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Abstract

We prove that the Hermite functions are an absolute Schauder basis for many global
weighted spaces of ultradifferentiable functions in the matrix weighted setting and
we determine also the corresponding coefficient spaces, thus extending the previous
work by Langenbruch. As a consequence, we give very general conditions for these
spaces to be nuclear. In particular, we obtain the corresponding results for spaces
defined by weight functions.
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1 Introduction

The systematic study of nuclear locally convex spaces began in 1951 with the fun-
damental dissertation of Grothendieck [20] to classify those infinite dimensional
locally convex spaces which are not normed, suitable for mathematical analysis.
Among the properties of a nuclear space, the existence of a Schwartz kernel for a
continuous linear operator on the space is of crucial importance for the theory of
linear partial differential operators. In our setting of ultradifferentiable functions,
this fact helps, for instance, to study the behaviour (propagation of singularities
or wave front sets) of a differential or pseudodifferential operator when acting on
a distribution. See, for example, [1, 7, 16, 17, 33, 38] and the references therein.

Since the middle of the last century, several authors have studied the topo-
logical structure of global spaces of ultradifferentiable functions and, in particu-
lar, when the spaces are nuclear. See [31], or the book [19]. More recently, the
first three authors in [9] used the isomorphism established by Langenbruch [28]
between global spaces of ultradifferentiable functions in the sense of Gel’fand
and Shilov [18] and some sequence spaces to see that under the condition that
appears in [11, Corollary 16(3)] on the weight function @ (as in [12]) the space
S(Q,)([Rd) of rapidly decreasing ultradifferentiable functions of Beurling type in the
sense of Bjorck [3] is nuclear. However, there was the restriction that the pow-
ers of the logarithm were not allowed as admissible weight functions. Later, the
authors of the present work proved in [10] that S(w)(le) is nuclear for any weight
function satisfying log(¢) = O(w(¢)) and w(f) = o(t) as ¢ tends to infinity. The tech-
niques used in [10] come especially from the field of time—frequency analysis
and a mixture of ideas from [7, 21, 22, 38]. In both [9] and [10], we use (dif-
ferent) isomorphisms between that space S(w)(le) and some sequence space and
prove that S(w)(le) is nuclear by an application of the Grothendieck—Pietsch cri-
terion [32, Theorem 28.15]. Very recently, Debrouwere, Neyt and Vindas [14, 15]
(cf. [27] for related results about local spaces), using different techniques have
extended our previous results in a very general framework. In [14], they charac-
terize when mixed spaces of Bjorck [3] of Beurling type or of Roumieu type are
nuclear under very mild conditions on the weight functions. In [15], using weight
matrices in the sense of [37], the same authors characterize the nuclearity of gen-
eralized Gel’fand—Shilov classes which extend their previous work [14] and treat
also many other mixed classes defined by sequences.

The aim of the present paper is twofold. On the one hand, we extend the work
of Langenbruch [28] to the matrix weighted setting in the sense of [37, 40]. In
particular, we prove that the Hermite functions are a Schauder basis of many
global weighted spaces of ultradifferentiable functions. Moreover, we determine
the coefficient spaces corresponding to this Hermite expansion (Theorem 1).
These results are applied to spaces defined by weight functions Slwl([Rd), being
[w] = (w) (Beurling setting) or [w] = {w} (Roumieu setting). Hence, we extend
part of the previous work of Aubry [2] to the several variables case. As a conse-
quence we are able to generalize our previous study [9, 10] about the nuclearity
of the space S(w)(le) to global spaces of ultradifferentiable functions defined by
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weight matrices (Corollary 2). An application to particular matrices gives that
S(W)(Rd) is nuclear when w(f) = o(#%) as ¢ tends to infinity. Similarly, we also prove
the analogous result for the Roumieu setting, namely that S{w}(le) is nuclear
when w(f) = O(#?) as t tends to infinity (see Theorem 6 for both results). For
weights of the form w(f) = log?(1 + r) with § > 1, our results hold and, hence, we
generalize the results of [28] to spaces that could not be treated there since, as is
easily deduced from [11, Example 20], 8[(Mp)p](|R) # 8 (R) for any sequence of
positive numbers (M,,),ey in the sense of [26] (see Remark 4). We do not treat
here the classical case w(f) = log(1 + 1), for which §,,(R) = S(R), the Schwartz
class, because in this case infinitely many entries of our weight matrices are not
well defined. However, the results presented here are already well known for the
Schwartz class.

The classes of functions treated in [15] are in general different from ours. In fact,
here we consider spaces of functions f that are bounded in the following sense: for
some (or any) & > 0, there is C > 0 such that for all x € R? and every multi-indices a
and f, we have

Ix*0Pf(x)| < Chl**PIM,,, (A).

And we pass to the matrix setting for the multi-sequence (M,),, i.e. we make Mi
depend also on a parameter 4 > 0 (see the precise definition in the next section).
In [15], the authors consider spaces of functions f bounded in the following sense:
there is C > 0 such that for all x € R and every multi-index f# they have

Iw(x)o’f(x)| < CM, (B),

where w is a positive continuous function. They pass to the matrix setting by making
Ml'} and w” depend on the same parameter 4 > 0. Hence, taking unions (Roumieu
setting) or intersections (Beurling setting) in A in the situation (A) gives different
classes of functions than in the situation (B) in general. On the other hand, it is a
very difficult problem to determine when the classes treated in this work are non-
trivial, a question not considered in [14, 15]. We characterize in a very general way
(Propositions 2 and 3) when the Hermite functions are contained in our classes and
this fact is closely related to classes being non-trivial. Indeed, we can deduce from
our results that, in the Beurling setting, the space S(w)([Rd) contains the Hermite
functions if and only if w(f) = o(r*) as t tends to infinity (Corollary 3). However, it is
not difficult to see from the uncertainty principle [23, Theorem] that S(w)([Rd) = {0}
when 2 = O(w(?)) as ¢ tends to infinity. In the same way, in the Roumieu case, the
space S {w}(Rd ) contains the Hermite functions if and only if w(r) = O(#?) as 1 tends
to infinity (Corollary 3), but again from [23, Theorem] we can deduce
S {w}(le) = {0} when 7 = o(w(?)) as ¢ tends to infinity. For more information on the
uncertainty principle for Slwl(Rd) where, as stated above, [w] = (w) or {w}, see the
nice introduction to the paper of Aubry [2] and the references therein. Moreover, our
classes are well adapted for Fourier transform (Corollary 1). We should also men-
tion that throughout this paper we assume, on the multi-sequence (M,),, that
(M,)'/1”! tends to infinity when |a| tends to infinity, which is stronger than the
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condition infyens (M, /M)!/1%l > 0 considered in [26, Def. 3.1] (for the one-dimen-
sional case). The reason is that it is not clear how the results read when the associ-
ated function is infinite (see Remark 1).

The paper is organized as follows: in the next section, we give some necessary
definitions, in Sect. 3 we introduce the classes under study in the matrix weighted
setting and establish the analogous conditions to [28] to determine in Sect. 4 when
the Hermite functions belong to our classes. In Sect. 5, we introduce the suitable
matrix sequence spaces and prove that they are isomorphic to our classes, which is
the fundamental tool to see that our spaces are nuclear. We finally apply these results
to the particular case of spaces defined by weight functions in Sect. 6.

2 Preliminaries

In what follows, for given ¢ = (t,, ... ,t,) € R?, we are setting |¢|, := max, ¢« |-
We briefly recall from [26] those basic notions about sequences M = (M),) ¢y, for
Ny :=NU {0}, that we need in what follows. A sequence (M,,),, is called normalized
if M, = 1. For a normalized sequence M = (M,,),,, the associated function is denoted
by

|7[?

wp (1) = sup log —, teR.
M peNPO gMp 2.1

We say that (M), satisfies the logarithmic convexity condition (M1) of [26] if
M) <M, M., peN. (2.2)

The following lemma is well known (see Lemmas 2.0.6 and 2.0.4 of [39] for a
proof).

Lemma1 Let (M,),en, be a normalized sequence satisfying (2.2). Then

(@ MM, <M, forall j,k € N;
b p- (Mp)l/” is increasing;
() liminf, (M) > 0.
From Lemma 1(c) and [26, Prop. 3.2], we have that a normalized sequence
M = (M,), satisfies (2.2) if and only if
D
Mp =su

—_—, e Np.
50 exXp oy (1) p="o 2-3)

We say that (M), satisfies the stability under differential operators condition (M2)
of [26] if
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JAH21VpeN,: M, <AH"M,, (2.4)
and (M), satisfies the stronger moderate growth condition (M2) of [26] if
JA>21VpgeN,: M, < AP+"Mqu. (2.5)

The following lemma extends [26, Proposition 3.4] for two sequences. We give the
proof for the convenience of the reader.

