
(Frank et al. 2008), as previously described (Gallo et al. 2012).
The PCR products were purified using NucleoSpin Gel and
PCR Clean-up (MACHERY-NAGEL, Germany) and sequenced
(BMR Genomics Srl, Italy, www.bmr-genomics.it).

Sequence chromatograms were visually checked with
Geospiza’s FinchTV software (PerkinElmer Inc., USA; www.
geospiza.com/Products/finchtv.shtml) and used to recon-
struct the 16S rRNA gene sequences. Sequences are available
in GenBank (Accession numbers from MN624212 to
MN624261). To identify the isolates, the reconstructed 16S
rRNA gene sequences were aligned by BLAST against the
Genbank of the National Center for Biotechnology
Information (NCBI) database. A phylogenetic analysis was
performed by aligning the 16S rRNA gene sequences to the
nearest BLAST matches as well as to other reference sequen-
ces of each identified genus, using the Muscle alignment
implemented in the megaX software (Kumar et al. 2018).
Phylogenetic trees were inferred using the maximum likeli-
hood methods, using RaxML (maximum randomized axillary
probability) implemented in the open source CIPRES Science
Gateway (https://www.phylo.org/). Five-hundred bootstrap
resamplings per tree were generated, and values above 50%
are shown at the branches. The trees were visualized and
edited using the open source iTOL (Interactive tree of life,
https://itol.embl.de/)

Screening for potential plant growth promoting
(PGP) activities

All the bacterial isolates were evaluated for the following
PGP traits: inorganic and organic phosphate solubilization,
potassium solubilization, potential nitrogen fixation (meas-
ured as growth on N-free medium), siderophore production,
1–aminocyclopropane–1–carboxylate (ACC)-deaminase activ-
ity, and Indol Acetic Acid (IAA) production. Each test was
performed at least in triplicate.

Inorganic– and organic phosphate solubilisation

Phosphorus in an essential nutrient but its availability to
plants is low due to slow diffusion and high fixation in soil
(Shen et al. 2011). All isolates were cultivated on broth media
(either LB or King’s B) for 1 day. Ten mL of the bacterial cul-
tures (containing approximately 106 CFUs ml-1) were spotted
on National Botanical Research Institute’s phosphate growth
agar medium (NBRIP), as described by Nautiyal (1999), con-
taining the following ingredients (l� 1): glucose, 10 g;
MgCl2�6H2O, 5 g; MgSO4�7H2O, 0.25 g; KCl, 0.2 g and
(NH4)2SO4, 0.1 g, with one source of insoluble inorganic (cal-
cium, aluminum or iron) or organic (phytate) phosphate for
each assay. After 4 days of incubation at 30 �C, the plates
were checked for bacterial growth and for the development
of a solubilisation halo around the colonies. As many bacter-
ial isolates could solubilize different sources of phosphate
without forming a clearly distinguishable halo around the
colony; bromophenol blue (0.075 g l-1) was added to the cul-
ture medium in order to enhance its visibility.

Potassium solubilisation

Potassium represents one of the main and essential plant
nutrients, playing important biological and physiological
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functions (Read et al. 2006). Potassium solubilizing bacteria
decompose silicate minerals such as K-feldspar and mica,
increasing the availability of potassium in the soil and pro-
moting its absorption by plants (Friedrich et al. 1991; Sheng
2005; Basak and Biswas 2010). The bacterial isolates were
grown in liquid medium and plated (10 ll, containing
approximately 106 CFUs ml-1) on Aleksandrov agar medium
(Parmar and Sindhu 2013) containing insoluble potassium as
mica powder (3.0 g/l). After 7 days of incubation at 30 �C, the
plates were checked for bacterial growth and for the devel-
opment of a solubilisation halo around the colonies.

Quantification of indole-3-acetic acid (IAA) production

Tryptophan is the main precursor of IAA biosynthesis and
redundancy of IAA biosynthetic pathways starting from tryp-
tophan has been described in bacteria, although a trypto-
phan-independent pathway has been also suggested
(Spaepen and Vanderleyden 2011). IAA production was
detected with the modified colorimetric method of Gordon
and Weber (1951), using microplates. All isolates were inocu-
lated in LB and in LB supplemented with 0.1% L–tryptophan.
The inoculated broth was incubated at 30 �C in a rotary
shaker for 4 days. From the culture, 1ml was centrifuged at
room temperature for 10min at 14,000 rpm with a Microstar
17 R centrifuge (VWR, Germany). Two volumes of Salkowski’s
reagent (Glickmann and Dessaux 1995) were added to 100 ll
supernatant in the microplate wells. The plates were incu-
bated at room temperature for 30min and were then ana-
lyzed for red colour development using a Microplate Reader
SpectroStar Nano (BMG Labtech) at 530 nm (OD530).
Uninoculated broth and inoculated broth without Salkowski’s
reagent were used as negative controls, whereas
Pseudomonas aeruginosa was used as positive control.
Standard curve for quantification was prepared with 5 to
100lg ml-1 of IAA.

