
14 December 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

From Curry to Haskell: Paths to Abstraction in Programming Languages

Published version:

DOI:10.1007/s13347-019-00385-4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1781776 since 2021-03-22T07:57:21Z



Noname manuscript No.
(will be inserted by the editor)

From Curry to Haskell?

Paths to abstraction in programming languages

Felice Cardone

the date of receipt and acceptance should be inserted later

Abstract We expose some basic elements of a style of programming sup-
ported by functional languages like Haskell by relating them to a coherent set
of notions and techniques from Curry’s work in combinatory logic and formal
systems, and their algebraic and categorical interpretations. Our account takes
the form of a commentary to a simple fragment of Haskell code attempting to
isolate the conceptual sources of the linguistic abstractions involved.

1 Introduction

“From the moment that von Neumann first suggested that the instructions
and data share the same storage in a machine there has been a growing re-
alization that general purpose digital computers are linguistic mechanisms”
(Gorn 1959). This early statement by Saul Gorn is the conclusion of an ar-
gument exploiting both the universality of computers, allowing to interchange
software and hardware when we “recognize that a program for a general pur-
pose machine turns it into a special purpose machine”, and “the equivalence
of general purpose machines with a vaguely recognizable ‘universal command
language’.”

However, the design of such a language must take into account the fact
that a program has not merely an operational significance. The way a piece of
software is written connects it and the problem it is designed to solve to a con-
ceptual background that determines to a large extent the software architecture
and the linguistic abstractions supporting it.

Logic, in a wide sense, has often been one main source of these insights:
think for example of the set-theoretical basis of the data types that we find
already in the context of imperative programming, such as record, enumeration

? Published in Philosophy & Technology, 2020. The final publication is available at
link.springer.com, https://link.springer.com/article/10.1007/s13347-019-00385-4

Dipartimento di Informatica, Università di Torino. E-mail: felice.cardone@unito.it



2 Felice Cardone

and array types (Hoare 1972), and its far-reaching extensions to universes of
constructive objects leading to intuitionistic type theories (Martin-Löf 1982)
or impredicative theories of constructions (Coquand and Huet 1988).

In this paper we would like to propose a case study of how a small set of no-
tions arising from logic, algebra and category theory, has provided syntactical
and semantical guidelines to the formation of a currently widespread program-
ming style. The main characters of our account will be the combinatory logic
developed by Haskell B. Curry in the late 1920s motivated by problems from
the foundations of mathematics, and the programming language Haskell (Hu-
dak et al. 2007). Of the first, we shall be especially interested in the aspects
in which we believe it has offered the most significant contributions to the
foundations of programming:

– The abstract nature of the formal systems of combinatory logic (Curry
and Feys 1958; Curry et al. 1972): since the early stages of development of
his approach to logic and mathematics, Curry has intentionally put much
effort towards achieving abstraction as a substantial part of his formalistic
foundational program (Curry 1941; 1950; 1951; 1953). In particular, an ab-
stract formal system never displays a concrete representation of its formal
objects, the obs, in Curry’s neologism.

– The use of functional application as the only primitive way of combining
the objects of combinatory systems, leading to a general notion of applica-
tive syntax extending to fields outside logic, for example the grammatical
structure of natural languages (Curry 1961). Applicative syntax is also one
of the key linguistic advances of Landin’s path-breaking paper on the me-
chanical evaluation of expressions (1964), and a permanent feature of most
functional programming languages.

– The interest of Curry for the structural properties of formal objects, that
makes several of his purely syntactical results easily expressible in algebraic
terms (Curry 1952), as we shall see below. This has inspired a systematic
use of structure definitions (Landin 1964) and the associated techniques of
structural induction (Burstall 1969).

– The early use by Curry of Gentzen-style natural deduction and sequent
calculus, and related proof-theoretical techniques like the inversion prin-
ciple of Paul Lorenzen (Lorenzen 1955). These fit nicely within Curry’s
philosophical outlook and, from the programming point of view, also pro-
vide a way of relating recursion over data types to the inductive generation
of their elements.

In our account the main emphasis will be on the conceptual links between
notions, and not on a detailed historical reconstruction of causal dependences
from Curry’s work that are in general rather episodic, even though sometimes
substantial, like those that can be found in the seminal works of Landin (1964)
and Burstall (1969) mentioned above, two milestones in the development of



From Curry to Haskell? 3

functional programming.1 Our aim is to document the existence of a coherent
body of notions and techniques that have provided the ground from which have
grown the abstractions that find linguistic support in languages like Haskell.
This coherence is perhaps the only element of continuity in a plot where Curry
and Haskell are two among the many actors on stage. We take the contribu-
tion of this paper to consist in gathering evidence supporting this claim of
coherence.

Our story will be based on a sample of Haskell code from (Bird 1998),
shown in Figure 1, defining sum, product and exponentiation over elements of
an algebraic data type Nat of natural numbers. This will allow us to illustrate
concretely a programming style centered around mathematical structures with
a formally defined semantics and a natural intuitive content that arises from
the background that we are going to explore.

data Nat = Zero | Succ Nat

foldn :: (t -> t) -> t -> Nat -> t

foldn h c Zero = c

foldn h c (Succ n) = h (foldn h c n)

add m n = foldn Succ m n

mult m n = foldn (add m) Zero n

pow m n = foldn (mult m) (Succ Zero) n

Fig. 1 Addition, multiplication and exponentiation as folds.

2 Formal systems, syntax and data types

Formal systems are a far reaching generalization of the way of generating
natural numbers by iterated applications of the successor function to the initial
element 0. They are also an abstract model of the way theorems are derived
from axioms by means of inference rules in a system of formal logic. Their
study as mathematical objects has roots in the work of Post in the 1920s
(Post 1943; De Mol 2006). Curry, apparently independently of Post’s work,
based on a notion of formal system his formalist position in the philosophy of
mathematics (Curry 1941; 1950; 1951; 1953; Seldin 1975; Meyer 1987). Formal
systems, in the sense of Curry and Feys (1958) and Curry (1963), will be the
starting point of our search for conceptual roots of the abstractions exploited
in the code in Figure 1.