Lemma2 LetM = M,,)pen, and N = (N,)pen, be two normalized sequences satisfy-
ing (2.2). Then the following conditions are equivalent:

(i) 3A=1VpeN,: M, SAT’“NI,.
(i) JA>21,B>0Ve>0: owy@) +logt < wy(AD) + B.

Proof 1f (i) is satisfied, then, for all ¢ > O,

P Afyp+] At
e = sup — < sup Any < sup @ = @mWD,

PEN, Np PEN, Mp+l PEN, P

Conversely, if (ii) holds, then, by (2.3),

i g
N, =sup—— > sup ——
>0 eXpon(t) — 0 €8 exp wy(Ar)
_B su (S/A)p+l _ e B

>0 eXpay(s)  Aptl Pl

O

Now, we consider sequences M = (Ma)aeNg of positive real numbers for multi-indi-
ces a € N‘é. As in the one-dimensional case, we say that (M, ),eng is normalized if
M, = 1. We recall condition (3.7) of [28]

JA> 1V, peN: MM, <Ay, o (2.6)
Condition (2.4) takes in this setting the form (see [28, (2.1)])
JA>1VaeN,1<j<d: Mq, < Aleltiyg 27
and (2.5) turns into
JA> 1Va,pENS 1 M, ,; <AIM M, (2.8)
Now, for t € R4, we denote

NG, i={aeNj:a=0if;=0,j=1,...d}. (2.9)
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The associated weight function of a normalized M = (Ma)aeNg is given by
_ |71 d
oy = sup log—, t€ R,
aeNgvl Ma

where by convention 0° := 1. Note that for a normalized sequence we have

Remark 1 As it has already been pointed out in the geometric construction in
[30, Chap. I] for the one dimensional weight function (see (2.1)), we have that
wy(t) < +oo for all € R if and only if lim,_, ,(M,)"/1* = +c0.

First, assume that wy,(¢) < +oo for all # € R?. Hence for all t = (¢, ... ;) € R?
satisfying 7., := min,;, |1;] > 1 we have that there exists some C (depending only
on 1) such that log I <'C for all @ € NZ. So 1% < |#1 -+ 15| = || < ¢“M, for all
a € Ng and now let t:nm — +o00.

Conversely, let limlml_)OO(MD,)I/M‘| = oo and so for any A > 0 large, we can find
some C > 0 large enough such that A1*! < CM,,. Since |t%| < |¢|!*! for all t € R? and

. o |er|
a € NI, we see that for any given r € RY we get L;—l < % < C for some C > 0 and
alla € N,

Lemma3 LetM = (Ma)aeNg. Then, for all h > 0 and « € N,

Mahlal > sup |ta|€_wM(1/h). (2.10)

teR4

Proof Fixa € Ngandh > 0;wewriteR? := {reR? : 1;# 0fora; #0,j=1,...,d}.
Then fort € RY \ R‘Of , we have 1* = 0, and so it is enough to prove that

M h* > sup |t%|e™®m/D),

(e (2.11)
We have
i B
1(7) |
exp sup log
1 o/l pent, M,
——— =1in = in
Supltale_wM(l/h) reRd |17 reRd Tad
1eRd
A\
o G
= inf — sup ;

eRry |1%] peng My
1

observe that o € Ng . and so, choosing f = a, we get
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1 . [£%] 1
_— > inf = .
Sup |ta|e_wM(t/h) TGRZ |tll|h|(l|Ma hlalM‘x
teR4

which proves (2.11), and then the proof is complete.
Note that if wy(¢/h) = +o0, then (2.10) is clear and so we could restrict in the
estimates above to allt € Rg such that wy(t/h) is finite. O

In the following, we use two normalized sequences as above M = (Ma)aeNg and
N= (Na)aeNg and we compare them in the sense:

M<N if M,<N, aeN.
This clearly implies
on(t) < oy, te R

In [28], Langenbruch uses his condition (1.2) to prove that the Hermite functions
belong to the spaces considered there. In the present paper we need, for the same
reason, a mixed condition that involves two sequences:

3H,C.B>0Va,f €N 1 oMy < BC"H' "IN, ;. (2.12)

Remark 2 Condition (2.12) yields that hmlal—» (N )1/ |"| = +o00. Indeed, since by
convention 0° = 1 and by definition a®/? ’/ S from (2.12) with =0
we get (recall |a|,, := max, ., a;) that

N1/|a| >B~ MC TH (/)10 = g~ MC 1y~ (aa1/2 . ad/2)1/|0t|

>B I«IC YH- (|a|la| /2yl/lel > B~ MC 1g-1 <| |> - too.

3 Global ultradifferentiable functions in the matrix weighted setting

In this section, we consider matrices of normalized sequences (M?) « of real
a 12>0,aeNd
positive numbers:

M i= (MD)g 2 MP) = (M) ey, M = 1. @1
1)
M®P < M® for all 0 < A < «k}.

We call M a weight matrix and consider matrix weighted global ultradifferentiable
functions of Roumieu type defined as follows (from now on|| - ||, denotes the supre-
mum norm): first, for a given normalized sequence M, we set

) Birkhauser
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Sow :={fe CoRY) : 3Ch> 0, [[fllonn = SUP 1ol c},
a,ﬁ‘eNg h|a+ﬂ|Ma+ﬂ

S (=f €CCRY) 1 Vh>03C, >0, |fllomn < Cils

endowed with the inductive limit topology in the Roumieu setting (which may be
thought countable if we take & € N) and with the projective limit topology in the
Beurling setting (countable for A~' € N). Next, we define the matrix type spaces as
follows:

Sivy 1= Sy = 1f € CORY) 1 3C, 14> 0, [Ifllopins < C,
A>0

S(M) = m S(M(/l))
>0
={f € C*RY) : Vh,A>03C,;, >0, fllomorn < Cinks

again endowed with the inductive limit topology in the Roumieu setting (which may
be thought countable if we take A,h € N) and endowed with the projective limit
topology in the Beurling setting (countable for A~!, h~! € N).

Now we consider different conditions on the weight matrices that we use fol-
lowing the lines of [28]. The next basic condition extends (1.2) of [28] in the
Roumieu case and is needed to show that the Hermite functions belong to S,
(see Proposition 3):

VA>03k>ABCH>0Va,fEN]:

aa/ZM;ﬂ) S Bc|a|H|a+ﬂ|M(K) . (32)
a+p

The analogous condition to (3.2) in the Beurling case, which is needed to show that
the Hermite functions belong to S 4, is the following (see Proposition 3):

VA>030<xk<AH>0VC>03B>0Va,f €N :

a/2y 4(k) la| zrla+8] 1, 3.3)
o Mﬂ <BC'“H Ma+ﬂ.

Remark 3 Similarly, as commented in Remark 2 for (2.12), property (3.2) (property
(3.3)) yields that limy,_, ,,(M*))!/1| = 4 o0 for some k > 0, and hence for all " > x
(lim ) oo M) /1! = 400 for all A > 0).

We also need to extend condition (3.7) of [28] to the matrix weighted setting.
First, we state it in the Roumieu case:

Vi>03k2 A2 1V, peEN] 1 MM <AIME) . (34

and in the Beurling case:

X Birkhauser
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Vi>030<k<AA21Ve, feNS: MEOMP <A MY (335

The extensions of condition (2.7) (mixed derivation closedness properties) for a
weight matrix M in the Roumieu and Beurling cases read as follows:

VA>03k > LA>IWWaeNL1<j<d: MY, <Ay, (3.6)

VA>030 <k < AA2IVaeNj 1 <j<d: My, <AMP. (37
The following conditions generalize (2.8) to the weight matrix setting:

Vi> 03k > LA > Ve, fENG © M), <AIMEOMY, (3.8)

Vi>030 <k < ALA2 Ve, fENG 1 MY <A IMPMD. (39)

It is immediate that for any given matrix M satisfying (3.8) and (3.4) we can replace
in the definition of Sy 4, the seminorm || - || , pe 4, bY

119 0%f Il o
apeny M MY

We have an analogous statement for the class S, under (3.9) and (3.5). When we
define the spaces Sy 4, or Sy, with the weighted L? norms treated below in (3.17),
the similar property holds.

Lemma4 Let M be a weight matrix as defined in (3.1).

