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Abstract
Understanding the origins of life on Earth is one of the most intriguing problems facing science today.

In the research presented here, we apply computational methods to explore origins of life scenarios. In

particular, we focus on the origins of the genetic code and the intersection between geochemistry and a

primordial “biochemistry” in which mononucleotides could form short oligoucleotide chains. We also apply

quantum chemical methods to a modern biochemical reaction, the charging of tRNA by an aminoacyl-tRNA

synthetase, in order to shed light on the possible chemistry one may want to consider in problems relating

to the origins of life.

The question of how codons came to be associated with specific amino acids in the present form of the

genetic code is one fundamental part of gaining insight into the origins of life. Carl Woese and coworkers

designed a series of experiments to test associations between amino acids and nucleobases that may have

played a role in establishing the genetic code. Through these experiments it was found that a property of

amino acids called the polar requirement (PR) is correlated to the organization of the codon table. No other

property of amino acids has been found that correlates with the codon table as well as PR, indicating that

PR is uniquely related to the modern genetic code. Using molecular dynamics simulations of amino acids

in solutions of water and dimethylpyridine used to experimentally measure PR, we show that variations in

the partitioning between the two phases as described by radial distribution functions correlate well with the

measured PRs. Partition coefficients based on probability densities of the amino acids in each phase have

the linear behavior with base concentration as suggested by the PR experiments.

We also investigate the possible roles of inorganic mineral surfaces in catalysis and stabilization of re-

actions essential for early forms of replicating systems that could have evolved into biochemical processes

we know today. We study a proposed origins of life scenario involving the clay montmorillonite, as well

as a generalized form of a charged surface, and their catalytic role in forming oligonucleotides from ac-

tivated mononucleotides. Clay and mineral surfaces are important for concentrating the reactants and for

promoting nucleotide polymerization reactions. Using classical molecular dynamics methods we provide

atomic details of reactant conformations prior to polynucleotide formation, lending insight into previously

reported experimental observations of this phenomenon. The simulations clarify the catalytic role of metal

ions, demonstrate that reactions leading to correct linkages take place primarily in the interlayer, and explain

the observed sequence selectivity in the elongation of the chain. The study comparing reaction probabilities

involving L- and D- chiral forms of the reactants has found enhancement of homochiral over heterochiral

products when catalyzed by montmorillonite.

Finally, we shift our perspective on the problem of the origins of life, by considering a modern biolog-

ical reaction which is essential to all forms of life today: the charging of tRNA with correct amino acids

according to their anticodons. These reactions are performed by amino-acyl tRNA synthetases (AARSs),

and are essential for enforcing the genetic code. While studies involving the PR and code optimality apply

to a more error-prone epoch of early biology, possibly forming “statistical proteins” whose sequence is de-
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termined probabilistically by a loose mechanism of assignment of amino acids based on (possibly) PR, the

mechanisms that charge tRNA today are highly refined to charge only the correct amino acid to a tRNA, and

are thus essential for the high-fidelity translation mechanism present in all living cells. To gain some insight

into how the charging reaction may have come about, we apply quantum chemical methods to a problem of

modern biology to gain a further understanding of the mechanisms behind biochemical reactions.
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Chapter 1

Introduction

The quest to understand the origins of life on our planet is perhaps one of the most intriguing problems in

science. Unlike cosmology’s equally intriguing question of the origins of the universe, origins of life has

been an exceptionally speculative field of study. In the modern world, there are complex cellular processes

that replicate, transcribe, and translate the information molecules, DNA and RNA, into proteins. Each step

is enzymatically controlled: Replication of DNA by DNA polymerases acting in conjunction with helicases,

transcription of DNA into mRNA by RNA polymerases, and translation of mRNA into proteins by a nu-

cleoprotein complex, the ribosome, kinetically coupled to protein-tRNA complexes that help maintain the

genetic code. If early life on earth relied on archaic reactions without the benefit of protein catalysts, then

the following questions arise: what are the origins of the primitive polymers, how did the polymerization

reactions of peptides and oligonucleotides become genetically linked, and what are the universal principles

that underlie the evolution of functional biomolecules? Progress in developing a detailed understanding of

the Earth’s early geochemistry, the discovery of nucleobases in rocky meteorites [3], and the production of

amino acids in variations of Urey-Miller experiments have opened the field to rigorous scientific study. Still,

we have yet to formulate a complete and testable hypothesis for the origins of life. However, computer simu-

lations can provide valuable insight into proposed scenarios. Using computer simulations we have explored

potential mechanisms behind the origins of the genetic code, the potential role of inorganic minerals such

as clays as catalysts for forming chains of nucleotides, and have demonstrated the ability to utilize quantum

chemical methods to elucidate biologically relevant reaction mechanisms.

Chapter 2 – The content of this chapter is derived from two of our previously published papers

[4; 5]. We present a characteristic, quantifiable metric for amino acids and show that this

metric, the polar requirement, is strongly correlated with the structure of the genetic code.

Using molecular dynamics simulations, we show that the polar requirement (PR) results from

the partitioning of an amino acid across an aqueous-organic interface. Updated values for the PR

are derived from the MD simulation results, and the genetic codes error-tolerance optimality is

tested with respect to the PR as a metric of amino acid similarity. The results show a remarkable

degree of optimality for the canonical genetic code with respect to PR. Other amino acid metrics

are compared to the PR and the genetic code’s optimality tested. We find that our PR values are

the most highly conserved amino acid metric known, with respect to error-tolerance optimality

of the genetic code. We also study the interactions between amino acids and nucleobases in
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solution, which may have played a role in the assignment of nucleotide triplets in the genetic

code.

Chapter 3 – The chemical reactions that take place in living cells today are nearly without

exception catalyzed reactions. The problem of catalysis is, therefore, essential in understanding

the origins of biochemistry and life itself. In this chapter, we focus on an inorganic catalyst

which promotes the synthesis of nucleotide chains from activated monomers. Positive ions

have been shown to play a key role in bringing nucleotides together on surfaces to form polynu-

cleotide chains. We also investigate generalized, positively-charged surfaces (as opposed to

negatively-charged clays) to ascertain another possible set of catalytic surfaces for nucleotide

polymerization. The contents of this chapter are based in part on previously published work by

the author [6].

Chapter 4 – In this chapter, we shift our perspective on the problem of the origins of life.

The preceding chapters took a forward-looking view, of how certain features of pre-biological

systems may have transitioned into early forms of what might be called life, focussing on an

RNA World view and addressing questions pertaining to the origin of the genetic code and the

role of geochemistry and minerals. In this chapter, we attempt to address the question of the

origin of the genetic code by looking at the primary enforcement agent of the code today, the

aminoacyl tRNA synthetase. Gaining insight into the reaction mechanism of the syntheases may

help shed light on how the transition from a biological era in which translation was more prone

to error into the modern epoch of a high-fidelity translation apparatus with tRNA loaded with

amino acids corresponding to their anticodon sequences. We use quantum chemistry methods

to help elucidate biomolecular reactions responsible for the charging of tRNAGlu by GluRS.
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Chapter 2

The Amino Acid Polar Requirement and Implications for the Origins and
Structure of the Genetic Code

2.1 Background

The origin of the genetic code is perhaps one of the most fundamental questions pertaining to the origins

of life. In this chapter, we explore the relationship between the canonical genetic code and a property of

amino acids, the polar requirement. We devise a computational simulation to capture the physical properties

behind the polar requirement. Using these simulations, we establish a set of computationally-derived polar

requirement values that are free from many of the experimental errors which were present when the original

polar requirement was determined. Using these new polar requirement values, we revisit the relationship

between the new polar requirement set and the genetic code, and find that the genetic code is optimized with

respect to the polar requirement to a remarkable extent. This last result suggests that understanding the ge-

netic code’s evolutionary origins requires a consideration of the physical processes that manifest themselves

in the amino acid polar requirement, as those very processes were exploited by whatever mechanism gave

rise to the original genetic code.

The polar requirement (PR) is a characteristic property of each amino acid, originally defined by paper

chromatographic experiments [1; 7; 8] in aqueous solutions of nucleobases. PR reflects the relative proba-

bilities of an amino acid molecule to dissolve in an organic versus aqueous solvent in a binary mixture of

the two. It has been shown that this property is related to the structure of the genetic code [9]. The original

experimentally derived PR values are presented in Figure 2.1. Note that amino acids with pyrimidines in the

second position of their codons tend to have low PRs while amino acids with high PRs tend to have purines

in the middle position.

PR also groups amino acids that are not intuitively related [10]. Asparagine and lysine, for example, have

nearly identical PR values, but very dissimilar side chains. The same can be said for glutamine and histidine.

These groupings, in addition to being related to the structure of the genetic code, prove to be significant

The contents of this chapter are based in part on work previously published as Damien Mathew and Zaida Luthey-Schulten.
“On the physical basis of the amino acid polar requirement,” J Mol Evol, 66:519-528 (2008), and Tom Butler, Nigel Goldenfeld,
Damien Mathew, and Zaida Luthey-Schulten. “Extreme genetic code optimality from a molecular dynamics calculation of amino
acid polar requirement,” Phys Rev E, 79:060901 (2009).
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Figure 2.1: Codon table colored by amino acid polar requirement values measured by Woese and coworkers [1]

when the code’s error tolerance is taken into account. Recent theoretical studies have demonstrated that the

modern genetic code is extremely error tolerant against single base mutations when PR is used as a metric of

amino acid similarity [11–15]. No property of amino acids other than PR has been found to yield the same

code error tolerance. Is it highly improbable that the genetic code became optimized with respect to PR

purely by chance. Though it is clear PR is correlated with the structure of the genetic code, the relationship

is at present poorly understood. Furthering our understanding of the microscopic phenomenon behind PR

may help advance our understanding of why this relationship exists.

The PR experiments were originally designed to probe stereochemical associations between amino acids

and nucleobases in solution. Mixtures of water and dimethylpyridine (DMP) were prepared and used to de-

velop paper chromatographs spotted with an amino acid. Multiple measurements were made for each amino

acid, using a range of water:DMP molar ratios from ∼ 80% to ∼ 40% water. When the chromatographic

factor Rm, defined in Eq. 2.1 as a function of the standard chromatographic retardation factor Rf , was

plotted against the mole fraction water, χw, in log-log scale, a linear trend was observed for each amino

acid. Rf = d/D, where d is the distance the sample has travelled, and D is the distance that the solvent

front has travelled, as represented in Figure 2.2. The slope of this line defines PR for an amino acid (Eq.

2.2). Figure 2.3 presents original data from [1] as an example of how the data was plotted and analyzed to

obtain the experimental PR data set.

Rm = (1−Rf )/Rf (2.1)

PR = −
[
d (log Rm)
d (log χw)

]
(2.2)

Using MD simulations we are able to quantify local differences in water distributions surrounding amino

acids. Our MD simulations of amino acids in water-DMP solutions show that high PR amino acids are gen-
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Figure 2.2: Representation of a typical paper chromatography experimental measurement. D is the total distance the
solvent front has travelled relative to the starting point of the spotted sample. d is the distance travelled by the sample
spot relative to the same.
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Figure 2.3: Original experimental polar requirement data [1] for Methionine and Proline. The slope of the line when
Rm versus of the mole fraction of water to DMP, when plotted in log-log, defines the PR for each amino acid in these
experiments.

erally completely surrounded by water. Low PR amino acids generally straddle an aqueous/organic interface

with water predominantly surrounding the backbone groups and the side chains oriented towards the organic

phase. Figure 2.4 gives a comparison between leucine and aspartate in solution, with all water and DMP

molecules within 5Å displayed. The Woese experiments found leucine’s PR to be 4.9 and aspartate’s to be

13. The differences in local solvent environment between the two amino acids is clearly visible. It can be

inferred that leucine would partition more extensively into an organic phase than would aspartate. Amino
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acids will partition into a chromatographic mobile phase as a function of water content and in a manner

determined by the nature of the side chain (hydrophobic side chains will be effected by low water content to

a lesser degree than hydrophilic side chains).

Figure 2.4: Typical snapshots from MD simulations of Left Leucine and Right Aspartate in DMP:H2O solutions at
50% mole fraction water. Note that Asp tends to reside almost exclusively in a water bubble, while Leu tends to reside
at the interface of the aqueous and organic phases.

We have designed two computational approaches to examine the local environment around amino acid

side chains in binary solution using molecular dynamics (MD) simulations (see Methods). For a statistical

mechanical treatment, radial distribution functions (RDFs) are used to quantify the microscopic differences

in the water structure surrounding each of the amino acid side chains at the infinite dilute limit. We chose the

most distant atom of the side chain as a reference for the calculation of RDFs and use the peak height of the

first solvation peak as a measurement of maximum local water density [16]. This value relates to the average

velocity of the amino acid in an experimental chromatogram, as described in the Methods section of this

chapter. We show that the calculated trends on RDF peak height correlate well with the chromatographically

observed PR values.

A more direct method of calculating PR involves determining amino acid partitioning by monitoring the

spatial probabilities of occupancy for amino acid molecules in the aqueous and organic phases. The ratio of

these two probabilities averaged over an MD trajectory should yield a direct measurement of the partition

coefficient, α, as defined in equation 2.7. To improve average probabilities for this purpose, we use multiple

amino acid molecules solvated in water-DMP solutions. As published results for water RDFs relative to 32

glycine molecules have previously been published [17], we use 32 amino acid molecules for each of these

simulations. It is important to note that increasing the number of zwitterionic amino acids to a water-DMP

solution can have a salting out effect on the miscibility of the two liquids. The increased concentration of

amino acids results in a greater ionic strength of the aqueous phase. At these ionic strengths, the degree
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of phase separation between the water and the DMP is strikingly different, which makes direct comparison

between our results obtained by probabilistic spatial mapping and the infinite-dilute limit calculations using

RDFs difficult.

Of the three components of a water-amino acid-DMP mixture, the fastest reorganization times are ex-

pected to be in the amino acid and water components. For our study, we ignore drift and currents of the

two phases by averaging over time. We attempt to recover an approximate power law dependence of Rm on

water content as observed experimentally.