Growth in nitrogen-free medium

All bacterial isolates were tested for their ability to grow on
a nitrogen-free medium, indicative of potential capabilities as
diazotrophs. Bacteria were inoculated in N-free semi-solid
medium (NFb medium) prepared with washed agar and sup-
plemented with 1% sucrose, as modified by Alibrandi et al.
(2018). The plates were incubated at 30 �C and checked for
growth after 3, 7 and 14 days from inoculation.

Siderophore production

Siderophore-production was tested by the chrome azurol sul-
phonate (CAS) assay (Schwyn and Neilands 1987). This assay
was performed according to the method described by Arora
and Verma (2017). CAS agar plates were prepared by mixing
100ml CAS reagent with 900ml sterilized LB agar medium.
Four different bacterial strains were spot-inoculated on each
plate. An uninoculated plate was used as negative control.
After inoculation, plates were incubated at 30 �C for 5–7 days

and observed for the formation of a colored halo around the
bacterial colonies (Louden et al. 2011).

Salt and drought tolerance assays

Bacteria isolates were tested for salt and drought tolerance
on the isolation medium (either LB or King’s B), adjusted to
5%, 7.5% and 10% (w/v) NaCl (salt stress), or to 10% poly-
ethylene glycol (PEG 6000; drought stress). Bacterial growth
was monitored after 3, 7 and 14 days of incubation at 30 �C,
and compared with growth on the same media without NaCl
or PEG.

ACC-deaminase activity

The role of ACC deaminase in reducing ethylene levels has
been suggested as one of the main mechanisms of plant
growth promotion by bacteria under abiotic stress (Kumar
et al. 2019). DF salt minimal medium amended with ACC was
used as described by Penrose and Glick (2003) to test ACC-
deaminase activity. Plates were checked for growth after 3, 7
and 14days of incubation at 28 �C.

Bacterial endophytes - mycorrhizal fungus interaction
and antibacterial activity

The influence of all dereplicated bacterial endophytes on
mycorrhizal fungal growth was assessed using a modified
protocol from Sen et al. (2009). Each bacterial isolate was
inoculated in the center of a PDA (Potato Dextrose Agar)
and a MEA (Malt Extract Agar) plate. Simultaneously, two
agar plugs from an actively growing culture of the mycor-
rhizal fungus Tulasnella calospora (Boud.) Juel AL13, depos-
ited in the mycological collection of the University of Turin
(accession number MUT4182) were inoculated on the
opposite sides of the same plate (ca. 1.5 cm from the bac-
terial inoculum). After 15 days of incubation at 28� C, the
bacterium-fungus interaction was evaluated by comparing
the co-cultures with the control plates containing only
the fungus.

Antibacterial activity was assessed using Kokuria rizophila
ATCC 10240 and Escherichia coli DH5aTM (Invitrogen) as
Gram-positive and Gram-negative tester strains, respectively,
in agar–diffusion test (Scaffaro et al. 2015; Baldi et al. 2016).
In particular, 5ml of a bacterial suspension containing
108–109 colony-forming units (CFUs) per mL was prepared
for each tester strain in warm LB soft–agar. Each bacterial
suspension was then poured over R2YE plates containing
patches of bacterial isolates on the surface, in order to
obtain a bacterial tester strain overlay. After solidification of
the LB soft–agar, plates were incubated at 37 �C to allow
growth of the tester strain. Plates were then monitored for
the presence of growth inhibition halos in the zone sur-
rounding the bacterial isolate patches.
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Results