1 Also the MIT course notes on programming linguistics (Wozencraft and Evans 1971),
strongly influenced by lectures held at MIT by Landin and Strachey, use some of Curry’s
terminology, speaking of ‘obs’ and their ‘representations’.



4 Felice Cardone

2.1 From formal systems to abstract syntax

The purpose of a formal system is that of specifying an inductive class X
which, as usual, consists of initial elements, called the basis B of X, and a
class of modes of combination whose elements µ have a degree, the number of
elements of X (the arguments of µ) to which µ is applied to produce an element
of X (Curry 1963, §2A5,2C3). As an example, that we also use to introduce
the basic terminology, consider the problem of generating the inductive class
of natural numbers. We may do this in two ways:

1. in the first approach we have an initial element 0 and one mode of combi-
nation s with one argument. The elements of the inductive class generated
by these data are the natural numbers.

2. In the second approach, we have as initial element the statement N(0),
and one mode of combination that given a statement N(x) produces a
statement N(s(x)). The elements of this inductive class can be interpreted
as a deductive system where the initial element is an axiom and the single
mode of combination is a deductive rule.

Both approaches are instances of the general notion of formal system intro-
duced by Curry, where we have:

– the specification of the formal objects (the obs, as Curry used to call them)
by means of operations and atoms, here s and 0,

– the specification of the elementary statements by giving the basic predi-
cates, in this case a unary predicate N .

Finally, we also need

– the specification of deductive rules for deriving certain statements as the-
orems starting from axioms. In the example the statement N(0) is taken
as axiom, with rules

N(0)
(zero)

N(x)

N(s(x))
(successor)

(1)

A distinctive feature of Curry’s approach is that a formal system is presented
in an extension of the natural language which is being used for communication,
that Curry calls the U-language: a formal system is an activity that is carried
out in the U-language (Curry et al. 1972, §11A, p. 4). The obs of the system
are the results of the inductive process of repeatedly applying the operations,
starting from the atoms, to previously obtained obs. The important thing to
notice is that, in this approach, the obs are never displayed explicitly, but
only through the notations used for naming them in the U-language. These
notations define a presentation of the obs. For example, in a system with an
operation ω of degree n the result of the application of ω to obs a1, . . . , an may
be presented by ‘ω(ȧ1, . . . , ȧn)’ or by the  Lukasiewicz presentation ‘ωȧ1 · · · ȧn’,
where dotted letters are the respective presentations of the obs. Curry speaks of
an ob as the objectification of its construction process, which is assumed to be



From Curry to Haskell? 5

uniquely associated to the ob; presentations have to guarantee this uniqueness
of parsing. Of course we may associate a representation to the system by
mapping each ob to a unique thing, which may be for example a combination
of symbols, or a manufactured thing (Curry and Feys 1958, §1C2), like one of
Calder’s mobiles. Formal systems are abstract when no such representation is
specified. It is this way of understanding abstraction that will become central
for programming languages after (McCarthy 1963): “The form of syntax we
shall now describe [. . . ] is abstract in that it is independent of the notation
used to represent, say sums, but only affirms that they can be recognized and
taken apart” (cit., §12, p. 26).

From the above sketch of the basic ingredients of a formal system in the
writings of Curry, we can easily see the relevance of this notion for the early
speculations on the syntax of programming languages, in the form of the def-
inition of structures: “A structure is obtained by taking a sequence of objects
(atoms or structures) and combining them with a construction operation. Thus
each structure is built up from atoms by using a finite number of construction
operations” (Burstall 1969, p. 42). Structures correspond to the obs of Curry;
the obs of a formal system are subject to the same analysis and synthesis
operations as the corresponding structures are.

2.2 From abstract syntax to the mechanical evaluation of expressions

The uniqueness of construction required of obs, and the corresponding obser-
vation that “each structure has a unique set of components” (Burstall 1969)
leads to recognizing their common nature as elements of word algebras of type
Ω, namely algebras WΩ(X) whose elements are obs built from atoms and
operations in Ω possibly using elements of the arbitrary set X as new atoms.2

A concrete representation (in the sense of Curry mentioned above) of the
elements of a word algebra is obtained by means of reverse Polish notation
(Cohn 1965, §III.2), where an ob ω(a1, . . . , an) is written as the concatenation
of the representations of the obs a1, . . . , an followed by ω. It is well-known
that each such representation can be parsed uniquely even without the use of
parentheses, by the following algorithm:

1. let the rank of an atom be 1, the rank of an operation of degree n be −n+1.
2. scan from left to right the sequence of symbols adding their ranks: if, and

only if, the partial sums obtained in this process are always positive and
the final sum is 1, the sequence represents an ob.

The history of this result has been told in part in the textbook of Rosenbloom
(1950) who cites the early proofs by Menger (1930), Schröter (1943), Gerneth

2 Curry (1952; 1958) observed the analogy between formal systems and abstract algebras,
pointing out also their main differences, namely the fact that in an algebra “the elements
are conceived as existing beforehand” , where in a formal system “what is given beforehand
is not a set of elements but the atoms and operations, and the obs are generated from them”
(Curry and Feys 1958, §1B1).



6 Felice Cardone

(1948) and an unpublished one of Philip Hall (around 1950). The other part
of the history is told in (Bauer 1990; 2002) and concerns the early attempts to
mechanize the evaluation of expressions, notably (Burks et al. 1954). In fact
it is possible to read a reverse Polish expression of the form, say, 5 17 + 2 ∗
as a sequential program that evaluates the expression by means of a stack
structure, where

– a numeral is interpreted as the instruction to push the corresponding nu-
merical value onto the stack, and

– the operation symbols as the instruction to perform the corresponding
operation on the two topmost numbers on the stack, replacing them by
the result.