If (3.6) holds, then

VYi>03k>AB;,B,>1VteR!:

3.10
(1 + )X D exp @y (1) < B, exp oy (Byh). (3.10)

If (3.7) holds, then

VAi>030<k <AB,B,>1VteR?:

3.11
(1 + t)* D exp @y (1) < B, exp @y (By). G-11)

Proof First, we consider the Roumieu case. By 2(d + 1) iterated applications of
(3.6), we find Ky 9 > Kpgpy = ... 2k 2 A>0and A, ..., Ay, > 1such that, for
alla € Ngandl <j<d,

) Birkhauser



14 Page 100f 39 C. Boiti et al.

(A |a|+2d+2 5 ,(k))
M, e, <A M. 2are,
<A|a|+2d+2A|2a|+2d+1M‘(;2;dﬂ
. (3.12)
la+2d+2 4 la|+2d+1 | |a|+1 5 (K242
<o <Al Aj Ay M,
SA|a|+2d+2M‘(xx)
for A 1= (max{A,,..., Ay, 1) and k 1= Ky,

Now, we have for [¢|, > 1

2(d+1) 2(d+1)
2d+2 ; 2d +2
1 4[>+ = < . >tf§ < . > d|t
(1+ 1) > s ¥ (7 ).y

=0 I =0

2d+1)
de+1|t|i§d+1) Z <2d;- 2> _ (4d)d+1|l|i(’d+l)
Jj=0

since |t| = \/ .+ t2 < \/_ d|t| .. Therefore, by the definition of the associated

weight functlon, choosmg k> A >0 as in (3.12), we have, assuming ||, = i for
somel <j<dandlt|, >1

L
(1 + 2> exp oy (1) @D 17D sup — 7
ENd

At a+2(d+1)e;
<y sup A0 7

()
aeNg Ma+2(d+l)e
t
<@d)™" su |( i | (4d)"™! exp oy (AD).
ﬁeN" M( )

On the other hand, if r € R with |¢|, < 1, then |¢] < \/c_i and hence, for k as in
(3.12),

(1 + )XY exp wpgw (1) < C; < C, exp oy (A1),

with C, depending on 4 since x depends on A.
We have thus proved (3.10) with B, = max{(4d)™*',C,}and B, = A.
In the Beurling case, by 2(d+ 1) iterated applications of (3.7), we find

0 < Kogpo < Kpgyy < oo Sk < Aand Ay, ..., Ayy,, > 1such that
M(/l) >A la|— 1M(rqe >A Ja|— IA Ja|— zM;iz;e
ZAl—Ial—lAz—la|—2 Azgilz 2d~ ZM:E&:W A-lal-2d- zMi’i)z(dH)e (3.13)
for A :=(max{A,,...,A,;;,D**? and k :=K,,,,. Then we proceed as in the

Roumieu case and prove that

X Birkhauser
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(1 + |t|)2(d+l) exXp COM(A)(I‘) < B,l €XP Wy (AI),
for B! := max{(4d)d+1,max|tls\/[-1(1 + £)?“4*D exp oy () ). O
Lemma5 Let M be a weight matrix that satisfies (3.7). Then

VA>0ONeN3IO<k <ALAB>1VieRY\ {0} :

(3.14)
[V @) (t) + NlOg |t| < C()M(K-)(A[) + B.
Let M be a weight matrix that satisfies (3.6). Then
VA>0NeNIk>1LAB>1VieRY\ {0} :
(3.15)

me(t) + Nlog |t| < C()M(A)(At) + B.

Proof 1f t € R\ {0}, then by the definition of the associated weight function, for
1 <j <dsuchthat|t|, =1,

111 exp oy (1) <(Vdltl )" exp oy (1) = d¥[5] exp wygen (1)

(e 3.16
_dN/leNefl sup | J _dN/2 | ; |, ( )
ENng((Z) end, M,(,)

where Ng,; is defined by (2.9). This estimate is valid for any given index 4 > 0.

In the Beurling case, by N iterated applications of (3.7) we find
Ky <ky_; <..<K <1 and AL LAy 21 such that, for
A 1= (max{A,,...,Ay}DY and k :=ky, we have, proceeding as in (3.13),
M;’:)Ne_ < Alal+N M((X’l). Therefore,

N N/2 |(An)**N | N/2
[t]™ exp oy () < d / Sup ————— <dv/ exXp Wy (A1),
aeNgY, Ma+Ne/-

and we conclude that (3.14) is satisfied for B : = max{ y logd, 1}.
In the Roumieu case, we make N iterated applications of (3.6) and we find indices

K i=Ky>2ky_2..2k2A and A,...,Ay>1 such that, for
A 1= (max{A,,...,Ay}" and k = Kk, as in (3.12) we have that Mfl?Ne» < Al )
and hence from (3.16):
ta+Nej At a+Ne;
[£]N exp @y (£) <d""* sup u <d""? sup |()/1—|
aENg_t MaK) aENgJ M((x-:Ne
SdN/z eXp Cl)M(A') (At),
so that (3.15) is satisfied with B = max{%] logd, 1}. O

Now, we consider the different system of seminorms
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, 9l
W llome, = sup PPIEN A h>0, (3.17)
a.peNd h Ma+ﬂ
on Sy and Sy, where || - ||, is the L? norm. Under suitable conditions on the

weight matrix M, it turns out to be equivalent to the previous one given by sup
norms, as we prove in the following:

Proposition 1 Let M be a weight matrix as defined in (3.1) that satisfies (3.3) and
(3.7) ((3.2) and (3.6)). Then the system of seminorms || - ||y 5 i Siagy (Syuqy) is
equivalent to the system of seminorms || - ||, pw . More precisely, in the Beurling
case we have the following two conditions for every f € C*(R?):

3C,>0YA4,h>03k>0,h=h,;,>0:

3.18
U llanio s < Collf Nl i i (3.18)

VAh>03K>0,C,,>0h=h;;,>0:

3.19
W lloin p < Copllfllome i s G-19)

in the Roumieu case we have the following two conditions, for every f € C®(R?),

VAh>03C,,>0,3c>Ah>0:

(3.20)
W llomeo s < Copllf oo s

VAh>03C,;,>0,K>0,h>0:

“f”oo,M@,/} < CA,hllflIz,M(/l),h'

Proof Let f € C®(R). Then for C; = (/p, de)l/z, we have

(3.21)

aAp PN
Ix*0"fll, < CilIAL + [x]7) 2 x%0"f ()| -
If x|, < 1, then
9\ 4L o 4L il
A+ x)72 <A +dlxl)> <(d+d)~=.
On the other hand, if |x|, > 1 then
N 2 2 & 2 2\ 2L d+l
L+ [x1972 < (xls, + 161D 2 < (x5, +dlxly) > <@d+ 1D x|

Therefore, for any fixed x € R?, being | x|, = |x;| for some 1 < j < d, we have
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d+1 d+1
I+ X)) 7 x| < (d+ 1) max{|x* @4, x|}

and hence

d+l
1x°0"f 1l < Cy(d + 1) > max{|lx™ D 9Pf ||, I Dol f

(3.22)
 Nlxe @ DeagPe|| 1x*0Pf ]l }-

Now, we consider separately the Beurling and Roumieu cases. In the Beurling case,
for every 4,h > 0, we first estimate |[x**“*V49Pf ||, v, to use (3.22). By (d + 1)
iterated applications of (3.7) there exist 0 <k :=k,;,; <k; <...<k; <4 and
Ay, ...,A; 2 1 (A, depending on A) such that, proceeding as in (3 13), we obtain

(x) la+Bl+d+1 y 1(3)
Ma’:—ﬂ+(d+l)e <A} M., for A, = (max{A,, s A DA > 1. Hence, we
deduce

[lx*+* D 9Pf| o < [lx™+* D 9Pf| o

+81 P +B|+d+1 4
h|‘1 ﬂlMa+ﬂ hla f M a+p+(d+1)e;

d+1 4 la+p|+d+1
1Al :

Therefore, from (3.22) and the fact that M® < M@, we have for every 4,z > 0,

0%l <C,d+ 1) max { L A Vi
Hlep RHPIHEIME) e ’
||xa+(d+1)edaﬂf“oo hd+1A|a+ﬂ|+d+l ”x 0ﬂf” }
h|a+ﬂ|+d+1M(’(+)ﬂ+(d+l)ed h|“+ﬂ|M(K)

(3.23)
If i > 1then AN < (g latpledr,

If0 < h < 1then hd“AI“ﬂHdH < A'”’+ﬂ|+d+1 Hence, for
i min{ h}:L, it h>1,
h = ]/1 f:la
mm{AA h}:A—A, ifo<h<l,

we obtain

d+l
Il < Crld + D72 1 lloomaeo -

This shows (3.18).
Now, since §! < 5’15‘ 53‘1 = 5%, we have —“— < [ % )8! < 2le15%. So it follows
(a—0)! o)
by Leibniz’s rule and [28, formula (2.3)] that, for some C, > 0,
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[x“0°fll <C,  sup |07 (x*d"f)ll,
|7 <2d+2

<C, sup Z(g>ll(05x“)6”+y“sfllz
710 <2d+2 525

(3.24)

<C, sup 2<§)2'“'55||x“-5aﬁ+y-5f||2.