Isolation and identification of bacterial endophytes

After 5 days of incubation at 30 �C, numerous bacterial col-
onies grew on the agar media inoculated with surface-
sterilized tissue homogenates, showing different colony
morphology. A total of 139 isolates were obtained in pure
culture (Table S1). In particular, 60 colonies were isolated
from S. spiralis, 62 from S. vomeracea and 14 from N.
ovata. Bacterial endophytes were isolated from all organs
(roots, stems, leaves and capsules) only for S. vomeracea.
Plate inoculation with the final washing water and surface
imprinting of surface–sterilized organs did not result in
any bacterial growth, thus confirming the successful sur-
face sterilization of the plant organs. After comparison of
their 16S rRNA gene sequences, the number of the iso-
lated bacteria was reduced to a total of 50 dereplicated
strains. Most of the 16S rRNA gene sequences showed
very high similarities (>99%) with sequences in the NCBI
database, and only for two isolates (SV_72S and SV_66S)
the sequence similarity was slightly lower (Table S2). The
isolates belonged to nine genera: Pseudomonas, Pantoea,
Rahnella, Staphylococcus, Sphingomonas, Microbacterium,
Streptomyces, Fictibacillus, Bacillus (Table S2). Phylogenetic
trees were built to support the results of BLAST searches,
but only for some bacterial isolates the phylogenetic ana-
lysis confirmed the taxonomic affiliation at species level
(e.g., some Pseudomonas), whereas most isolates were not
unequivocally grouped to a species (Figures S1–S9). The
number of dereplicated bacterial strains obtained from the
different organs and orchid species is summarized in Table
1 at genus level. In Figure 2, the phylogenetic position of
the endophytic bacteria is summarised, together with their
species and organ of isolation. The figure clearly shows
that Pseudomonas and Staphylococcus were isolated from
all orchid species, from hypogeous (roots) and epigeous
(stems and leaves) organs (Table 1; Figure 2), while other
genera showed a less widespread occurrence. In particular,
Pantoea and Rahnella were exclusively found in stems and
leaves, although they were not isolated from all three spe-
cies (Table 1; Figure 2). In particular, endophytes belong-
ing to the genus Pantoea were isolated from leaves and
stems of S. spiralis and S. vomeracea, while those belong-
ing to the genus Rahnella came only from stems of S. vom-
eracea and N. ovata.

In vitro testing for potential plant growth
promoting activities

Activities commonly found in plant growth promoting
(PGP) bacteria were assessed for all the dereplicated iso-
lates from orchid tissues (Table 2). In particular, the ability
to increase nutrient availability by solubilizing insoluble
forms, to produce siderophores or to produce/modify phy-
tohormones (IAA production and ACC deaminase activity)
were measured. Some of these activities (e.g., phosphate
and potassium solubilization, IAA production) were very
commonly observed, whereas others, such as ACC deami-
nase activity and siderophore production, were more infre-
quent. In particular, all isolates in the genus Pseudomonas
solubilized potassium, most of them solubilized calcium
phosphate (SP_1L and NO_103S being the best solubil-
izers), while only few were able to solubilize the other
phosphate forms. Most Pseudomonas isolates grew in the
nitrogen-free medium, except SP_26L, SP_29R, SP_38R,
SP_49R and SV_87L, while only five isolates (SP_25L,
SP_38R, SP_41R, SV_63_S and SV_103S) showed ACC
deaminase activity (Table 2). About 50% of the
Pseudomonas isolates produced IAA when grown on
medium supplemented with tryptophan, the major IAA
producer being isolates SP_38R, SV_73S and SV_75S.
About 37% of the Pseudomonas isolates produced sidero-
phores (Table 2).

Isolates belonging to the genus Pantoea were the best
IAA producers, with some IAA being measured also in the
medium without tryptophan, and about 36% displayed ACC
deaminase activity (Table 2). With the exception of SP_9L
and SP_16L, all other Pantoea isolates could solubilize some
insoluble phosphate forms. Solubilization was higher for cal-
cium phosphate than for aluminum phosphate, and only
three Pantoea isolates were able to dissolve organic phos-
phate. The three isolates in the genus Rahnella all produced
IAA, SV_78S being the best producer, and solubilized all
phosphate forms. By contrast, none of them produced side-
rophores. Isolates in the genera Staphylococcus, Bacillus,
Fictibacillus, Streptomyces, Microbacterium and Sphingomonas
did not show particular PGP traits as they were in general
poor phosphate and potassium solubilizers. Although some
of them synthesized low amounts of IAA on tryptophan-con-
taining medium, none of them produced siderophores
(Table 2).

Table 1. Bacterial isolates from different orchid species and organs after phenotypic and molecular dereplication.

