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ABSTRACT 
 
 

        This study was performed to determine the effects of fibroblast growth factor-2 (FGF-2) 

on monolayer expansion of equine tendon- and bone marrow-derived cells prior to culture 

with autogenous acellular tendon matrix and insulin-like growth factor-I (IGF-I). 

Progenitor cells were isolated from six young adult horses, expanded in monolayers with 

FGF-2, and cultured with autogenous acellular pulverized tendon and IGF-I for seven days. 

Initial cell isolation and subsequent monolayer proliferation were assessed.  In the cell: 

pulverized tendon cultures, cell viability, expression of collagen types I and II, and cartilage 

oligomeric matrix protein (COMP) mRNAs, collagen and glycosaminoglycans (GAG) 

syntheses were assessed. Tendon-derived cells proliferated significantly more rapidly in the 

initial monolayer expansion cultures in comparison to bone marrow-derived cells. Further, 

monolayer expansion with FGF-2 significantly increased the cell numbers of tendon-derived 

cells. Expression of collagen type I, collagen type III and COMP mRNAs was higher in 

tendon-derived cell groups than bone marrow-derived cell groups. However, IGF-I 

supplementation significantly increased collagen type I and type III mRNA expression in 

only the bone marrow-derived cell groups. IGF-I supplementation significantly increased 

collagen synthesis of bone marrow-derived cells. Monolayer expansion with FGF-2 followed 

by IGF-I supplementation significantly increased proteoglycan synthesis in tendon-derived 

cells. In summary, tendon-derived cell cultures generated more cells and showed increased 

matrix synthesis following monolayer expansion with FGF-2 when compared to bone 

marrow-derived cells. In vivo experiments using FGF-2 expanded tendon-derived cells are 

warranted to evaluate the effects on tendon healing. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

         Flexor tendon injuries are among the most common musculoskeletal injuries that 

contribute to the loss of athletic use of horses (Dowling et al. 2000, Dyson 2004, Ely et al. 

2009, Genovese et al. 1996). In addition, the risk of tendon injury increases with age. The 

healing response is prolonged following tendon injury and the resultant repair tissue is 

usually of inferior mechanical strength. Consequently, the prognosis for return to previous 

levels of performance is poor (Dowling et al. 2000, Lam et al. 2007). A variety of surgical 

and conservative treatments have been developed, however none have succeeded in returning 

the healed tendon to its original strength (Bramlage 1991, Alves et al. 2001, Crowe et al. 

2004, Hawkins, Ross 1995, Gibson, Burbidge & Pfeiffer 1997). Re-injury, despite prolonged 

and costly rehabilitation, is common.     

         The inability of equine tendon to regenerate after injury, or to heal with mechanical 

properties comparable to the original tissue is likely due to the low vascularity and cellularity 

of the tissue, the low number of progenitor cells within the tissue, and healing under weight-

bearing conditions (Birch 2007a, Birch et al. 2008, Hosaka et al. 2005, O'Brien 1997).  

Additionally, it is thought that tendinitis is due to a long-term degenerative process rather 

than one episode of trauma (Birch, Bailey & Goodship 1998, Birch, Wilson & Goodship 

2008). Strategies to improve tendon healing have aimed at enhancing the metabolic response 

of the injured tenocytes, modulating the organization of the extracellular matrix produced, or 

administering progenitor cells to enhance repair tissue (Krampera et al. 2006, Lacitignola et 

al. 2008, Richardson et al. 2007a). The use of mesenchymal stem cells (MSCs) for tissue 

repair, regeneration and engineering has been an extremely dynamic area of research over the 
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past decade. The majority of these studies have focused on the use of MSCs derived from 

bone marrow population. However more recent studies indicate that alternative sources of 

progenitor cells (fat, synovium, cartilage, and muscle) might also be beneficial for specific 

therapeutic applications (Ju et al. 2008, Nixon et al. 2008). The most prominent avenues of 

investigation have been directed at repair of bone, cartilage, myocardium and CNS tissues 

(Caplan 2007a, Caplan 2005a).  