Irlw<2d+2 525

o<a

On the other hand, by |[y| iterated applications of (3.7), there exist
O0<k =k, <Ky <...<Kk <4 and Al,.. A 21 such that, for

A, :=| |max (max{A, ... Alyl})m we have M +ﬂ+ <A|a+ﬂ+y|Mu) By (3.3),
there exist 0 < ¥ < x and H > 0 such that for all C > 0 there is B > 0 so that
Vi —5 Ap+y—6
|x%0 fl(lﬁo)o <C, sup <g> |x*=%9 Y( fll, . plr=261
hle A M) Irl<2d+2 525 Rla+B+r= 25|MK)ﬁ+y s
6<a

. 2|°’|A'f”””'BC'Z‘“H"’Jrﬂ”'.
Observe that ¥ may depend on y. From (3.1) we can consider in the previous esti-

mates, instead of ¥, the minimum of all these ¥ for |y|, < 2d + 2, so that we can
finally choose ¥ independent of y. Since |y| < d|y|,, < 2d(d + 1) we have

aaﬂ
|[x f”oo SCzB(ZCHAi)M(dH)

(4)
Hesp M,
- sup 2 <7/> llx*~aP*7=5f ||
Irl<2d42 §2y 6 ) platpr- 25IM(’“)

a+p+y—26

o<a

. (2HA/1)Ia+ﬁ+Y—25|h|V—25|.

Now, if & > 1, then hl7=28l < platb+r=261 Apd if 0 < h < 1, then Al"=291 < 1 when
ly — 26| > 0 and Al7=21 < p=Irl < p=24@+D) when |y — 26| < 0. For

1 .

i h> 1

i) 2, =

{ it o<h<l, (3.25)
A

taking into account that

2 (g) < dl < graa+n),

6y

we finally have that for all A, > 0 there exist k¥, C,;, > 0 and h > 0, such that
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W lloin p < Copllf o i (3.26)

Since neither H nor A, are depending on /s, we have h — 0 as h — 0. This shows
(3.19) and concludes the proof in the Beurling case.

Let us now consider the Roumieu case. In (3.22), for any given A by (d + 1) iter-
ated applications of (3.6), we obtain x =k, >2k;>...2k; >2A>0 and
Al(’/lj" JAgp =1 such  that, for A, :=(max{A,..., A, D!, we have

< A'/{”ﬂ |+d+1M;'“+)ﬂ. Then from (3.22) and the fact that M* > MY we

a+f+(d+1e; atf = Tatp

obtain, given a fixed h > 0, for i := max{hA, 1},

x29P 1 x%oP xHd+De b
Ol gy 1y ] 10 s Pl et
M(K) M(K) M(/l)

at+p a+p a+p+(d+1e;

Scl(d + 1)%ﬁ|a+ﬂ|+d+l

ax{ X0l Il @+Deabr|| }

+BID 7 platpld+l P
hl ﬂlMa+ﬂ hle+h| Ma+ﬂ+(d+l)e/-

Hence, dividing by Al**7],

x"‘aﬂ d+1

% <Cd+ I ia VNl o a0 15
h Ma+/3

then (3.20) is proved, with C, , = C,(d + 1)F 7! (observe that i depends on 4 and

A).

Now, given any A > 0 consider k > A > 0 and B, C, H > 0 as in (3.2). Then, by |y|
iterated applications of (3.6), there exist kK := Ky 2.2k 2Kk2>4 and
Ay, Ay 2 Tsuch that, for A, 1= (max{Ay,..., A, DI, M%) <A@
So, from (3.24) with 7 =1 and & instead of A, applying (3.2) and proceeding as
before, we get

1% 0%f ll o

(%)
Ma+ﬂ

SCZBC4d(d+ 1)

a=8 3f+y—5 (3.27)
Y |a+p+7| ”x 0 f”2
sup E <5 >(2A/1H) v —

<2d+2
7l <2d+2 §<y a+fry—28
o<a

Since for every 7 > 0 and a, f3, ¥, 6 as above

[l =20P* =51 I,

+p+y=25| pgA
hletpr lMa+ﬁ+y—2§

< Wl »

dividing (3.27) by (24 ,Hh)!*+#| we obtain
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[1x“0f ll oo
(24, Hh)+AIME),

<Ifllo pen y CoBCHHHD
sup Y <g>(2AAHh)'V'h-'25'.
Irlw<2d+2 523

Taking the sup on a and g in the left-hand side, we then get (3.21) with /1 = 24 JHh
and

C/Lh = Cch4d(d+1) sup Z < g >(2A/1Hh)|y|h_|25|,
IVl <2d42 §=3

O
We observe that in (3.18) the constant C| is fixed (it depends only on the dimension
d), and moreover, we only need (3.7) to prove it. On the other hand, to obtain (3.19) we

consider (3.7) and (3.3). In the Roumieu case, we just need (3.6) to prove (3.20), while
for the proof of (3.21) we use (3.2) to choose k¥ > A and then (3.6) to get& > «.

4 Hermite functions: properties in the matrix setting

We recall the definition of the Hermite functions H, fory € Ng:

o

d x:
H,(x) 1= (2|7|y!7rd/2)_1/2hy(x) exp <— >, xeRY,
j=1

Nl\.

where h, are the Hermite polynomials

d d
h,(x) 1= (—1)'”exp<2xf> - 07 exp <—2x}>, x e R?
=1

j=1
As in [28] we consider, for f € C*(RY), the operators

AL(f) i=F0.f +xf, 1<i<d,
d

av =[JA%.  aeng
i=1

with AOH. (=id.
By [32, Example 29.5(2)], setting Hy = 0 ifﬁj = —1forsomel <j < d, we have

— d
A_jH)=|27H, ., vEN;.
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It follows that, for a, y € N¢,

A“H,.,,) = H A‘Z,-(Hm): H( 2y)5H, = \/2lelyeH,. @1

1<j<d 1<j<d

We also recall the following two lemmas from [28]:
Lemma6 Let f € C®(RY). Then, forally € Ng and x € RY,

@ HE = Y Cpulrxd’f (),

a+p<y

Jor some coefficients C, 4(y) satisfying

172
y!
|Ca,p(3/)| <3l <((x+—ﬂ)'> , a, B,y € Ng.

Lemma?7 Foralla,f,y € Ng

- ' 1/2
1“0 H, ||, <25 <w> ,
Y

We can generalize Lemma 3.1(b) of [28] in the following way:

Lemma 8 Let M = (Ma)aeNg and N = (Na)aeNg be two sequences satisfying (2.12)

for some C,B,H > 0. Assume that f € C®(R?) satisfies, for some C; > 0 and for the
same constant C as in (2.12),

Wlanie = sup S50 @2)
2MC = . =6 .
apend ClathIM, g

Then
14%£1l, < C,Be"OV2HCIN,, v e NL.

Proof By Stirling’s inequality e(g) <n' < en(f) for any n € N. Hence, by

Lemma 6 and assumption (4.2), we have
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AT £l < DY 1C, 1 - 1x0%f I,

a+p<y

1/2
<c3n Yy <aiﬂ> (r —a = PI2C1*M,

a+f<y

e ) <a+ﬁ> (H(%—O‘. —ﬂ)l/z)

a+f<y

(y—a-

2
exp{ra/il}

<C,3lign/2ed/2 Z( " ﬂ>(y a—p) ey,

a+p<y
Applying now (2.12) and ¥, 5, < . _};_ s > < 37l (by [28, pg 274]), we get

Y df2 Iyl 4 ly—a—B gyl7| la+4|
14771, <Ce?3V2 Y <a+ﬁ>ch H"IN,C

a+p<y

<C,Be/*(9V2)"\(CH)'N, .

C|a+ﬂ|Ma+

As a corollary, we immediately have the following:

Lemma 9 Let M be a weight matrix satisfying (3.2) and assume that f € C®(R%)
satisfies, for some ,C; > 0
|lf||2,Mu>,c <C “4.3)

for the constant C of (3.2). Then
IALf1l, < C,Be*OV2HO)M®, Wy e N,
withk,B,H, C as in (3.2).
If M satisfies (3.3) and if, for some A > 0, f € C®(RY) satisfies
Il mew c < Cy
Jor the constant k < A of (3.3) and for some C,C, > 0, then
IALf1l, < C,Be*OV2HO)M®P, vy e N,
where H = H(A) and B = B(C, 1) are given by (3.3).

The following lemma generalizes [28, Lemma 3.2(b)].
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Lemma 10 Let M = (Ma)aeNg and N = (Na)aeNg be two weight sequences satisfying
(2.12). Then

lx*0’H, |
IH, llsxamc = Sup 12 < Beom(/O), Vy e N,
o apent QHO) N, g
where y1/? 1= (yll/z, ,y;/z) and B, C,H > 0 are the constants in (2.12).

