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Abstract  

Curcumin is currently being investigated for its capacity to treat many types of cancer and to prevent 

the neuron damage that is observed in Alzheimer’s disease (AD). However, its clinical use is limited 

by its low stability and solubility in aqueous solutions. In this study, we propose a completely new 

class of boronated monocarbonyl analogues of Curcumin (BMAC, 6a-c), in which a carbonyl group 

replaces the Curcumin β-diketone functionality, and an ortho-carborane, an icosahedral boron cluster, 

substitutes one of the two phenolic rings. BMAC antitumor activity against MCF7 and OVCAR-3 

cell lines was assessed in vitro and compared to that of Curcumin and the corresponding MAC 

derivative. BMAC 6a-c showed efficiencies that are comparable to that of MAC and superior to that 

of Curcumin in both the cell lines. Moreover, the inhibition of the formation of β-amyloid aggregates 

by BMAC 6a-c was evaluated and it was shown that compound 6c, which contains two OH moieties, 

has a better efficiency than Curcumin. The presence of a second –OH group can enhance the 

compound’s binding efficacy with β-amyloid aggregates. For the future, the presence of at least one 

carborane group means that the BMAC antitumor effect can be coupled with Boron Neutron Capture 

Therapy.  

Keywords: Curcumin – MAC (Monocarbonyl analogues) - BMAC (Boronated Monocarbonyl 

Analogues) – Adenocarcinoma – Alzheimer’s Disease 
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Introduction 

 

Curcumin,[1] a naturally occurring molecule from Curcuma longa, has been found to have important 

therapeutic properties and has been widely investigated for use in a variety of treatment roles.[2] In 

fact, Curcumin has been proposed for use in cancer treatment and prevention, on the basis of a wide 

range of action mechanisms,[3, 4] and as a therapeutic agent for Alzheimer’s disease (AD),[5-7] due 

to its ability to bind the amyloid β-peptide and modify its self-assembly pathway.[8, 9]  

Some doubts about Curcumin’s effectiveness have recently been raised, and these are mainly 

associated to its instability, which may affect its metabolic properties.[10] The reactivity of the β-

diketone moiety (A, see Figure 1) is one of the causes of this drawback. Indeed, the β-diketone moiety 

has been reported to be responsible for Curcumin instability at pH>6.4,[11] and is the substrate of 

aldo-keto reductases, which can trigger the quick degradation of the molecule.[12, 13] A great deal 

of effort has therefore been devoted to the synthesis of Curcumin analogues that can improve 

molecular stability.[14-16] Some remarkable examples of this can be found in chalcones (B, Figure 

1),[17, 18] 1,3-diphenyl-2-propen-1-ones, which are one of the most important classes of flavonoids 

in the vegetal kingdom and which have shown promising pharmaceutical properties,[17-20] and 

mono carboranyl analogues of Curcumin (MAC), in which  a carbonyl group replaces the β-diketone 

functionality (C, Figure 1).[21] MAC have attracted considerable attention because they feature 

greater stability than Curcumin, thus retaining or even increasing biological activity, while also 

improving pharmacokinetics. 

 

Figure 1 Curcumin and Curcumin analogues. A: Curcumin, B: chalcones, C: Curcumin analogues in which a carbonyl 

moiety replaces a β–diketone functionality (MAC) 

Interesting results have been reported in particular for MAC anti-inflammatory,[22] and anticancer 

activity,[23-26] (e.g., anti-prostate,[27, 28] -breast,[29] -gastric[24, 30] and -non-small-cell lung 

cancer[31-33]). A cell-apoptosis mechanism that is induced by endoplasmic reticulum stress has been 

hypothesised to explain these latter properties. This phenomenon would involve a reduced number 

of tumour cells than would be the case with Curcumin, thus suggesting that a different, more 

selective and peculiar, molecular mechanism is involved. This would also seem to indicate that 

there is a more specific and restricted range of targets for the antitumour activity of the mono-

carbonyl analogues.[23, 34, 35]  
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One innovative strategy that can be used to improve the pharmacological properties of 

biologically active substances is to introduce non-endogenous elements, such as boron, into their 

molecular structure.[36] In this context, carboranes, which are icosahedral boron clusters 

(C2B10H12), have been proposed for use as the inorganic analogues of aromatic moieties in known 

drugs, thanks to their shape, hydrophobicity and in-vivo stability.[37-40] There have been reports 

of many examples of carborane-containing ligands that can target a number of different 

receptors/proteins (i.e., estrogen, androgen, PSMA, retinoic acid, HIV protease or enzyme 

inhibitors and, in the case of metallacarboranes, DNA).[41-45] Moreover, boron compounds have 

been exploited, since 1930, in Boron Neutron Capture Therapy (BNCT)[46, 47], which is a form 

of two-step radiotherapy that involves the targeted accumulation of non-radioactive 10B in tumour 

cells, and their subsequent irradiation with epithermal neutrons. The captured neutrons generate 

two high-LET, short-range particles (α particles and lithium ions), which cause non-reparable 

damage to DNA. Moreover, the two high-energy particles release all their energy into a region 

that is comparable in size to a cell’s diameter, thus locally limiting their effects. When the boron 

carriers selectively internalize 10B at the pathological site, the neutron irradiation delivers a 

therapeutic dose without affecting the surrounding healthy tissues. This selectivity depends on 

the bio-distribution of the 10B-containing compounds, and hence the technique can also be 

effective against disseminated metastases,[48, 49] and for isolated pathological zones surrounded 

by normal tissues. BNCT has been proposed as a treatment for various different pathologies, but 

most research focuses on cancer,[50-52] and, in particular, the treatment of brain tumours. We 

have been carrying out pre-clinical studies on coupled BNCT-anticancer agents and MRI contrast 

agents in order to obtain an in-vivo quantification of boron distribution.[53-59]  

We herein propose the synthesis of new boronated monocarbonyl analogues of Curcumin (BMAC), 

which were obtained by substituting one benzene ring with an ortho-carborane cage, therapeutic 

properties, bioavailability and stability of Curcumin. It has recently been reported that the 

benzene ring is not the only aromatic ring that can guarantee bioactivity, but that it can be 

substituted with a furan, a thiophene, a pyrrole or naphtalin, which also exhibit inhibitory activity 

against a range of tumour cells.[27, 60] It was shown that the substitution of benzene by other 

aromatic rings can maintain and even enhance the cytotoxic activities of mono-carbonyl 

analogues of Curcumin. To our knowledge, this is the first time that the aryl group has been 

substituted with a carborane moiety in MAC derivatives. Moreover, the presence of the carborane 

cage allows the synergistic merging of Curcuminoid therapeutic properties and neutron capture 

therapy to be performed in order to improve the use of these new derivatives (BMAC) as anticancer 
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agents. Furthermore, the potential use of BMAC as inhibitors for β amyloid plaque formation has 

also been tested.  