Bacterial genus

Spiranthes spiralis Serapias vomeracea Neottia ovata

Root Stem Leaf Capsule Root Stem Leaf Capsule Root Stem Leaf Capsule

Pseudomonas 11 0 5 0 0 3 2 0 0 2 0 0
Pantoea 0 0 5 0 0 5 0 0 0 0 0 0
Rahnella 0 0 0 0 0 2 0 0 0 1 0 0
Staphylococcus 2 0 0 0 1 0 0 1 0 1 0 0
Microbacterium 1 0 0 0 2 0 0 0 0 0 0 0
Fictibacillus 0 0 0 0 1 0 0 0 0 0 0 0
Streptomyces 1 0 0 0 0 0 0 0 0 0 0 0
Sphingomonas 0 0 0 1 0 0 0 0 0 0 0 0
Bacillus 0 0 0 0 1 0 0 0 0 0 0 2
Total N. of isolates 15 0 10 1 5 10 2 1 0 4 0 2
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Salt/drought tolerance

All isolates tested were able to grow in the presence of 10%
PEG, a condition that mimicked drought stress (Table 3). The
ability to grow in the presence of 5 and 7.5% NaCl was
observed for all four Staphylococcus isolates, for 73% of the
Pantoea isolates, and for about 35% of Pseudomonas isolates,
irrespective of the organ of origin (Table 3).

Biotic interactions

None of the isolates tested, with the exception of the
Pseudomonas isolate SP_26L, showed antimicrobial activity
against the two bacteria tester strains Kokuria rhizophila and
Escherichia coli, indicating poor antagonistic capabilities
(Table 3). Similarly, most endophytic bacteria isolated from
the different organs of the three orchid species did not

Figure 2. Phylogenetic tree of dereplicated endophytic bacteria and their plant-organ of isolation. The tree was generated using the RAxML method; the numbers
at the branch nodes indicate the bootstrap percentage values obtained from 500 resampling (only bootstraps >50% are shown). Scale bar indicates substitutions
per site. Methanococcus maripaludis (NR_104984.1) was used as outgroup.
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inhibit growth of the orchid mycorrhizal fungus Tulasnella
calospora, as fungal growth in co-culture was similar to
the control plates (Table 3 and Figure 3). Only few isolates
belonging to the genus Pseudomonas (SP_15L, SP_26L,
SP_29R, SP_40R, SP_41R and SV_63S) caused a reduction
of fungal growth, and one completely inhibited
T. calospora (SP_30R). Isolates with inhibitory activity on
T. calospora were derived from all vegetative organs.
Interestingly, the NO_103S isolate appeared to induce fun-
gal growth, as the mycelium grew over the bacterium
(Figure 3e).

Discussion

We have isolated endophytic bacteria from three species of
Mediterranean terrestrial orchids and characterized them by
a number of assays in order to elucidate their potential
beneficial functions as plant growth promoting (PGP) bac-
teria, their salt and drought tolerance and their interactions
with other components of the orchid microbiota. PGP bac-
teria can stimulate growth of their host plant by producing
phytohormones or by the synthesis of ACC deaminase, which
lowers plant ethylene levels (Glick 2015). In addition, PGP
bacteria can facilitate plant growth by nitrogen fixation, or

Table 2. Plant growth promoting activities of the bacteria isolated in this study, assessed by plate/liquid culture assays.

Isolate

PGP Tests#

Taxon Group

Phosphate solubilization

K Solubilization##
Putative

diazotrophs
ACC deaminase

activity
Siderofore
production

IAA Production###

Ca-P## Al-P Fe-P Ph-P LB LBþ Trp

SP_1L 4.50 – – – 3.00 þ/- – – 0.38 ± 0.01 0.86 ± 0.05 Pseudomonas
PseudomonasSP_15L 3.00 þ/- – – 2.24 þ/- – þ 0.00 0.77 ± 0.03