The transitions of the stack in the evaluation of the above expression would
be therefore the following, where the the stack grows leftwards:

〈 〉 push−→ 〈5〉 push−→ 〈17 5〉 +−→ 〈22〉 push−→ 〈2 22〉 ∗−→ 〈44〉.

From the point of view of programming, reverse Polish notation allows to
regard expressions as programs for computing their values. This observation is
constitutive of the very idea functional programming, and is the germ of the
mechanical evaluation of expressions envisaged by Landin (1964), leading to
his design of the SECD-machine.

An important property of this representation of the elements of WΩ(X) is
that it provides a direct way of proving that, for any structure A of type Ω,
and any association of elements of (the carrier of) A to the elements of X,
there is a unique mapping WΩ(X) −→ A preserving the operations in Ω (a
Ω-homomorphisms) and extending the given association. This opens the way
to a connection of formal syntax with abstract algebraic notions that will be
an important theme throughout the paper.

2.3 Applicative syntax and grammatical categories

The formalization of combinatory logic was based on the observation (made
by Schönfinkel in the early 1920s) that functions of several arguments can be
transformed into functions with one argument, possibly returning functions
as results. This transformation is now well-known as currying (Bird 1998).
Building on this remark, Curry devised a general transformation that turns a
general formal system into an applicative system, where the only operation is
a binary operation of application of two obs a and b. This notational device is
exploited systematically in the code displayed in Figure 1.

Applicative syntax allowed Curry (1934) to introduce a uniform notation
for expressing type distinctions in his systems of illative combinatory logic
(Curry and Feys 1958, Ch. 9), the theory of functionality, that was later ex-
tended to a formulation of the grammatical structure of artificial and natural
languages (Curry 1961). In the latter case we can assume two basic grammat-
ical categories n for nouns and s for sentences, and build new grammatical



From Curry to Haskell? 7

categories by the recursive specification that whenever α, β are grammati-
cal categories, then Fαβ is the grammatical category of phrases (functors)
that form a phrase of category β when they are applied to a phrase of cat-
egory α. For example we have then that the category of adjectives is Fnn
because, for example, the adjective ‘good’ can be prefixed to the noun ‘man’
to form the noun ‘good man’. In the language of mathematics this category
includes, for example, the square function. Similarly, a phrase like ‘− fly’ has
category Fns because it forms a sentence when applied to (i.e., the dash is re-
placed by) a noun, like in ‘birds fly’. The grammatical rules for operators from
logic and mathematics can be reformulated in these terms, and indeed Curry
claimed that nouns, sentences and functors are “the fundamental categories
of any conceivable mathematical language” (Curry 1961, p. 61). So, for exam-
ple, unrestricted quantifiers are given category F(Fns)s, whereas derivation of
polynomials is given category F(Fnn)(Fnn), and the summation and min,max
operators have category F(Fnn)n (Curry and Feys 1958, §§8C,8S2).3

Furthermore applicative syntax, together with a flexible type discipline
based on Curry’s theory of functionality and type inference by means of the
Hindley-Milner algorithm (Hindley 1969; Milner 1978), supports a peculiar
kind of abstraction in functional languages. By permuting arguments, we can
define from the functional foldn shown in Figure 1 a new functional

it :: Nat -> (a -> a) -> (a -> a)

that can also be used to represent the general idea that natural number n is
an iterator, as in the definition of the common abbreviation fn for f ◦ · · · ◦ f︸ ︷︷ ︸

n times

,

the n-fold composition of any function of type a -> a with itself.
Applicative syntax was systematically exploited in the seminal paper by

Landin (1964), who observes that “many symbolic expressions can be charac-
terized by their ‘operator/operand’ structure [. . . ] or ‘applicative’ structure”
(p. 308). Such applicative expressions (AEs), also including λ-abstractions,
are another example of abstract syntactical objects of the kind used in the
ob systems of Curry (the works of Curry and McCarthy have been quite in-
fluential on the ideas of this classic paper by Landin): “there are many ways
in which we can write the same AE, differing in layout, use of brackets and
use of infixed as opposed to prefixed operators. However, they are all written
representations of the same AE” (ibid., p. 314).

3 Free structures

The data type declaration

3 As an aside, we point out that Giovanni Vailati, a collaborator of Peano, had already
studied the language of algebra and its grammar, in ‘La grammatica dell’algebra’ (Rivista di
Psicologia Applicata, 4, 1908), to which Peano replied more than twenty years later with his
‘Algebra de Grammatica’, Schola et Vita, vol. V (1930) pp. 323–336, where he outlines an
algebraic approach to grammar based on the categories of verb, noun and adjective that is
strongly reminiscent of the more successful subsequent attempts by Ajdukiewicz, Bar Hillel
and especially Lambek.



8 Felice Cardone

data Nat = Zero | Succ Nat

makes available the constant Zero and the unary constructor Succ for building
elements of type Nat intended to represent the natural numbers. Then we have
expressions

Zero, Succ Zero, Succ (Succ Zero), . . .

all of type Nat. The idea of algebraic data types like Nat shows up in a
rather mature form in the fundamental paper by Burstall (1969), influenced
by Landin (1964). In the latter paper lists are defined (on p. 312) as follows,
by what Landin calls a structure definition:

A list is either null or else has a head (h) and a tail (t) which is a list.

This is an analytic definition (McCarthy 1963, §12): it tells how to take a
structure apart, rather than how to put it together. Burstall (1969) introduced
lists through a synthetic definition, by privileging constructors cons and nil
over destructors head and tail :

A list is either a cons or nil. A cons has an atom and a list. A nil has
no components.

Such synthetic definitions take the form of conjunctive clauses specifying how
the constructors operate on components; these constitute the cases of an over-
all disjunction. A structure definition similar to that used for lists can also be
used in defining applicative expressions.