2.2 A Microscopic Model of Partition Chromatography and its Relation to the Amino Acid Polar
Requirement

Partition chromatography techniques such as the paper chromatographic method used in the original PR

experiments generally assume a two phase model. In this model, a stationary liquid phase is taken to be a

thin film of fluid that does not move relative to the substrate. This stationary phase remains immobile due

to adhesive forces with the substrate, and thus this phase is immediately adjacent to the wetted surface. The

second “mobile” phase moves at the same rate as the advancing solvent front, and consists of a liquid that is

largely depleted of molecules with an affinity to adhere to the substrate. When a mixture of two solvents is

used in such an experiment, the species with the higher affinity for the substrate will dominate the stationary

phase and the mobile phase will be enriched in the species with less affinity for the substrate. In this model,

the average rate that a sample would move up the chromatogram is a function of its partitioning between

these two phases. The partitioning is related to the frequency at which the sample would transfer back and

forth between the two phases and the relative amount of time spent in each phase. If a sample were to only

reside in the mobile phase, it would move at the same rate as the advancing solvent front. Alternatively, if

the sample resided solely in the stationary phase, it would not move up the chromatogram at all. In reality, a

sample would be stepping on and off of the moving walkway of the mobile phase, and would have an average

velocity that reflected the amount of time spent in the mobile phase. Brownian diffusion would account for

the spreading of a spotted sample over time, but the movement of the center of the spot would be dictated by

the mechanism described above. Figure 2.5 gives an representation of the microscopic view of our model.

Here, the orange spots represent molecules or clusters of the sample. AO represents the cross-section area

of the organic (mobile) phase, and AW is the cross-section area of the aqueous (stationary) phase.

Considering a partition chromatography experiment from a more microscopic perspective, the pure two-

phase model breaks down. Having two homogeneous phases in direct contact would require an unphysically

sharp change in chemical potential at the interface, assuming the two solvents were at least partially miscible.

Additionally, basic fluid mechanics tells us that laminar fluid flow relative to stationary solid surface results

in a linear velocity profile, where the flow velocity approaches zero relative velocity near the surface and

would increase linearly as a function of distance from the surface up to a maximum flow rate at the edge of

the fluid film furthest from the surface.

We clarified this microscopic picture by carrying out a simulation of the water-DMP mixtures in a

box with a sheet of fixed water molecules arranged uniformly in a plane. This sheet represents a generic

hydrophilic surface. In this laminar flow model we explain why, as a measure of local solvent environment,
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Figure 2.5: Representation of partition chromatography. Orange dots represent sample molecules, in this example
tending to reside mostly in the stationary phase of the chromatogram.

an RDF is related to the chromatographic retardation factor. On a microscopic scale, there is a blending

between the two phases at their interface with some water molecules in the “mobile phase” (based on the

miscibility limit) and likewise for DMP in the “stationary” phase. The spatial dependence of the water

concentration relative to a hydrophilic surface is shown for several bulk molar concentrations of water in

Figure 2.6 below. The microscopic model revealed a linear dependence of max RDF with bulk concentration

of water, and we argued how it together with the assumption of laminar flow can explain the correlation the

max RDF data to PR and the power-law behavior of Rm.

2.3 Radial Distribution Function as Metric of Amino Acid Partitioning

Figure 2.7 gives four sets of representative RDFs for aspratate (a), arginine (b), proline (c), and valine (d).

The general features of these four RDFs are representative of those observed for all amino acids. The first

peak in each of these plots represents the aqueous solvation layer of the side chains, which generally occurs

between ∼ 2.5Å to 4Å. Backbone contributions begin to appear beyond this peak with little or no overlap

for most amino acids. Asp’s RDF (Fig. 2.7a) exhibits features representative of all the charged amino

acids, with a strong first peak within 3Å due to side chain solvation followed by a relatively low and broad

second peak centered at∼5Å or greater (depending of the distance of the reference atom from the backbone)

comprising a convolution of the second solvation layer of the side chain with the first solvation layers of the

backbone groups. RDFs for amino acids with polar but uncharged side chains tend to have smaller, but still

sharp first solvation peaks and are similar to that of Arg (Fig. 2.7b), whose side chain is charged but the

charge is distributed over several atoms. Amino acids with particularly short side chains whose solvation
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Figure 2.6: Relative water density as a function of distance from a hydrophilic surface in water-DMP solutions

centers are close to the backbone groups tend to have first solvation peaks which exhibit some overlap with

the backbone solvation peaks, however even in these cases a distinct peak is discernible for both the side

chain and backbone solvation. For Proline (Fig. 2.7c) the side chain solvation peak is observed near 3.7Å

and the backbone influence is centered near 5Å. Even in the case of Pro, the side chain solvation leads to

a distinct feature separable from the backbone influence. Alanine and glycine are exceptions due to the

absence of a side chain (Gly) or a side chain short enough to be enveloped within the backbone solvation

layer (Ala). Amino acids with non-polar side chains (Fig. 2.7d) tend to have smaller and broader first peaks

which can partially overlap with the solvation peaks of the backbone. In all cases, except for Ala and Gly,

side chain solvation leads to a distinct and separate peak from that of the backbone. For each amino acid

there is a clear inverse relationship of first solvation peak height with water content. With decreasing water

mole fractions, a linearly increasing relative local water density is observed surrounding the amino acid side

chains. This linear RDF trend implies a power-law behavior in equilibrium solute distance from the support

as a function of bulk mole fraction water to be consistent with our microscopic model.

In all cases there is a noticeable change in first solvation peak with water concentration, with the rate

of change being the largest for amino acids with the highest reported PRs. The maximum of the first RDF

peaks vary linearly with mole fraction water as shown in Fig. 2.8 for Asp, Arg, Val, and Pro. We calculated

PR from our RDFs by making a linear least squares fit of these slopes with the corresponding experimental

PR (Fig. 2.9). The high degree of correlation from our fit (R2 = 0.92) confirms that the side chain RDF

trends are related to PR. When we shift and rescale our calculated slope values using the best fit parameters,

we obtain a set of calculated PR values.

A comparison of the calculated and experimental PR values is given in Table 2.1. While there is gener-

ally a single digit percent difference between the two, the computed PR values capture a slightly different

structure in the codon table than does the experimental set. The most significant exception is tyrosine with a
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Figure 2.7: RDFs for aspartate (a), arginine (b), proline (c) and valine (d) each at three representative water concen-
trations.

35% difference. Tyr, which has a low experimental PR value has strong RDFs similar in form to that of Arg.

It is worth noting that the calculated value for Tyr is more consistent with the PR values for amino acids

that have adenine in their middle codon position. Additionally, it has been documented that tyrosine is an

essential residue in cellulose binding domains [18]. Molecular modeling has confirmed that van der Waals

interactions between tyrosine and cellulose are responsible for the induced fit leading to carbohydrate bind-

ing module activity [19]. The unique interactions between tyrosine and cellulose would retard the motion

of tyrosine and lead to a systematic experimental error depressing the observed PR. When Tyr is excluded

from the least squares fit, a much stronger correlation is observed between RDF rates of change and the

experimental PR (R2 = 0.98).

A qualitative ordering of the genetic code based on PR can be seen in Figure 2.10, with amino acids

with pyrimidines in the second position of their codons tend to have low PRs while amino acids with high

PRs tend to have purines in the middle position.

Both histidine and glutamine have multiple solvation centers in their side chains. A simple average of

the RDFs for each solvation center was used to determine trends for these amino acids. The experimental PR

values paired histidine and glutamine with similar values as well as asparagine and lysine. The computed

PR values widen the PR difference between both of these pairs, though they are still relatively close. A
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weighted average reflecting the non-equivilant solvation properties of the centers may have resulted in a

closer matching of the PR values for these amino acids.

The calculated PR values for glycine also shows some deviation from the experimentally observed value.

Use of the α-hydrogens of glycine as the reference atoms for the RDFs for this amino acid resulted in

significant overlap of the backbone solvation layers with the solvation of these atoms and subsequently a

high level of noise.

2.4 Probabilistic Occupancy Mapping Provides a Glimpse of the Amino Acid Polar Requirement

Figure 2.11 depicts results from a simulation of 32 asparagines in a 47% mole fraction water in water-DMP

solution. The image on the left depicts the 10% isosurface for probabilities of water occupancy, regions

of the simulated system that contained a water molecule at least 10% of the time (PWater
i > 0.10) of the

trajectories. The right image depicts occupancy probability isosurfaces for the amino acid, PAA
i > 0.25
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Table 2.1: Comparison of calculated and experimental [1] PR

Amino Acid PR (exp) PR (calc) % Diff
Ala 7.0 6.5 7.9
Arg 9.1 8.6 6.1
Asn 10.0 9.6 4.1
Asp 13.0 12.2 6.0
Cys 4.8 4.3 10.7
Gln 8.6 8.9 3.4
Glu 12.5 13.6 8.4
Gly 7.9 9.0 12.6
His 8.4 7.9 5.7
Ile 4.9 5.0 1.6

Leu 4.9 4.4 11.0
Lys 10.1 10.2 1.0
Met 5.3 5.0 5.0
Phe 5.0 4.5 9.6
Pro 6.6 6.1 7.7
Ser 7.5 7.5 0.1
Thr 6.6 6.2 5.6
Trp 5.2 4.9 5.2
Tyr 5.4 7.7 34.6
Val 5.6 6.2 10.0

(Blue), and the convolution of the amino acid probability with that of water, PAA
i · PWater

i (Red). With

respect to the amino acid molecules, we assume that over the sampled time window a near complete set of

physically probable distributions of the molecules should be represented in the trajectory. It is interesting to

note that the probabilistic isosurface for the amino acid averaged over 3ns closely mirrors the distribution

of the amino acids from a single randomly chosen snapshot from the simulation shown on the left. It can

be concluded that the amino acid, at this concentration, does not drift significantly from its most probable

occupancy space during the 3ns trajectory.

As mentioned previously, the macroscopic partition coefficient, α, is directly related to the chromato-

graphic factor, Rm (Eq. 2.6). It is therefore anticipated that a plot of log α, defined in Eq. 2.7 in terms of

probability densities, should display a linear behavior with log mole fraction water as observed in the PR

experiments. Such linear trends are observed for glycine, proline, and asparagine. For each of these amino

acids, slopes of order one were observed. All slopes were consistently below the corresponding experimen-

tal PR values, and no trend was observed in the steepness of the slopes corresponding to PR differences. For

asparagine (Fig. 2.12) a slope of -1.003 is calculated. Experimentally, asparagine has a slope (from PR) of

-10.0.

A number of assumptions were made in determining the probabilistic occupancy which would have to

be modified to obtain better agreement with the experiments. One assumption was that the time-scale aver-

aged over, the last 3ns of the simulation, was shorter than the characteristic lifetime of a domain boundary
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Figure 2.10: Codon table colored by amino acid polar requirement values.

Figure 2.11: Left Snapshot of asparagine molecules from simulation superimposed on average 10% probability iso-
surface for water from same simulation. (47% mole fraction water) Right Average 25% probability isosurface for
asparagine from same simulation. (Red: Overlap of Asn and water occupancy, Blue: Overall Asn occupancy isosur-
face).

between the organic and aqueous phases. In fact, there are fluctuations in domain boundaries over the ∼1ns

timeframe, and so an appropriate reference was missing which introduces a degree of error to our calcu-

lations. Also, we approximate in this bulk model that the “mobile” chromatographic phase as comprised

solely of DMP molecules. As discussed in our model used for RDF studies, neither phase is of pure water

or DMP, and the interfacial region between the two are not captured in the model used in this study. A

ratio of the amino acid probability overlaps with water and DMP is clearly an oversimplification. We have

also explored water-DMP mixtures with varying concentrations of NaCl, and have found that ionic strength
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can have a drastic effect on the degree of phase separation. Charged amino acids would increase the ionic

strength of the aqueous phase, which will have an effect on the degree of phase separation. A more accurate

determination of the partitioning effect would employ a frame-by-frame calculation of the occupancy over-

lap or a consensus score using a larger cell size prior to time averaging, although the reorganization times

would vary with the amino acid’s contribution to the ionic strength.

2.5 Genetic Code Optimality and the Polar Requirement

Aside from the qualitatively obvious correlation between the PR and the order of the genetic code (rough

ordering of amino acids based by PR based on the middle position base in their codons), as we have men-

tioned in the introduction to this chapter, a number of quantitative studies have demonstrated the remarkable

relationship between the structure of the genetic code and PR. These findings are significant, in that they

suggest the origin of the genetic code was not the “frozen accident” suggested by Francis Crick [20] but

rather followed a process of selection likely based on the chemical properties of the amino acids and the

propensities to partition across an interface defined by an aqueous-organic liquid suspension or possibly

even an inorganic surface in contact with an aqueous environment. While Crick’s argument in favor of a

frozen accident was compelling given what was known about the genetic code in 1968, more recent studies

have demonstrated that the structure of the genetic code is, to a very high probability, not formed by a ran-

dom assignment of codon blocks to amino acids. Building from earlier work using Monte Carlo methods

[9] others have found that the canonical genetic code presents a high degree of optimization with respect to

a number of properties of the amino acids [12; 13]. In particular, the work by Freeland and Hurst makes the

eye-catching statement that the genetic code is “one in a million” when the PR as reported from the Woese

experiments is used as a metric of amino acid similarity.

In each of these studies, randomized codes are generated by reassigning amino acids to the codon blocks

currently present in the canonical code. For each randomized code, an optimality was determined by calcu-

lating the differences in amino acids that would result for a given point mutation in the codon. For example,
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the codon GGG codes for glycine in the canonical code, which has a PR value of 9.0. A point mutation

in the third position would still code for glucine, and so the total “error” for this mutation would be zero.

However, a mutation in either of the other two position does result in coding for a different amino acid. So,

for instance, if GGG were mutated to GAG, the codon would code for glutamate with a PR value of 13.6.

The error for this mutation is the absolute value of the difference between the intended amino acid and the

one actually coded for (in this case 4.6). For each random code, every possible point mutation is scanned

over and the errors are summed to give a measure of the error-tolerance “optimality” for the codon assign-

ment scheme being considered. When Freeland and Hurst claim the canonical code is “one in a million”

they mean that it has a higher degree of error tolerance than one million other random codon assignment

schemes when PR is used as the metric. To arrive at this finding, one additional piece of information needs

to be included, and that is the relative likelihood of a mutation that replaces a purine for a purine or pyrim-

idine with a pyrimidine (a transition error) versus a mutation that changes a pyrimidine to a purine or vice

versa (a transversion). Freeland and Hurst note that it has been observed that there is a distinct bias towards

transition mutations versus transversions, and reflect this bias as a weighting that weights more heavily error

resulting from a transition bias over the error resulting from a transversion. Code optimality, as we have just

described, can be expressed mathematically by equation 2.3, where Oi is the optimality value for a random-

ized code indexed as i, c is the intended codon, c′ is the mutated codon, GCi(x) is the PR value (or other

quantifiable amino acid property) associated with the codon table’s assignment for the codon x, and dq(a, b)
is the error between the two return values from the code, dq(a, b) = |a − b|q. 〈c, c′〉 6= Ter indicates that

the sum is taken to exclude all point mutations to or from a stop codon. Wc,c′ is the transition/transversion

weighting. Values for Wc,c′ were taken from [13] and are given in Table 2.2.