         Bone marrow-derived MSCs have been used for tendon repair in horses, rabbits, and 

rats (Lacitignola et al. 2008, Pacini et al. 2007, Smith 2008a, Smith et al. 2003). To date, the 

studies performed in horses using bone marrow derived MSCs for tendon repair have been 

subjective with no clear, objective evidence of efficacy. Despite the lack of objective 

evidence, over 1,000 horses have been treated with intratendinous injections of direct bone 

marrow aspirates or adipose-derived progenitor cells over the last four years (Nixon et al. 

2008, Smith 2008a). However, none of these studies used a homogeneous population of stem 

cells to repair tendon and one study documented bone formation within the tendon repair 

tissue (Dressler, Butler & Boivin 2005). A recent equine study using adipose-derived source 

of progenitor cells for treatment of a collagenase-induced model of tendinitis showed only 

histological improvement of repair over the untreated control, with no biomechanical data to 

substantiate improved outcomes (Nixon et al. 2008). Currently, stem cell therapy in 

veterinary medicine has generated a vast amount of revenue from clientele with minimal 

scientific follow-up on clinical cases.   

         Alternate sources of progenitor cells have been described for tendon repair in other 

species (Ju et al. 2008, Cao et al. 2002, Liu et al. 2006). However, there are only a few 

studies utilizing an equine model of tendinitis treated with alternate sources of progenitor 
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cells (Nixon et al. 2008). Recent lines of evidence suggests the presence of multipotent, 

clonogenic population of progenitor/stem cells in tendons, within an extra cellular matrix 

(ECM)-rich niche (Bi et al. 2007, Salingcarnboriboon et al. 2003, Rui et al. 2010)). One 

study showed tendon and muscle-derived cells proliferated more rapidly in monolayer 

cultures and had better viability and matrix production, compared to bone marrow-derived 

cells (Stewart et al. 2009a). A differential adherence preplating technique has been used in 

this study to isolate autogenous equine tendon-derived progenitor cells from the lateral digital 

extensor tendon. This method has been adapted from a technique described to isolate 

myogenic cells, a progenitor cell population in skeletal muscles (Gharaibeh et al. 2008, 

Jankowski et al. 2001). 

         Growth factors function as anabolic signaling peptides, resulting in cell proliferation 

and differentiation, up-regulation of cell metabolism, and synthesis of extracellular matrix. 

Fibroblast growth factor-2 (FGF-2), also known as basic fibroblast growth factor is a potent 

mitogen that binds to heparan-sulfate proteoglycans in the tendon extracellular matrix and is 

released with matrix degeneration (Dahlgren, Mohammed & Nixon 2005, Duffy et al. 1995, 

Chan et al. 2000). Mesenchymal stem cell cultures supplemented with FGF-2 proliferate 

more rapidly and exhibit an increased capacity for self-renewal and differentiation (Solchaga 

et al. 2010, Stewart et al. 2007). The authors have evaluated the effects of FGF-2 on equine 

bone marrow-derived MSCs at concentrations of 1, 10, and 100 ng/mL (Stewart et al. 2007) 

Optimal effects were reported at 100 mg/mL (the concentration used in this study). In 

addition, several in vitro and in vivo murine and lupine studies of tendon healing have shown 

enhanced angiogenesis, tendon fibroblast proliferation, and collagen type III expression in 

response to FGF-2 administration (Chan et al. 2000, Chan et al. 1997, Wang et al. 2005).   
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         The role of insulin-like growth factor-I (IGF-I) in equine tendon healing has generated 

a considerable body of research in the last few years. In vitro, IGF-I stimulates mitogenesis, 

matrix gene expression, and collagen synthesis by tenocytes(Abrahamsson, Lundborg & 

Lohmander 1991)(Costa et al. 2006). Further, exogenous injections and gene therapy 

delivery of IGF-I have resulted in histological improvement in tendon healing following 

collagenase-induced tendinitis (Dahlgren et al. 2002, Schnabel et al. 2009). The dose-

dependent effects of IGF-I on in vitro tenocyte matrix synthesis were evaluated by 

Abrahamsson et al (Abrahamsson, Lundborg & Lohmander 1991). Collagen synthesis was 

significantly increased at 100 and 250 ug of IGF-I/mL doses. A concentration of 100ug of 

IGF-I/mL was selected for use in the current study, on the basis of published results and the 

outcomes of previous stem cell-focused studies completed in the author’s laboratory. The 

beneficial effects of IGF-I are increased mitogenesis, tendon gene expression, and collagen 

synthesis (Abrahamsson, Lundborg & Lohmander 1991, Olesen et al. 2006).  