While the elements of an algebraic data type are intended to be built in-
ductively, and therefore their construction process can be described faithfully
by the derivations of a formal system, the intended semantics of algebraic data
types has often been formulated in terms of initial algebras, where both ini-
tiality and algebras are interpreted in the sense of category theory (Goguen
et al. 1977).4 We shall now show the compatibility of the constructive stand-
point of formal systems with the algebraic and categorical language. We will
do this by expressing constructions on formal systems in a notation that is im-
mediately interpretable in categories, and will allow us to imitate the standard
construction of the initial algebra (Adámek 1974).

4 Some proviso is needed, however, on the correpondence between programming language
constructs and logical and algebraic notions. For example, in languages with lazy pattern
matching, like Haskell, the elements of type Nat are not in bijective correspondence with
the natural numbers: in Haskell we can define infty = Succ infty for which the compiler
infers type Nat, which does not correspond to any natural number but can nevertheless be
used significantly as an argument of functions without causing non-terminating behavior
(see (Bird 1998) for examples). Other expressions for which the type Nat can be inferred
but which do not correspond to any natural number are introduced by defining bottom =

bottom and then taking bottom, Succ bottom, Succ (Succ bottom), . . . The type Nat is more
accurately modeled by a partially ordered set enjoying a special completeness property in
the order-theoretic sense – a cpo; here, in addition to natural numbers, there is an infinite
totally ordered subset whose elements corresponding to elements of Nat that involve bottom,
whose least upper bound is the element corresponding to infty. This structure is still an
initial algebra, but in a suitable category of cpo’s (Freyd 1991).



From Curry to Haskell? 9

3.1 Processes and their products

Given the data that specify an inductive class X, it is possible to define the
notion of a construction of an element of X. According to Curry, “the opera-
tions are regarded as steps of construction, which may be iterated indefinitely,
for forming new obs” (Curry 1952, p. 252, fn. 2) so that “an operation is [. . . ]
regarded as forming a new object rather than as assigning a value” (ibid.).
The ob b formed by ω from a1, . . . , an is denoted by ω(a1, . . . , an) but here
Curry adds (ibid., p. 253):

the genesis of such a b from ω, a1, . . . , an will also be referred to as a
formation (of b), and for this formation ω will be called the operation,
a1, . . . , an the arguments, and b the closure.

Now, this is the only place in Curry’s writings where this distinction is made.
Yet, separating the process of ob formation from the resulting ob is a natural
idea, and is directly related to the process/product distinction on which there
is a significant philosophical literature, for instance (Twardowski 1999), see
(Bobryk 2009; van der Schaar 2013).5 Like drawing inferences within a formal
system, steps of formation of obs are actions. For this reason, the study of
general formal systems needs a systematic development of a terminology and
techniques for dealing with these dynamic aspects. That is, we need a theory
of processes and their results. While no attempt at building such a theory will
be made in the present paper, we will however take up Curry’s remark and
distinguish between:

– the formation of an ob b = ω(a1, . . . , an) (process), denoted by

ω · 〈a1, . . . , an〉

– the closure ξ of a formation ξ (product).

We define, in general:

ω(a1, . . . , an) ≡ ω · 〈a1, . . . , an〉

We use a :: A, when A is a formal system, to express the judgement that a
is an ob of A. Given a class of operations (a signature) Ω (where Ωn is the
subset of operations of degree n) we can define simultaneously formal systems
Ω∗ and Ω(X) for any formal system X, looking at them as types:

– Ω(X) is the type of formations with operation in Ω and obs of X as
arguments,

– Ω∗ is the type of obs built from operations in Ω

with the following rules, where the notation exploiting ‘::’ is used to express
informally the new elementary statements:

5 Observe that also the terms ‘closure’, ‘formation’ are ambiguous and may refer both to
processes and to their results, exactly like ‘construction’.



10 Felice Cardone

ω ∈ Ωn x1 :: X, . . . , xn :: X

ω · 〈x1, . . . , xn〉 :: Ω(X)
(formation)

ω · 〈x1, . . . , xn〉 :: Ω(Ω∗)

ω(x1, . . . , xn) :: Ω∗
(closure)

3.2 Constructing free structures

Now, let A and B be formal systems. We can define a notion of constructive
transformation f from obs of A to obs of B. We define therefore the notation

f : A −→ B

to mean that f is an effective process, in the sense of (Curry 1963, §2A5), that
transforms obs a :: A into obs f(a) :: B. As a first example, we have a process

δ : Ω(Ω∗) −→ Ω∗ (2)

where, for an operation ω of degree n and x1, . . . , xn :: Ω∗, we form the ob
ω(x1, . . . , xn) :: Ω∗ as the closure of the formation ω · 〈x1, . . . , xn〉 :: Ω(Ω∗),
as in the derivation

ω ∈ Ωn x1 :: Ω∗ · · ·xn :: Ω∗

ω · 〈x1, . . . , xn〉 :: Ω(Ω∗)
(formation)

ω(x1, . . . , xn) :: Ω∗
(closure)

We can extend the construction of Ω(·) to any f : A −→ B, obtaining a
process

Ω(f) : Ω(A) −→ Ω(B)

which is defined by the following specifications:

– Ω(f) takes an ob ω · 〈a1, . . . , an〉 :: Ω(A) as argument;
– performs the process f on each of the arguments a1, . . . , an, producing

eventually obs f(a1), . . . , f(an) of B (by the effectiveness of f , these exist);
– produces ω · 〈f(a1), . . . , f(an)〉 :: Ω(B).