O−1
i =

∑
〈c,c′〉6=Ter

Wc,c′dq
[
GCi(c), GCi(c′)

]
(2.3)

Table 2.2: Wc,c′ transition and transversion values for genetic code optimality calculations

First position Second position Third position
Transitions 1.0 0.5 1.0

Transversions 0.5 0.1 1.0

Other quantifiable metrics for amino acids have also been considered, including hydropathy, molecular

volume, isoelectric point, etc. PR was consistently found to be one of the most conserved properties (the

canonical code was remarkably optimized to error tolerance with respect to changes in coded amino acid

PR with point mutation). Hydropathy was also found to exhibit some degree of conservation, which is not

surprising, considering that hydropathy and PR are somewhat related: the effect of hydropathy strongly

influences the partition coefficient for transfer between an aqueous-organic interface, which is what PR

quantifies.

In collaboration with Nigel Goldenfeld and Tom Butler [4], we have further explored the relationship

between PR and error-tolerance optimality of the genetic code. In this study, we examined the genetic
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code’s optimality following a similar methodology to that used in earlier work [12; 13] using our computed

PR values and including an analytical form of bootstrap resampling. To measure the significance of the

canonical code’s optimality, the probability, Pb, of a random code having a greater optimality than that of

the canonical code is calculated by dividing the number of codes with optimality greater than the canonical

by the total number of random codes studied (Pb = NO>O1/Ntotal).

An analytical form of bootstrap resampling was used to compute the error in Pb. We are interested in

determining the error in estimating the number of codes which are more optimal than the canonical. We

consider drawing at random a code more optimal than the canonical as a step in one direction in a one-

dimensional random walk. Since the asymmetric one-dimensional random walk is a well known problem in

statistical physics, we can easily obtain an error estimate from equation 2.4 assuming Pb � 1.

var [Pb] = var

[
NO>O1

Ntotal

]
=

Pb(1− Pb)
Ntotal

≈ NO>O1

N2
total

(2.4)

When q = 2 in equation 2.3 Pb = (19 ± 4.36) × 10−8 when our computationally derived PR values

are used. The value obtained using the original experimental PR values, Pb = (26.5 ± 1.63) × 10−7,

was significantly lower than the value from our computationally-derived PR. This difference in optimality

scores is partly due to the significantly different value for tyrosine in the new PR set. When the tyrosine

value in the original, experimental PR set was replaced with that in the computational PR, the optimality

score drops to Pb = (9.3 ± 1.0) × 10−7. This new value approaches that of the Pb value derived from

the complete experimental PR set, however it still presents a higher level of optimality. The remaining

difference is attributable to the nature of the computational methodology used in obtaining the new PR set.

In the computational method to obtain PR, errors that would manifest themselves in experiments are no

longer present: DMP-water ratios are controlled precisely, purity of the materials used and of the paper

substrate are not a factor, etc.

We have also explored different q values in equation 2.3. Finding a stronger Pb from using a smaller

value of q in the distance metric would suggest that the canonical code evolved in such a way as to be more

forgiving of smaller and/or more frequent errors. Conversely, should a stronger Pb be found for a larger

value of q, the code may have evolved in a manner that more strictly suppressed larger and perhaps more

rare errors arising from point mutations in codons. Finding the q value resulting in the lowest Pb, therefore,

tells us something about the process in which the genetic code evolved. Were evolutionary pressures on

the code coming from large or small PR errors, or was there little difference in the frequency of occurrence

between small or large errors? In calculating Pb values with q ranging from 0.25 to 5, we have observed that

the lowest Pb results from 1.0 ≤ q ≤ 2.0. Pb values increased sharply outside of this range, suggesting that

evolutionary pressures at the time of the genetic code’s origin did not push the code to evolve more strict

control over large or small PR deviations resulting from point mutation. Having no bias against large PR

errors resulting from point mutations suggests that evolutionary pressure must have acted on the early trans-

lation mechanism to discard or correct overly flawed protein sequences resulting from point mutations. The

mechanism through which the genetic code evolved was apparently not capable of more strongly enforcing

against large errors in PR due to point mutation. The code is, of course, optimized against large deviations
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in PR due to mutation in codons, however, there is no evidence of strong forcing against these mutations

beyond what would be derived from a simple linear to quadratic difference metric.

Not all living organisms use precisely the canonical genetic code, there are a few minor deviations. We

have run our calculations on a few of these variants, and presented the Pb results for them in table 2.3. The

canonical code remains within a standard deviation and a half of the most optimized code, yeast mitochon-

drial, and therefore the difference is not taken to be significant. The difference between the canonical and

the CDH nuclear code is, likewise, insignificant being well within a signle standard deviation. The other two

codes studied are significantly less optimized with respect to PR error tolerance than the canonical. From

this, we can conclude that the evolutionary pressures that forged the canonical code were no longer relevant

when the newer variants were derived. It is likely that at the time that the code variants were created, a robust

translational machinery was in place with a high degree of error checking mechanisms built in. It is possible

that the evolutionary pressures present at that time were then perhaps lightly forcing certain organisms to

adopt their slight variations in order to prevent other organisms or viruses from inserting foreign genetic

material. The variations in these codes are likely adaptations from an original (most likely the canonical)

code, since they are all exceptionally similar, like dialects of the same language rather than new languages.

Table 2.3: Comparison of Pb values for alternate genetic codes observed in living organisms today

Codon table Pb

Canonical (19± 4.36)× 10−8

Yeast mitochondrial (11± 3.32)× 10−8

CDH nuclear code (21± 4.58)× 10−8

Ascidian mitochondrial (583± 24.15)× 10−8

Echinoderm mitochondrial (51± 7.14)× 10−8

We have also compared the results from our calculations using the computational PR with another amino

acid metric, the Grantham polarity. The Grantham polarity has also been suggested to be an important amino

acid property with respect to the genetic code [21]. The Grantham polarity was established to be a single

quantitative value that could be uniquely assigned to each amino acid and that captured many of each amino

acid’s properties. These properties included chemical composition, polarity, and molecular volume. An

earlier study involving genetic code optimality had found the Grantham polarity to be the property most

optimized by the genetic code [22]. Our results using the Grantham polarity yield Pb=(285 ± 16.88) ×
10−8, which is an order of magnitude higher than the Pb derived from using the computational PR. We can

thereby conclude that the computational PR reported by us [5] is the strongest metric known to date by

which the genetic code has been optimized.

2.6 Interactions Between Amino Acids and Nucleo-bases in Solution

Given the remarkably high level of optimization observed in the canonical genetic code with respect to PR,

what can we conclude about the origins of the genetic code? Since PR is related to an amino acid’s ability to

exploit an interface, it is reasonable to conclude that the original assignments were created via a mechanism
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that also presented an interface with the aqueous environment. Two possibilities present themselves for a

mechanism linking specific amino acids to nucleotides, given the correlation between PR and the genetic

code.

One possible scenario involves having the entire process take place purely in solution, in which a con-

centrated mixture of nucleotides and water exists and amino acids may partition across the nucleotide/water

interface depending both on the nucleotides present and the PR of the amino acid. While the primordial

soup was likely very dilute with respect to both nucleotides and amino acids, recent work has shown that

convection currents driven by thermal gradients in narrow, pore-like structures can lead to accumulation of

mononucleotides to concentrations of over 108 over that of the outside environment [23]. The remaining

sections of this chapter will focus on this scenario.

The other scenario builds upon the environment suggested by the PR experiments themselves: a substrate

of some sort, perhaps a solid two-dimensional mineral surface and perhaps coated with organic molecules of

some sort, presents an interface with the aqueous environment and the amino acid PR exploits this interface

in a way such that certain amino acids are more likely to be found spatially separated from others. One

possibility that connects the world of short nucleotide sequences with amino acids in such a way that the

genetic code may have arisen will be discussed in the next chapter, wherein a mineral surface is saturated

with nucleotides and amino acids are introduced into the solution.

2.7 Arginine-Adenine Associations

From Figure 2.4 it is clear that the DMP molecules in solution are generally disordered and exhibit little

oriented interactions with the amino acids. In contrast, results from our MD simulations of amino acid

solutions with the four standard nucleobases indicate persistent and directed intermolecular interactions be-

tween the nucleobases and amino acids. Solutions of adenine show a high degree of base stacking which

leads to strong stereochemical interactions with some of the amino acids. Arginine, in particular, exhibited

a strong interaction with nucleobases. The first peak in the angular correlation function (Fig. 2.13) cor-

responds to the time-averaged alignment of arginine’s side chain to a single adenine molecule. A second

Ade molecule stacks in an alternately parallel and anti-parallel fashion to the first (corresponding to the

second and third peaks, respectively, in the figure). The orientation of the side chain relative to the adenine

electrostatic dipole displays a much more pronounced orientational correlation to Ade than it does in the

DMP simulations. There, the orientation is essentially random with | 〈cos θ〉 | ≤ 0.3 for the entire range

of radial distance observed. Like a standard radial pair distribution function, the ergodic principle applies.

Over an equilibrated portion of the trajectory, the average captures the overall behavior of the system. It

is interesting to note, in light of the affinity of Arg and Ade in solution, that arginine is found near AMP

in the active sites of class II aminoacyl tRNA synthetases, such as AsnRS. The separation distance (∼ 4Å)

between the arginine and the first adenine found in our simulation is typical of those found between AMP

and Arg in the active sites of class II aminoacyl-tRNA synthetases [see for Asn, 24]. It is possible that the

intrinsic affinity for Arg and Ade may have been ”frozen into” the structures of the class II synthetases.
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Figure 2.13: Left Angular distribution function for arginine relative to the plane of adenine, depicting strong asso-
ciation between the two molecules. Equation for the calculation of the radial angular distribution function displayed
above. Right Snapshot from MD simulation used to calculate 〈cosθ(r)〉 with arrows indicating the base dipole mo-
ment, p, and Arg sidechain orientation, s.

2.8 Arganine Associations with Guanine

In addition to the specific interaction between arginine and adenine, arginine is also observed to have an

persistent interaction with the nucleobase guanine in solution. This interaction cannot be observed using

the angular correlation analysis, however. Figure 2.14 is a snapshot from the simulation, showing that the

guanine aligns with its plane perpendicular to the vector along the arginine sidechain, which leads to an

average cosine of zero for the angle between the vectors. The correlation between these two molecules can

be captured, however, by a standard radial distribution, presented in figure 2.15.

Guanine is the middle position base in arginine’s codon, and thus it is interesting that we observe such

strong interaction between the two in solution. The middle codon position is also highly important with

respect to conservation of PR in the genetic code. However, the first position base for arginine’s codons is

cytosine, with which arginine was not observed to have any significant interaction. Arginine, in fact, has an

adenine in only one of its four codons, which is essentially meaningless since the third position for arginine’s

codon is perfectly degenerate (it can be any of the four bases).

It is difficult to conclude, based on these observations, that a direct association between nucleotides

and amino acids may have resulted in the establishment of the genetic code. It is possible that amino

acid-specific interactions with nucleotides or short sequences of nucleotides may be particularly weak and
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Figure 2.14: Interaction between arginine and guanine in solution.
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Figure 2.15: Radial distribution function between arginine and guanine sidechain.

difficult to observe in the short times covered by our simulations. A weak association may have still been

able to bias an early amino acid selection process that was correlated with the genetic code, however it is

more likely that the genetic code’s origins come from an as yet unknown third party. Perhaps this third party

was a mineral surface that presented an interface to the aqueous environment of its surroundings. Amino

acids with low PR would preferentially adhere to the surface or some organic mixture which had already

adhered to the surface previously. Nucleotides may have also associated with this surface in ways peculiar
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to their own structures. Purines, for instance, may have partitioned to this organic phase more readily than

pyrimidines, which might have led to an association of low PR amino acids with purines and established

a correlation between amino acids and their anticodons, which would agree with the correlation between

amino acid PR and the middle position of an amino acid’s anticodon (see Figure 2.10 and replace the middle

position bases with their anticodon counterparts).

2.9 Conclusions

Using statistical mechanical treatments we have investigated the physical basis of the PR values for amino

acids. The patterns seen in the radial distribution functions of the amino acid side chains in binary solutions

of water and the nucleobase are sensitive to the local solvent environment. The rate of change in the peak

RDF values with concentration is strongly correlated (R2 = 0.92) with the experimental PR values obtained

from water-DMP solutions (Fig. 2.9) indicating that our proposed microscopic model captures the physical

phenomenon behind the PR measurements. It is important to note that PR is a function of the binary solution

and will vary with the choice of the nucleobase and its functional groups. Experiments performed using 2,6-

diisopropylpyridine, for example, resulted in a wider spread in the PR values of amino acids with U in the

middle position of their codons [25], while unsubstituted pyridine results is a compressed range of observed

PR values [22].

The only amino acid showing a large discrepancy with experimental values is tyrosine, which can be

attributed to a systematic experimental error stemming from direct interaction of tyrosine molecules with

cellulose of the chromatogram. In addition, intermolecular interactions between amino acid molecules in

experimental conditions could obfuscate the behavior of the isolated, individual molecule. Our computed

values represent a property of individual solvated amino acids, and has no such external influences from

cellulose amino acid intermolecular interactions. It is interesting to note that our calculated PR value for

tyrosine leads to a more highly ordered codon table. Using the calculated PR for tyrosine, there is less of a

spread in values for amino acids with an Ade in their middle codon position. By using infinite dilute systems,

we cannot include the effects of ionic strength on the degree of phase separation nor can we compensate

for possible intermolecular interactions between multiple amino acids. These effects would be present in

partition chromatogram experiments. By avoiding these effects, the computed PR values capture an essential

amino acid property to a greater extent than possible from experiments.

From our volumetric occupancy probabilities studies, we were only partially successful in capturing the

power law dependence of Rm on the water content. While the calculated partition coefficient displayed the

linear behavior with concentration without requiring any scaling as in the infinite dilute treatment, the PR

values obtained from the calculated slopes were consistently smaller than those observed experimentally.