         For clinically viable applications of cell-based therapies, the in vitro expansion of 

putative progenitor cell populations needs to be optimized to reduce the time required for 

generation of adequate cell numbers. Additionally, the biosynthetic activities of re-implanted 

cells need to be augmented to promote healing through effective tissue repair. Therefore, this 

study addressed two major objectives. Firstly, the mitogenic effects of FGF-2 on tendon- and 

bone marrow-derived cell populations were assessed during in vitro monolayer expansion. 

Secondly, the synthetic and phenotypic responses of monolayer-expanded cells to exogenous 

IGF-I were assessed in an in vitro “powdered matrix” model. Pulverized tendon derived from 

an autogenous source has been used as substrate material to provide a three-dimensional 

plane for cell adhesion/proliferation and matrix synthesis.  



 5 

         The goals of this Master’s project are two-fold: 

(1) To determine whether FGF-2 supplementation during monolayer expansion can 

enhance the proliferative capacity and matrix synthesis of both tendon- and bone 

marrow-derived cells. 

(2) To evaluate whether IGF-I supplementation alone or following FGF-2 monolayer 

expansion would have a beneficial effect on cell proliferation, tendon gene 

expression, and  matrix synthesis of tendon- and bone marrow-derived cells cultured 

with tendon matrix. 

         The overall objective of this study was to determine whether sequential administration 

of FGF-2, during monolayer expansion, and IGF-I in culture with pulverized tendon, would 

improve cell expansion and subsequent matrix synthesis. My hypothesis was that tendon-

derived cells expanded with FGF-2 and cultured with pulverized tendon and IGF-I 

supplementation will have increased cell viability/ proliferation, matrix gene expression, and 

matrix synthesis in comparison to bone marrow-derived cells cultured under similar 

conditions. 
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CHAPTER 2 

LITERATURE REVIEW  

 

         Flexor tendon injuries are amongst the most common musculoskeletal injuries that 

contribute to the loss of athletic use of horses (Dowling et al. 2000, Thorpe, Clegg & Birch 

2010). Further, the healing process following tendon injury is prolonged and the resultant 

repair tissue is of inferior mechanical strength. Consequently, the prognosis for return to 

previous level of performance is poor (Patterson-Kane, Firth 2009). Recent management and 

treatment strategies do not return the healed tendon to its original strength. Re-injury, despite 

prolonged and costly rehabilitation, is common. Cell-based approaches with or without 

growth factor enhancement have been a recent focus in tendon research with an ultimate goal 

of better histological organization and biomechanical strength (Lacitignola et al. 2008, 

Schnabel et al. 2009, Richardson et al. 2007b, Smith 2008b).  

 

Structure and Function of Tendons 

         Tendons are dense collagenous tissues that connect muscles to bones. Based on their 

function, equine tendons can be classified as ‘weight-bearing’ tendons that store and release 

elastic strain energy, increasing the efficiency of locomotion (e.g., digital flexor tendons) 

(Figure 1) and ‘positional’ tendons that transmit muscle generated forces to bones resulting 

in movement around joints (e.g., digital extensor tendons) (Birch 2007a). Tendons are 

complex organs, composed of a hierarchical arrangement of smaller subunits (Figure 2). 

Morphologically, in cross-section tendons are divided into a number of fascicles, which are 

in turn composed of collagen fiber bundles and then fibrils (O'Brien 1997, Benjamin, Kaiser 
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& Milz 2008). The fascicles are held together by a loose areolar connective tissue, the 

endotenon, which becomes confluent with the outer epitenon. The epitenon is surrounded by 

the paratenon, a fine connective tissue sheath which functions as an elastic sheath to permit 

free movement of the tendon against the surrounding structures. Tendons consist primarily of 

collagen fibers oriented in the direction of force application.  The collagen molecules are 

stabilized by intermolecular chemical crosslinks resulting in high tensile strength (Avery, 

Bailey 2005).  