Let now ∅ be the empty formal system: no rules, no theorems. The obs of the
formal system Ω(∅) correspond to the formations with operations of degree 0,
if any. Then the obs of the formal system Ω(Ω(∅)) are the formations whose
arguments are obs in Ω(∅), and this process can be iterated indefinitely. There
is an obvious effective process 2 : ∅ −→ Ω∗ (“do nothing”), that can be
taken as the starting point of an iterative construction whose stages are the
processes:



From Curry to Haskell? 11

i0 = ∅ 2−→ Ω∗

i1 = Ω(∅) Ω(i0)−→ Ω(Ω∗)
δ−→ Ω∗

...

in = Ω(Ωn−1(∅)) Ω(in−1)−→ Ω(Ω∗)
δ−→ Ω∗

...

At each stage we add one layer of operations to the formations obtained cu-
mulatively at earlier stages. So we form constants, which are operations of
degree 0 and do not need any argument, then we have formations whose ar-
guments are formations of constants and so on, indefinitely. At each stage, we
can form new obs in Ω∗ by taking the closures of the formations belonging
to that stage, applied to the obs obtained at the earlier stages by means of
applications of δ : Ω(Ω∗) −→ Ω∗ performed from the inside out. Thus these
processes represent the constructions of increasing height of elements of Ω∗,
defined in (Curry 1963, §2A6). Assume for instance that Ω consists of the
three operations {ω2, σ1, γ0}, with subscripts indicating the degrees; we have
the following formations:

γ0 · 〈 〉 :: Ω(∅)
σ1 · 〈γ0 · 〈 〉〉 :: Ω(Ω(∅))

ω2 · 〈γ0 · 〈 〉, σ1 · 〈γ0 · 〈 〉〉〉 :: Ω(Ω(Ω(∅)))

Observe that for any γ0 · 〈 〉 :: Ω(∅) we have γ0 · 〈 〉 :: Ω(X) for any formal
system X, and therefore also γ0 · 〈 〉 :: Ω(Ω∗). We can now display the
derivations in tree form, showing how obs are generated from the leaves of the
derivation tree towards its root:

γ0 · 〈 〉 :: Ω(Ω∗)
(formation)

γ0 :: Ω∗
(closure)

γ0 · 〈 〉 :: Ω(Ω∗)
(formation)

γ0 :: Ω∗
(closure)

σ1 · 〈γ0〉 :: Ω(Ω∗)
(formation)

σ1(γ0) :: Ω∗
(closure)

ω2 · 〈γ0, σ1(γ0)〉 :: Ω(Ω∗)
(formation)

ω2(γ0, σ1(γ0)) :: Ω∗
(closure)



12 Felice Cardone

We can visualize the processes involved in a familiar diagram that displays the
construction of Ω∗ as the term algebra over the signature Ω:

∅ //

i0

--

Ω(∅) //

i1

**

· · · // Ωn(∅)

in

  

// Ωn+1(∅)

in+1

}}

// · · ·

Ω∗

(3)
In our constructive reading, the structure Ω∗ is in a sense the smallest possible
that is closed under the process δ : Ω(Ω∗) −→ Ω∗. If we have another process

ξ : Ω(X) −→ X

we can build an effective transformation h : Ω∗ −→ X by the following re-
cursive specification. An ob a :: Ω∗ of the form ω(a1, . . . , an) is the closure of
a unique formation in Ω(Ω∗), where the arguments a1, . . . , an have a strictly
smaller height than a. Assuming that the process h is already defined for the
arguments, we can assume that h(a1), . . . , h(an) have been obtained as obs of
X by the assumption on the effectiveness of h. Therefore

ω · 〈h(a1), . . . , h(an)〉 :: Ω(X)

so we can perform ξ on this ob producing an ob ξ(ω · 〈h(a1), . . . , h(an)〉) of X
as a result. This can be taken as the definition of the result h(a) of performing
h : Ω∗ −→ X on a :: Ω∗.

This construction of Ω∗ is immediately interpretable in the more general
context of categories, functors and the very general notion of algebra of a
functor. Given a category C and a functor T : C −→ C , a T -algebra is an
object C of C with a morphism c : T (C) −→ C. The reason for this name is
that, if Ω is a signature, we can identify it with a functor Ω : Set −→ Set by
setting

Ω(X) = {〈ω, 〈x1, . . . , xn〉〉 | ω of degree n and x1, . . . , xn ∈ X}.

Then an Ω-algebra can be seen to correspond to a set X with an assignment of
an n-ary operation over X to every ω ∈ Ω of degree n, which is the standard
notions of algebra for a signature Ω.

If c : T (C) −→ C and d : T (D) −→ D are T -algebras, a T -algebra homo-
morphism between them is defined to be a morphism h : C −→ D of C that
makes the following diagram commute:

T (C)
c //

T (h)

��

C

h

��
T (D)

d // D



From Curry to Haskell? 13

An initial T -algebra is then one for which there is exactly one T -algebra ho-
momorphism to every other T -algebra. It is the initial object of the category
of T -algebras and their homomorphisms. As a very important example, Ω∗ to-
gether with δ : Ω(Ω∗) −→ Ω∗, both intepreted as relative to the category Set,
is the initial Ω-algebra. There are two basic facts about algebras in this sense
that make them central in the categorical account of algebraic data types:

– there is a fundamental result by Lambek (1968), the Lambek Lemma, which
states that if a : T (A) −→ A is initial, then a is an isomorphism, that is, A
is a fixed-point of the functor T : C −→ C . This guarantees the existence
of solutions to recursive equations like data Nat = Zero | Succ Nat in
the code shown in Figure 1: just take Nat = Ω∗ for Ω = {Zero, Succ}.

– Under very general assumptions on T and C , in particular the existence of
suitable colimits (Adámek 1974), the initial algebra a : T (A) −→ A of T
can be built as the colimit of a chain starting with the initial object, much
like that of diagram (3).