SP_20L – – – – 2.00 þ/- – – 4.00 ± 0.01 12.24 ± 0.04
SP_25L 3.60 þ/- – þ 4.13 þ/- þ þ 0.00 4.90 ± 0.04
SP_26L – – – – 2.50 – – þ 0.00 4.23 ± 0.02
SP_29R 4.00 – þ þ 3.67 – – þ 0.00 0.00
SP_30R – – – – 2.31 þ/- – þ 0.00 0.00
SP_38R 2.20 – – þ 2.78 – þ/- þ 2.33 ± 0.04 43.93 ± 0.11
SP_40R – – – – 2.45 þ/- – þþ 1.65 ± 0.03 26.17 ± 0.34
SP_41R 2.40 þ/- – þ 2.39 þ/- þþ þ 0.00 0.00
SP_43R 2.40 þ/- – þ 2.25 þ/- – – 0.00 0.00
SP_44R 2.40 þ/- þ – 2.37 þ/- – – 0.00 0.00
SP_46R 2.40 – – – 2.67 þ/- – þþ 0.00 0.00
SP_49R 2.60 þ/- – þ 3.11 – – – 0.00 0.00
SP_53R 2.80 – þ þ 2.58 þ/- – – 3.15 ± 0.03 4.11 ± 0.00
SP_55R – – – – 2.59 þ/- – þ 0.98 ± 0.00 6.90 ± 0.02
SV_60S 2.80 – þ/- þ/- 3.06 þ/- – – 0 17.40 ± 0.14
SV_63S 3.00 þ/- þ/- þ/- 2.17 þ/- þþ þ 0.00 5.28 ± 0.01
SV_69S 3.50 þ/- – þ/- 2.33 þ/- – – 0.00 8.97 ± 0.02
SV_82L 2.43 – þ/- þ 2.53 þ/- – – 0.00 28.47 ± 0.23
SV_87L 3.29 þ/- þ/- þ 2.23 – – – 0.00 5.32 ± 0.03
NO_101S 3.20 þ/- þ þ 4.38 þ/– – – 0.00 2.593 ± 0.06
NO_103S 4.20 þ/- þ þ 3.67 þ/- þ – 0.00 0.00
SP_9L 3.00 – – – 3.18 þ þ – 4.05 ± 0.02 24.79 ± 0.04 Pantoea
SP_16L – – – – 3.83 þ þ/- – 5.66 ± 0.02 19.236 ± 0.08
SP_17L 3.00 þ/- þ – 3.69 þ þ/- þ 6.06 ± 0.03 27.975 ± 0.03
SP_21L 3.40 þ/- þ þ 3.17 þ – – 3.21 ± 0.02 28.25 ± 0.05
SP_22L 3.60 þ/- þ þ 3.28 þ – – 7.26 ± 0.01 49.71 ± 0.35
SV_66S 3.33 þ/- þ þ 2.00 þ/- – – 4.70 ± 0.05 21.91 ± 0.01
SV_71S 4.17 þ/- þ/- þ/- 0.00 þ/- – þ 0.00 77.97 ± 0.09
SV_72S 2.17 þ/- þ/- þ 2.50 þ/- – þ 1.98 ± 0.01 49.33 ± 0.23
SV_73S 2.17 þ/- þ/- þ 0.00 – – þ 1.23 ± 0.01 108.47 ± 0.25
SV_75S 2.33 þ/- þ/- þ/- 0.00 – – – 0.12 ± 0.00 67.40 ± 0.26
SV_67S 3.33 þ/- þ þ 3.87 þ/- þ/- – 0.00 6.89 ± 0.02 Rahnella
SV_78S 2.50 þ/- þ þ 1.58 – þ/- – 0.00 97.43 ± 0.24
NO_104S 4.40 þ/- þ þ 1.63 þ/- – – 0.00 35.32 ± 0.39
SP_37R – – – – 0.00 – – – 0.00 0.00 Staphylococcus
SP_48R – – – – 0.00 – – – 0.00 0.00
SV_92R – – – – 0.00 – – – 1.37 ± 0.01 8.292 ± 0.01
SV_99C – – – – 3.43 – – – 0.00 1.052 ± 0.01
NO_102S – – – – 0.00 – – – 0.00 0.00
SV_94R – – – – 0.00 2.35 ± 0.50 3.23 ± 1.20 Bacillus
NO_107 – – – – 0.00 – – – 1.94 ± 0.02 2.56 ± 0.27
NO_109C – þ/- – þ/- 0.00 þ/- þ/- – 0.00 0.00
SP_50R 2.60 – þ þ 2.88 þ – – 0.00 0.00 Streptomyces
SP_51R – – – – 0.00 þ/- – – 0.00 14.29 ± 0.04 Microbacterium
SV_R95 – þ/- – – 0.00 – – – 0.00 19.33 ± 0.25
SV_98R – þ/- – – 0.00 – – – 0.00 17.07 ± 0.07
SV_91R – – – – 2.25 þ þ – 0.00 33.67 ± 0.09 Fictibacillus
SP_1C - – – – 0.00 þ – - 0.00 0.00 Sphingomonas
#þ growth – No growth; þ/� Reduced growth.
##solubilization index (SI).
###IAA values ± SD (lg ml�1).
Ca-P¼ Calcium phosphate; Al-P¼Aluminum phosphate; Fe-P¼ Iron phosphate; Ph-P¼ Phytate phosphate.
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assist plants in the acquisition of phosphorus and other
essential minerals, improve water uptake or act as biocontrol
agents by decreasing the inhibitory effects of various phyto-
pathogens (Glick 2015). Despite these important roles, endo-
phytic PGP bacteria have been poorly investigated in
terrestrial orchids, where most attention has been focused
on the mycorrhizal fungal endophytes colonizing orchid
roots (Smith and Read 2008).