 

Results and Discussion 

 

 

CHEMISTRY 

In this work, we have tackled the task of preparing molecules that combine Curcumin structural 

properties and the carborane moiety. First, we had to consider the compulsory presence of a phenolic 

OH, which is necessary for both antitumor activity,[61] and the inhibition of plaque formation.[62] 

Moreover, the different reactivity that carboranes show relative to an aryl group was a crucial item to 

be considered in the design of the synthetic strategy. Since monocarbonyl analogues of Curcumin 

MAC (B, Figure 1) have been demonstrated to possess Curcumin-like activity and a higher stability 

than dicarbonyl derivatives, we conceived a BMAC derivative that contains both a carborane unit and 

a substituted phenol, linked by a conjugated dienoyl moiety (structure 6, Scheme 1). This linkage 

should fit the structural properties reported by Reinke and co, who fixed the ideal length between the 

active units at 16 Å in order to favour efficacy in plaque disaggregation.[63] With this goal in mind, 

we designed a synthetic strategy in which a formyl carborane 1 is coupled to hydroxyphenylprop-3-

en-2-one (4) via an aldol reaction. Enone 4 can be prepared via the condensation of acetone 3 with 

the suitably substituted hydrobenzaldehyde 2, as seen in Scheme 1. 

 

 

Scheme 1 Retrosynthetic scheme for the synthesis of BMAC 
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We performed the selective mono-deprotonation of an ortho-carborane with n-BuLi, in high dilution 

conditions, and the subsequent reaction with a suitable electrophile, following the procedure reported 

by Dozzo et al.,[64] in which an excess of methyl formate was added to the intermediate carboranyl 

anion. 

At this stage, we turned our attention to the preparation of phenol-containing moiety 4, which was 

carried out via aldol condensation with acetone. The latter, which bears two acidic sites, undergoes 

two subsequent condensations with an aromatic aldehyde (2a-c) and the formylcarborane 1 allowing 

the “hybrid” carbo-Curcumins 6 to be obtained. In order to evaluate the influence of the methoxyl 

and hydroxyl substituents on the aromatic ring, three substrates were considered, namely vanillin (2a), 

4-hydroxybenzaldehyde (2b) and 3,4-dihydroxybenzaldehyde (2c), whose phenolic functionalities 

were all protected with a THP (tetrahydropyranyl) group before aldol condensation, in consideration 

of their acidity, as seen in Scheme 2. 

The condensation that resulted in 4-(4-tetrahydropyranyloxyaryl)-but-3-en-2-ones 4a, 4b and 4c was 

accomplished with an excess of NaOH and using acetone as both reagent and solvent. The products 

were recovered in good yields (85, 90 and 86% for 5a, 5b and 5c respectively), as seen in Scheme 

2.[65] 

 

Scheme 2 Synthesis of substituted 1-o-carboranyl-5-(4-hydroxyohexyl)-penta-1,5-dien-3-ones (6a, 6b, 6c). Reaction 

conditions: a) NaOH (1.5 eq.), acetone, 0 °C then rt; b) LDA (1.1 eq.), THF,  °C then 1 (1 eq.),  °C; then H2O, 

0°C then rt c) H2SO4 (10% in water), THF, reflux. 

 

Subsequently, a second aldol condensation between formylcarborane 1 and chalcones 4 was carried 

out to obtain aldols 5. The implemented synthetic procedure relies on: i) the fact that carborane cages 

are degraded to nido carboranes via treatment with nucleophilic bases; and ii) the reactivity of 

aldehyde 1 is more similar to that of a much less reactive aliphatic than that of an aromatic derivative. 

At first, we carried out the reaction under the conditions reported by Mahrwald et al., who used 

catalytic amounts of Et3N in the presence of LiClO4 for the aldol condensation of benzaldehyde and 
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either ketones or alcohols, both primary and secondary,[66] which was then extended to aliphatic 

aldehydes.[67] Unfortunately, all attempts to apply this procedure to formylcarborane 1 and chalcone 

4b were unsuccessful. We thus decided to use LDA (lithium diisopropylamide), whose 

nucleophilicity is negligible, for the formation of the enolate of 4-(4-

tetrahydropyranyloxymethoxyphenyl)-but-3-en-2-one 4b. This latter, formed in situ after three hours, 

was reacted with aldehyde 1 in THF and the corresponding carboranyl aldol derivative was recovered 

in a 54% yield. The reaction was then extended to 4a and 4c, affording the desired products 5a and 

5c in similar yields (55 and 57%, respectively), see Scheme 2. Aldol formation was supported by 

NMR spectra, in which the signals pertinent to CH and CH2 were detected in both 1H and 13C NMR. 

Compounds 5a, 5b and 5c were then treated with a solution of H2SO4 (10% w/w in water) in refluxing 

THF, giving 1-o-carboranyl-5-(4-hydroxyoaryl)-penta-1,5-dien-3-ones (6a, 6b, 6c) in good yields. 

This procedure allowed the simultaneous deprotection of THP and the formation of the second 

conjugated double bond to occur via an elimination reaction. The structure of the products was 

elucidated by NMR. The 1H NMR spectra show a broad singlet, which is pertinent to the CH of the 

o-carborane, at 4.96 ppm for all three derivatives, 6a, 6b and 6c, demonstrating the presence of the 

carborane cage. Moreover, two AB systems were easily detected for the protons of the double bonds. 

Two doublets were present, at 7.63 and 6.89 ppm, and these can be accounted for by the protons 

associated with the double bond that is conjugated with the aromatic ring, while the two at 7.09 and 

6.97 ppm, for those linked to the carborane. Moreover, the stereoselective formation of the (1E,4E)-

1-aryl-5-carboranylpenta-1,4-dien-3-ones 6a, 6b and 6c was confirmed by the large value of the 

coupling constants (16.0 and 15.4 Hz respectively).  

In order to carry out the evaluation of the biological activity of BMAC 6a, 6b and 6c, the 

monocarbonyl analogues of Curcumin, (1E,4E)-1,5-bis(4-hydroxy-3-methoxyphenyl)-penta-1,4-

dien-3-one (7, Figure 2) and (1E,4E)-1,5-bis(C-ortho-carboranyl)-penta-1,4-dien-3-one (8, Figure 2) 

were synthesised.  

 

Figure 2 Structures of (1E,4E)-1,5-bis(4-hydroxy-3-methoxyphenyl)- penta-1,4-dien-3-one 7 and (1E,4E)-1,5-bis(C-

ortho-carboranyl)-penta-1,4-dien-3-one 8. 
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Both derivatives were prepared via an aldol condensation. (1E,4E)-1,5-bis(4-hydroxy-3-

methoxyphenyl)- penta-1,4-dien-3-one (7) was prepared in good yields. The low reactivity of formyl 

carborane 1, which is similar to that of aliphatic aldehydes, made the preparation of bis carboranyl 

pentenone 8 much more difficult, and only the previously reported procedure, which utilizes catalytic 

Et3N with LiClO4, was found to be effective. (1E,4E)-1,5-Bis(C-ortho-carboranyl)-penta-1,4-dien-3-

one (8), acetone 3 and formylcarborane 1 were reacted for five days in refluxing toluene, producing 

8 in a 21% yield. The proper structure was fully consistent with the NMR spectra. 