From the point of view of programming, the universal property of initial al-
gebras can be immediately turned into a scheme of definition by structural
recursion of functions over data-types, when the latter are regarded as initial
algebras. The explicit observation that many useful functions over data-types
can be programmed as homomorphisms by means of such structural recursion
schemes goes back at least to Burstall and Landin (1969), who extended this
remark also to other free structures, in particular lists of elements of X re-
garded as elements of the free monoid over X, defining the Haskell functions
map, filter, any, all, and substitution over WΩ(x) as suitable homomor-
phisms from free structures, possibly over sets of generators.6

4 Iteration and inversion

4.1 On the essence and meaning of Nat

We have seen that it is possible to look at Ω as a functor from the category
of sets to itself. Then we can interpret diagram (3) as a colimit, which implies
that Ω∗ is the (carrier of the) initial Ω-algebra

δ : Ω(Ω∗) −→ Ω∗.

6 The interest of T -algebras in a computational setting can also be seen from their use in
the categorical investigations on classes of automata by Arbib, Manes and several others, in
the early 1970s. There, a central notion is that of dynamics that generalizes the transition
function of an automaton δ : X ×Q −→ Q, where X is the input alphabet and Q the set of
states of the automaton. The observation that the construction X×· is an endofunctor over
the category of sets makes this notion of dynamics a special case of the general categorical
definition of an algebra of an endofunctor T : C −→ C . In the context of the categorical
reconstruction of automata theory, T -algebras were usually studied through the free monad
over T , see (Arbib and Manes 1974) for an early survey of this field. Monads have come to
play an important role in structuring Haskell programs, although through a different path,
following pioneering work by Moggi, Spivey and Wadler in the late 1980s.



14 Felice Cardone

We have thus recovered the usual categorical notion of initiality that has been
taken as essential to the characterization of data types in programming since
the work of (Goguen et al. 1977).

This notion actually arose well before the invention of categories, in a way
that can however immediately be expressed in categorical terms, in the classic
account of Richard Dedekind (1888). This is the “Theorem of the definition by
induction”, which states that given a set A, an element a ∈ A and a function
f : A −→ A, there exists a unique h : N −→ A such that

h(0) = a

h(s(y)) = f(h(y)).

As the function h : N → A depends uniformly both on a ∈ A and on f :
A −→ A, we can highlight this uniformity by writing it as foldn f a, as an
interpretation of the foldn functional over Nat defined in Figure 1.

Fold functionals in programming have been used, for lists, by Barron and
Strachey in 1963 (Danvy and Spivey 2007), but a particular case with the
name of reduction was systematically present in APL (Iverson 1962, §1.8) in
examples like the definition of multiplication as repeated addition:

+/5 ρ 6 = 6 + 6 + 6 + 6 + 6 = 30

where M ρ N yields the vector consisting of the M -fold repetition of N , and
the sum reduction +/ performs the sum of all the elements of this vector.
But the algebraic foundations of fold, and even their categorical connections,
become explicit only in the algebra of programs over lists developed by Bird
(1987) and in the Bird-Meertens formalism (or Squiggol) (Bird and Meertens
1987).

The essential use of folding in defining functions over the elements of al-
gebraic data types can be understood better if we consider the second-order
definitions of such structures (Böhm and Berarducci 1985). In the case of
natural numbers, for example, we represent n as the second-order typed term

ΛX(λfX→X .λxX . f(· · · f︸ ︷︷ ︸
n times

x))

of type ∀X.(X → X)→ (X → X), where X is a (universally quantified) type
variable. This type is the standard encoding of N in this context. Given any
〈A, s, z〉 such that z : A and s : A → A there is an element n A s z : A,
representing the result of iterating n times the “successor” function s to the
“zero” element z. Here type abstraction, expressed by the prefix ΛX, allows
to perform the iteration of s : A → A starting from z : A, over any carrier
A and for any choice of s : A → A and z : A, and acts as a surrogate of the
initiality of N.

This way of characterizing the natural numbers as iterators can already be
found literally in Wittgenstein’s Tractatus (Frascolla 1997), and can be grafted
onto the tradition of proof-theoretic semantics (Schroeder-Heister 2018) by ex-
ploiting a form of the inversion principle of Lorenzen, relating introduction and



From Curry to Haskell? 15

elimination rules. It is this set of notions that we would like now to introduce
briefly.

4.2 Folding and inversion

An important idea, formulated by Gentzen (1935) for his systems of natural
deduction, is that the elimination rules for logical constants are in some sense
consequences of the corresponding introduction rules (Curry 1963, §5A3, p.
173). This idea can be made more precise by an application of the inversion
principle of Lorenzen (1955),7 formulated originally for his notion of calculus
but readily adapted to the context of formal systems.

We first need an important notion in the general theory of formal systems,
that of admissibility of a rule of inference. A rule R is admissible if any deriva-
tion obtained by the use of R can be transformed into one obtained without
such use, see (Curry 1963, §3A2). In the formal system N for natural numbers
introduced in (1), the rule

N(s(x))

N(x)

is admissible, though it cannot be obtained by composing the rules of the
system. The proof of its admissibility proceeds by induction on the height of
the derivation of the premise, which in the present case could only have been
derived by an application of rule

N(x)

N(s(x))
(successor)

so N(x) must already have been derived. Observe that the same argument
allows to define a process p : N −→ N that computes the predecessor function
over positive numbers.