Molecular composition 

         Tendons are composed predominantly of water (70%) and cells, extracellular matrix, 

enzymes (30%) (Fu et al. 2002). The matrix is composed mainly of collagen and some elastin 

embedded in a proteoglycan-water matrix. Collagen accounts for 65-80% and elastin about 

1-2% of the dry mass of the tendon (Hosaka et al. 2010). These components are produced by 

tenoblasts and tenocytes, which are elongated fibroblasts interspersed between the collagen 

fibers (Kannus 2000). 

         Collagen type I is predominant and accounts for about 90% of total tendon collagen, 

with a small portion comprised of collagen type III, about 4-5%, thought to form smaller and 

weaker fibrils (Patterson-Kane, Firth 2009). In the fibro-cartilaginous regions, collagen types 

II, IX, X and XI, may also be found (O'Brien 1997). Collagen type IV is found in the 

basement membrane with a trace of type V collagen (Dowling et al. 2000, O'Brien 1997). 

The structural unit of collagen is tropocollagen or a microfibril, consisting of three 

polypeptide chains wound together to form an alpha triple helix. These alpha chains are 

composed primarily of proline and glycine, present as every third residue. Several of these 
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microfibrils unite to form a fibril, and many fibrils are embedded in the extracellular matrix 

as collagen fibers.   

         Proteoglycans and glycoproteins combine to form a ground substance, accounting for 

1-2% of the dry mass of the tendon (O'Brien 1997, Kannus 2000). The ground substance 

surrounds the collagen fibers and plays an important role in collagen fibrillogenesis and 

cellular interactions (Patterson-Kane, Firth 2009). Proteoglycans are composed of a core 

protein associated with four main glycosaminoglycans; dermatan sulfate, chondroitin sulfate, 

keratan sulfate and heparan sulfate (O'Brien 1997). Proteoglycans in tendons can be 

classified as, small leucine-rich proteoglycans such as decorin, biglycan and lumican, and 

large aggregating proteoglycans such as aggrecan and versican. The most abundant tendon 

proteoglycan is decorin, followed by biglycan, and others include, fibromodulin, lumican, 

aggrecan and versican (Yoon, Halper 2005). Decorin is considered as a key regulator of 

matrix assembly as it limits collagen fibril formation and directs tendon remodelling in 

relation to tensile forces (Danielson et al. 1997). 

         Cartilage oligomeric matrix protein (COMP) is an abundant non-collagenous 

glycoprotein in tendons that increase with growth and decline after maturation (DiCesare et 

al. 1994). It is a calcium binding pentamer, with each subunit shown to bind collagen type I, 

II and IX. Higher levels of COMP are reported in superficial digital flexor tendons (SDFT) as 

compared to deep digital flexor tendons (DDFT) (Sodersten et al. 2005). COMP 

concentrations are correlated with weight bearing and mechanical properties of the 

superficial digital flexor tendon (Dowling, Dart 2005). Further, higher COMP levels are 

found in association with small diameter collagen fibrils in the tensional area of the flexor 

tendons. It has been proposed that COMP functions to provide structural integrity to the 
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extracellular matrix by binding to multiple collagen fibrils in collagen fibrillogenesis 

(Sodersten et al. 2005, Dowling, Dart 2005).  

         The cellular compartment of tendons constitutes a very small portion of the total bulk of 

the tissue. Further, the cell-to-matrix ratio gradually decreases over age. Tenocytes are 

fibroblastic cells that are responsible for synthesis and turnover of the tendinous extracellular 

matrix. Tenocytes are arranged in parallel rows along the longitudinal axis of tendons, with 

gap junctions linking flattened cytoplasmic processes that extend through the extracellular 

matrix between cells (Stanley et al. 2007). Type 1, 2 and 3 tenocytes have been defined in 

equine tendons (Stanley et al. 2008). Type 1 tenocytes referred to as ‘tenocytes’ have long, 