 

Antitumour effect of Curcumin analogues on cancer cells in an MTT assay 

The antitumour activity of Curcumin and BMAC compounds against MCF7 (human breast 

adenocarcinoma) and OVCAR-3 (human ovarian adenocarcinoma) cell lines was assessed in vitro 

using the MTT assay.[68] Cells were incubated for 72 h, (pH=7.4, 37 °C, 5% CO2), in the presence 

of each compound in the 0.5-35 M concentration range. Compound 7 was observed to be about 4 

times more toxic than Curcumin in both cell lines (Figure 3). This result is in line with other studies 

in the literature that were performed on the same tumour cells.[23, 69] In MCF7, the toxicity of 

BMAC 6a-c and compound 8 are of the same order as shown by precursor compound 7. In fact, the 

EC50 (half maximal effective concentration) of BMAC 6a-c and compound 8, reported in Table 1, 

are similar, and markedly lower (between 4 and 5.5 times) of the EC50 obtained with Curcumin. The 

substitution of one or two aromatic rings with carboranes does not modify the EC50 that was 

measured in the MCF7 cells. This observation is in agreement with the results reported in the literature 

about how the bioactivity shown by MAC compounds in which one or two aromatic rings were 

replaced with heterocyclic groups was maintained.27-58  
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Figure 3 MCF7 (3A) and OVCAR-3 (3B) cell vitality measured in the MTT assay as a function of the concentration of 

Curcumin and the mono-carbonyl compounds (6a, 6b, 6c, 7, 8). 

 

Table 1 The EC50 of Curcumin analogue compounds towards MCF7 and OVCAR-3 tumour cells. 

 

Cells Curcumin  

(M) 

Compound 7 

(M) 

Compound 8 

(M) 

Compound 6a 

(M) 

Compound 6b 

(M) 

Compound 6c 

(M) 

MCF7 11±4 2.9±0.3 2.1±0.2 2.9±0.7 2.4±0.5 2.6±0.4 

OVCAR-3 35±5 6.4±0.3 5.5±0.2 4.1±0.2 2.1±0.2 1.8±0.2 

 

The cytotoxicity of both Curcumin and compound 7 against OVCAR-3 cells was much lower than 

against MCF7, which is in agreement with the results obtained by Suarez et al.[70] Accordingly, the 

EC50 that was obtained with BMAC 6a and compound 8 (Table 1) have similar values. Interestingly, 

the most polar derivatives, BMAC 6b and 6c, showed lower EC50s that were similar to that of MCF7, 

which has proven itself to be the most promising for use in double therapy in combination with BNCT. 

Therefore, preliminary uptake studies were performed, using one of the most promising compounds, 
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BMAC 6b, in order to evaluate the amount of 10B that is internalised by MCF7 and OVCAR-3. The 

uptake experiments were carried out by incubating cells for 24h with BMAC 6b at concentrations 

ranging from 0.6 to 13 M. At the highest concentration, the amounts of 10B that were internalised in 

the cells, measured by ICP-MS, were 5.7 and 21.3 ppm in MCF7 and OVCAR-3, respectively (see 

supplementary Figure 1). BMAC 6b contained natural abundance of boron isotopes. 

 

Evaluation of the inhibition of Hen Egg White Lysozyme (HEWL) aggregate formation. 

The inhibition of the formation of fibril aggregates by BMAC 6a-c was evaluated using the Thioflavin 

T fluorescent assay. Thioflavin T (ThT) is a dye that exhibits enhanced fluorescence (with excitation 

and emission at 440 and 490 nm, respectively) upon binding to fibril aggregates, and is used as a 

standard method to quantify the formation of amyloid or amyloid-like fibrils and to characterise 

potential inhibitors.[71-73] Hen Egg White Lysozyme (HEWL), a 14.3 kDa protein, is a highly stable 

and easily available water-soluble protein with four intra-chain disulfide bonds.42 The similar tertiary 

structures and function of human and hen egg white lysozymes makes HEWL a good model protein 

for amyloid aggregate formation.[74] The efficacy of 6a, 6b, 6c and 8 in generating the 

disaggregation of HEWL fibrils was then evaluated by means of the ThT fluorescence essay. HEWL 

(0.5 mg/mL) was incubated for 24 hours at 55°C and pH=2 to induce fibril formation. First of all, the 

efficacy of reference compound 7 and Curcumin in the disaggregation of the formed fibrils was 

compared. To this purpose, the two compounds were incubated for 24h during the HEWL fibril 

formation step. Figure 4 shows that the % inhibition of fibril formation by compound 7 is comparable 

to that shown by Curcumin, thus confirming the maintenance of efficacy also in the mono-carbonyl 

analogue. Inhibition capacity was expressed as the percentage reduction in ThT fluorescence intensity 

compared to a control HEWL sample (w/o inhibitor compound) that was incubated under the same 

conditions. 
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Figure 4 Representative histogram comparing the inhibition of HEWL fibril formation (24h, 55°C) by compound 7 and 

Curcumin, as measured with a ThT fluorescence assay. 

 

Figure 5 reports fluorescence intensities, measured at 490 nm, in the presence and in the absence of 

compounds 6a-c and 8 in comparison with reference compound 7. The inhibitory capacities of fibril 

formation were measured both during the occurrence of aggregate formation in the first 24h (Figure 

5A), and after the incubation with pre-formed HEWL aggregates for another 24h at 55°C (Figure 5B).  

These preliminary experiments demonstrated that hybrid compound 6c possesses enhanced efficacy 

in limiting the HEWL fibril aggregation process. This finding supports the view that the presence of 

two –OH groups enhances the binding efficacy of the inhibitor to HEWL fibril components.35 The 

other interesting observation relates to the substitution, in chimeric derivatives 6a, 6b, of one of the 

two aromatic groups in compounds 7 with a carborane moiety, which led to a relatively low inhibition 

reduction of only 10-15%. This confirms the idea that carboranes can be considered to be analogous 

with aromatic groups, in this context, and that they can also maintain their inhibitory capacity in the 

absence of fundamental groups, such as –OH and –OCH3. On the other hand, the substitution of both 

the aromatic groups with a carborane moiety (8) reduces inhibition potency to 10-20%. This 

demonstrates that only the presence of –OH group (probably with sufficient acidity) would be 

necessary to attain higher activity.   
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Figure 5 Percentage inhibition of HEWL fibril formation as evaluated by incubating compounds 6a, 6b, 6c, 7, 8: for 

24h at pH 2 and 55°C with native HEWL (A) or for 24h in the presence of pre-formed fibril aggregates (B). 

 

To get further support for the results obtained with ThT, a Congo Red (CR) fluorescence assay was 

also performed (Figure 6). In fact, when CR binds to fibril aggregates, it gives a proportional increase 

in fluorescence, measured at 612 nm, when excited at 512 nm.[75, 76]  
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Figure 6 Percentage inhibition of fibril formation, as evaluated by CR fluorescence assay. Compounds were incubated 

with pre-formed fibrils at t=24h for another 24h at room temperature (RT).  

 

The assay was performed using pre-formed HEWL fibrils (1.5 mg/mL) that were prepared using the 

protocol for the ThT assay, as described above. Inhibition capacity was expressed as the percentage 

reduction in the CR fluorescence intensity of the treated samples (incubated with 100µM inhibitors) 

compared to a control HEWL sample (w/o inhibitors), which was incubated under the same 

conditions. 