Most endophytic bacteria were isolated from the vegetative
organs of the three terrestrial orchid species. They belonged
to three different phyla: Proteobacteria, Actinobacteria, and

Firmicutes. Within the Proteobacteria, thirty-six isolates
belonged to the c-class (Pseudomonas, Pantoea, Rahnella) and
one isolate to the a-class (Sphingomonas). Pseudomonas strains
were mainly isolated on King’s B, a classical medium for isola-
tion of fluorescent Pseudomonas (King et al. 1954). Nine strains
grouped within the Firmicutes (Staphylococcus, Bacillus,
Fictibacillus) and four within the Actinobacteria (Streptomyces,
Microbacterium).

Pseudomonas is a widespread genus of Gram-negative bac-
teria commonly associated with the rhizosphere (Lugtenberg
and Dekkers 1999). Because of their metabolic versatility and

Table 3. Stress–tolerance, antimicrobial activity and interaction with the orchid mycorrhizal fungus Tulasnella calospora (AL13/4D) of the bacteria isolated in
this study.

Isolate

Stress test#

Taxon Group

NaCl (%) Antimicrobial activity## Growth of mycorrhizal
fungus in co-culture###

5 7,5 PEG 10% Kokuria rhizophila Escherichia coli T. calospora AL13 / 4D

SP_1L þ/– þ/– þ – – n.a Pseudomonas
SP_15L þ/– – þ – – reduced
SP_20L þ/- þ/- þ – – n.a
SP_25L – – þ – – n.a
SP_26L þ þ þ þ þ reduced
SP_29R – – þ – – reduced
SP_30R – – þ – – complete inhibition
SP_38R – – þ – – n.a
SP_40R – – þ/- – – reduced
SP_41R þ/- þ/- þ – – reduced
SP_43R – – þ – – n.a
SP_44R – – þ/- – – n.a
SP_46R þ/– þ/– þ – – n.a
SP_49R þ/– þ/– þ – – n.a
SP_53R – – þ/- – – n.a
SP_55R – – þ/- – – n.a
SV_60S – – þ – – n.a
SV_63S – – þ – – reduced
SV_69S – – þ – – n.a
SV_82L – – þ – – n.a
SV_87L – – þ – – n.a
NO_101S – – þ – – n.a
NO_103S þ/- þ/- þ/- – – increased
SP_9L þ/- þ/- þ – – n.a Pantoea
SP_16L þ/- þ/- þ – – n.a
SP_17L – – þ – – n.a
SP_21L þ/- þ/- þ – – n.a
SP_22L þ/- þ/- þ – – n.a
SV_66S þ þ þ – – n.a
SV_71S – – þ – – n.a
SV_72S þ þ/- þ – – n.a
SV_73S þ þ þ/- – – n.a
SV_75S – – þ – – n.a
SV_67S þ/- þ/- þ – – n.a Rahnella
SV_78S þ/- þ/- þ/- – – n.a
NO_104S – – þ/- – – n.a
SP_37R þ/- þ/- þ/- – – n.a Staphylococcus
SP_48R þ/- þ/- þ/- – – n.a
SV_92R þ/- þ/- þ/- – – n.a
SV_99C þ þ þ – – n.a
NO_102S þ/- þ/- þ/- – – n.a
SV_94R – – þ – – n.a Bacillus
NO_107C – – þ – – n.a
NO_109C þ/- þ/- þ – – n.a
SP_50R – þ/- – – n.a Streptomyces
SP_51R nt nt nt – – n.a Microbacterium
SV_R95 nt nt nt – – n.a
SV_98R nt nt nt – – n.a
SV_91R – – þ – – n.a Fictibacillus
SP_1C – – þ/- – – n.a Sphingomonas
#þ growth (single colonies of the same size than on control plates without NaCl/PEG); � No growth; þ/� Reduced growth (no single colonies or single colonies
smaller than on control plates without NaCl/PEG); nt Not tested.
##þ Presence of inhibition halo; � Absence of inhibition halo.
###n.a. not affected.
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ubiquity, Pseudomonas species colonize a wide range of nat-
ural habitats and adopt a variety of lifestyles. They have been
also isolated from a great variety of hosts and ecological
niches within the hosts (Mercado-Blanco and Bakker 2007),
where they can live as symbionts or as parasites.
Pseudomonas have been found as endosymbionts in
Australian terrestrial orchids (Wilkinson et al. 1989, 1994), as
well as in the roots of epiphytic orchids (Tsavkelova et al.
2004). Bacterial endophytes in the genus Pseudomonas repre-
sented the largest group and were isolated from all three
orchid species, although most isolates were found in the roots
of S. spiralis where they represented the dominant taxonomic
group. Pseudomonas were not isolated from the roots of the
other two orchid species, suggesting some host preference.
Some Pseudomonas strains associated with the roots of S. spi-
ralis were the best siderophore producers among the isolated
endophytes. Siderophores are iron chelating compounds that
confer competitive advantage to PGP bacteria during the