The disparity could be due in part to the fact that our analysis did not take into account the reorganization

rates of the two phases of the binary solution and simply used a time average of these components’ volumet-

ric occupancies. A more detailed analysis would also have to take into account the volume of the amino acid

clusters in assigning the simultaneous occupancy of a cell for the solute and each of the two solution phases.

A better method of distinguishing the “mobile” and “stationary” phases would also need to be employed.

By observing the microscopic environments of the amino acids in binary solution, it is apparent that
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the PR is related to how an amino acid partitions across a polar-nonpolar interface. The fact that earlier

theoretical work has found a high degree of error tolerance in the genetic code when PR is used as a measure

of amino acid similarity suggests that polar-nonpolar interfaces may have played a role in the establishment

or development of the early genetic code.

Our work in elucidating the polar requirement invites further inquiry and speculation. While much can

still be gleaned through efforts along the lines of those taken by us and our collaborators [4] as well as earlier

work by other [13] in exploring the genetic code’s optimality, the answers to many of our questions will lie

behind “the Veil through which we might not see” to borrow a phrase from Omar Khayyam. The genetic

code was almost certainly established long before life’s Darwinian transition to a traceable phylogenetic

heirarchy. The Darwinian transition marks the point in life’s history beyond which we cannot glean a

complete understanding; it marks the threshold between what we can hope to know about the evolution of life

and the murky world of rampant gene transfer and rapid innovation development and sharing. The ordering

of amino acids by polar requirement based on the middle base of their codons, for instance, supports the

possibility of a single-base, early version of the genetic code. Perhaps the ancient translational mechanism

of the pre-Darwinian stage of evolution manufactured “statistical proteins” whose monomers were selected

by a single nucleotide “codon” and needed only to have polar requirement values within a certain range.

An inorganic surface coated by nucleotides would present an ordered aqueous-organic interface that

could be utilized for both selecting and orienting amino acids from solution based on PR. Such a system

would be helpful in establishing early associations between amino acids and their codons. Investigations into

nucleotide interactions with inorganic surfaces have produced interesting observations along these lines. Fer-

ris and coworkers have found that activated nucleotides adhere to and polymerize on montmorillonite clay

surfaces [26; 27]. Others have observed large scale accumulation of nucleotides in simulated hydrother-

mal vent environments [28]. Interestingly, RNA-binding sites for several amino acids are unusually rich

in their cognate codon/anticodon triplets, suggesting amino acid/nucleotide associations may have played a

role in setting the genetic code [29]. By selecting amino acids based on PR, the early code would evolve to

minimize PR differences due to single point mutations in the codons, just as the modern code does.

2.10 Methods

Model of Partition Chromatography The PR experiments employed partition chromatography techniques,

whose theoretical interpretation was originally derived from the model of Martin and Synge [30]. The

solvent used to develop the chromatogram consists of water and a partially miscible organic phase. In their

model, the hydrophilic nature of the cellulose substrate creates a water-rich stationary phase close to the

surface of the paper. The resulting water-depleated mobile phase moves on the surface of the stationary

phase. The upward velocity of the sample, vsample (Eq. 2.1), is determined by its frequency of transfer

between, and lifetime within each of the two phases. From a macroscopic perspective, the mobility is

related to the concentration of the solute present in the mobile phase. The mobile phase moves vertically up

the support at the speed of the advancing solvent front, vsolvent in Eq. 2.1.

For the PR experiments, a binary solution of water-DMP was used to develop the chromatogram. For

partially miscible liquids such as these, the two-phase picture no longer strictly applies in the microscopic
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scale. In reality, the concentration profile for either of the two species is more likely a continuous function

of distance from the cellulose support. In this case, the water concentration is at a maximum adjacent to the

cellulose and decays with distance to a value reflecting the miscibility limit of water in DMP. The average

location of the solute sample within the liquid layer is determined by its equilibrium properties in the binary

mixture. That is to say, the equilibrium solvent environment surrounding a solute sample in the binary

mixture will map onto its average position along the water concentration gradient within the liquid film of the

chromatgram. If we assume laminar flow of the liquid, we can infer a linear velocity profile in the flow rate.

Fluid flow rate in our model is zero directly adjacent to the support, and increases linearly to the rate of the

solvent front advance. This maximum velocity occurs in the region were the water is at its miscibility limit

in the organic solvent. Studies of the viscosity and thermomechanical properties of water-DMP mixtures in

the near-critical regime [31; 32] as well as of the interfacial region of sheared elastic liquids [33] support

this approximation. Given this model, the observed relative velocity of a sample is a linear function of its

relative distance from the support which in turn is directly related to its equilibrium solvent environment

when immersed in a mixture of water and DMP of the same ratios used in the chromatographic experiment.

Should an amino acid have a local equilibrium solvent environment that is more water-rich, it will likely

occupy a spacial regime closer to the cellulose in the chromatogram and vice versa. Given the assumption

of a linear velocity profile, this position is directly related to its relative velocity relative to the solvent front,

and therefore directly related to its chromatographic retardation factor. With sufficient sampling, it could be

shown that a linear trend in local water concentration surrounding an amino acid with respect to water:DMP

molar ratios would correspond to the observed power-law trends in retardation as a function of mole fraction

water.

To investigate the solvent environment as a function of distance from the support, we have simulated

mixtures of water-DMP in contact with an aqueous monolayer representing a generic hydrophilic surface

such as cellulose. Results indicate that rather than two distinct phases (organic-aqueous, or even mobile-

stationary) there is in fact a continuous blending from a water-rich regime into an organic-rich one, and

that the water concentration decays in the regime close to this surface at a rate inversely proportional to

the bulk concentration (data not shown). For a given water-DMP molar ratio, the local density observed

around the amino acid will correspond to a region on this exponential curve. If this distance has a power law

dependence on the bulk mole fraction of water, the microscopic laminar flow model predicts the power law

trends leading to the polar requirement.

MD Simulations The molecular dynamics software package, NAMD2, was used with an NPT ensemble

[34] and the Charmm 27 forcefield [35; 36]. A pressure of 1 atmosphere and temperature of 300K were

maintained for each simulation. Periodic boundary conditions were enforced, with PME full electrostatics.

Simulations for RDF analysis were run for 4ns for Ala, Asp, Gly, His, Met, Pro, Tyr, Trp, and Val and the

results compared from the first and last 2ns intervals. For amino acids with medium and high experimental

PR, it was determined that the statistics obtained for 2ns was sufficient to obtain the same behavior observed

over 4ns of simulation. Longer simulations times were needed for some amino acids with lower PR to

collect sufficient statistical sampling for analysis due to limited water contacts. For Ala and Gly, the longer

simulation times were needed to separate the weak signal of the side chain or α-hydrogen radial water
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distributions from the backbone environment. Asp was run for 4ns to verify that longer simulation times did

not effect results for polar and charged amino acids.

VMD was used to create the systems for simulation and for analysis after the MD simulations were

complete [37]. The systems simulated consisted of a single amino acid in the center of a 6.4× 104Å3 cubic

box containing water and DMP molecules. For each amino acid five different water to DMP mole fractions

were simulated, spanning a concentration range of 50-80 mole percent water.

Radial Distribution Function As a Measure of Local Solvent Environment A radial distribution function,

g(r), (Eq. 2.5) of solvent molecules relative to the amino acid is a measure of the solvent density as a

function of radial distance from the amino acid [16; 38]. The intensity of the first RDF peak is therefore

proportional to the local water density surrounding the reference atom. As described above, the local solvent

density from the RDF can be used to infer the average location of the amino acid within a water-DMP film

in contact with the cellulose support for a given water:DMP molar ratio. We calculate g(r) from our MD

trajectories using the script written by Axel Kohlmeyer and included in the VMD graphical analysis software

package.

g(r) =
V

NselNref

〈∑
j,ref

∑
i,sel

δ(r− rij)

〉
(2.5)

To probe the differences in local solvent environments around each amino acid, we need to limit the

influence of the backbone groups as these are similar for all amino acids. To do this we used the most distant

atoms of the amino acid side chain as reference atoms with water oxygen or hydrogen atoms (as appropriate)

for the selections and evaluate the maximum g(r) value instead of integrated values. For glycine, which has

no side-chain, we chose the α-hydrogen atoms as reference atoms for the RDFs. Special care was taken

for amino acids with multiple, non-equivalent hydrogen-bond centers. For Asn, Gln, and His the multiple

centers for water hydrogen bonding were used as reference atoms individually for RDFs and the average

peak height determined from each reference was used.

Averages were made over the entire trajectories, excluding the first 400 ps for equilibration. The change

in maximum values of the peak RDFs from our analysis were used to extrapolate a calculated polar require-

ment. The peak values of each RDF were plotted as a function of water mole fraction for each amino acid,

and the slopes of the resulting lines used to calculate the amino acid polar requirements.

Probabilistic Mapping Depicts Amino Acid Partitioning Martin and Synge obtained an expression relat-

ing the ratio of the solute concentration in the stationary phase to that in the mobile phase, α, to the Rm

factor measured in partition chromatography (Eq. 2.6, where AS and AM are the cross section areas of

the stationary and mobile phases respectively). It was shown that the partition coefficient derived in this

manner agrees well with the bulk partition coefficient that has been determined from extraction experiments

[39; 40].

Rm = α (AS/AM ) (2.6)

The above expression indicates that the experimentally observed Rm in the PR experiments is a measure

of the partitioning of amino acids between the aqueous and organic phases of a binary solution. Using
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probabilistic mapping, we attempt to relate the macroscopically observed chromatographic results with the

partitioning of the individual amino acids in solution.

Volumetric probability maps have been employed by others for studies of gas migration pathways in

myoglobin [41] and for mapping ion densities in and near membrane pores [42]. MD simulations for our

studies involved 32 amino acid molecules rather than the infinite dilute simulations used for RDF analysis.

MD simulation parameters for these systems were the same as for those used for our RDF analysis, except

that all were run for 4ns. The simulated box was divided into ∼1Å3 cells, and the probability of occupancy

within each cell was calculated over the length of the equilibrated MD trajectory for every atom of the

amino acids, DMP, and water molecules. Of the three components of a water-amino acid-DMP mixture, the

fastest reorganization times are expected to be in the amino acid and water components. For our study, we

ignore drift and currents of the two phases by averaging over time. We attempt to recover an approximate

power law dependence of Rm on water content as observed experimentally. The partition coefficient can

be approximated from the probability overlap of the amino acid and water or base summed over all cells.

Equation 2.7 was used to determine a bulk partition coefficient. Here, the first term provides an overall

normalization (total occupancies for DMP and water), and the second term gives the probability overlap of

the amino acid with the two phases. PAA
i , PDMP

i , and PWater
i are the average occupancy probabilities of

the ith cell for atoms of amino acid, DMP, and water molecules respectively.

α =
(

PDMP

PWater

) Ncells∑
i=1

(
PAA

i (x, y, z) · PWater
i (x, y, z)

PAA
i (x, y, z) · PDMP

i (x, y, z)

)
(2.7)

Analysis of Amino Acid/Nucleobase Interactions in SolutionThe electrostatic dipole of the base, p, was

used to describe the base orientation. A vector along the amino acid side chain, s, was used to describe its

orientation. The average of the dot products of these vectors was collected as a function of radial separation

between the amino acid and base. Dividing out the magnitudes of the two vectors gives the average of the

cosine of the relative angle between the two molecular species (Eq. 2.8). A perfect orientational correla-

tion over time would correspond to an average value of ±1. The sign of the correlation indicates parallel

(positive) or anti-parallel (negative) orientations between the two vectors. No orientational correlation, or a

perpendicular orientation, would correspond to an average value of zero.

〈cos θ(r)〉 =
V

NBaseNAA

〈
NBase∑
i=1

NAA∑
j=1

pi • sj

‖pi‖‖sj‖
δ(r− rij)

〉
(2.8)
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Chapter 3

The Catalytic Role of Mineral Surfaces in the Formation of Oligonucleotides
from Activated Mononucleotides

3.1 Background

The “RNA World” view of the origins of life holds that chains of RNA became self-replicating, information-

bearing molecules that may have also performed rudimentary catalysis of simple, biologically-relevant reac-

tions. Some suggest “metabolism first” scenarios, where a simple (possibly autocatalytic) chemical reaction

cycle was the first innovation on the way to the development of life. In either case, the question remains:

How did geochemistry turn into biochemistry? In other-words, given the geophysical/chemical environment

of the early earth, what features could have played a potential role in the origins of life? What chemicals

played the role that modern protein catalysts play today? The starting point to answer these questions should

logically begin with the determination of the circumstances of origins and the building blocks available in

the initial phase. Did the archaic reactions leading to life begin in our oceans possibly near hydrothermal

vents, on land, or in water droplets surrounding grains in the dense clouds that may have formed the early

atmosphere? Astrophysicists and astrochemists have identified a wide range of molecular species in the in-

terstellar medium and clouds surrounding nascent stars. The astronomers are aware of small molecules like

H2, N2, SO2, H2S, HCN, CO, and CS, small molecular radicals, and a host of larger species that give rise

to unidentified infrared bands [43]. These larger species are a class of compounds known as polycyclic aro-

matic nitrogen heterocycles (PANHs), polycyclic aromatic hydrocarbons with one or more nitrogen atoms

substituted into their carbon skeleton [43; 44]. Geochemists have identified the clays and minerals forming

the hydrothermal vent fields and the gases and fluids discharged from the vents. Contemporary hydrother-

mal vents, both black and white smokers, are surrounded by highly porous mineral and clay precipitates.

Large pores exist within these structures, varying from millimeter to micrometers in size. There is also a

steep temperature gradient across the vent from several hundreds of degrees in the chimney, to the surface in

contact with the ocean water at 2◦C. Typical clays and minerals found in or near these vents include various

The contents of this chapter are based in part on work previously published as Damien Mathew and Zaida Luthey-Schulten.
“Influence of Montmorillonite on Nucleotide Oligomerization Reactions: A Molecular Dynamics Study ,” Ori Life Evol Biosp,
40:303-317 (2010).
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forms of smectite, chlorite, and metal sulfide minerals like pyrite, greigite, and other iron-nickel sulfides (

for a review see [45]).