Figure 6 shows that the % fibril-formation inhibitions of compounds 7 and 6c are not significantly 

different (p=0.1644, Student t-test), whereas compounds 6a and 6b are less efficient. Although all % 

fibril-formation inhibitions are lower when measured with CR fluorescence, their trend appears to be 

in line with the results obtained using ThT, thus confirming that BMAC 6c has a higher efficacy than 

6a, 6b (Figure 6). 

 

Conclusions  

 

We herein describe the synthesis and preliminary in-vitro tests of new boronated derivatives that have 

been used to improve the recognised efficacy of MAC thanks to the replacement of an aromatic ring 

with an ortho-carborane cage. These molecules were obtained in good yields by applying a relatively 

simple and straightforward synthetic approach. All derivatives that contained one or two carborane 

moieties showed significant cytotoxic activity, with EC50 values ranging from 1.8 to 5.5 M. We 

can conclude that BMAC can be considered a new class of potential antineoplastic agent that can be 

used alone or in combination with BNCT. Water solubility and specific delivery to pathological 

tissues may be improved using specific carriers, such as cyclodextrins, liposomes, and polylactic and 

glycolic(PLGA) particles that can be further loaded with MRI contrast agents to allow real time, non-

invasive boron quantification to be carried out before neutron irradiation. With regards to HEWL 
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fibril aggregation, it has been found that the presence of at least one phenolic group in the molecule 

is important for the preservation of the inhibitory efficiency of these derivatives. Finally, the reported 

efficacy of the boronated Curcumin analogues in reducing lysozyme fibril formation, and the 

presence of boron atoms in the carborane cage will drive us to evaluate the feasibility of using BNCT 

as a radiative boost to enhance fibril disaggregation. 

 

Experimental 

General 

Flasks and all equipment used for the generation and reaction of moisture-sensitive compounds were dried 

on an electric heater under Ar. THF and Et2O were distilled from benzophenone ketyl, and CH2Cl2 from 

CaH2 prior to use. BuLi (2.5 M in hexanes) was purchased from Aldrich. Ortho-carborane was bought 

from Katchem spol. s r. o. All commercially obtained reagents and solvents were used as received. Products 

were purified by preparative column chromatography on Macherey-Nagel silica gel for flash 

chromatography, 0.04–0.063 mm/230–400 mesh. When specified, silica gel is deactivated with 1% of 

Et3N. Reactions were monitored by TLC using silica gel on TLC-PET foils, Fluka, 2–25 mm, layer 

thickness 0.2 mm, medium pore diameter 60 Å. Carboranes and their derivatives were visualized on TLC 

plates using a 5% PdCl2 aqueous solution in HCl. 1H NMR spectra were recorded at 200 MHz, 13C NMR 

spectra at 50.2 MHz, 11B NMR spectra at 64.1 MHz. Data were reported as follows: chemical shifts in ppm 

from tetramethylsilane as the internal standard, integration, multiplicity (s = singlet, d = doublet, t = triplet, 

q = quartet, dd = double–doublet, m = multiplet, br = broad), coupling constants (Hz), and assignment. 13C 

and 11B NMR spectra were recorded with complete proton decoupling. Chemical shifts were reported in 

ppm from the residual solvent as an internal standard. GC-MS spectra were obtained on a mass selective 

detector HP 5970 B instrument operating at an ionizing voltage of 70 eV connected to a HP 5890 GC with 

a cross linked methyl silicone capillary column (25 m × 0.2 mm × 0.33 mm film thickness). ESI MS spectra 

were obtained on a LTQ Orbitrap high resolving power mass spectrometer (Thermo Scientific, Rodano, 

Italy), equipped with an atmospheric pressure interface and an ESI ion source. Samples were analyzed by 

flow injection at a 10 μL min−1 flow rate. The tuning parameters adopted for the ESI source were: source 

voltage 4.5 kV, capillary voltage 12.00 V, and tube lens voltage 55 V. The heated capillary temperature 

was maintained at 265 °C. The mass accuracy of the recorded ions (vs. the calculated ones) was ±5 mmu 

(milli-mass units). Analyses were run using both full MS (50–2000 m/z range) and MS/MS acquisition in 

the positive and negative ion mode. IR spectra were recorded on a Perkin Elmer BX FT-IR. Synthesis of 

THP derivatives 2a-c[77] and C-formyl-orthocarborane 1[64] were carried out following the reported 

procedures.  



15 

 

B concentration was determined by inductively coupled plasma mass spectrometry (ICP-MS) 

(Element-2; Thermo-Finnigan, Rodano (MI), Italy) at medium mass resolution. Sample digestion was 

performed with 1 mL of concentrated HNO3 (70%) using an high performance Microwave Digestion 

System (ETHOS UP Milestone, Bergamo, Italy). A natural abundance B standard solution was 

analysed during sample runs in order to check changing in the systematic bias. The calibration curve 

was obtained using four B absorption standard solutions (Sigma-Aldrich) in the range 0.2–0.01 

g/mL. 

Cell Culture. 

Human MCF7 breast cancer cell line and human OVCAR-3 ovarian cancer cell line were purchased 

from American Type Culture Collection (ATCC, USA.) The MCF7 cells were cultured in EMEM 

(Lonza) supplemented with 10% (v/v) fetal bovine serum (FBS), 2 mM glutamine, 100 U/mL 

penicillin, 100 U/mL streptomycin, 1 mM sodium pyruvate, non-essential amino acids and 10 µg/mL 

insulin (Sigma). The OVCAR-3 cells were cultured in RPMI (Lonza) supplemented with 20% (v/v) 

FBS, 2 mM glutamine, 10 µg/mL insulin (Sigma), 100 U/mL penicillin and 100 U/mL streptomycin. 

MTT assay. 

The MTT assay is based on the reduction of tetrazolium salts to formazan using mitochondrial 

succinate dehydrogenase, which is quantified by a spectrophotometer. MCF7 and OVCAR-3 cells 

were seeded at a density of 5x103 and 2.5x103 cells per well, respectively, in a 96-well microtiter 

plate. After 24h at 37°C and 5% CO2, they were incubated with increasing concentration of compound 

6a, 6b, 6c, 7, 8 and Curcumin for 72 h by adding stock solutions in dimethyl sulfoxide (DMSO). In 

all conditions the concentration during the cell incubation was maintained at 0.25% (v/v) in cell 

medium. After the incubation, the medium was removed and each well was incubated with thiazolyl 

blue tetrazolium bromide (Sigma) dissolved in the medium at a concentration of 0.45 mg/mL for 4 h 

at 37 °C and 5% CO2. Then, after medium elimination, 150 µL of DMSO were added into each well 

to solubilize the formazan salt crystals produced by the metabolism of live cells and the microplate 

was incubated at room temperature (RT) for 30 min. Finally, absorbance was measured at 570 nm 

using an iMark microplate reader (Biorad). Cell vitality was reported as the percentage of dead cells 

observed in the treated samples relative to that observed in the non-treated control cells. The EC50 

values of each compound were calculated by fitting the Dose Response MTT curve with a Origin 8 

software using the equation: y = A1 + (A2-A1)/(1 + 10^((LOGx0-x)*p)) where A1 and A2 are bottom 

and top asymptote, respectively; LOGx0 and p are center and hill slope, respectively.  