colonization of plant roots, especially in conditions of iron
limitation. This mechanism not only ensures iron to the host,
but makes this micronutrient less available to different micro-
rganisms, including pathogens (Kloepper et al. 1980; Weller
2007). In addition, most Pseudomonas isolates could solubilize
insoluble phosphate and potassium compounds and some
strains produced indolacetic acid (IAA), a property that stimu-
lates and facilitates the growth of plants. In fact, as demon-
strated by Pavlova et al. (2017), P. fluorescence is able to
colonize seeds of Dendrobium nobile Lindl (an epiphytic
orchid) and induce their germination. Overall our findings sug-
gest that Pseudomonas orchid endophytes can use different
mechanisms to promote plant growth.

The genus Pantoea, in the Enterobacteriaceae, is a highly
diversified group of Gram-negative bacteria found in aquatic
and terrestrial environments in association with plants and
animals (Brady et al. 2008; V€olksch et al. 2009; Nadarasah
and Stavrinides 2014; Rahman et al. 2018). Endophytes in the

Figure 3. Dual-plate interaction assays of endophytic bacteria (at the center of the plates) and the fungal symbiont (Tulasnella calospora) of Serapias vomeracea (at
the two sides of the same plate). All photos were taken 15 days after inoculation on two different solid media (MEA on the left and PDA on the right for each
photograph, see materials and methods). (a) SP_48R isolate showing no inhibition; (b) SV_92R isolate showing no inhibition; (c) SP_41R isolate showing reduced
fungal growth, as compared to the control; (d) SP_30R isolate showing complete fungal growth inhibition; (e) NO_103S isolate showing an increase of aerial myce-
lium, as compared to the control, produced by the fungus on MEA medium; (f) Control conditions, with fungal inocula growing in the absence of bacteria.
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genus Pantoea have been commonly isolated from plants
such as, grapevine, pea and rice (Elvira-Recuenco and van
Vuurde 2000; Mano et al. 2007; Bell et al. 2011). Although
Pantoea has been isolated from a variety of plant species
and organs, we isolated Pantoea strains only from the aerial
parts of S. spiralis and S. vomeracea. Interestingly, bacteria
belonging to the genus Pantoea could not be isolated from
the roots of the terrestrial orchid species Paphiopedilum apple-
tonianum, whereas they were isolated from the aerial roots of
the epiphytic orchid Pholidota articulata (Tsavkelova et al.
2007). This finding may indicate a preference for the coloniza-
tion of aerial parts in orchids irrespective of the plant organ.
The PGP effects of Pantoea endophytes for the host plants are
well documented, including production of auxin and cytokines
(Tsavkelova et al. 2007; Chalupowicz et al. 2009),
ACC–deaminase activity (Zhang et al. 2011), siderophores pro-
duction (Loaces et al. 2011), phosphate solubilization (Son
et al. 2006; Castagno et al. 2011), induction of systemic resist-
ance (Trotel-Aziz et al. 2008; Rahman et al. 2018). The results
obtained for the Pantoea endophytes isolated from the two
Mediterranean orchids indicate a possible role of orchid endo-
phytic Pantoea in both hormone–induced enhancement of
plant growth and support of plant mineral nutrition. In fact,
most of them showed high (for some isolates very high) pro-
duction of IAA and different abilities to solubilize insoluble
phosphate and potassium forms. All Pantoea isolated from
leaves of S. spiralis were able to grow on semisolid N–free
medium, indicating possible nitrogen fixation, as reported for
some Pantoea species (Loiret et al. 2004).