Proof Fora,f,y € N we set
Ji={jeN: 1<j<da+p <y}
Jor={jeN: 1<j<d,a+ >y}

Then for any 6 € N¢ we denote

8, := Y b, 8= ) de;

Jjel jeJe

so that 6 = 6, + 6,.. By Lemma 7 and (2.12), we have

1/2
latpl +f+y)! la+5] atp
o’ H, |, <2 <M> <2t pnt

7!
aje+fpe AL
S2|a+ﬂ|(aj( + ﬁJL_)—Z v 2 4.4)
ay+hy 1

<BQHC)“*IN, ,y, > ————.
a J Ma_,+ﬂ_,C|aj+ﬂJ|

Now, since a; has the jth entry equal to ¢; for j € J and 0 for j € J*,

ay+hy aG+h %G+h; ay+h
0 JTP)
noo=Iy " =1y Iln =+ “3)
= = jeie
Moreover, by Lemma 3,
a+hy
Maj+[3_,claj+ﬂjl > sup |taj+ﬂle_wM(t/C)| >y 2 e_‘”M(VI/z/C)’ (46)

teR4

taking ¢ = y!/%.
If we replace (4.5) and (4.6) in (4.4) we finally get

Ix*0”H, |l < BQHC)“+!IN, , je™n/O),
a

Proposition 2 Let M be a weight matrix that satisfies (3.2) and (3.6) ((3.3) and
(3.7)). Then H, € S\, (H, € S\yy) forally € N‘é.
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Proof By Lemma 10, if (3.2) is satisfied, we have
VA>03k >4, 3B,C,H>0:
o a K (0} 1/2
Ix*0"H, ||, < BQHO)“*!IM}Y) | om0,

Hence, H, € S{M} by Proposition 1. Similarly, in the Beurling case, if (3.3) is satis-
fied, we obtain

VA>030<k <A 3IJH>0: VC>03IB>0:
a 5f a+p| 3 g(A) @0 (172 C)
[|x*0 Hy||2$B(2HC)| + |M|a+ﬂ|e Mo (72/0)

So H, € S, by Proposition 1. O

The next result gives information about the non-triviality of the classes Sy,
and 8( M) Indeed, we characterize when the Hermite functions Hy are contained
in such classes.

Proposition 3 Let M be a weight matrix that satisfies (3.6), (3.4); then the following
are equivalent:

(@ 34>03C,C;>0: a*2<C,CMMPD, Vae N
(b) M satisfies (3.2);
() H, €S forally € Ng.

If M satisfies (3.7), (3.5), then the following are equivalent:

@' VYAC>03C,>0: a2<CCMD, Vae NG
(b) M satisfies (3.3);
(©" H, €Syyforally € Ng.

Proof The implications (b) = (c) and (b)’ = (c¢)’ follow from Proposition 2. To see
(a) = (b), fix an arbitrary y > 0 and A as in (a). We have

aa/ZM;M) < Cl ClalMy)M;”).
So, for v =max{4, u}, by (3.1) and (3.4), there exists ¥k > v and A > 1 such that
a MY < C,CMMPMY < € CHAIMY) [ a,p e NG,
Now, we prove (a)’=(b)". For any given 1 > 0, let 0 < x < A and A > 1 such that

(3.5) holds. By (a)’ applied to this «, there is, for any C > 0, some C; > 0 depending
on x and C such that
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/2 14(€) ] 3g06) 2 0() lal g la+pl 3D d
a® Mﬂ §C1C"‘Ma"Mﬁ < C, C"MA" MaH;, a, f €N

If (c) holds, in particular, H, € 8{ M)~ Hence, there exist some C,h2 >0 and A >0
such that [|x*Hy ||, < Ch/M® for all « € N{. Taking x = a'/2, a € N¢ arbitrary,
yields

la®/2Hy(a'/?)| = 5/4 a‘lx1/2e—a,/2 aZd/2e—ad/2 _ ;/4 a2 em1al/2.
T T

Hence, a®/2z~%/4¢7191/2 < ||x*H||, < ChI*IM for all @ € N, which shows (a).
The Beurling case (c)' = (a)’ is analogous since, for any given A and & > 0, there
exists C, ;, > 0 such that [|lx*Hy||, < C,,h!*'MP for all a € N. O

5 Matrix sequence spaces

Let us consider, for M = (Ma)aeNg, the following sequence spaces in the Roumieu and
the Beurling cases:

Apgy = {e=(c,) €CY : In>0, [lellyy, := sup e le™@ /M < 4o,
aeNO

Aqp i={e=(c,) €CY : YA >0, [lefly, < +o0).
Since & = wy(a'/?/h)is decreasing we can also write
Appy=1{e=(c,) €CY% : FjeN, llelly; < +oo),
d .
App ={e=(c,) €CM 1 VjeN, el < +oo).
Now, for a weight matrix M as in (3.1), we denote

Ay = Aoy =le=(c) €C¥% : 34> 0, [lellyy, < +oo},
>0

A 2= [ Ao = {e=1(c,) €CY% 1 YA h>0, [lellyy < +oo}.
A>0

Since M® <M® for 0 < A <k by assumption, then @y > @yw. Moreover,
h o e@mw @21 g decreasing for all « > 0, a € Ng. It follows that we can write
Ay (A as inductive (projective) limit:

Ay ={e=(c,) €CY : FeN, [lellyn, < +oo}, G.1)
App=le=(cech: vjeN, lellyanm,1; < +eo0}. (5.2)

Note that by Remark 1, it seems natural to require that lim,_, (M, D1l = oo for
the definition of Ay and Ay In fact, otherwise wy(7) = +oo for all large 7 € R4
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and we get Ay = {0} and Ay, consisting of sequences having only finitely many
values # 0.

However, in our next main result, by Remark 3 and assumption (3.2) ((3.3),
respectively), we have the warranty of the finiteness of all associated weight func-
tions under consideration.

Theorem 1 Let M be a weight matrix satisfying (3.2) and (3.6). Then the Hermite
functions are an absolute Schauder basis in S,y and

T Sy — Ay

Fr—=Eyene i= ( / f (x)Hy(X)dX>
R4

d
7ENG

defines an isomorphism.

If M satisfies (3.3) and (3.7), then the Hermite functions are an absolute
Schauder basis in S, and the above defined operator T : S ) — Ay is an
isomorphism.

Proof By Proposition 1 we can assume that S, and S, are defined by L? norms.
First, we consider the Roumieu case. If f € S (M) there exist 4, C, C; > 0 such that

Il c =t €y < +o0.

By (4.1) and Lemma 9, there exist k > A, B, C, H > 0 such that for all y,a € Ng,
since ||H, ||, = 1for all y € Nd, we have

&, Oy = 1 H)Pr® < I V20elye )1 = (AL (H, )P
=[AL(P, Hy ) P < NASOIGIH, 1115
<C2B2A OV 2HC I (M®)Y2.

Therefore, by definition of the associated weight function, and using the notation of

(2.9), since |(y1/2)?] = |y/* ... ygd/zl = (y*)'/2, we obtain

1
172 a
50| () |
& (F)|e®ne 7 P TOVIHO) — g ’ 9v2HC
4

aeNg’y M((XK)

< C,Bef’?,

Hence, (&,(f)), € A4, and, more precisely, there exist k > A, H,C >0 and B > 1
such that
16,0, Ny 0 3c < Be Wl ppo - (5.3)

This proves that 7 is continuous in the Roumieu case [32, Proposition 24.7].
On the other hand, given ¢ = (Cy)yeNg € A{M}, let A, C* > 0 such that
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sup |Cy|ewm(/l)(y1/2/C*) = “c”MW,C* =: C>lk < 400.
reNd

By Lemma 4, there exist « > A and B, B, > 1 such that
e~ (Ba) @y 00 (1) <B,(1+ |t|)_2(d+l), te R4,

Then, by (3.2), there exist ¥’ > xk and B,C,H > 0 with C > B,C*, such that, by
Lemma 10,

le, | - ||x"0ﬂHy||2 §|cy|(2HC)|"+ﬂ|M;':;BewM(*‘)(VI/Z/C)

<C*B(2HC)|0'+'B|M(K,) P ) '/ C* )ty (v [ (B,CF))
=1 a+p

a [\ 264D G4
* la+p8] 4 4(x") /4
<C?BB,(2HC) Ma+ﬂ<1+ X > .
Since here |y'/?| denotes the Euclidean norm of the multi-index y'/2, we have
2P = ()™ 2 1 (5.5)
Hence,
af * la+p| 34" 1
Z’ le, | - Ix*0"H, ||, <C}BB,QHO)** /M, | Zd T
reNg reNg (1 + BC >
¢ la+B| 34" 1
<C}BB,QHO)**"IM), T
yeNg 1+ ’B I
2
, B C*)Z(d+1)
_ |a+pB] 74" ( 2
=C}BB,(2HC)“*"'\M", Zd NPT
7ENy
Hence,
”ZVEN (oH| L <CiBBC=BBClielyoc (5.6)

for C = ZyeNg(32C*)z(d“)/((BzC*)z(d“) + |y|**!) < 4c0. This shows that 7-! is
continuous and, moreover, that (H,), is an absolute Schauder basis in Simy

Let now f € S(M) and A, C > 0 be given. We consider 0 < k < A, H,B > 0 as in
(3.3) (with k and H depending only on 1) and we set

C, = lfllymw ¢ < +oo.