Thioflavin T (ThT) fluorescence assay. A standard fluorescent dye, ThT (Sigma), which exhibits a 

marked enhancement in its fluorescence intensity upon binding to amyloid structures, was used to 
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detect the formation of HEWL fibrils. A stock solution of ThT (450 μM) was prepared in 95% (v/v) 

ethanol, and the concentration was determined spectrophotometrically using the molar extinction 

coefficient at 416 nm of 26,600 M−1 cm−1. Phosphate buffered saline (PBS) was used to dissolve the 

ThT stock solution to obtain a ThT working solution at a concentration of 10 μM. Lysozyme from 

chicken egg white (Sigma) sample solutions (0.5 mg/mL) were prepared in 136.7 mM NaCl, 2.68 

mM KCl and 1.54 mM NaN3  (pH 2). To induce HEWL fibrils formation, lysozyme solution was 

incubated for 24h at 55°C, stirring (100 rpm). In order to access the inhibitory potency of fibrils 

formation, inhibitors compounds were incubated in lysozyme solution (4 mL) at a concentration of 

50µM (treated fibrils) dissolved in ethanol (5% v/v). A control lysozyme sample w/o inhibitors was 

prepared with 5% v/v ethanol (control fibrils). Furthermore, to access the disaggregation potency of 

inhibitors compounds, they were incubated at 50µM concentration (5% v/v ethanol) for 24h at 55°C 

stirring (100 rpm) in the presence of pre-formed HEWL fibrils obtained after incubation of lysozyme 

(0.5 mg/mL) for 24h at 55°C pH=2. At the end of the incubation, 80 l of each sample were removed 

and were mixed thoroughly with ThT working solution (1920 μL) prior to measuring the ThT 

fluorescence intensities at 490 nm by exciting the samples at 440 nm via Horiba Fluoromax 4 

spectrofluorometer (Edison, USA). The % of inhibitory potency (% Inhibition) of fibril 

formation/disaggregation was calculated as follows:  

% Inhibition = 100×(ThT fluorescence intensity of control fibrils−ThT fluorescence intensity of 

treated fibrils)/ThT fluorescence intensity control fibrils). 

Congo Red (CR) fluorescence assay. A stock solution of CR (Sigma) (300µM) was prepared in 20 

mM MES buffer pH 6, filtered with 0.2 um filter and the concentration was determined 

spectrophotometrically using the molar extinction coefficient at 505 nm of 59300 M-1 cm-1 diluting 

the stock solution 1:20 in sodium phosphate (1mM, pH 7) and 40% ethanol. MES buffer pH 6 was 

used to dissolve the CR stock solution to obtain a CR working solution of 20 μM. To induce fibrils 

formation, HEWL sample solutions (1.5 mg/mL, 100 M) were incubated in 136.7 mM NaCl, 2.68 

mM KCl and 1.54 mM NaN3 (pH 2) for 24h at 55°C, stirring (100 rpm). To access the disaggregation 

potency of  compound 6a, 6b, 6c, 7, they were incubated at 100 M concentration (5% v/v ethanol) 

(treated fibrils) for 24h RT in the presence of pre-formed HEWL fibrils prepared in NaCl/KCl/NaN3 

buffer pH 2. A control fibrils sample w/o inhibitors was prepared with 5% v/v ethanol (control fibrils). 

At the end of the incubation, 200 ul of each sample were removed and were mixed thoroughly with 

or w/o CR working solution such that the final protein concentration became 10 μM and CR 20 μM. 

After 15 min of incubation at RT, the fluorescence intensities were measured at 612 nm by exciting 

the samples at 512 nm via Horiba Fluoromax 4 spectrofluorometer (Edison, USA). The excitation 
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and emission slit widths were 2.5 and 5.0 nm, respectively. The % of inhibitory potency of fibril 

disaggregation was calculated as follows:  

The CR fluorescence intensity of control and treated samples were calculated by subtracting the 

intrinsic fluorescence intensity (w/o CR) to their intensity fluorescence in the presence of CR. 

The percentage reduction in CR fluorescence intensity = 100×(CR fluorescence intensity of control 

fibrils−CR fluorescence intensity of treated fibrils)/CR fluorescence intensity control fibrils). 

CHEMISTRY 

General procedures for the synthesis of chalcones (4a-c). The appropriate THP-protected 

phenylaldehyde (2a-c, 1 eq.) was dissolved in acetone then added dropwise to a solution of NaOH (1.5 eq.) 

in 3 mL of water and the resulting mixture stirred overnight at room temperature. The reaction was then 

cooled to 0°C then added to a 25 mL solution of ice and water and vigorously stirred for 10 minutes. The 

precipitated yellowish solid was filtered, washed with cold water, dried and purified by column 

chromatography on deactivated silica gel. The solid obtained was then crystallized from MeOH to yield 

the desired product. 

(3E)-4-(4-((tetrahydro-2H-pyran-2-yl)oxy)phenyl)but-3-en-2-one (4a). 

According to the described general procedure, 4-((tetrahydro-2H-pyran-2-

yl)oxy)benzaldehyde 5 (4.20 g, 20.4 mmol) was reacted with acetone (20 mL) 

and NaOH (1.20 g, 30.0 mmol) to obtain a crude yellow solid, purified on silica gel (EP/EE 50/50) 

and crystalized from MeOH to yield the solid product as needle-shaped white crystals (4,18 gr, 

85%). 1H NMR (600 MHz, CDCl3): δ 7.48 (d, J=16.2 Hz, 1H, CO-CH=CH), 7.46 (d, J=8.6 Hz, 2H, 

ArH), 7.05 (d, J=8.6 Hz, 2H, ArH), 6.61 (d, J=16.2 Hz, 1H, CO-CH=CH), 5.47 (t, J=3.1 Hz, 1H, 

OCHO), 3.86 (m, 1H, OCH2a) 3.61 (m, 1H, OCH2b), 2.36 (s, 3H, COCH3), 2.10-1.80 (m, 3H, CH-

CH2-CH2), 1.80-1.55 (m, 3H, CH2-CH2-CH2). 
13C NMR (150 MHz, CDCl3): 198.5 (Cq), 159.2 (Cq), 

143.4 (CH), 129.9 (CH), 127.8 (Cq), 125.3 (CH), 116.8 (CH), 96.2 (CH), 

62.1 (CH2), 30.2 (CH2), 27.5 (CH3) 25.2 (CH2), 18.7 (CH2). νmax (neat)/cm-

1: 2993, 2948, 2896, 2845, 1689, 1592, 1110, 951, 806. m.p.: 78-80°C. ESI 

HRMS for C15H18O3 Calcd. [M +H]+: 247.1334 Found: 247.1356 [M +H]+. 

(3E)-4-(3-methoxy-4-((tetrahydro-2H-pyran-2-yl)oxy)phenyl)but-3-en-2-one (4b).[78] According to 

the described general procedure, 3-methoxy-4-((tetrahydro-2H-pyran-2-yl)oxy)benzaldehyde 2b (4.00 g, 

16.9 mmol) was reacted with acetone (17 mL) and NaOH (1.00 g, 25.0 mmol) to obtain a crude yellow 

solid, purified on deactivated flash silica gel (EP/EE 50/50) and crystalized from MeOH to yield 
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the product as pale yellow crystalline solid (4.21 gr, 90%). 1H NMR (200 MHz, CDCl3): δ 7.46 (d, 

J=15.6 Hz, 1H, CO-CH=CH), 7.14 (m, 1H, ArH), 7.10 (m, 2H, ArH), 6.60 (d, J=15.6 Hz, 1H, CO-

CH=CH), 5.49 (t, J=3.0 Hz, 1H, OCHO), 3.91 (s, 3H, OCH3), 4.10-3.95 (m, 1H, OCH2a), 3.75-3.59 

(m, 1H, OCH2b), 2.38 (s, 3H, COCH3), 2.03-1.88 (m, 3H, CH-CH2-CH2), 1.75-1.57 (m, 3H, CH-CH2-

CH2). 