Now, the inversion principle states that if, in a formal system, A can only
be introduced by the rules

Γ1

A
· · · Γn

A

then the rule
A
C

is admissible when
Γ1

C
· · · Γn

C

are used as additional rules. Indeed, given a derivation of A, its last step must
be of one of the forms

Γi
A

7 See (Schroeder-Heister 2008; Moriconi and Tesconi 2008) for recent investigations.



16 Felice Cardone

for some i = 1, . . . n. Then an application of rule

Γi
C

allows to infer C, showing admissibility.
This reasoning can be generalized to the situation where we have a formal

system A, with an ob a :: A and an effective process f : A −→ A. Consider
then the possible ways in which we can “introduce” in a derivation of N a
judgement of the form N(n):

1. the judgement is N(0) and follows from axiom (zero);
2. the judgement has the shape N(s(x)) and is derived by an application of

rule (successor).

and we can define an effective “elimination” process F (f, a) : N −→ A by
induction on the height of the derivation of the judgement N(n) for each
n :: N :

– in case 1, n ≡ 0 and
F (f, a)(0) = a (4)

– in case 2, n ≡ s(x) and

F (f, a)(s(x)) = f(F (f, a)(x)). (5)

The process F (f, a) has the same definition as foldn f a, and relates this gener-
alization of the inversion principle to the universal property of free structures,
in this case N . Equations (4) and (5) define folding as elimination rule for N ,
where the obs of N become iterators and the constructors 0 and s play the
role of introduction rules.8

5 A confluence of languages

By way of conclusion, we can now put our story in a nutshell. Starting from
some basic ideas originating from Curry’s work on formal systems, we have
reached a point where the languages of algebra, proof theory and category
theory can all be used to describe a set of notions exploited by an extensive
style of functional programming, illustrated by the Haskell code displayed in
Figure 1. Universal properties of structures yield recursion schemes defining
unique homomorphisms that characterize data structures whose elements can
be synthesized or analyzed by means of proof-theoretical notions like introduc-
tion/elimination rules, related by the inversion principle. All the notions we
have encountered along our story converge and hint at possible common foun-
dations. In this paper we have made an attempt to argue that the existence
of such a convergence can be justified on a conceptual basis.

8 See (Thompson 1991) for more on the application of the inversion principle to program-
ming.



From Curry to Haskell? 17

One possible development of the present work should extend the kind of
analysis sketched in this paper to the potentially infinite structures that have
come to play a prominent role in (lazy) functional programming (Meijer et al.
1991). The semantical foundations of these structures have been thoroughly
investigated both with the techniques of domain theory and with those arising
from the theory of final coalgebras and coinduction (Fiore 1996). Yet, we
believe that it may be useful to present them in a coherent narrative showing,
also in this case, the confluence of notions and accounts couched in different
languages.

From a more general point of view, we believe that the overall structure
of the story presented in this paper, with its focus on a relevant fragment of
code and the development of its conceptual context, may have many other
instances within a programme systematically investigating the constitution of
programming paradigms by following, as we have attempted to do here, the
formation of sets of linguistic abstractions from different and often unrelated
insights into computational problems.

Acknowledgements The preparation of this paper has been supported by project PRO-
GRAMme ANR-17-CE38-0003-01 (principal investigator Liesbeth De Mol). I am grateful to
the anonymous referees for insightful comments that have led to a definite improvement of
the original version. My warmest thanks also to Simone Martini for presenting the results
of this paper at a project meeting that I could not attend.

References

Adámek J (1974) Free algebras and automata realizations in the lan-
guage of categories. Commentationes Mathematicae Universitatis Carolinae
15(4):589–602

Arbib MA, Manes EG (1974) Machines in a category: An expository introduc-
tion. SIAM Review 16(2):163–192

Bauer FL (1990) The cellar principle of state transition and storage allocation.
IEEE Annals of the History of Computing 12(1):41–49

Bauer FL (2002) From the Stack Principle to ALGOL. In: Broy M, Denert E
(eds) Software Pioneers, Springer-Verlag, pp 26–42

Bird RS (1987) An introduction to the theory of lists. In: Broy M (ed) Logic
of Programming and Calculi of Discrete Design, Springer-Verlag, pp 3–42,
NATO ASI Series F Volume 36. Also available as Technical Monograph
PRG-56, from the Programming Research Group, Oxford University

Bird RS (1998) Introduction to Functional Programming Using Haskell.
Prentice-Hall

Bird RS, Meertens L (1987) Two exercises found in a book on algorithmics. In:
Meertens L (ed) Program Specification and Transformation, North-Holland,
pp 451–457

Bobryk J (2009) The genesis and history of Twardowski’s theory of actions and
products. In: Lapointe S, Wolénski J, Marion M, Miskiewicz W (eds) The



18 Felice Cardone

Golden Age of Polish Philosophy: Kazimierz Twardowski’s Philosophical
Legacy, Springer Netherlands, Dordrecht, pp 33–42

Böhm C, Berarducci A (1985) Automatic synthesis of typed λ-programs on
term algebras. Theoretical Computer Science 39:135–154

Burks AW, Warren DW, Wright JB (1954) An analysis of a logical machine
using parenthesis-free notation. Mathematical Tables and Other Aids to
Computation 8:53–57

Burstall RM (1969) Proving properties of programs by structural induction.
The Computer Journal 12(1):41–48

Burstall RM, Landin PJ (1969) Programs and their proofs: An algebraic ap-
proach. In: Meltzer B, Michie D (eds) Machine Intelligence, Edinburgh Uni-
versity Press, vol 4, pp 17–43

Cohn P (1965) Universal Algebra. Harper’s series in modern mathematics,
Harper & Row

Coquand T, Huet G (1988) The calculus of constructions. Information and
Computation 76:95–120

Curry HB (1934) Functionality in combinatory logic. Proceedings of the Na-
tional Academy of Sciences of the USA 20:584–590

Curry HB (1941) Some aspects of the problem of mathematical rigor. Bulletin
of the American Mathematical Society 47:221–241

Curry HB (1950) Language, metalanguage, and formal systems. Philosophical
Review 59:346–353

Curry HB (1951) Outlines of a Formalist Philosophy of Mathematics. North-
Holland Co., Amsterdam

Curry HB (1952) On the definition of substitution, replacement and allied no-
tions in an abstract formal system. Revue Philosophique de Louvain 50:251–
269

Curry HB (1953) Mathematics, syntactics and logic. Mind 62:172–183
Curry HB (1961) Some logical aspects of grammatical structure. In: Jakob-

son R (ed) Structure of Language and its Mathematical Aspects, no. 12 in
Proceedings of Symposia in Applied Mathematics, American Mathematical
Society, Providence, R.I., U.S.A., pp 56–68

Curry HB (1963) Foundations of Mathematical Logic. McGraw-Hill, New
York, reprinted 1977 by Dover, Inc., New York.