By Lemma 8, we have

A%, < C,Be>OV2HO MY, a e N
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Hence, proceeding as in the Roumieu case, we deduce that, for all A, C > 0, there
exist 0 < k¥ < Aand B, H > 0 such that

16,0, g oy3c < Be™ I oo c- .7)

This shows that T is continuous in the Beurling case.
Now, if ¢ = (cy)yeNg € A(M), then by (3.3) and Lemma 10, for all A4, C > O there

exist 0 < k¥ < 4, and H, B > 0 (with x and H depending only on 4) such that
p g only
A N
Ix*0"H, ||, < QHC)"*\M{) e /O,
By Lemma 4, there exist 0 < ¥’ < x and B, B, > 1such that
e—a)M(K/)(th)+wM(,()(t) S Bl(l + |t|)—2(d+l)’ te Rd.
Since ¢ € /\(M), we have

12
sup |Cy|8wM(K/)(Bzy /0) = ”c”M(”’),C/BZ = Cl < 4+00.
yenNd

Therefore, arguing as in the Roumieu case,

A
Z |Cy| . ||x‘%aﬂHy||2 5C13(2HC)|a+ﬂ|Mi+)ﬂ
7GN61
- E e_wM(K/)(B2VI/Z/C)+0)M(K>(yl/Z/C)
yeNg
Z 1

g 1/2 2(d+1)
yeNd A +1r'2/Cn

<C,BB,(2HC)"**"1M?

<BC,2HC) 1M 5

for B=BB, Y, e C*V/(CHHD 4 |y|9+!) < 400, For all 4,h> 0, there exist
€Ny
then k¥’ < Aand h = h/(2HB,) > 0 such that

|2 e

This shows that 7! is continuous on S( v and that (Hy)y is an absolute Schauder
basis in S( M) which finishes the proof. O

< Bllellyen j- (5.8)

2,M@ h

As in [28, Corollary 3.6], we also have that the Fourier transform is well adapted
to our spaces and it is an isomorphism:

Corollary 1 Let M be a weight matrix satisfying (3.2) and (3.6) ((3.3) and (3.7)).
Then the Fourier transform is an isomorphism in S v, (Supy)-

Now, we prove that the spaces of sequences are nuclear.
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Theorem 2 Let M = (M,(f))po,aeNg be a weight matrix satisfying (3.7). Then A, is
nuclear.

Proof By (5.2) and [32, Prop. 28.16] (see also [10, Theorem 3.1] for a self-con-
tained proof in the case of countable lattices), the sequence space A, is nuclear if
and only if

VieN3zeN,?>j: Z/ et Gr )=y v +00. (59

rENg
Moreover, by Lemma 5, condition (3.14) is satisfied. We can thus proceed as in the
proof of Theorem 1 of [9] to prove that (3.14) implies that the series in (5.9) con-
verges, and hence A< M) is nuclear. To this aim, we fix an index A > 0 and N € N
with N > 2d and remark that if the inequality (3.14) holds for A = 1/j and « < 4,
then it holds also if, instead of «, we put ¥’ = 1/h with h e N, h > [l] + 1, since
M®) < M® for ¥’ < k and hence Wy < @y Then for £ > Ah (so that Z > Aj
and £ > h > j and note that the constant A is also depending on the chosen N):

Z e U1 =0 €r'?) < 2 ema/n G =epam@ir'?) 4 q

reNg reNG\{0}
~Nlogliy2|+B | 1 _ BN 1
< D oe +1=c5N ) |y|N/2+1<+oo,
yeNd\ (0} yeNd\ (0}
by our choice of N > 2d. O

Concerning the Roumieu case, we have the following result.

Theorem 3 Let M = (M;’D)Do’ae,\,g be a weight matrix satisfying (3.6). Then A,
is nuclear.

Proof For

s o0 @2/
a,;=e ™ ,

we consider the matrices

: _ -1
with v, ; = o

(an)aeNg,jeN’ (VaJ)aeNg,jeN

We observe that A is a Kothe matrix since its entries are strictly positive and

a,; < a, ;4 forevery j € N. We consider now the space

d .
A = le=(c,) eV vjieN, z lcgla,; < co}.

d
aeNG

Since Nd = U, I, with I, = {a € N? : |a| <m} and v,; > 0 for every a and j,
we have that the matrix V satisfies the condition (D) of [5] (see also [4]). From [4,
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Theorem 18(1)], we have that 4, is distinguished, and then, from [4, Corollary
8(f)] and (5.1) we get

() = Apway-

Since a Fréchet space is nuclear if and only if its dual is nuclear [34, pg. 78], it is
enough to prove that 4, is nuclear; from [10, Theorem 3.1] this is true if and only
if

VkeNImeNm>k: Y e m-oun /b < oo
renNd

(5.10)

By Lemma 5, we can now use (3.15) with A = k and with a fixed N > 2d; since
Oy (1) < 0y (1) for every m > k, we can replace in (3.15) k by m = max{k, Ak},
obtaining that for every k € N there exists m > k such that

1/2 172
a)M(m(%) +N10g % < (Y () <A%> +B,

1/2

for every y # 0. Since A < m/k we obtain

@m0 IR < BN L ,
ly'/2 Y ly|V/?2

for y # 0; since N > 2d we have that (5.10) holds, and estimating as in Theorem 2,
we get the conclusion. O

Corollary 2 If M = (My))/bo,aeN;)’ is a weight matrix satisfying (3.3) and (3.7), then
the space S\, is nuclear. If M satisfies (3.2) and (3.6), then the space S\, is
nuclear.

Proof The Beurling case follows from Theorems 1 and 2, and the Roumieu case fol-
lows from Theorems 1 and 3. O

Proposition 4 Let M = (M,(,'l))/bo,peNo be a weight matrix (with d = 1), such that
each sequence MY satisfies (2.2) and lim, (Mp)l/” = +o00. Assume, moreover,

— 00
that
MAD
D .__°
U = P (S Ns
r M(/l)
p—1

satisfies u® < u™ for all 0 < A < k and ;46'1) = 1for all A > 0. Then the following
conditions are equivalent:

(@ YeENILeN,Z>j: TI%eomnitM-owmn@? < 4o
b) VA>03I0<k<AA>1VpeN: M;’fl <AIM,
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Proof If condition (b) is satisfied, then (3.7) is satisfied and hence also condition (a),
as we already saw in the proof of Theorem 2.
Let us now assume condition (a) and prove (b). To this aim let us first remark that

k — @pgan (k7?) = oo (C67?) (5.11)
is decreasing. Indeed,
wMum(fkl/z) - wMum(ikl/z) =(0)M<1/m (fkl/z) - COMu/m(ikl/z))

+ (wM<1/f>(fk1/2) - wM(l/f>(ik1/2))

=:a)| +a)2.

The first difference w; = wyg/e(£k/?) — wpgase (ik/?) is increasing since by defini-
tion ¢ — /(€' is convex (see the proof of Theorem 1 in [9] for the implication
that the convexity implies that @, is increasing).

To prove that also the second difference w, is increasing, we set

@ =#{peN: ,ul(;l) <t}

and remark that, by (2.2) (see [26, formula (3.11)]),

t
z
me(t) =/ M(M(S)ds.
0

N

Then

t
Zpare (8) = Zypan (5)
wMU/f)(t)_wM(l/f)(t):/ M P M ds
0

is an increasing function of ¢ since
EM(l/m(S) > ZM('//’)(S), 4 >j?

by the assumption ,u[(,l/ “ < ﬂl(,l/j) forZ > j.
Therefore, w; and w, are increasing and we have thus proved that (5.11) is
decreasing. This condition together with assumption (a) implies that

klim ke@nin Gk =oyase (€K —
—+00

There exists then A > 1 such that

sup ke®w1 K=oy @) < 4
keN

and hence, forall k e N,
Opan GEY?) = opgosn (k%) < —logk +log A < —log(jk'/?) + log(jA).

Choosing, for every ¢ > 1, the smallest k € N such that jk'/? € [t, (j + 1)t], we finally
have
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@y (1) + 10g t <y (k%) + log(jk'/?)

SwMU/f)(fkl/z) + log(jA) (5.12)

SOpa/o) <é(l + 1)t> + log(jA).
J

Since (5.12) is trivial for 0 < ¢ < 1, we have proved that condition (i7) of Lemma 2 is
satisfied for N = M) and M = MX/%) and hence, from (i) of Lemma 2, there exists
A > 1such that

(1/0) _ Zp+las(1/p)
Mp+] < AP Mp R Vp € N,.

Then, for all 4 > 0, choosing j € N so that% < A, there exists k = % < jl < Asuch

that condition (b) holds. O
Proposition 4 yields now the following result.

Theorem 4 Let M = (M), pen, be a weight matrix as in Proposition 4. Then the
space Ay is nuclear if and only if condition (3.7) is satisfied.

Proof 1t follows from Theorem 2 and, in particular, (5.9). O

Theorem 5 Let M = (M;/l))/bﬂ,pENU be a weight matrix as in Proposition 4. Then the
space Ny, is nuclear if and only if condition (3.6) is satisfied.