 

(3E)-4-(3,4-bis((tetrahydro-2H-pyran-2-yl)oxy)phenyl)but-3-en-2-one (4c). 

According to the described general procedure, 3,4-bis((tetrahydro-2H-pyran-

2-yl)oxy)benzaldehyde 6 (3.00 g, 9.79 mmol) was reacted with acetone (10 

mL) and NaOH (0.60 g, 15.0 mmol). Acetone was removed under reduced pressure. AcOEt (20 mL) was 

added to the resulting aqueous solution and the obtained mixture vigorously stirred for 30 minutes. The 

organic phase was separated, washed with brine (2x15 mL), dried with sodium sulfate and filtered. The 

solvent was removed under reduced pressure to obtain a yellow oil, purified on silica gel (EP/AcOEt 

75/25) to yield the product as a colorless oil (2.91 gr, 86%). Mixture of isomers. 1H NMR (600 

MHz, CDCl3): δ 7.42 (d, J=16.2 Hz, 1H, CO-CH=CH), 7.32 (m, 1H, ArH), 7.12 (m, 2H, ArH), 6.56 

(d, J=16.2 Hz, 1H, CO-CH=CH), 5.48 (t, J=2.4 Hz, 1H, OCHO, isomer 1), 5.46 (t, J=2.4 Hz, 1H, 

OCHO, isomer 2), 5.43 (t, J=3.0 Hz, 1H, OCHO, isomer 3), 5.41 (t, J=3.0 Hz, 1H, OCHO, isomer 4), 

3.97 (m, 1H, OCH2a, isomer 1) 3.90 (m, 1H, OCH2a, isomer 1), 3.59 (m, 2H, OCH2, isomer 2), 2.32 

(s, 3H, CO-CH3), 2.05-1.80 (m, 6H, CH-CH2-CH2), 1.75-1.55 (m, 6H, CH2-CH2-CH2). 
13C NMR 

(150 MHz, CDCl3): 198.5 (Cq), 150.0 (Cq), 149.7 (Cq), 147.6 (Cq), 147.4 (Cq), 143.6 (CH), 143.5 

(CH), 128.8 (CH), 128.7 (CH), 125.8 (CH), 125.7 (CH), 123.9 (CH), 123.8 (CH), 118.1 (CH), 117.8 

(CH), 117.7 (CH), 117.6 (CH), 97.9 (CH), 97.4 (CH), 97.3 (CH), 96.8 (CH), 62.1 (CH2), 62.0 (CH2), 

61.9 (CH2), 61.8 (CH2), 30.4 (CH2), 30.4 (CH2), 30.3 (CH2), 30.2 (CH2), 27.4 (CH3) 25.3 (CH2), 25.3 

(CH2), 18.6 (CH2), 18.6 (CH2), 18.5 (CH2). νmax (neat)/cm-1: 2942, 2871, 2854, 1663, 1504, 1255, 

954, 918. ESI HRMS for C20H26O5 Calcd. [M +H]+: 347.1858 Found: 347.1833 [M +H]+ . 

General procedure for the aldol condensation between C-formyl-ortho-carborane and chalcones. In 

a 10 mL dried Schlenk bottle under nitrogen atmosphere, the appropriate chalcone (4a-c, 1 eq., 1.00 mmol) 

was dissolved in the minimal amount of THF and cooled to -78°C. In another dried round bottomed 

Schlenk bottle under N2, freshly distilled diisopropylamine (1.1 eq., 1.54 mL, 1.10 mmol) and 5 mL of 

THF were added and the mixture was stirred and cooled to -10°C. n-BuLi (1.1 eq., 0.44 ml, 1.10 mmol) 

was then slowly added for 10 minutes. Stirring was continued at -10°C for 30 minutes to obtain the lithium 

diisopropylamine LDA base solution. The mixture was then cooled to -78°C and the chalcone solution was 
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dropwise added to the LDA solution. Stirring was continued at -78°C for 3.5 h then C-formyl-ortho-

carborane 1 (1.2 eq., 0.210 g, 1.20 mmol) was added in one portion. The reaction was stirred until total 

disappearance of the chalcone spot on TLC plate, allowing the temperature to raise to a maximum of -

50°C. The process was then quenched adding 10 mL of water and diluting the solution with 15 mL of Et2O. 

The resulting mixture was stirred for 20 minutes at 0°C. The organic phase was separated, and the aqueous 

phase extracted with 10 mL portions of AcOEt until it became colorless again. The organic phases, dried 

over Na2SO4 were filtered and the solvent removed under reduced pressure to yield a crude solid that was 

then purified by column chromatography on deactivated silica gel. 

(4E)-1-o-carboranyl-1-hydroxy-5-(4-((tetrahydro-2H-pyran-2-

yl)oxy)phenyl)pent-4-en-3-one (5a). Following the reported 

procedure, chalcone 4a was reacted with LDA and formyl-o-

carborane 1 affording 232 mg of a yellow solid (EP/AcOEt 70/30, 

55%). 1H NMR (600 MHz, CD3OCD3): δ 7.64 (d, J=6.0 Hz, 2H, Ar-H), 7.63 (d, J=16.2 Hz, 1H, 

ArCH=CH-CO), 7.07 (d, J=6.0 Hz, 2H, ArH), 6.77 (d, J=16.2 Hz, 1H, ArCH=CHCO), 5.57 (d, J=6.2 

Hz, 1H, CH2-CH(OH)-C), 5.54 (t, J=3.1 Hz, 1H, OCHO), 4.80 (ddd, J=9.3 Hz, J=6.2 Hz, J=3.0 Hz, 

1H, CHOH), 4.73 (s, 1H, B10H10CH), 3.81 (m, 1H, OCH2a) 3.59 (m, 1H, OCH2b), 3.12 (dd, J=16.5 

Hz, J=9.3 Hz, 1H, CH2aCH(OH)C), 3.04 (dd, J=16.5 Hz, J=3.0 Hz, 1H, CH2bCH(OH)-C), 2.79-1.91 

(m, 10H, BH), 1.84 (m, 3H, CH-CH2-CH2), 1.74-1.58 (m, 3H, CH2-CH2-CH2). 
13C NMR (150 MHz, 

CD3OCD3): δ 196.8 (Cq), 160.3 (Cq), 143.9 (CH), 130.9 (CH), 128.8 (Cq), 125.1(CH), 117.6 (CH), 

96.9 (CH), 81.1 (Cq), 69.37 (CH), 62.5 (CH2), 60.9 (CH), 47.8 (CH2), 30.1(CH2), 25.02(CH2), 19.4 

(CH2). 
11B NMR (192.5 MHz, CD3OCD3): -4.7, -5.9, -10.4, -12.9, -14.1, -14.8. Mp: degradation 155-

156°C νmax (neat)/cm-1: 3365, 3087, 2947, 2866, 2589, 1679, 1590, 1512, 1242, 1102, 1072, 950, 909. 