There have also been a number of suggestions about the specific reaction chemistry associated with each

origins of life scenario. The discoveries demonstrating the catalytic and genetic roles of RNAs gave rise to

the RNA world theory for the origin of life (for a review see [46]). Taken to the extreme, the RNA world

would have little or no polypeptides or proteins. Attempts to explain the formation of nucleobases, sugars,

sugar-phosphate backbones, and reactions leading to the formation of polynucleotides, have also led to the

debate of whether a metabolic cycle akin to an archaic TCA cycle has a higher probability to emerge from a

geochemical environment than the formation of information storing, self-replicating catalytic oligomers[47–

53]. This debate may be more one of emphasis than of substance. In his theory of surface metabolism,

Wächtershäuser (1988) laid out a scenario for the formation of metabolites, amino acids, and nucleotides

including their polymerization on pyrite and the transition to a cytoplasmic metabolism following formation

of early lipid membranes. Both Cody and Wächtershäuser have gone on to experimentally test several of the

steps in their proposed reaction schemes[47; 54]. They show that under extreme pressures and temperatures

similar to those found in the hydrothermal vents that trace amounts of amino acids and pyruvic acid are

formed.

Leaving for the moment questions about the formation of the building blocks, in this chapter we focus

on the potential roles that inorganic clay could have played in catalyzing reactions relevant to the formation

of the first functional primitive polymers.

An important step in any origins of life scenario is the buildup of complexity from simple molecules of

nucleic acids and amino acids into longer chains. The chains of polynucleotides and polypeptides may have

been statistically formed initially, but at a later stage cellular machinery arose such that a genetic link be-

tween polypeptides and polynucleotides was established and the polynucleotides acquired their information

storing property. It has been suggested by many groups that inorganic surfaces were the sites of the reactions

in the statistical phase (For recent reviews, see [46; 55–57]). In particular iron sulfide minerals have been

proposed as a possible catalyst for prebiotic reactions, and have been shown to catalyze synthesis of amino

acids in solution [47; 48]. Considerable experimental work lead by James Ferris and his coworkers has been

done to show that the clay montmorillonite can concentrate and oligomerize nucleotides up to 50 in length,

especially when the nucleotides are activated with a 1-Methyladenine (1-Mead) or imidazole group at their

5′ end [26; 58–64]. Here, we present the results of molecular dynamics (MD) simulations that shed light on

the influence of the clay surface on the polymerization reactions.

Montmorillonite is a phyllosilicate clay, and an erosion product of volcanic ash. It is widely distributed,

geographically (see Figure 3.1, and can be found in deep sea sediments including near the “Lost City” hy-

drothermal vent range, which has been an area of significant study for marine scientists and geochemists

interested in origins of life, since hydrothermal vent ranges offer chemical and thermal gradients which

could have been exploited by early, biologically relevant reaction cycles and can act as a source for chemi-

cal raw materials. It has a structure consisting of two layers of tetrahedral silicon oxide sandwiching a layer

of octahedral aluminum oxide forming a sheet. The sheets stack like a deck of cards with ∼10Å spaces

separating them in which water and ions are present. With no defects or substitutions, its chemical formula
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would be Al4Si8O20(OH)4. However, montmorillonite is characterized by defects in the silicon oxide (sil-

icon replaced by aluminum) and aluminum oxide (aluminum replaced by magnesium) layers, leading to a

net negative charge of ∼ −10−4Coul · cm−2. The negative charge results in the accumulation of positive

counter ions in the “gallery” regions between the layers. When dried, the gallery region is occupied by

partially hydrated cations which hold the layers together. When wetted, the gallery regions expand and fill

with water leading to a large increase in the interlayer distance of more than 20Å. Cations in a wetted clay

become completely hydrated and are able to diffuse freely within the gallery. The expanded interlayer in

montmorillonite and related clays is wide enough to accommodate polymers [65; 66] and polynucleotide

chains [67], and interlayer cations are known to mediate the reversible binding of RNA oligonucleotides

[68; 69]. In addition, montmorillonite catalyzes the formation of vesicles [70] and RNA bound to the clay

can be encapsulated within these vesicles [69].
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Figure 3.1: Oceanic distributions of the clay mineral montmorillonite measured from deep sea sediments [2] shown
as a fraction of the total sediment by color coding. Green X’s mark dry-land locations of relatively high purity
montmorillonite deposits (taken from the MinDat online mineral data archive: http://www.mindat.org/min-2821.html).
The red X marks the location of one of the mid-Atlantic hydrothermal vent fields known as “Lost City.”

Montmorillonite’s ability to catalyze nucleotide polymerization of up to 50 mers in length is remarkable

considering that only slightly longer synthetic RNA chains such as the Bartel ribozyme have been shown

to exhibit RNA polymerase activity [71]. It has also been shown that polymerization reactions on mont-

morillonite are regioselective, preferring elongation through the 5′ phosphate of the mononucleotide with

the 3′ site of the elongating chain’s ribose as opposed to its 2′ site [59]. Experiments have not been able to

determine the specific property of montmorillonite that is responsible for the catalytic effect, nor is it known

with certainty where in the material the catalysis is taking place: surface, gallery, or step-defect, though ev-

idence has pointed to the interlayer region as being the site for catalysis [72; 73]. The molecular dynamics
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simulations presented in this paper provide the microscopic details to address these questions and provide

insight into additional observations.

In our simulations, we apply a model of montmorillonite with characteristic charge defects that was

developed by Heinz and coworkers [66] and shown to accurately recover spectroscopic and mechanical

properties such as compressibility. Using this model we compare two possible scenarios for oligonucleotide

synthesis. Simulations are performed with nucleotides in contact with either an exposed surface of mont-

morillonite or within a confined hydrated interlayer environment to determine the location of catalysis. The

confined environment in the interlayer region of the clay is simulated by applying periodic boundary condi-

tions and randomly placing reactants in the aqueous layer between the two images of a single clay sheet.

The step-wise reaction rates for montmorillonite-catalyzed nucleotide polymerization have been exper-

imentally determined, and the dimer to trimer step found to have the fastest rate [74]. While classical MD

simulations cannot determine reaction barriers, information about kinetic reaction rates can be inferred from

both orientation and encounter distances of the reactants. In our study we compare the differences in in-

teraction of monomeric reactants with each other and perform radial distribution analysis to infer relative

reaction rates for 2′ − 5′ and 3′ − 5′ linkages of pairs of monomers. We also analyze interactions with

monomers and activated dimers to determine why the formation of a trimer is faster than that of a dimer.

Encounter distances are determined from a calculation of the radial distribution function g(r) (see Methods).

The steady state reaction rate constant for a biomolecular reaction, k+, can be shown to be related to the

radial pair distribution function, g(r) (3.1) [75].

k+ = 4π

∫ ∞

0
k◦(r)g(r)r2dr (3.1)

where k◦(r) is an intrinsic reactivity function related to the probability of a reaction going forward given a

reactant separation distance of r. g(r) reflects the likelihood of the reactant pair to be at a distance r relative

to that of the bulk density. This formula assumes that both k◦(r) and g(r) are isotropic. If a reaction takes

place only within a certain encounter radius, R, k+ can be shown to be directly proportional to the magnitude

of a radial distribution function evaluated at R (3.2) where we substitute k◦(r) = k◦δ(r −R)/4πr2.

k+ = k◦g(R) (3.2)

Experiments have also shown that there is a sequence dependence to the reaction rates for dimerization.

Our simulations verify the observed sequence selectivity and suggest that the variation in rates observed

when activated pyrimidines (purines) are added to purines (pyrimidines) are due to differences in adhesion

of the two forms of nucleotides to the surface.

Experimentally oligonucleotide synthesis on montmorillonite has been found to prefer homochiral prod-

ucts of either all D- or all L- nucleotides incorporated in the polynucleotide chain when mixtures of D- and

L- mononucleotides are present. Our simulations indicate that the homochiral pairs are the dominant con-

figurations which is important for questions of chirality selection in origins of life scenarios.
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3.2 Role of Confinement in Catalysis

Montmorillonite as a catalyst for oligonucleotide synthesis is primarily of interest due to the regioselective

nature of the activity. While biologically synthesized nucleotide chains are always connected by 3′ − 5′

linkages, this is not the most favorable product based on reactivity. Without a regioselective catalyst, aqueous

reactions resulting in 5′ − 5′ pyrophosphate and 2′ − 5′ phosphodiester linkages are more favorable [46].

Here we study the physical feature of montmorillonite responsible for the regioselective catalysis, paying

particular attention to orientations of monomers and dimers adhered to the surface and quantifying the

favorability of reaction by analysis of g(r) measured between the phosphorus and 2′ or 3′ oxygens of two

separate reactants (see Methods).

Mononucleotides adhere to the montmorillonite surface in our simulations in different ways. Unacti-

vated monomers tend to adhere to the clay surface through interaction of their bases which allows hydrogen

bonding with their ribose hydroxy groups (Fig 3.2 left). Monomers activated with 1-Mead adhere through

interactions of both the activating group and the exocyclic functional groups of the base, with the backbone

facing away from the surface (Fig 3.2 right).
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with the 2′ hydroxy Right 1-MeadpA adhesion orientation. Colored molecules represent structures from the simula-
tions. Structures for both molecules are included below the snapshots. Lower clay sheet added to indicate interactions
take place in the interlayer, however the separation distance has been compressed in the figure. (Other monomers, ions
and water omitted for clarity.)

Dimer adhesion to montmorillonite differs from the adhesion of monomers. When the activating group
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1-Mead is added to the 5′ end of the dimer, dinucleotides are observed to anchor to an exposed surface

through either the activating group or a base, allowing the molecule to extend into the solvent above the

surface (Fig. 3.3 right). In the interlayer region the entire dimer is seen to remain close to the montmoril-

lonite surface with little drift into solvent (Fig. 3.3 left). The environment of the clay interlayer region has

a significantly higher ionic strength than that above an exposed surface, which may assist in the adhesion of

the nucleotide.
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Figure 3.3: Adhesion of activated adenosine dimers (1-MeadpApA) with (Left) and without (Center) confinement in
the interlayer. Right Molecular structure. (Other dimers, ions, and water omitted for clarity.)

Simulations with both an exposed surface and an interlayer environment show that the elongation reac-

tion are more favored in the interlayer regions. Analysis of the trajectories suggests that the relatively higher

ionic strength of the solvent as well as the conformational differences in dimer adhesion in the interlayer are

responsible for the catalytic effect. Complexes of monomers with activated dimers on an exposed surface

show a preference for 5′ − 5′ linkage as measured by the peak position and magnitude of the g(r) in Fig.

3.4 (left). It is only when the activated dimers are placed in the confinement of an interlayer environment

that the 3′ − 5′ regioselectivity is observed. This observation is in agreement with experiments in which a

chemical blocking of the interlayers resulted in a dramatic decrease in the reaction yield [72].

In the interlayer, the g(r)s show a strong preference for orientation of the 5′ phosphate of the monomer

to the 3′ hydroxy terminal group of the activated dimer, which is the linkage predominately observed exper-

imentally. These groups remain in close proximity for several nanoseconds once they have come in contact

(See Fig. 3.4 right). According to Eq. 3.2 both k◦ and gmax contribute to the reaction rate. We make a

direct comparison of gmax to estimate relative reaction rates using Eq. 3.2, assuming that differences in k◦

are relatively small for the narrow range of distances examined. However, peaks occurring at larger radial

distances reflect a smaller reaction rate since the intrinsic reactivity function, k◦, is assumed to be a rapidly

decreasing function of the separation distance between reactants. Without confinement (Fig. 3.4 left) gmax

for 5′ linkages dominate, and little signal for 2′ − 5′ or 3′ − 5′ linkages is observed. In the interlayer gmax
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for the 5′− 5′ linkage is only 25 and occurs 0.9Å farther than the much stronger peak for the 3′− 5′ linkage

at 3.8Å and a value of 48. The peak for 2′ − 5′ linkage occurs at 9.8Å and is a result of the strong 3′ − 5′

affinity. Comparing gmax for the exposed and interlayer environments suggests that an enhanced catalytic

effect occurs in the interlayer, and that reactions on the exposed surface should result almost exclusively in

5′ − 5′ linkages.

Calcium ions play an important role in bringing reactants together in the dimer to trimer elongation

reaction. As discussed in the Methods section, we screened the g(r)s for the 2′− 5′ and 3′− 5′ calculations

for the presence of calcium in close proximity. Interactions between the 3′ hydroxyl oxygens are nearly

always mediated by a calcium ion. Calcium strongly mediated the 3′ − 5′ linkage, but was only rarely

observed in the 2′ − 5′ linkage.

The elongation occurs primarily according to two scenarios, both mediated by calcium positioned as

Ca2+
A or Ca2+

B respectively in Fig. 3.5a. Once the calcium coordinates with the phosphate, the monomer

undergoes two dimensional diffusion along the surface until it comes in close proximity to a dimer. At this

point, the calcium simultaneously coordinates with both the AMP’s phosphate and 3′ terminal hydroxy of

the dimer, which puts the two groups in close contact for a sufficiently long duration to allow a reaction to

take place as shown in the mechanism in Fig. 3.5a. Fig. 3.5b is a snapshot of such a simulation. During the

7 ns animation, the 3′ terminal hydroxyl remains on average within 3Å of the surface. Divalent metal ions

have been shown to catalyze nucleotide polymerization without the presence of a surface [76], however the

catalysis had been shown to form 2′ − 5′ linkages. The cation may modify the pKa of the hydroxy groups

to make the reaction more favorable. In our simulations, the ion interacts with the 3′ hydroxy, which may

force the regioselectivity of catalysis to form 3′ − 5′ links as suggested in Fig. 3.4 (Right).

Fig. 3.5c shows an alternative configuration that still brings the reactant groups in close proximity. In

this orientation, the calcium ion (Ca2+
(B) in Fig. 3.5a) coordinates between the 5′ phosphates on the activated

monomer and AMP which positions the AMP close to the terminal hydroxyl group on the dimer as shown

in Fig 3.5a. This orientation leads to the 5′ − 5′ linkage as suggested by the g(r) in Fig. 3.4(Right).
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Figure 3.4: Trimer formation from 1-MeadpApA + AMP . Radial distribution functions for Left exposed surface and
Right Interlayer.