thin spindle-shaped nuclei whereas type 2 tenocytes referred to as ‘tenoblasts’ have plump, 

cigar-shaped nuclei (Patterson-Kane, Firth 2009). Type 3 tenocytes are chondrocyte-like with 

round nuclei and are located at sites exposed to compressive forces, especially where tendons 

wrap around joints (Stanley et al. 2008). Type 2 cells are metabolically more active and have 

a higher biosynthetic capacity than type I cells and are present in a higher proportion in fetal 

and neonatal tendon. With increasing age, the proportion of type 1 tenocytes increases, along 

with a reduction in total cellularity and cellular activity (Patterson-Kane, Firth 2009, 

Dowling, Dart 2005, Stanley et al. 2008).     

Histological structure 

         Histologically, tendons have a highly organized structure (Figure 3). Linear fibers of 

collagen are aligned along the longitudinal axis in each fascicle. Tenocytes are located both 

intrafascicularly and interfascicularly, arranged in rows along the direction of the collagen 

fibers (Thorpe, Clegg & Birch 2010). Vascular channels are present in the endotenon. A 

characteristic crimp pattern of collagen fibers is a typical ultra-structural feature of tendons 
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(Figure 4). The crimps function as a buffer to allow longitudinal elongation in response to 

physiological tensile loads (O'Brien 1997). In addition, on tensile loading the central fibers 

straighten first and therefore receive a higher load. As age increases, a generalized reduction 

in crimp angle occurs, with a greater degree of reduction in central fibers (Patterson-Kane et 

al. 1997). 

Physiologic matrix turnover 

         Native tenocytes are involved in constant matrix remodelling under normal 

circumstances by synthesizing collagen, proteoglycans, and enzymes responsible for 

degradation, such as matrix metalloproteinases (MMPs). Tendons have low oxygen 

consumption values in comparison to other tissues. The low metabolic rate with well-

developed anaerobic energy production is adapted for load-bearing for prolonged periods of 

time (Kannus 2000). However, the rate of recovery after activity is consequently slow.  

         Synthesis of collagen occurs intracellularly in tenocytes, with the formation of mRNA 

for each alpha chain which are then assembled on the polyribosomes bound to rough 

endoplasmic reticulum, and stored as preprocollagen (Zhang et al. 2005). Soluble 

procollagen is formed from the preprocollagen, followed by hydroxylation of proline and 

lysine. The procollagen is secreted extracellularly to form insoluble tropocollagen, which 

aggregates to form collagen fibrils (Zhang et al. 2005). 

          Synthesis of proteoglycans also occurs intracellularly, in the rough endoplasmic 

reticulum of tenocytes, where the core protein is assembled and glycosylation is initiated. 

The process is completed in the Golgi complex, where sulfation takes place (O'Brien 1997).  

The continual process of matrix remodelling is primarily mediated by proteases acting in the 

extracellular environment. These include MMPs and aggrecanases from the “a disintegrin 
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and metalloproteinase with thrombospondin motifs” (ADAMTS) family. The activity of 

MMPs is highly regulated by tissue inhibitors of metalloproteinase (TIMPs) (Riley, 

Medscape 2008). Gelatinases, MMP-2 and -9, and collagenases, MMP-1 and -13, are thought 

to be involved in tendon metabolism, through their broad proteolytic capacity. Their activity 

is reversibly inhibited by TIMPs-1 and -2. A balance between the activities of MMPs and 

TIMPs regulates tendon remodeling (Karousou et al. 2008). ADAMTS-2, -3, and -14 are pro-

collagen peptidases, and function as regulators of collagen fibril assembly. ADAMTS-1 and -

4 are capable of cleaving matrix proteoglycan versican and glycoprotein COMP (Hosaka et 

al. 2002). 