ESI HRMS for C14H30B10O4 Calcd 421.3075 [M +H]+, Found: 421.3071 [M +H]+ 

 

(4E)-1-o-carboranyl-1-hydroxy-5-(3-methoxy-4-((tetrahydro-

2H-pyran-2-yl)oxy)phenyl)pent-4-en-3-one (5b). Following the 

reported procedure, chalcone 4b was reacted with LDA and formyl-

o-carborane 1 affording 234 mg of a yellow solid (EP/AcOEt 75/25, 54%). 1H NMR (600 MHz, 

CD3OCD3): δ 7.65 (d, J=18.0 Hz, 1H, ArCH=CHCO), 7.38 (bs, 1H, ArH), 7.24 (dd, J=6.0 Hz, J=1.0 Hz, 

1H, ArH), 7.17 (bd, J=6.0 Hz, 1H, ArH), 6.83 (d, J=18.0 Hz, 1H, ArCH=CHCO), 5.57 (d, J=6.0 Hz, 1H, 

CH2-CH(OH)-C), 5.51 (t, J=6.0 Hz, 1H, OCHO), 4.79 (ddd, J=9.3 Hz, J=6.2 Hz, J=3.0 Hz, 1H, CHOH), 

4.73 (s, 1H, B10H10CH), 3.89 (3H, s, OCH3), 3.86 (m, 1H, OCH2a) 3.56 (m, 1H, OCH2b), 3.12 (dd, J=18.0 

Hz, J=12.0 Hz, 1H, CH2aCH(OH)), 3.03 (dd, J=18.0 Hz, J=3.0 Hz, 1H, CH2bCH(OH)), 2.80-1.90 (m, 10H, 
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BH), 1.85 (m, 3H, CH-CH2-CH2), 1.70-1.55 (m, 3H, CH2-CH2-CH2).
13C NMR (150 MHz, CD3OCD3): δ 

196.8 (Cq), 151.5 (Cq), 149.9 (Cq), 144.4 (CH), 129.5 (Cq), 125.4 (CH), 123.7(CH), 117.8 (CH), 112.3 

(CH), 97.7 (CH), 73.1 (Cq), 69.4 (CH), 62.4 (CH2), 60.9 (CH), 56.4 (CH3), 47.8 (CH2), 30.9 (CH2), 25.9 

(CH2), 19.4 (CH2). 
11B NMR (192.5 MHz, CD3OCD3)-4.7, -6.0, -10.5, -13.0, -14.1, -14.8. Mp: 

degradation 154-157°C. νmax (neat)/cm-1: 3392, 3085, 2946, 2878, 2577, 1581, 1510, 1254, 1112, 1022, 

950, 912. ESI HRMS for C19H33B10O5 Calcd 451.3559 [M +H]+, Found: 451.33563 [M +H]+ 

(4E)-1-o-carboranyl-1-hydroxy-5-(3,4-bis((tetrahydro-2H-

pyran-2-yl)oxy)phenyl)pent-4-en-3-one (5c). Following the 

reported procedure, chalcone 4c was reacted with LDA and 

formyl-o-carborane affording 265 mg of a yellow solid (EP/AcOEt 75/25, 51%). Mixture of isomers. 

1H NMR (600 MHz, CD3OCD3): δ 7.63 (d, J=16.2 Hz, 1H, ArCH=CHCO), 7.50 (d, J=1.8 Hz, 1H, 

ArH), 7.31 (dq, J=7.8 Hz, 3.0 Hz, 1H, ArH), 7.20 (dd, J=7.8 Hz, 1H, ArH), 6.77 (d, J=16.2 Hz, 1H, 

ArCH=CHCO), 5.56 (m, 2H, OCHO, OH), 4.79 (ddd, J=9.0, 6.0, 3.0 Hz, 1H, CHOH), 4.73 (bs, 1H, 

B10H10CH), 3.97 (td, J=10.8, 3.0 Hz, 1H, O-CH2axial, isomer a), 3.90 (tt, J=10.2, 3.0 Hz, 1H, O-

CH2equat. isomer a), 3.58 (m, 2H, OCH2, isomer b), 3.12 (dd, J=16.8, 9.6, Hz, 1H, CH2aCHOH isomer 

a), 3.10 (dd, J=16.8, 9.6, Hz, 1H, CH2aCHOH isomer b), 3.04 (dd, J=16.8, 3.0 Hz, 1H, CH2bCHOH 

isomer a), 3.02 (dd, J=16.8, 3.0 Hz, 1H, CH2bCHOH isomer b), 2.10-1.20 (m, 10H, BH), 1.86 (m, 

6H, CH-CH2-CH2), 1.64 (m, 6H, CH2-CH2-CH2).
13C NMR (150 MHz, CD3OCD3): δ 196.8 (Cq), 

151.1 (Cq), 151.0 (Cq), 148.4 (Cq), 148.3 (Cq), 148.3 (CH), 144.2 (CH), 144.2 (CH), 129.4 (Cq), 

129.3 (Cq), 125.5 (CH), 124.8 (CH), 124.6 (Cq), 124.0 (CH), 123.9 (CH), 118.9 (CH), 118.9 (CH), 

118.6 (CH), 118.5 (CH), 118.5 (CH), 118.3 (CH),  98.1 (CH), 97.7 (CH), 97.6 (CH), 97.4 (CH), 81.1 

(Cq), 69.4 (CH), 69.4 (CH), 62.4 (CH2), 62.3 (CH2), 62.2 (CH2), 62.2 (CH2), 60.9 (CH), 47.7 (CH2), 

47.7 (CH2), 31.0 (CH2), 31.0 (CH2), 31.0 (CH2), 30.9 (CH2), 26.0 (CH2), 25.9 (CH2), 19.3 (CH2), 

19.2 (CH2), 19.2 (CH2). 
11B NMR (192.5 MHz, CD3OCD3): -4.7, -5.9, -10.5, -12.9, --14.2, -14.8. Mp: 

degradation 156-157°C. νmax (neat)/cm-1: 3392, 3085, 2932, 2872, 2583, 1580, 1508, 1260, 1108, 1054, 

953, 910. ESI HRMS for C23H38B10O6 Calcd 521.3677 [M +H]+, Found: 521.3673 [M +H]+ 

General procedure for the dehydration of aldol carborane-derivatives. A 0.05 M solution of the 

appropriate aldol condensation product (5a-c) in THF was reacted with a 10% w/w solution of H2SO4 in 

water. The resulting mixture was vigorously stirred and heated to reflux for 36h, then cooled to room 

temperature and diluted with water. The organic phase was separated, and the aqueous phase extracted 

with 10 mL portions of AcOEt, then dried over Na2SO4, filtered and the solvent removed under reduced 

pressure to yield a crude solid that was then purified by column chromatography on silica gel.  
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(1E,4E)-1-o-carboranyl-5-(4-hydroxyphenyl)penta-1,4-dien-3-one 

(6a). Following the reported procedure, aldol 5a (100 mg, 0.24 mmol) 

was treated with H2SO4 affording 46 mg of a yellow solid (EP/AcOEt 

60/40, 45%). 1H NMR (600 MHz, CD3OCD3): δ 9.03 (s, 1H, ArOH), 

7.70 (d, J=16.2 Hz, 1H, ArCH=CHCO), 7.59 (dm, J=8.4 Hz, 2H, ArH), 7.03 (d, J= 15.6 Hz, 1H, CO-

CH=CH-CB10H10), 6.96 (d, J=15.6 Hz, COCH=CHCB10H10), 6.94 (d, J=16.2 Hz, 1H, 

ArCH=CHCO), 6.88 (dm, J=8.4 Hz, 2H, Ar-H), 4.99 (s, 1H, B10H10CH), 2.82-1.70 (m, 10H, BH). 