Simulations were performed on an system consisting of the same reactants as described above but with-

out the presence of the montmorillonite surface. The g(r) analysis is presented in Figure 3.6. Clearly, the

peak intensities for the 3′ − 5′ linkage is significantly lower than observed in the presence of montmoril-
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proximity through 5′ − 5′ interactions. Both configurations contribute to the gmax in Fig. 3.4(Right). The 3′ terminal
oxygen and 5′ AMP phosphorus are within 3.8Å in both cases. Water molecules surrounding the system have been
hidden for clarity, but are explicitly present in the simulations.

lonite, and a strong preference for 5′ − 5′ linkages is suggested. Without the surface, 2′ − 5′ linkages are

a possibility as they have a significant peak in these simulations as opposed to those with the surface and

in the interlayer. Additionally, calcium ions were rarely involved in assisting the 2′ − 5′ or 3′ − 5′ linkages

in the solution simulations. These differences in are an indication of the strong catalytic properties of the

montmorillonite surface.

4 6 8 10 12 14
0

2

4

6

8

10

12   2’ to 5’
  3’ to 5’
  5’ to 5’

r (Å)

Figure 3.6: Radial distribution functions for trimer formation from 1-MeadpApA + AMP in bulk solution without any
surface present.
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3.3 Sequence Selectivity in Dimer Formation

In experiments that added nucleotide monophosphates (NMPs) to activated nucleotides, it was reported that

the addition of the purine monophosphate (AMP) to activated pyrimidines resulted in the highest yields and

also exhibited the strongest regioselectivity for 3′ − 5′[63] . Conversely, adding the pyrimidine monophos-

phate (UMP) to activated purines resulted in the lowest yields, while adding pyrimidine monophosphates to

activated pyrimidines actually showed slight preference for 2′ − 5′ linkages.

Our simulations on mixtures of adenosine and uridine in the clay interlayer confirm the strong sequence

selectivity of montmorillonite oligonucelotide catalysis. In one set of simulations the adenosine is activated

and uridine is in its UMP form (UMP + 1-MeadpA). A second simulation switches the activation to the

uridine, and leaves adenosine in its monophosphate form (AMP + 1-MeadpU). Simulations of both mixtures

were carried out for 50 ns, and the pair distribution function g(r) for the approach of the 5′ phosphate on the

monophosphate to the terminal hydroxyl groups and the 5′ phosphate on the activated nucleotide analyzed.

The g(r)s in Fig. 3.7 clearly show that the reactants are preferentially arranged in the AMP + 1-MeadpU

solution for dimerization utilizing 3′ − 5′ linkages. The UMP + 1-MeadpA scenario shows minimal 3′ − 5′

alignment, with the gmax significantly less intense than for the AMP + 1-MeadpU scenario (Fig. 3.7),

however a strong 5′ − 5′ signal is observed.
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Figure 3.7: Sequence selectivity for U-A and A-U dimer formation. g(r)s for (Left) AMP to 1-MeadpU and (Right)
UMP + 1-MeadpA).

Analysis of the trajectories reveal that UMP appears to have a weaker adhesion to the clay surface than

AMP which likely prevents the 2D surface diffusion with a bound Ca2+ ion observed in the AMP + 1-

MeadpU as well as the AMP +1-MeadpApA simulations of trimer formation discussed earlier. The lack

of dimensional constraint to the surface results in interactions between UMP and 1-MeadpA that are not

favorable for 3′−5′ linkage dimerization. Namely the base on UMP stacks with the 1-Mead group and base

pairs with the adenine which contribute to the second and third peaks in Fig. 3.7. In the case of AMP +

1-MeadpU, 1-MeadpU adheres more strongly to the surface than UMP while AMP is able to diffuse along
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the surface and easily attack the 3′ oxygen in a similar manner as observed in trimer formation. The lower

value of gmax for AMP + 1-MeadpU dimer formation relative to the value for trimer formation with only

adenosine suggests that this step in elongation would have a lower reaction probability. This is in agreement

with experimental studies of the stepwise reaction rates, which have shown the formation of trimers from

dimers and monomers to be the fastest step in the montmorillonite-catalyzed formation of oligonucleotides

[74].

3.4 Influence of Chirality on Catalytic Efficiency

Chirality is an important consideration when studying the origins of life [77]. Examination of the Murray

and Murchison meteorites, two highly regarded extraterrestrial sources of non-biological amino acids, re-

vealed a slight enantiomeric bias towards L-form amino acids [78]. However, this bias is very slight (only

1.0 to 9.2%). To account for the exclusive use of L-amino acids and D-sugars (i.e. ribose in nucleotide

backbones) in modern biology, further enrichment is required. This can be accomplished through chiral-

selective adhesion to a surface. Though montmorillonite does not present a chiral crystal surface, recent

work has shown that adhesion of molecules to an achiral surface can induce chiral recognition of other

molecules which preferentially adhere in response to a change in the surface’s electronic structure [79].

Here, we present results from MD simulations that demonstrate a selective property for montmorillonite

to prefer linkages between monomers of similar chirality. This behavior, coupled with the possibility for a

slight deviation from racemic abundance of naturally-occuring nucleotides could account for the homochiral

ploynucleotides utilized by modern life.

Experimental work has indicated montmorillonite catalysis favors the synthesis of homochiral oligonu-

cleotides [80; 81]. In the presence of activated D- and L- AMP, the ratio of homochiral oligomers (charac-

terized by the sum of all D- and all L- members) to mixed oligos was reported to be 60:40. To gain a deeper

understanding of this effect and to determine the contributions of the four different pairings, we modeled

an L-1-MeadpA (Fig. 3.8) and L-AMP and performed 4 sets of simulations using various mixtures sum-

marized in Table 3.1 . The simulations consisted of a system containing four D-AMP molecules and four

L-1-MeadpA molecules, a system of four L-AMP and four D-1-MeadpA molecules, and two homochiral

systems each consisting of four activated and four monophosphate L- and D- form adenosine molecules

respectively. For comparison, we also performed simulations without the montmorillonite present. While

the experimental findings for homochirality used an imidazolide activating group, we retained the 1-Mead

group as used in the other simulations reported in this paper to allow for consistent comparison. Each system

contained identical montmorillonite surfaces and interlayer separation used in the systems discussed above.

Results show that the L-AMP and L-1-MeadpA adhere to the surface in a manner similar to the D-forms

shown in Fig. 3.2.

The maximum in g(r) was used to measure the approach of the 5′ phosphate group of the AMP to the

3′ hydroxy group of the 1-MeadpA . Based on the comparison of the gmax, the results in Table 3.1 show

a preference for homochiral association of monomers in orientations conducive for dimerization. To relate

the findings in the table to a ratio of homochiral to heterochiral products, we sum the gmax values for L+L

and D+D. This value is then divided by the sum of the gmax for all four combinations (L+D, D+L, L+L,
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and D+D) resulting in a value proportional to the reaction rate for homochiral product as a fraction of the

rate for total product. In the presence of the montmorillonite catalyst, we see both stronger peaks in the

pair distribution of reactants relative to the solution simulations as well as a 65:35 ratio in the sums of the

homochiral versus heterochiral g(r) peaks. For simulations carried out in solution with no montmorillonite

present, the homochiral to heterochiral ratio was found to be 43:57

Table 3.1: Peak g(r) values for hetero- and homo- chiral monomer interaction

1-MeadpA Chirality AMP Chirality gmax catalyzed gmax in solution
L D 5.3 4.9
D L 5.5 1.5
L L 12.2 3.4
D D 7.7 1.5

3.5 Generalized Forms of Positive Surfaces and Their Potential Role in Polynucleotide Formation

So far in this chapter we have dealt with a specific mineral surface that, through random substitutions of

magnesium for aluminum in it’s aluminum oxide layers, possessed a net negative charge. The potential role

of positively charged surfaces, particularly iron-sulfides such as greigite (Fe2+Fe3+
2 S4) and pyrite (FeS2), in

the origins of life has also been discussed in the literature [48]. It is also important to note that, while we

have observed that surface adhesion to the montmorillonite surface played a role in promoting the elonga-

tion of a nucleotide chain, a solvated cation played an equally important role in stabilizing configurations

of the reactants that would allow the reaction to go forward. In this section, we address the possibility

of a positively-charged surface playing a similar role to that of montmorillonite in promoting nucleotide

oligomerization.

Greigite is an especially compelling mineral, since it is associated with modern biological systems.

Magnetotactic bateria, for instance, have greigite crystals in their magnetosomes and greigite is also formed

by sulphate reducing bacteria. So, greigite is a biologically relevant mineral in life today, and while greigite
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is not readily used in essential metabolic cycles in life nor is it ubiquitous in life, its presence in life today

suggests that it may have been utilized for other purposes in early life. Additionally, greigite is associated

with clay sediments, and is thus often found in deposits containing montmorillonite, and can also be found

in deep-ocean hydrothermal vent stacks which have been proposed as potential sites for the origins of life

[82]. Greigite’s positive charge is derived from substitutions of Ni3+ or Fe3+ for Fe2+, and results in a

nominal charge of 2.5 per unit cell [83].

Generally, the proposed scenarios involving iron sulfides focus on a “metabolism first” view of the

origins of life, in which reaction cycles forming biologically relevant molecules are catalyzed or otherwise

assisted by greigite [84].

Here, we present results from a generalized positive surface modeled, for the purposes of our study, by an

array of sodium atoms, constrained to two-dimensional surface. We used MD simulations to investigate the

microscopic interactions between this surface and uracil nucleotides in aqueous solution with free calcium

ions as counter ions. The nucleotides are observed to adhere directly to the surface through electrostatic

interactions between the phosphate groups and the sodium ions.

In addition, we have simulated a mixture of amino acids above this nucleotide-impregnated surface to

determine if the surface promotes the formation of oligopeptides. This mixture consists of the glutamic acid,

leucine, 0.7M NaCl, and water. We find that the system can selectively promote a 5’ to 3’ linkage between

nucleotides, which is an essential structure for biological activity. We also find a possible promotion of

polymerization of amino acids from this system. We observe a slight preference for Glu pairing over Leu

pairing, which would be consistent with association of Glu with its anticodon, which has a U in its middle

(most critical) position.

3.6 Promotion of Nucleotide Oligomerization and Associations with Amino Acids

3.6.1 Selectivity in Oligonucleotide Formation

We observed that the nucleotides placed above the surface adhered to the sodium ions by electrostatic in-

teraction with the negatively charged oxygens on the 5′ terminal phosphate group. This behavior fixes the

positions of the 5′ end of each nucleotide, but allows for pivoting of the molecule about this point. For this

reason, we do not expect to see 5′-5′ linkages being made. Biological RNA polymers are always linked

from the 5′ phosphate group to the 3′ group of the next member of the chain, however, there is no reason for

this specific linkage to exclusively occur in solution. We examine the radial distribution functions of the 5′

terminal oxygens on the phosphate group to the 2′ oxygens and 3′ oxygens separately to determine if there

is a preferential association of these groups which would lead to promotion of one bond formation over the

other. There is no need to examine 5′ to 5′ radial distributions, as these groups are fixed to lattice positions

by electrostatics.

Figure 3.9 depicts the radial distribution of 2′ oxygens relative to the 5′ phosphate oxygens of the nu-

cleotides. We see that there is a peak value of g(r) = 5.8 which occurs at 4 Å.

Figure 3.10 gives the radial distribution function of 3′ oxygens relative to the 5′ phosphate oxygens of

the nucleotides. In this case we see a larger peak value, g(r) = 6.8 at the same radial distance of 4 Å. The
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Figure 3.9: Radial distribution function of 5′ phosphate oxygens to the 2′ oxygens

larger g(r) for 5′ to 3′ implies that this association is stronger than for 5′ to 2′, and that should a reaction

occur, the 5′ to 3′ linkage would be preferred over 5′ to 2′. We should note that the distance of 4 Åmay

be too large for a reaction to take place. However, while we terminated our nucleotides with the standard

5′ terminal phosphate and 3′ terminal hydroxy groups, experimentally a 1-methyladenine 5′ terminal group

has been shown to promote oligomerization on montmorillonite [59]. It is possible that this larger terminal

group may help reduce the separation distance and promote the reaction.

3.6.2 Promotion and Selectivity of Oligopeptide Formation

We will now focus on the promotion of oligopeptide formation by the nucleotide coated surface. We chose

a mixture of leu and glu as a test of specificity. Leu, with U in its middle codon position and with a polar

requirement of 4.9 is taken to be much different than glu with an A in its middle codon position and a polar

requirement of 12.5. It was believed that if an association between amino acids and their codons exist, that a

Uracil impregnated surface should preferentially promote leu oligomerization. Figure 3.11 gives the radial

distribution function of leu carboxy oxygens to amine hydrogens. We see that the peak is located at ∼1.8

Åwith a value of g(r) = 4.1. This short distance is sufficient to allow for a condensation reaction to at least

dimerize leu.

To determine if Leu oligomerization is preferred, we examined the radial distribution function of Glu

backbone carboxy oxygens to Glu amine hydrogens. The results of this calculation are presented in Figure

3.12. We again see a peak located at ∼1.8Å, but with a peak value of g(r) = 5.5, larger than the g(r) peak

for leu-leu dimerization.
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Figure 3.10: Radial distribution function of 5′ phosphate oxygens to the 3′ oxygens

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

r ( Å )

Figure 3.11: Radial distribution function of backbone amine hydrogens to carboxy oxygens of leu
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Figure 3.12: Radial distribution function of backbone amine hydrogens to backbone carboxy oxygens of glu

To determine the rate of Glu dimerization with Leu, we calculated the radial distribution function for

Glu backbone carboxy oxygens relative to leu amine hydrogens. The results are presented in Figure 3.13.

Once again, we see a peak located at ∼1.8Å, this time with a peak value of g(r) = 5.7.

3.7 Conclusions

We have used classical molecular dynamics techniques to study the interactions of nucleotides with mont-

morillonite. The simulated environment is similar to the experimental conditions used to study the catalytic

effect of montmorillonite on nucleotide oligomerization in that we consider interactions of both activated

and phosphate-terminated nucleotides at the exposed surface and within the clay interlayer along with the

catalytic effects of divalent ions (Ca2+). We have demonstrated the ability of the Heinz montmorillonite

model to recover the trends in product propensities observed experimentally. Although the equilibrium sim-

ulations are only 50 ns long, they give insight into the reaction mechanisms. Our simulations confirm that

oligonucleotide synthesis takes place primarily in the clay’s interlayer region, and that he synthesis should

proceed in the 3′ − 5′ direction, just as in template-directed synthesis in the RNA polymerase. Trimer for-

mation on an exposed surface gives the non-biological 5′ − 5′ linkage over the biological 3′ − 5′ as shown

by a comparison of the gmax values in Fig. 3.4. Simulations with the Heinz model also reveal the preference

for forming 3′ − 5′ linkages as well as the sequence selectivity reported by experiments, showing that a

preference for catalyzing the AMP + 1-MeadpU over the UMP + 1-MeadpA reaction is due to a relatively

weak adhesion of UMP to the clay.