       Energy-storing flexor tendons experience higher strains during physiological activity 

than positional extensor tendons (Birch, Wilson & Goodship 2008). Also, functionally 

distinct tendons differ in matrix composition, with a higher glycosaminoglycan, COMP, 

water content and cellularity in SDFTs when compared to common digital extensor tendon 

(CDET) (Birch et al. 2008). Historically, tendon was assumed to be a relatively inert tissue, 

however, a recent study reported active tendon matrix turnover (Birch 2007b). The same 

study reported a difference in the rate of matrix turnover between functionally distinct 

tendons in the absence of disease process, with a lower level of collagen gene expression and 

MMP activity in SDFT when compared to DDFT.   

 

Superficial Digital Flexor Tendinitis in Horses 

         Musculoskeletal injuries involving tendons and ligaments are a major cause of career-

ending lameness in performance horses. A recent study in National Hunt horses showed that 

46% of the injuries involved tendons and ligaments (Ely et al. 2009). Some tendons are more 
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prone to injuries than the others, with the majority occurring in the forelimbs (97-99%) as 

they bear 60% of the total body weight during rest and more during galloping. Superficial 

digital flexor tendons are commonly affected due to its small cross-sectional area, small 

margin of safety and high tensile loads experienced at maximal exertion. The same study 

reported superficial digital flexor tendon injuries in about 89% of all tendon and ligament 

injuries and the remainder involved the suspensory ligament. Another study described the 

prevalence of SDF tendinitis in Thoroughbred racehorses in Hong Kong to range from 25-

53% with 97% of these occurring in the forelimbs (Dyson 2004). Superficial digital flexor 

tendinitis was described as the most common cause of retirement in this population of equine 

athletes. There is a high risk of re-injury following prolonged rehabilitation. Studies report 

successful return to racing in 20-60% of the affected horses but up to 80% of these horses 

sustained re-injury (Dowling et al. 2000, Genovese et al. 1996). Results of another study 

revealed 96% of the horses returned to previous function, but the re-injury rate was 42.5- 

44%, with a higher rate in horses used for flat racing (Dyson 2004).    

Pathophysiology     

        The cross-sectional area of the SDFT is smallest at the mid-metacarpal region. 

Consequently, this site is highly susceptible to injury, as the central collagen fibers take more 

load than the peripheral fibers (Patterson-Kane, Firth 2009). One study, evaluated the 

incidence of tendinitis in the proximal aspect of the SDFT in older performance horses 

(Chesen et al. 2009). Tendinitis or more accurately termed ‘tendinopathy’ is a result of 

chronic overuse rather than a single event to failure. Localized microdamage to collagen 

fibrils can occur when the SDFT is exposed to high strains up to 19%. This isolated fibrillar 

damage causes an alteration in cell-matrix interactions leading to increased matrix 
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breakdown in relation to cellular repair mechanisms (Patterson-Kane, Firth 2009). This 

‘tendinopathy’ cycle results in further weakening due to repeated and cumulative 

microtrauma, where insufficient time is provided to effect repair between traumatic episodes.  

         Limb motion generates considerable heat in the peripheral tissues. An increase in core 

temperature of up to 5.40C has reported in the mid-cannon SDFT as a consequence of kinetic 

energy being released as heat. Some evidence suggests that this hyperthermia can result in 

damage to extracellular matrix and cell death (Wilson, Goodship 1994). However, a 

contradictory outcome was reported by Hosaka et al, with 70-90% cell survival following 

heating of tenocyte suspensions for up to 10 minutes (Hosaka et al. 2005, Birch, Wilson & 

Goodship 1997). Another study reported apoptosis of tenocytes in inflamed SDFT via a 

caspase-3-dependent pathway as a cause of cell death (Hosaka et al. 2006).    

         An inflammatory cascade associated with cytokine release takes place following injury. 

Increased expression of IL-1α, IL-1β, TNF-α, and IFNγ has been reported in inflamed SDFTs 

(Hosaka et al. 2002). Both the expression and activity of MMPs are stimulated by pro-

inflammatory cytokines. There is increased expression of MMPs-2 and -9, along with a 

down-regulation of TIMP-1 in chronic tendinopathy (Karousou et al. 2008, Riley 2005). A 

local imbalance in MMPs and TIMP activities can cause progressive degeneration and 

weakening of the extracellular matrix of tendons. A study conducted in human ruptured 

supraspinatus tendons showed increased MMP-1 levels, causing degradation of the collagen 

fibril network (Riley et al. 2002). Expression of ADAMTS-1, -4, and -5 has also been shown 

in tendon (Riley et al. 2002). However, their levels of expression and activity are still unclear 

in tendinopathies. As a consequence to the inflammatory process and proteolytic activities, 

intra- and inter-molecular cross-links within collagen fibrils break down, leading to fibril 
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elongation at the microscopic level followed by macroscopic changes (Patterson-Kane, Firth 

2009).        