Curry HB, Feys R (1958) Combinatory Logic, Volume I. North-Holland Co.,
Amsterdam, (3rd edn. 1974)

Curry HB, Hindley JR, Seldin JP (1972) Combinatory Logic, Volume II.
North-Holland Co., Amsterdam

Danvy O, Spivey M (2007) On Barron and Strachey’s Cartesian Product Func-
tion. In: Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’07, pp 41–46

De Mol L (2006) Closing the circle: an analysis of Emil Post’s early work.
Bulletin of Symbolic Logic 12(2):267–289

Dedekind R (1888) Was sind und was sollen die Zahlen?, 1st edn. Verlag von
Friedrich Vieweg und Sohn, Braunschweig, translation by W.W. Beman in
Essays on the Theory of Numbers (1901), reprinted in 1963 by Dover Press



From Curry to Haskell? 19

Fiore MP (1996) A coinduction principle for recursive data types based on
bisimulation. Information and Computation 127(2):186 – 198

Frascolla P (1997) The Tractatus system of arithmetic. Synthese 112(3):353–
378

Freyd PJ (1991) Algebraically complete categories. In: Carboni A, Pedicchio
M, Rosolini G (eds) Proceedings of the 1990 Como Category Theory Confer-
ence, Springer-Verlag, Lecture Notes in Mathematics, vol 1488, pp 131–156

Gentzen G (1935) Untersuchungen über das logische Schliessen. Mathematis-
che Zeitschrift 39:176–210, 405–431

Goguen J, Thatcher J, Wagner E, Wright J (1977) Initial algebra semantics
and continuous algebras. Journal of the ACM 24:68–95

Gorn S (1959) Introductory speech. In: Proceedings of the International Con-
ference on Information Processing, UNESCO, Paris, June 13–22 1959, pp
117–118

Hindley JR (1969) The principal type-scheme of an object in combinatory
logic. Transactions of the American Mathematical Society 146:29–60

Hoare CAR (1972) Notes on data structuring. In: Dahl OJ, Dijkstra EW,
Hoare CAR (eds) Structured Programming, Academic Press Ltd., London,
UK, pp 83–174

Hudak P, Hughes J, Peyton Jones SL, Wadler P (2007) A history of Haskell:
being lazy with class. In: Proceedings of the Third ACM SIGPLAN History
of Programming Languages Conference (HOPL-III), San Diego, California,
USA, 9-10 June 2007, pp 1–55

Iverson KE (1962) A Programming Language. John Wiley & Sons, Inc., New
York, NY, USA

Lambek J (1968) A fixpoint theorem for complete categories. Mathematische
Zeitschrift 103:151–161

Landin PJ (1964) The mechanical evaluation of expressions. The Computer
Journal 6:308–320

Lorenzen P (1955) Einführung in die Operative Logik und Mathematik.
Springer-Verlag, Berlin, Göttingen, Heidelberg

Martin-Löf P (1982) Constructive mathematics and computer programming.
In: Cohen LJ,  Los J, Pfeiffer H, Podewski KP (eds) Logic, Methodology and
Philosophy of Science, VI, North-Holland Co., Amsterdam, pp 153–175

McCarthy J (1963) Towards a mathematical science of computation. In:
Popplewell CM (ed) Information Processing 62: Proceedings of the IFIP
Congress 1962, North-Holland Co., Amsterdam, pp 21–28

Meijer E, Fokkinga MM, Paterson R (1991) Functional programming with
bananas, lenses, envelopes and barbed wire. In: Functional Programming
Languages and Computer Architecture, 5th ACM Conference, Cambridge,
MA, USA, August 26-30, 1991, Proceedings, pp 124–144

Meyer RK (1987) Curry’s philosophy of formal systems. Australasian Journal
of Philosophy 65(2):156–171

Milner R (1978) A theory of type polymorphism in programming. Journal of
Computer and System Sciences 17:348–375



20 Felice Cardone

Moriconi E, Tesconi L (2008) On inversion principles. History and Philosophy
of Logic 29(2):103–113

Post EL (1943) Formal reductions of the general combinatorial decision prob-
lem. American Journal of Mathematics 65(2):197–215

Rosenbloom P (1950) The Elements of Mathematical Logic. Dover Inc., New
York

van der Schaar M (2013) On the ambiguities of the term judgement ; an evalu-
ation of Twardowski’s distinction between action and product. In: Chrudz-
imski A, Lukasiewicz D (eds) Actions, Products, and Things. Brentano and
Polish Philosophy, De Gruyter, Berlin and Boston, pp 35–54

Schroeder-Heister P (2008) Lorenzen’s operative justification of intuitionis-
tic logic. In: van Atten M, Boldini P, Bourdeau M, Heinzmann G (eds)
One Hundred Years of Intuitionism (1907–2007): The Cerisy Conference,
Birkhäuser, pp 214–240

Schroeder-Heister P (2018) Proof-theoretic semantics. In: Zalta EN (ed) The
Stanford Encyclopedia of Philosophy, spring 2018 edn, Metaphysics Re-
search Lab, Stanford University

Seldin JP (1975) Arithmetic as a study of formal systems. Notre Dame Journal
of Formal Logic 16(4):449–464

Thompson S (1991) Type Theory and Functional Programming. Addison Wes-
ley Longman Publishing Co., Inc.

Twardowski K (1999) Actions and products (1912). In: Brandl J, Wolenski J
(eds) On Actions, Products and Other Topics in Philosophy, Rodopi, Ams-
terdam, pp 103–132

Wozencraft JM, Evans A Jr (1971) Notes on programming linguistics. Tech.
rep., Massachusetts Institute of Technology, Cambridge, Massachusetts