Analysis and comparison of the peak radial distribution values, gmax, for both 3′ − 5′ and 2′ − 5′ ap-
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Figure 3.13: Radial distribution function of backbone amine hydrogens of Glu to carboxy oxygens of Leu

proaches of reactants in both the interlayer and exposed surface environments of montmorillonite, suggests

both an increased regioselectivity for 3′−5′ linkage formation as well as an overall increased catalytic effect

when the reactions take place in the interlayer. In addition to gmax the intrinsic rate constant ko is also a

factor in determining the overall rate constant for a reaction. In our interpretation, we assume that ko is

similar for 5′ phosphate attack on both the 2′ and 3′ hydroxy. We have also not taken into account that ko

is also a function of separation distance between and relative orientation of the reactants. However, it is

interesting to note that in the interlayer, the gmax for the 2′ − 5′ is smaller and occurs at a larger separation

distance than for the 3′ − 5′ linkage, which suggests that the rate for 2′ − 5′ linkage formation may be less.

Without knowing the exact distance dependence of ko it is difficult to quantify how significant of an effect

this would have on the reaction rate constant, though it suggests that the rate constant for the 2′− 5′ linkage

may be lower than what is inferred from a simple comparison of gmax. The reason for the increased catalytic

effect in the interlayer is likely due to the relatively higher ionic strength in the interlayer which changes

the orientation of adhesion of the reactants and also facilitates a constrained diffusion of NMPs coordinated

with divalent ions along a surface, thereby improving the likelihood of reactant encounters.

The influence of reactant chirality on the effectiveness of montmorillonite’s catalysis in our simulations

is in agreement with the results obtained in the experiments. A preference for catalysis of homochiral

products is observed, however our simulations indicate a preference for L- over D- homochiral products in

dimer formation.

The analysis method is not without some limitations. A radial distribution function neglects a consid-

eration of the relative orientation of the reactants, which may be of some importance for a nucleophilic
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reaction. Additionally, the analysis yields only information about the kinetics of a reaction. To study ther-

modynamic barriers a method such as quantum mechanical / molecular mechanical (QM/MM) simulations

or free energy perturbations should be employed. The degree of agreement between the simulations and the

experiments suggest that classical MD techniques could be used to also investigate the link between polynu-

cleotide formation and the establishment of the genetic code through associations between amino acids and

nucleotide chains on montmorillonite surfaces.

3.8 Methods

Molecular Dynamics Simulations The molecular dynamics software package, NAMD2, was used with an

NPT ensemble [34] and the CHARMM27 forcefield [35; 36]. A pressure of 1 atmosphere and temperature

of 300K were maintained for each simulation. Periodic boundary conditions (PBC) were enforced, with

PME full electrostatics. Harmonic constraints of 2 kcal· mol−1· Å2 were applied to a silicon atom at each of

the four corners of the montmorillonite sheet to maintain orientation. To ensure adequate wetting of the clay

surface two minimization and equilibration cycles were performed prior to a longer simulation for analysis.

Water was added to the system and minimization was carried out for 5000 iterations, followed by a 1 ns

equilibration. Water was again added to the system to fill voids formed during the wetting process and the

same minimization and equilibration procedure was followed. The process of adding water in stages results

in a swelling of the clay interlayer region to an equilibrated separation distance of 30Å , except for those

simulations which were intentionally made larger to simulate an exposed clay surface. Once the surface was

fully wetted, 50 ns of equilibrated MD simulation were calculated.

VMD [37] was used to create the systems for simulation and for analysis after the MD simulations were

complete. The interlayer systems simulated consisted of a random distribution of nucleotides of interest

near a 52Å × 52Å square of montmorillonite surface, and a 15Å layer of water on each side of the surface.

With PBC, the result is an infinite montmorillonite crystal with an interlayer region size of 30Å when fully

wetted. For simulations of reaction on a single exposed surface the separation was increased to 70Å so

that the effect of the simage of the surface was negligible. We have modeled the 1-methyladenine (1-

Mead) activating group by analogy from the topology of the unmodified adenine and corrected the partial

charges to be consistent with those found from Hartree Fock calculations. This activating group was used

in experiments resulting in the 50-mer oligonucleotides [59]. Some studies of montmorillonite catalysis of

oligonucleotide synthesis used a phospho-imidazolide (Imp) 5′ terminal group instead of 1-Mead. In order

to allow for comparison between our simulations, we use the 1-Mead activating group in all our simulations.

A model for L-adenosine used in chirality studies was made by analogy to the D-form. For systems in

which we study dimerization, four molecules of each species are included in the simulation, with one set

of reactants activated by 1-Mead (uradine (1-MeadpU), or adenosine (1-MeadpA)) and the other terminated

with a monophosphate group (AMP or UMP). Studies involving the formation of trimers consist of four

adenosine dimers activated with 1-Mead (1-MeadpApA) and seven adenosine monomers terminated with a

single phosphate (AMP). For this system, an excess of unreacted monomer was chosen to reflect the likely

relative concentrations under experimental condidtions. Calcium ions were added in sufficient number to

neutralize the system. For all systems, nucleotides and ions were placed randomly. The total number of
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atoms for each simulation varies depending on the specific reactants included, but is generally ∼10,000

atoms for each simulated system. The choice of pairing activated with monophosphate-terminated reactants

was made based on a proposed reaction scheme for stepwise oligonucleotide synthesis on montmorillonite

[74].

Montmorillonite has a monoclinic crystal structure[85; 86] with basis vectors given in equation 3.3.

The modeled montmorillonite surface from the work of Heinz et al. [66] was used in our simulations

(see Figure 3.14). This model has been shown to reproduce experimentally observed bond vibrations from

IR spectra as well as mechanical properties such as swelling and compression in the presence of inter-

calated polymers. Force field parameters compatible with CHARMM for montmorillonite were also ob-

tained from this work. The chemical formula for the simulated montmorillonite, including charge defects,

is (Al3.34Mg0.66)Si8O20(OH)4X0.33. In our model, X is divalent calcium in the interlayer region. A number

of other exchangeable cations have been shown to be effective in catalytic montmorillonite [87]. Calcium

was chosen for its strong electrostatic attraction for the negatively charged terminal phosphate group on

the nucleotides as well as for the negatively charged surface. Calcium also exhibits a relatively short-lived

binding to water molecules as compared to magnesium which rarely dissociates from water and thus may

not contribute to direct associations with the reactants as frequently. The Heinz model has substitutions of

Mg for Al, and includes fewer defects than those present in the clay used by Ferris. This montmorillonite

model has 17% of the octahedral aluminum sites replaced by magnesium, resulting in a surface charge den-

sity, σ = −2.4× 10−5Coul/cm2. The clay used in the experiments contained some iron substitutions and

roughly 46% magnesium, resulting in a higher surface charge density. We find in this work that the abun-

dance of defects present in the model adequately recovers the trends from experimental results and there

was no need to re-parameterize a new montmorillonite model. Other published work on MD simulations

of montmorillonite have used the CLAYFF forcefield parameters adapted for the Amber MD simulation

package [88]. This forcefield uses only non-bonded forces to maintain the clay structure. Due to its compat-

ibility with CHARMM and its proven accuracy in recovering properties in simulating clay with intercalated

polymers, the Heinz model was chosen for the simulations in this study.

a = 5.200Å, b = 9.200Å, c = 10.130Å, α = γ = 90◦, β = 99◦ (3.3)

Radial Distribution Function Chemical reactions cannot be simulated using the classical MD methods

employed in this study. However, a reaction rate can be inferred from an analysis of the simulation using ra-

dial distribution functions. A radial distribution function (g(r)) of atoms involved in the reactions of interest

yields the relative abundance of reactant A from reactant B as a function of their separation distance [38; 89].

The g(r) is calculated using the Radial Pair Distribution Function tool built into the VMD software package,

using the default value of 0.1Å for histogram bin size, ∆r. In our analysis, the reactants are the terminal

(2′ or 3′) hydroxy groups of a 5′ activated mono- or di-nucleotide and the phosphate a 5′ monophosphate-

terminated nucleotide. We use the hydroxy oxygens and the phosphorus atoms in the calculation of Eq. 3.4,

where V is the volume of the simulation cell, Ns are the numbers of the selected atoms (either phosphorus

or oxygens), M is the total number of trajectory frames sampled, and r is the radial separation distance. Us-

ing g(r)s calculated from our classical MD simulations, we are able to quantify the likelihood of a reaction
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Figure 3.14: Right: Two side views of the montmorillonite structure used. Left: Top view of structure. Silicon atoms
represented in yellow, Oxygens in red, Aluminum and Magnesium in green, and Hydrogens in white

taking place, as this is directly related to the contact time of the reactants and contact time is directly related

to g(r) peak intensity, gmax. To attempt to capture as closely as possible the relationship between the g(r)
and the reaction rate constant,

gPO(r) =
V

4πr2∆rMNP NO

M∑
m=1

NP∑
i=1

NO∑
j=1

Qm(r; rPi , rOj ) (3.4)

Where the counting function, Q, is defined by:

Q(r; rPi , rOj ) =

{
1 if (r −∆r/2) ≤ (rPi − rOj ) < (r + ∆r/2)
0 otherwise

(3.5)

Averages were made over the entire 50ns trajectories, after excluding the first nanosecond for equilibration.

Some additional considerations must be made in order to use radial distribution functions as a measure

of relative kinetic rate constants. First, if the 5′ end of the monophosphate is close to both the 2′ and 3′
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groups of the other reactant the reaction is equally likely to take place linking either 3′ − 5′ or 2′ − 5′. To

take into account this shared likelihood, when the 5′ phosphorus atom is simultaneously within 4 Å of the

2′ and 3′ groups of the other reactant, we multiply the g(r) calculated at that time step by a factor of 0.5

to reflect this shared probability. Second, calcium ions, when present, may enhance the reaction rate. For

simulations in which calcium appears to remain close to the terminal hydroxyl groups, we calculate g(r)s
only for those time steps in which a calcium ion is within 4 Å of these groups.

A Generalized Form of a Positively Charged SurfaceThese simulations were carried out under an NPT

ensemble with 1 atmosphere of pressure and a temperature of 300K. Periodic boundary conditions were

enforced with PME full electrostatics. The system was minimized for 4000 iterations followed by 4 ns of

molecular dynamics using a 1 fs timestep.

The “generalized” positive mineral surface was constructed using an array of sodium ions placed at the

exchangeable cation sites of the montmorillonite surface. While montmorillonite has a net negative surface

charge, it’s structure was used as an analogy for a mineral surface consisting of regularly repeating positive

charge sites for the purposes of this study.

Sodium ions were placed at the exchangeable cation positions of the clay located at 000 and repeated by

lattice translation vectors appropriate for monoclinic crystals to construct a 2D surface of sodium ions repre-

senting the saturated cationic structure of the clay given in equation 3.6. These sodium ions are constrained

to their initial positions by a harmonic restoring force with a force constant of 20 kcal/mol Å2.

~A1 =
1
2
ax̂− 1

2
bŷ, ~A2 =

1
2
ax̂ +

1
2
bŷ (3.6)

Uracil nucleotides were placed above this array in a ratio of one nucleotide for every two cation sites.

Above this, a charge-neutralizing 0.7M NaCl solution containing equal numbers of Glu and Leu residues

was placed. The size of the simulation was 60Å × 40Å × 50Å. The last 3 ns of simulation were used for

analysis. Radial distribution functions were calculated to determine selectivity of oligonucleotide formation

catalyzed by the surface, as well as promotion of oligopeptide formation. Figure 3.15 shows the arrangement

of sodium ions with the equilibrated mononucleotides adhering to the surface.
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Figure 3.15: Sodium ions (yellow) in an array with equilibrated uracil mononucleotides electrostatically bound. The
surface is completely saturated by uracil nucleotides, indicated by the lone uracil mononucleotide adrift in the solution.
Waters, ions, and amino acids not shown.
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Chapter 4

Reaction Pathway for Charging tRNA in an Aminoacyl tRNA Synthetase

4.1 Background

George Whitesides, in a lecture at the Santa Fe Institute in 2007, drew an analogy to a bridge as he discussed

research into the origins of life. One one side of the Whitesides bridge are the geochemists who strive to

glean insight into early life and/or proto-metabolism from a purely physical-chemical inspection of what the

early earth would have provided. On the other side, we have those who look to the past through the lens

of modern biology. They begin with biochemistry as their axioms and attempt to reverse engineer them to

gain an understanding of what must have been early proto-biology. The preceding chapters were devoted

to studies of interactions and reactions directly related to putative origins of life scenarios. Essentially, the

work presented in this dissertation up to this point has been from the first side of the “Whitesides Bridge.”

In this chapter, we take an approach from the other side of the bridge, and begin by examining a reaction

that is essential to maintaining the genetic code in modern biology. Here, we report on our investiga-

tions of the tRNA charging reaction within amino-acyl tRNA synthetases. In particular, we have examined

the charging of tRNAGlu from an adenylate of glutamate in GluRS, based on the crystal structure of the

tRNAGlu-GluRS-adenylate analog complex from Thermus Thermophilus [90]. A reaction mechanism has

been proposed by others [91] for the homologous system of GlnRS-tRNAGln which consists of an acyl

substitution reaction with the 2′ oxygen of the tRNA’s A76 acting as the nucleophile and attacking the car-

boxy carbon of the Glu-adenylate. The acyl substitution reaction’s initial nucleophilic attack is believed to

occur simultaneously with a proton transfer from the 2′ hydroxy of the tRNAs A76 to the phosphate of the

adenylate, according to the proposed scenario. The reaction scheme is depicted by the black arrows in figure

4.1. We have chosen two reaction coordinates, denoted as X and Y in figure 4.1. X represents the distance

between the 2′ hydrogen and the nearest oxygen of the phosphate of the Glu-adenylate and Y is the distance

between the 2′ oxygen and the carbonyl carbon of the adenylate.

We have performed an initial survey of the uncatalyzed reaction (i.e. with the reactant’s only, and not

including the reaction center of the synthetase). Using the knowledge gained from this initial assessment, we

apply a multi-level geometry optimization algorithm using both classical force fields and quantum chemical

methods to delve deeper into the catalyzed reaction.
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Figure 4.1: Simplified model and reaction coordinates for the GluRS-tRNAGlu charging reaction.