Proof By the proof of Theorem 3 we have that A, is nuclear if and only if (5.10)
is satisfied, and this is equivalent to (3.6) since, analogously as in Proposition 4, the
following two conditions are equivalent:

(a)/ VjeNIZeN,£>j: zl‘::i ewM(f)(kl/Z/f)—wM(i)(kl/z/j) < +oo.
by Vi>03x>AA21VpeN: M) <AME.

Indeed, (b) implies (3.6) and hence (a)’, i.e. (5.10), in the one-dimensional case,
by the proof of Theorem 3.

Conversely, if (a)’ holds then for every fixed j € N, and £ > j as in (a)’, there
exists A > ¢ such that

Sup kewM(f’)(kl/z/f)_wM(i) (kl/z/j) < A
keN

since
k — wpge (k1721 6) = wpgo (K72 /)

is decreasing, similarly as in the proof of Proposition 4. Then, for all k € N,

X Birkhauser



Nuclear global spaces of ultradifferentiable functions in... Page290f39 14

oy (K172 /€)= oy (K72 /) < —logk + 1og A < —log(k'/?/£) + 1og(A/?).

If £ > 1 we can choose a smallest k € N such that k'/2/¢ € [t,(1 + i)t] and obtain
that /

oy (1) + logt Swyn (k2 /€) + log(k' 2 /)
<opo (k72 /) +log(A/£)

p : (5.13)

Since (5.13) is trivial for 0 < ¢ < 1, we have that

oy (2) +logt < oy (A + B, vt > 0,

for A = §(1 + ;) > 1 and B = log(4/#) > 0. By Lemma 2 with M = M® and

N =M, for every A > 0 we can choose j € N, j > A so that (b) is satisfied for
Kk=¢>j> A a

6 Rapidly decreasing ultradifferentiable functions
We shall now consider weight functions w defined as below:

Definition 1 A weight function 1is a continuous increasing function
w . [0,4+00) = [0, +00) such that

(@) AL>1Vt>0: w®2t) < L(w(t) + 1),
(B w@) =0 ast —» +oo;

(y) logt=o(w(t) ast — +oo;

6) @, :=w(e)is convex on [0, +o0).

Then we define w(f) : = w(|?|) if t € R<
It is not restrictive to assume |, ;; = 0. As usual, we define the Young conjugate
@, of ¢, by

@, (s) i= Su(l)J{tS —@,(D},

which is an increasing convex function such that ¢** = ¢, and ¢*(s)/s is increas-
ing [12, 24]. We remark that condition (#) and the stronger condition w() = o(t%)
as t tends to infinity are needed in the Roumieu and Beurling cases for Corollary 5
and Theorem 6. On the other hand, condition (y) guarantees that ¢ is finite, so that,
from the properties of @7 (see [12] or [8, Lemma A.1]) we easily obtain (cf. [37]):
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Lemma 11 Let w : [0,+00) — [0, +0) be a weight function as in Definition 1, and
set

WD o= 7% )5 0,0 e N 6.1)
Then WY € R and the weight matrix
M, i=(WP), o= (Wy))bo, aeNd (6.2)

satisfies the following properties:

i wP=1, 1>0

(i) (WP < W;g_w;i)ei, A>0,a €Ndwitha, #0,andi = 1,....d;
(i) WO <WH, 0<k <A
(v) WO <WEAWED 4> 0,0, € NG;
v) Vi>03A>1VA>03D>1Vae Ng : h""Wy) < DW;“);
(vi) Both conditions (3.6) and (3.7) are valid;
(vii) Conditions (3.4) and (3.5) are satisfied fork = Aand A = 1.

Proof Let us first remark that condition (y) of Definition 1 ensures that Wy) € R for
alA>0anda € Ng. Condition (i) is trivial since ¢} (0) = 0. Condition (ii) follows
from the convexity of ¢ :

(A(|u\71)+i(\a\+l))
2

. 2
ei @Al _ 5% < eivuMa=el) 5o (Alate)

The monotonicity property (iii) is clear since @ (s)/s is increasing. Properties (iv),
(v) and (vii) follow from [8, Lemma A.1]. Indeed, from [8, Lemma A.1(ix)]

e PaAlatp) < 50, CAla+ 5, 2A1AD)

From [8, Lemma A.1(iv)] with A = L? + L and B = L?, where L is the constant of
condition («) of Definition 1,

pllgieulal < A o3 2 la)

1(1+%)[logh+1]

forall A/ > ABUee"*and A, , 1= e7 . From [8, Lemma A.1(ii)]

o1 Pu A+ @GR o 5@ (Alatpl).

Finally, (vi) is an immediate consequence of (iv). O

Let us now define the spaces of rapidly decreasing w-ultradifferentiable func-
tions, in the Roumieu case
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SipRY :={f € C*R?) : 31>0,C>0 s.t.

1 s
sup [|x*0Pf | 3o < )

a,peN?
={feC*RY) : 34>0,C>0 s.t.
1x*0Pf || o
I llower == sup = <cl,
a,ﬂeNO Wa+ﬂ

and in the Beurling case
SR :={f e C*RY) : VA>03C; >0 : |[fllown < C,}-
From Lemma 11(iv) and (vii) (see also [6, Thm. 4.8]):

x%P

S RH=1{feC®RY): 34>0,C>0: <
{w} { a pend Wl(lA)Wl(;A)

and

S, RY={fec®®): vAi>03C,>0: ol

w®)={f €CRN : ¥A>03C, >0 sup T < C, .

apeNd Wy Wﬂ

We refer to [6, 8, 22] for more equivalent seminorms on S(w)(le), if w(r) = o(£).
We can also insert Al**#! at the denominator (for some % > 0 in the Roumieu

case and for all 42> 0 in the Beurling case) by Lemma 11(v). In particular, we

have the following

Proposition 5 Let @ be a weight function and M, the weight matrix defined in (6.1),
(6.2). We have S{M")}(Rd) = S{Q}(Rd) and S(Mm)(le) = S(w)(Rd) and the equalities
are also topological.

Remark 4 We observe that for the weight function () = log’(1 + ¢), for some s > 1,
we have that S, (R) never equals S(M,,)(R) for any sequence (M,,)pen,- Hence,
S(@)(R) cannot be defined with sequences as in [28] when (M,,) satisfies (MO0), (M1)
and (M2) (see [11] for the definition of (MO0); (M1) and (M2)' are recalled in (2.2)
and (2.4)).

Indeed, by [11, Example 20], £, (R) # E(M,,)(R) for any sequence (M,,) as consid-
ered just above, where E(w)(lR) and E(Mp)(IR) are the spaces of ultradifferentiable
functions defined by weights and sequences (for the definitions see [11]). We fix a
sequence (Mp) and prove that S(w)(IR) + S(Mp)(IR). Clearly, we can assume that (Mp)
is non-quasianalytic since the weight w is non-quasianalytic. In particular, (M,,) sat-
isfies (MO) (see [11], condition (M3)’, and use also (M1)).If f € 5(Mp)([R) \ (R,
then there are a compact set K C R and m € N such that
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N
sup sup [f(x)|e m9(5) = too.
JEN) xeK

Hence,

. # (o
Vn e N 3x, € K,j, €N such that [fU(x,)| > nem(p‘”("l )

Since K is compact we can assume that the sequence (x,) converges to some x, € K.
Let ¢ € D(M,J)(IR) (the space of functions in S(Mﬁ)([R) with compact support) with
@ = 1 in a neighbourhood of x,. Then g = fp € D), ,(R) C S(M y(R) but, for n suf-
ficiently large, ’ ’

189G _ )l
gi) ()
and hence g & S, (R) (see the definition of S, (R) above).
Analogously, for f € £, (R) \ E(Mp)(R) we can construct g € §,,(R) \ S(Mp)(IR).

The same arguments are valid for the Roumieu case and for dimension bigger
than one (considering always isotropic classes).

n— +oo,

The following Lemma was proved in dimension 1 in [25, Lemma 2.5]; here we
give a version of it in dimension d.