13C NMR (150 MHz, CD3OCD3): δ 187.0 (Cq), 161.3 (Cq), 145.8 (CH), 137.2 (CH), 134.4 (CH), 

131.7 (CH), 127.1 (Cq), 123.0 (CH), 116.9 (CH), 73.9 (Cq), 62.0 (CH). 11B NMR (192.5 MHz, 

CD3OCD3):
 -3.7, -5.4, -9.9, -11.9, -12.4, -13.8 

 Mp: degradation 154-155°C. νmax (neat)/cm-1: 3453, 2920, 2582, 1560, 1278, 970. ESI HRMS for 

C13H20B10O2 Calcd: 319.2372 [M +H]+, Found: 319.2397 [M +H]+ 

(1E,4E)-1-o-carboranyl-5-(4-hydroxy-3-methoxyphenyl)penta-

1,4-dien-3-one (6b). Following the reported procedure, aldol 5b (107 

mg, 0.24 mmol) was treated with H2SO4 affording 58 mg of a yellow 

solid (EP/AcOEt 75/25, 70%). 1H NMR (600 MHz, CD3OCD3): δ 8.33 (s, 1H, ArOH), 7.72 (d, J=16.2 

Hz, 1H, ArCH=CHCO), 7.38 (d, 1H, J= 1.8 Hz, ArH), 7.24 (dd, J=7.8, 1.8 Hz, 1H, ArH), 7.05 (d, 

J=15.0 Hz, 1H, COCH=CHCB10H10), 6.99 (d, J=16.2 Hz, 1H, ArCH=CHCO), 6.97 (d, J=15.0 Hz, 

1H, COCH=CHCB10H10), 6.89 (d, J=8.4 Hz, 1H, Ar-H), 4.99 (s, 1H, B10H10CH), 3.91 (s, 3H, OCH3), 

2.79-1.95 (m, 10H, BH). 13C NMR (150 MHz, CD3OCD3): δ 186.9 (Cq), 150.9 (Cq), 148.8 (Cq), 

146.2 (CH), 137.2 (CH), 134.2 (CH), 127.5 (Cq), 124.8 (CH) 123.4 (CH), 116.3 (CH), 111.8 (CH), 

73.8 (Cq), 62.1 (CH), 56.4 (CH3). 
11B NMR (192.5 MHz, CD3OCD3): -3.7, -5.4, -10.0, -12.1, -12.2, 

-13.8. Mp: degradation 154-156°C. νmax (neat)/cm-1: 3223, 3058, 2955, 2925, 2586, 1656, 1580, 1511, 

1171, 821, 721. ESI HRMS for C14H22B10O3 Calcd 349.2568 [M +H]+, Found: 349.2532 [M +H]+ 

(1E,4E)-1-o-carboranyl-5-(3,4-dihydroxyphenyl)penta-1,4-dien-3-

one (6c). Following the reported procedure, aldol 5c (125 mg, 0.24 

mmol) was treated with H2SO4 affording 54 mg of a yellow solid 

(EP/Acetone 67/33, 68%). 1H NMR (600 MHz, CD3OCD3): 8.50 (bs, 2H, ArOH), 7.66 (d, J=15.9 Hz, 

1H, ArCH=CHCO), 7.19 (d, J=1.9 Hz, 1H, ArH), 7.09 (dd, J=1.9, J=8.2, 1H, ArH), 7.01 (d, J=15.4 

Hz, 1H, COCH=CHCB10H10), 6.96 (d, J=15.4 Hz, 1H, COCH=CHCB10H10), 6.89 (d, J=15.9 Hz, 1H, 

ArCH=CHCO) 6.86 (d, J=8.2, 1H, ArH), 4.95 (s, 1H, B10H10CH), 2.98-1.80 (m, 10H, BH). 13C NMR 

(150 MHz, CD3OCD3): 187.0 (Cq), 149.5 (Cq), 146.4 (Cq), 146.2 (CH), 137.2 (CH), 134.4 (CH), 
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127.8 (Cq), 123.5 (CH), 123.0 (CH), 116.5 (CH), 115.6 (CH), 73.9 (Cq), 62.0 (CH). 11B NMR (192.5 

MHz, CD3OCD3): -3.7, -5.4, -10.0, -12.0, -12.4, -13.8. Mp: degradation 155-156°C. νmax (neat)/cm-

1: 3454, 3213, 3052, 2919, 2582, 1556, 1278, 1184, 970. ESI HRMS for C13H20B10O3 Calcd: 335.2421 

[M +H]+, Found: 335.2401 [M +H]+ 

(1E,4E)-1,5-bis(C-ortho-carboranyl)penta-1,4-dien-3-one (8) In a 

screw cap reaction vessel, dried and under nitrogen atmosphere, C-

formyl-ortho-carborane (0.172 g, 1.00 mmol) and LiClO4 (0.106 g, 

1.00 mmol) were dissolved in 3 mL of anhydrous toluene. Then, 1 eq. of acetone (0.074 mL, 0.058 

g, 1.00 mmol) and 0.1 eq of Et3N (0.014 mL, 0.010 g, 0.10 mmol) were added, then the vessel was 

closed and the stirred reaction warmed to 112 °C for 5 days. The reaction was cooled to rt and diluted 

with DCM then 20 mL of water were added, the organic phases washed with a saturated solution of 

NH4Cl, dried and the solvent evaporated. The crude was purified by column chromatography 

affording 0.036 g of (1E,4E)-1,5-bis(C-ortho-carboranyl)penta-1,4-dien-3-one (8) as a white solid 

(EP/AcOEt 85/15, 10%). 1H NMR (600 MHz, CDCl3): 6.80 (d, J=15.4 Hz, 2H, CH=CHCB10H10), 

6.59 (d, J=15.4 Hz, 2H, CH=CHCB10H10), 3.70 (s, 2H, B10H10CH), 3.50-1.00 (m, 20H, BH). 13C 

NMR (150 MHz, CD3OCD3): 184.4 (Cq), 138.9 (CH), 132.3 (Cq), 71.10 (Cq), 59.9 (CH). 11B NMR 

(192.5 MHz, CDCl3): -2.8, -4.2, -9.3, -11.9, -12.7, -13.7. Mp: 215-218°C. νmax (neat)/cm-1: 3065, 

2578, 1640, 965, 721. ESI m/z 368 [M +H]+. ESI HRMS for C9H26B20O Calcd: 372.4001 [M +H]+, 

Found: 372.3993 [M +H]+ 
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