4.2 Reaction Pathway: Uncatalyzed

In an initial attempt to survey the reaction path for transfer of glutamate to tRNAGlu, we have a potential

energy surface for a simplified model of the reactants in “gas phase” (no surrounding protein from the

active site of the GluRS included). Energetic barrier encountered in this system are to be considered those

of the uncatalyzed reaction, since none of the synthetase is included in the system being calculated. We

calculate the potential energy surface by scanning each collective variable independently, and optimizing

the geometry at each point, constraining X and Y. If the reaction is concerted, given the optimization at

each point, we expect to observe a minimal path along the potential energy surface formed as a function

of these collective variables. The bases of the nucleotides, for the purposes of this initial study, have been

replaced with hydrogens to simplify our calculations. For the uncatalyzed reaction, we have determined a

potential energy barrier slightly over 33 kcal/mol. However, the reaction path seems to be in agreement with

the proton transfer occurring simultaneously with the nucleophilic attack, in agreement with the proposed

reaction mechanism.

A significant peak is observed in the potential energy surface at X ' 1.3Å and Y ' 1.5Å. An alternate

reaction path is observed crossing between two maxima, corresponds to a nucleophilic attack on the adeny-

late carboxy carbon prior to proton transfer, however the barrier hight for this path is slightly larger than the

one for the concerted reaction (simultaneous proton transfer with the nucleophilic attack).
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Figure 4.2: Potential energy surface along the two reaction coordinates. Two plausible reaction paths are located. Both
exhibit high potential energy barriers. Points labeled on plot (TS, PT1, PT2, and PT3) are used for calculations of the
catalyzed reaction.

4.3 Reaction Pathway: Catalyzed

Building from our work on the uncatalyzed reaction scheme described above, we have begun to examine

the reaction including the influence of the enzyme. In this work, we use the ONIOM method in Gaussian

09, in which molecular mechanics and/or lower level QM theory may be used to treat a portion of the

system being studied while higher level methods (e.g. Hartree-Fock) may be used for the reactants atoms.

This approach would allow for a more complete representation of the environment within the catalytic site.

Interactions based on both electrostatic effects as well as van der Waals forces would be taken into account

in this approach, allowing for hydrogen bond formation, polarization of reactant electron orbitals, and the

formation of salt bridges.

In order to include the effects of the environment within the catalytic site of the GluRS synthetase,

we have selected the amino acid residues from of the GluRS known to make contacts with tRNA A76 or

the Glu-AMP molecules [92] and included additional residues which were found to be within 5 Å of the

reactants, even if they did not make direct contact. The decision to include near-by residues that did not make

obvious interactions with the reactants was made to ensure that the electrostatic environment surrounding

the reactants was as realistic as possible for this simplified model. Unlike the earlier survey study, the

nucleobases for both the Glu-AMP and the A76 are included in the calculations described in this section in

order to more realistically represent the conditions in which the reaction takes place. The calculations in this

section also involve a two-level treatment of the atoms using the ONIOM method included in the Gaussian

quantum chemistry software package. A low level classical force field (UFF [93]) was used for the atoms of
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the GluRS catalytic site listed in Table 4.1 and an unrestricted Hartree-Fock (UHF) method with the 6-31G*

basis set was applied to all the atoms in A76 and Glu-AMP. The electrostatic charge from the atoms given

the UFF treatment were embedded in the electronic structure integrals for the atoms receiving the UHF

treatment.

Table 4.1: Residues from the GluRS catalytic site included at the classical level for calculations of the catalyzed
tRNAGlu charging reaction

Residue number Residue type Interaction with reactants
5 Arg H-bonds with Glu-AMP sidechain
6 Ile Near Glu-AMP backbone amine
7 Ala H-bond with Glu-AMP backbone amine
8 Pro Near Glu-AMP
9 Ser H-bonds with Glu-AMP backbone amine and phosphate
15 His Interacts with Glu-AMP base
17 Gly Near Glu-AMP
18 Thr Near Glu-AMP
20 Tyr Near Glu-AMP
21 Ile Near Glu-AMP
41 Glu Electrostatic interaction with Glu-AMP backbone amine
43 Thr H-bond through water with A76 3′ hydroxy
44 Asp Near A76
47 Arg Near A76
180 Lys Near Glu-AMP sidechain
185 Pro Near Glu-AMP sidechain
186 Thr Near Glu-AMP sidechain
187 Tyr Near Glu-AMP sidechain
188 Hse Near Glu-AMP sidechain
191 Asn Backbone interacts with Glu-AMP sidechain
203 Val Near Glu-AMP
204 Ile Near Glu-AMP
205 Arg Electrostatic interaction with Glu-AMP sidechain
206 Ala Backbone interacts with Glu-AMP 3′ hydroxy
208 Glu Near Glu-AMP ribose
209 Trp Interacts with Glu-AMP 3′ hydroxy
212 Ser Near Glu-AMP
234 Pro Near Glu-AMP
235 Leu Near Glu-AMP
236 Leu Interacts with Glu-AMP
243 Lys Near Glu-AMP base
244 Ile H-bond to Glu-AMP exocyclic amine

Glu41 is a particularly influential residue in the reaction center of GluRS. It has been noted that the pKa

for the Glu41 sidechain in its local environment can range from 8.06 to 8.90 and that of the backbone, α

amine, group of the Glu-AMP is 7.23 [92]. Given these pKas, it is possible that the Glu41 sidechain may
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be in a neutral, protonated, form, having received a proton from the Glu-AMP α amine. We have performed

geometry optimization calculations for each of the two possible protonation states of these moeities for both

the pre- and post-transfer states of the system (A76 with Glu-AMP and Glu-A76 with H-AMP respectively).

Initial configurations for each of the two stages of the reaction (pre- and post-transfer) were taken from

equilibrated MD trajectories of the entire GluRS and tRNAGlu system. The residues listed in table 4.1 were

selected from a representative frame from each trajectory and treated with UFF while the reactants were

calculated with UHF. The energies from the optimized geometries are listed in table 4.2. All energies are

scaled relative to the energy of the anionic Glu41 and cationic α amine Glu-AMP.

Table 4.2: Relative configurational energies taken from optimized geometries for reactant and product states of the
tRNA-charging reaction

Protonation state Reaction step Relative E (kcal/mol)
Negative Glu41 pre-transfer 0
Negative Glu41 TS -14.56
Negative Glu41 PT1 0.87
Negative Glu41 PT2 No convergence
Negative Glu41 PT3 No convergence
Negative Glu41 post-transfer -27.66
Neutral Glu41 pre-transfer 0
Neutral Glu41 TS 5.65
Neutral Glu41 PT1 No convergence
Neutral Glu41 PT2 -13.53
Neutral Glu41 PT3 17.00
Neutral Glu41 post-transfer -8.34

For the calculation including an anionic Glu41 sidechain and cationic Glu-AMP α amine, we see a

change in potential energy, ∆E, as the reaction goes forward of -27.66 kcal/mol. This compares to a ∆E

for the reaction when both the Glu41 and Glu-AMP’s backbone amine are neutralized of -8.34 kcal/mol.

Dealing only with the change in potential energy, the reaction seems favorable for either set of protonation

states. However, the absolute energies when both Glu41 and the Glu-AMP backbone amine groups are

neutral prove to be significantly higher than for those when these moeities are charged. This is partially

attributable to the electrostatic interaction energy between the two charged groups when they are charged

(Velectrostatic = e2/3Å = 111 kcal/mol).

For the case in which the Glu41 side chain and the α amine group are left charged, there is a strongly

negative potential energy at the TS point. This point was believed to be the transition state, based on Figure

4.2, however, given the slight positive value for PT1 with this charge state, it would appear that the transition

state has shifted from where it was in the gas phase calculations.

When the α amine and Glu41 are both neutral, the TS point has a positive potential energy relative to the

reactant state. While PT2 shows a strongly negative potential energy given this charge configuration, PT3

shows a highly unfavorable potential energy barrier, suggesting that the alternate reaction path suggested

by Figure 4.2 remains unavailable for the catalyzed reation. In order to make more definitive statements

51



about the favorability of the reaction, a free energy calculation of the pre- and post-transfer states must be

obtained.

To gain a clearer understanding of what may be taking place in the catalyzed reaction, we begin by

considering the changes in the collective variables described in figure 4.1 (table 4.3). For TS, PT1, PT2,

and PT3, the X and Y coordinates were fixed, but are included in the table to Here, we observe that when

Glu41’s sidechain and Glu-AMP’s α amine are neutral, the key collective variables being monitored drift

significantly far from what would be considered a distance for a reaction to occur. However, it has been

suggested that deprotonation of the α-amine on Glu-tRNAGlu takes place prior to dissociation of the charged

tRNA from the GluRS. Based on the unfavorable distances in X and Y observed for the neutral Glu41 and

Glu α-amine groups, it seems clear that this proton transfer either takes place immediately following or at

the same time as the charging reaction.

Table 4.3: Reaction coordinate values for calculations of pre- and post-transfer states as well as points indicated in
Figure 4.2 with and without proton transfer between Glu α-amino and Glu41 (Neutral/Charged, respectively)

Stage of reaction Neutral or Charged Glu41 X (Å) Y(Å)
Pre-transfer Charged 1.90 3.55

TS Charged 1.1 1.5
PT1 Charged 1.3 2.7
PT2 Charged 1.55 2.25
PT3 Charged 1.55 1.75

Post-transfer Charged 0.95 1.34
Pre-transfer Neutral 7.58 7.97

TS Neutral 1.1 1.5
PT1 Neutral 1.3 2.7
PT2 Neutral 1.55 2.25
PT3 Neutral 1.55 1.75

Post-transfer Neutral 0.95 1.34

Given the relatively small change in X, and the wide potential energy valley in Figure 4.2, we have also

explored the possible reaction scenario of having the 2′ hydrogen from A76 being transfered first to the Glu-

AMP phosphate prior to the acyl substitution. We consider the α-amine group to be in its cationic form, and

the Glu41 sidechain to be in its deprotonated form. In an MD simulation of this state (see Figure 4.3), we

observe a Y distance of 3.8 Å, but also observe that the sidechain of Glu41 has flipped to point away from

the α-amine group of the Glu-AMP, and a strong electrostatic interaction between the cationic α-amine and

the anionic (deprotonated) 2′ hydroxy of A76. This strong interaction could interfere with the nucleophilic

attack of the 2′ oxygen on the carbonyl carbon.

4.4 Conclusions

Given both the MD and QM calculations pertaining to the tRNA charging reaction, we can conclude that

deprotonation of the α amino group of Glu, with the proton being transfered to Glu41, likely takes place
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Figure 4.3: Left Snapshot from MD simulation including active site residues (all but Glu41 not shown). A76 O2′

represented as larger red sphere, and Glul-AMP carboxyl carbon represented as large cyan sphere. Right Schematic
of interactions in MD snapshot, with distances labeled in Angstroms.

shortly after or at the same time as the acyl substitution reaction that loads Glu onto tRNAGlu. From the

results of the MD simulation, a proton relay may also be taking place. The 2′ hydrogen of A76 may transfer

to the Glu-AMP phosphate first. For the acyl substitution reaction to proceed, an additional proton transfer

from the Glu-AMP α-amine to Glu41 reduces the electrostatic interaction with A76, and allows the 2′

oxygen the freedom to perform the nucleophilic attack for the substitution reaction. Further calculations are

being performed to examine this scenario in greater detail.

4.5 Methods

We have used Gaussian03 and Gaussian09 in all the calculations performed in this chapter. Systems were set

up using the free molecular visualization and editing software package, Avogadro. A preliminary calculation

was performed to obtain a potential energy surface for a reduced system consisting of the two reactants, A76

from the tRNA and and Glu-AMP adenylate, with the adenine bases replaced with hydrogens to simplify the

system. Other calculations used the multi-level ONIOM method in Gaussian to allow a classical forcefield

treatment of atoms not directly involved in the reaction of interest, and a high level quantum chemical

treatment of the reactant molecules themselves. This method provides a relatively computationally cheap

means to include effects of the surrounding environment on the reaction.

For the MD simulations described in this section, the same residues included in the ONIOM calculations

were used with neutral terminating groups for each peptide chain. Harmonic constraints were applied to the

terminal nitrogen and carbon atoms to preserve the relative positions of the peptides. An NPT ensemble was

used at a temperature of 300K and pressure of 1 atmosphere. Simulations were performed for 10 ns, and the

equilibrated portions of the resulting trajectories used for analysis.

53



Bibliography

[1] Woese, CR, Dugre, DH, Dugre, SA, Kondo, M, Saxinger, WC (1966) On the fundamental nature and

evolution of the genetic code. Cold Spring Harb Symp Quant Biol 31:723–736.

[2] Rateev, MA, Gorbunova, ZN, Lisitzyn, AP, Nosov, GL (1969) The distribution of clay minerals in the

oceans. Sedimentology 13:21–43.

[3] Peeters, Z, Botta, O, Charnley, SB, Ruiterkamp, R, Ehrenfreund, P (2003) The astrobiology of nucle-

obases. The Astrophysical Journal Letters 593:L129.

[4] Butler, T, Goldenfeld, N, Mathew, D, Luthey-Schulten, Z (2009) Extreme genetic code optimality

from a molecular dynamics calculation of amino acid polar requirement. Phys Rev E 79:060901.

[5] Mathew, DC, Luthey-Schulten, ZA (2008) On the physical basis of the amino acid polar requirement.

J. Mol. Evol. 66:519–528.

[6] Mathew, D, Luthey-Schulten, Z (2010) Influence of montmorillonite on nucleotide oligomerization

reactions: A molecular dynamics study. Orig. Life Evol. Biosph. 40:303–317.

[7] Woese, CR (1973) Evolution of the genetic code. Naturwissenschaften 60:447–459.

[8] Woese, CR, Dugre, DH, Saxinger, WC, Dugre, SA (1966) The molecular basis for the genetic code.

Proc Natl Acad Sci U S A 55:966–974.

[9] Alff-Steinberger, C (1969) The genetic code and error transmission. Proc. Natl. Acad. Sci. USA

64:584–591.
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Appendix A

Supporting Information

Copies of all supporting information for this dissertation including, but not limited to, source code, data files,

and laboratory notes have been deposited with Zan Luthey-Schulten, UIUC. Written laboratory notebooks

were physically transferred and electronic materials archived to tape and then deposited.
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