Lemma 12 Let w be a weight function. Then there exists a constant B > 0 and, for
every A > 0, there exists C; > 0, such that

Ay () < @(t) < Biowa (t) + C;, re R4 (6.3)

Proof For t = 0 the thesis is trivial, so we can consider ¢ # 0. Since || < |¢|!*! for
every multi-index a, we have

{Alallog|t] — @F (Alal)}

1

Awown () =4 sup log

d
aer

<@, (ogl1]) = w(®),

— < sup
* (A AT
e(ﬂm( lal)/ (lENg

so the first inequality of (6.3) is proved. Now, similar to [37, proof of Lemma 5.7],
we can prove that, for every r € R? such that |¢| > e%/4,

w(t) £2 sup {AM log |t| — @' (AM) }.
0] Mego{ gltl — o, ( )} (6.4)

Observe now that for every ¢ € R?, we have |f| < \/;l|t|°° <d|t|,- Then by [8,
Remark 2.2(iii)],

o(t) < o(d|t] ) < Dy(o(|tl) + 1), (6.5)

for D, = L+ L? + ... + L%~!, where L is the constant of condition () in Definition 1.
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Fix now 7 € R? with |f| > %Y/ and let Jo be such that |¢| = |t]~0|; for every
M € N, we then write a, := Me; . We then have |t|g = |t*|, and so by (6.4) we
obtain

|7 |
= . < L
o(|t]e,) =a(|t; ) < 2,11;250 log ke
<24 sup | L,
B u:seur\JIZ o8 W = 2Awwn (1),

0,

since oy, € N4 , due to the fact that 7; # 0 (we are in fact considering ¢ € R4 such
that 7| > e“’z*u(’%/’l). By (6.5) we then obtain

Q)(f) < 2),dew(/1)(t) + Dd
for |t| > ¢?Y/* Then the second inequality of (6.3) holds for

B=2D, and C,=D,+ sup (1.

|| <era /2

O

Lemma 13 Let @ be a weight function and consider the weight matrix M, as
defined in (6.1), (6.2). Then forr > 0:

(a) @) =0 ast » +o0 if and only if

VA>03C,D>1VaeN': o™ < CDIWY; (6.6)
(b) o) =o'y ast — +oo if and only if

VAD>03C21VaeN: o™ < CDIWD. (6.7)

Moreover, in the conditions above we can replace “N¥ A” by “3 A”.
Proof We only consider the case “V A” since the proof for the case “IA” is
analogous.

(a): If w(t) = O(t'/") as t - +oo0, there exists ¢ > 1 such that

o) <ct'" 4, t>0,
and hence
?,(0) = o) < ce’!" +c, y > 0.

Then
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@’ (x) =sup{xy — @, (»)} > sup{xy — ce’/"} — ¢
y> y>

c (6.8)

:xr(log——l)—c, if x>-=.

C r

Therefore, for every 4 > 0 and j € N with j > ﬁ, choosing x = 4j and multiplying
by 1/4in (6.8), we have

A .
LorGp 2 jr(1og 22 —1) = € = tog " + jriog 22 - &
AT c A ec A
and hence, for j > ﬁ,
jr c ~ i~
J < ei® W(h) ei < CD WY 6.9)

for C; = ¢/*, D, = max { < ;r) )1 }, and Wj(’l) = ¢?(4)/* Enlarging the constants
C,. D, we have (6.9) for all j € N. Then

ra _ 7% ray % (A %D
af=al ., SCADAW(,] ...CADAW%,

and so we obtain (6.6) for C = C? in view of Lemma 11(vii).
Conversely, if (6.6) holds then, by definition of associated function we obtain, for
z€ R4,

o o
www(z) = sup log 12 (l < sup log|z* |
aeNd Wa aeNg
d a;
(Iz ID)
< sup ( logC+ Zlog .
aENZ)’J Jj=1 (Xj

Consider now j such that z; # 0 (otherwise the corresponding addend in the previous
sum is 0). A simple computation shows that

(151D (|z,»|D>S e
sup log < suplog < =(zlD)y'".
aeN aj % >0 e
We then have
< d
oww (@) <log C+ Y 2(151D)/" < log €+ = (12ID) /" (6.10)
j=1

By Lemma 12, we have o(z) = o(|z]) = O(|z]'/") as |z| = +oo for z € R?, which is
equivalent to w(f) = O(t'/") ast - +oo fort € R.
(b): If w(t) = o(t'/") as t — +o0, then for every D > 0 there exists ¢ > 0 such that

o) <DV +¢, 1>0.
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Proceeding as in (a) we have

O

@, (x) > xr(log % - 1> —-c, for x > —,

and hence

a’® <ec/l Q rlalw(l)
=\ @

and (6.7) is satisfied by the arbitrariness of D > 0.

Conversely, if (6.7) holds then, proceeding as in (a), we have that for every
A, D > 0 there exists C > 0 such that (6.10) is valid and, therefore, by Lemma 12,
(z) = o(|z]'/") as|z] = +oo for z € RY, or, equivalently, w(f) = o(t'/") as t = +co.

O

Corollary 3 Let w be a weight function. We have

(@) The Hermite functions belong to S, (R4) if and only if o(t) = O(t*) ast — +o.
(b) The Hermite functions belong to S(w)([Rd) if and only if o(t) = o(1*) as t — +oo.

Proof By Lemmas 13 and 11 and Proposition 3, m(f) = O(#*) as t — +oo if and only
if M, satisfies (3.2) if and only if the space S (R ) contains the Hermite func-
tions; while w(f) = o(£?) as t — 4o if and only if Mm satisfies (3.3) if and only if
S Mw)(IR ) contains the Hermite functions. O

At this point, some considerations are worthy to be expressed. Among all classes
of ultradifferentiable functions defined by global estimates, and in particular classes
of rapidly decreasing ultradifferentiable functions, the Gel’fand—Shilov spaces
SY([R“!) (Roumieu) and Z‘.S(Rd) (Beurling) have been largely investigated. If s > 1/2,
the space S,(R?) consists of those smooth functions f such that there is C > 0 for
which for any a, € Nd and any x € R? we have |x*0%f(x)| < ClotF/I+ g + |15,
While X (IRd) is the space of all the smooth functions f such that for each
C >0 there is D >0 such that for any a,f € Nd and any x € RY we have
|x%0Pf(x)| < D C1**l|a + B|!*. For s > 1, they correspond to the Schwartz class
in the context of Gevery classes (Roumieu and Beurling). In this setting the value
s = 1/2 is critical since S,(R?) # {0} if and only if s > 1/2, while £ (R) # {0} if
and only if s > 1/2 (see [35]). Under the above conditions the Hermite functions
constitute a basis for the Gel’fand-Shilov spaces SS(R‘Z) and ES(IRd). In fact, SS(R")
and ZS(IRd) are the subspaces of S(R?) consisting of those functions f that can be
expressed through Hermite expansions with coefficients c,, satisfying

_ 1/2s
e, (DI < ce™

for some ¢, > 0 (for every r > 0), as was shown by Zhang [41] (see also [13, 29,
36]). The critical exponent s = 1/2 for the Gel’fand—Shilov spaces is closely related
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to condition w(¢) = O(t?) as t — oo for the space S {w}(Rd), as we can see in the fol-
lowing corollary, which is a consequence of Lemma 13 applied to r = 1/2. On the
other hand, we observe that the inclusion X, ,,(R?) C S, (R?) trivially holds since
2 p(RY) = {0},

Corollary 4 Let w be a weight function. If o(t) = O(t*) ast — oo, then the Gel fand—
Shilov space S, /2(Rd) is continuously embedded in S, (R?).

Proof We consider the weight function w,(¢) = max(0, 7> — 1) and its corresponding
. . . . U

weighted mz(lgnlc) as defined in (6.1), ie. M, =W, >)A>0,aeNg, where

WD = ei% 1%V A straightforward calculation and Stirling’s formula show that

there are two constants A, C > 0 such that for each A > 0, there are B, D, > 0 satis-

fying that for any @ € N¢, we have
B,AI A2 112 < WD < D, Cl 312 g 112,

This gives immediately that S, /2(Rd ) =S M, ) Now, by an application of Proposi-
tion 5 we get S, ,(R?) = S, ,(RY). On the other hand, by Lemma 13 applied in the
particular case r = 1/2 (and again Proposition 5 and Stirling’s formula) we have

S12RN € S,y = Sy R,

for every weight function @ such that w(f) = O(#?) as t = oo, which concludes the
proof. O

For a weight function ® we now consider the sequence spaces

[Ryyr
sup |ca|eiw(a M < 4ol

d
aeNG

d .
Ay i={e=()eC% : FjeN, |, :

i
sup |ca|e’“’(“ D < 400}
aENﬁ

d .
A(w) ={c=(c,) € cNo VjeN, ”c”w,l/j

Proposition 6 Let w be a weight function and M, the weight matrix defined by (6.1),
(6.2). Then A,y = Ay yand A,y = A, ) and the equalities are also topological.

Proof From Lemma 12 with A = j (and taking B € N), we have

L (a2 (2N, G G .
e3_jw< B > < e“’WV)<Tj>+E’ < o e®wo@* /)

. 1 1/2 /57 . . .
and, conversely, ¢®wo@/) < ;™" /D This proves the Roumieu case. Taking
A = 1/j we prove analogously the Beurling case. O

We now easily deduce the following consequence of Theorem 1.
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Corollary 5 Let w be a weight function. The Hermite functions are an absolute
Schauder basis in S,,,,(R?) and

T: 8, R)— Ay,
= &,)yen,

defines an isomorphism.

If moreover w(t) = o(t*) as t — +oo, then the Hermite functions are an absolute
Schauder basis in S(w)(le) and

T: SR — Ay,
as defined above is also an isomorphism.

We finally have

Theorem 6 If w is a weight function, then S{w}(le) is nuclear. If, moreover,
w(t) = o(f?) ast — +oo, then S(w)(le) is nuclear.
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