Although members of the genus Rahnella commonly col-
onize the rhizosphere (Rozhon et al. 2010), they have been
isolated as endophytic bacteria from root samples, stems
and surface-sterilized seeds of plants grown in contaminated
or marginal soils (Cankar et al. 2005; Taghavi et al. 2009). In
this work, we isolated three strains belonging to the genus
Rahnella from stems of S. vomeracea and N. ovata. Plant-
associated Rahnella usually showed multiple PGP properties
(Kumar et al. 2009). For example, R. aquatilis NBRIK3 and
Rahnella sp. BIHB 783 (Vyas et al. 2010) produced IAA, sidero-
phores, ACC deaminase and solubilized inorganic phosphate.
The Rahnella endophytes from the two Mediterranean
orchids were able to solubilize both organic and inorganic
phosphates, as well as potassium.

Most bacterial endophytes could grow on culture media
containing NaCl (ca. 50% of all isolates) and 10% PEG (all
tested isolates) indicating their ability to tolerate abiotic
stress such as salinity and osmotic stress. Whether this indi-
cates an adaptation to the Mediterranean climate (character-
ized by dry seasons) or whether it represents an additional
potential role as abiotic stress alleviators to the host plant,
remains to be clarified.

A beneficial interaction between Pseudomonas bacteria
and mycorrhizal fungi has been described both as a helper
effect of the bacterium on fungal growth and as a synergistic
mechanism during mycorrhiza formation. For example, some
authors suggested for helper Pseudomonas fluorescens strains
a specific priming effect on growth, morphology and gene
expression of the ectomycorrhizal fungus Laccaria bicolor

(Deveau et al. 2007). Furthermore, Pseudomonas sp. pl. iso-
lated from Tuber borchii ascocarps (Sbrana et al. 2000)
showed antifungal activity against some pathogens. As for
orchid mycorrhizal fungi, a number of bacterial taxa were
found to be associated with a Serendipita sp. isolate by
molecular methods, but their interactions with the fungus
were not investigated (Novotn�a and Su�arez 2018).

Most of the bacterial endophytes isolated from the three
Mediterranean orchid species did not show any antimicrobial
activity or particular influence on the growth of the orchid
mycorrhizal fungus T. calospora, irrespective of the organ of
origin, and only the strain (SP_26L) inhibited the growth of
bacteria tester (K. rizophila and E. coli). Only some
Pseudomonas isolates showed antimicrobial activity and
caused a reduction of fungal growth, whereas one strain
(NO_103S) induced fungal growth. Although the outcome of
in vitro tests may not reflect the situation in planta, these
data would suggest a limited antagonistic ability of endo-
phytic bacteria toward other members of the orchid micro-
biome. However, cultivable microbes are only a minor
fraction of the total community and it is therefore possible
that important bacterial partners, potentially interacting with
the mycorrhizal fungus or with other endophytic bacteria,
could not be tested in the current study. A functional traits-
based cultivation-independent analysis or a co-occurrence
analysis would be necessary to further address this important
point. Anyhow, since there are to our knowledge no specific
investigations on the interactions between endophytic bac-
teria and orchid mycorrhizal fungi, our preliminary results
pave the way towards new hypotheses on the interactions
between endophytic bacteria and symbiotic fungi in orchids.
The significance of growth attenuation and inhibition in T.
calospora remains to be better clarified

Most bacterial endophytes could grow on culture media
containing NaCl (ca. 50% of all isolates) and 10% PEG (all
tested isolates) indicating their ability to tolerate abiotic
stress such as salinity and osmotic stress. Whether this indi-
cates an adaptation to the Mediterranean climate (character-
ized by dry seasons) or whether it represents an additional
potential role as abiotic stress alleviators to the host plant,
remains to be clarified.

In conclusion, although research on endophytic bacteria is
still scanty in orchids, the PGP traits identified in this study
suggest that these components of the orchid microbiota
may potentially play important roles in promoting growth of
Mediterranean terrestrial orchids. A demonstration remains
to be done in planta during both seed germination and early
plant development. If these endophytic bacteria reveal plant
growth promotion activities in orchids, they could also be
tested on other orchid species to support in vitro growth in
the frame of conservation programs.
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