         Degeneration of the SDFT is characterized by discoloration of the central core region 

accompanied by swelling. Fibril diameter also changes, with a predominance of small-

diameter collagen fibrils which ultimately decreases the tensile strength of injured tendons, 

and increases the susceptibility to re-injury. Microscopically, increased cellularity with 

inflammatory cell infiltrates, cell rounding, and disruption of collagen fiber organization is 

observed (Riley, Medscape 2008). Collagen type III mRNA expression increases following 

injury with a sequential increase in collagen type III content (Dahlgren, Brower-Toland & 

Nixon 2005, Samiric et al. 2009). Some studies report a decrease in mRNA expression of 

collagen type I in diseased tendon, with no difference in collagen type I content (Samiric et 

al. 2009). Parallel studies conducted in injured human Achilles tendons show increased 

collagen type I mRNA levels with a sequential increase in collagen turnover (de Mos et al. 

2007b). However, the percentage of denatured collagen was higher with a poor quality 

collagenous matrix. In contrast, a recent study showed no significant increase in expression 

of collagen type I mRNA in acute tendinopathy (Taylor et al. 2009). In addition, no 

significant change in total collagen content was seen in equine SDF tendinopathy (Birch, 

Bailey & Goodship 1998). An increase in sulfated glycosaminoglycans (sGAGs) and water 

content occurs in tendinopathies which gives rise to tissue swelling (Samiric et al. 2009). A 

significant increase in large aggregating (proteoglycans, versican, and aggrecan) and small 

proteoglycans (biglycan and fibromodulin) has been reported, with no changes in levels of 

decorin (Samiric et al. 2009).  
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Process of Tendon Healing  

         There are three phases in tendon healing; the reactive inflammation phase, the acute 

reparative or proliferative phase, and the chronic remodelling or maturation phase. 

Reactive inflammation 

         This phase lasts for about a week and is characterized by a marked increase in cross-

sectional area at and around the site of injury with local hemorrhage and edematous swelling. 

This is followed by inflammatory cell infiltration, initially by neutrophils, with predominant 

macrophage accumulation after 24 hours to phagocytize debris and necrotic cells. 

Consequently, this causes a release in proteolytic enzymes and results in further mechanical 

disruption. 

         Changes in growth factor expression occur immediately following injury. Studies show 

increased expression of transforming growth factor- β1 (TGF-β1) in early stages of tendon 

healing. The large round cells within the endotenon have a higher expression of TGF- β1 

when compared to those within the lesional tissue (Dahlgren, Mohammed & Nixon 2005, 

Berglund et al. 2006). In addition, expression of connective tissue growth factor (CTGF) 

significantly decreases in the tendon sheath following injury with no change in the tendon 

tissue (Berglund et al. 2006). The same study reported an increased expression of basic 

fibroblastic growth factor (bFGF) in tendon tissue at the same time point. Studies also 

indicate minimal increase in expression of insulin-like growth factor-I (IGF-I) in acute stages 

of tendon healing (Dahlgren, Mohammed & Nixon 2005), (Berglund et al. 2006). During the 

reactive inflammatory phase there is a marked increase in mRNA expression of collagen type 

III and type I in a collagenase-induced tendinitis (Dahlgren, Mohammed & Nixon 2005). The 

percentage composition of collagen type III begins to increase in this early phase. 
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Proliferation 

         This phase begins within a few days of injury and peaks for about 2 to 3 weeks. 

Neovascularization is a dominant feature of this phase, slowly replacing the inflammatory 

cell infiltrates. Proliferation of fibroblasts takes place from surrounding endotenon and 

epitenon. Tenocytes in the peri-lesional tissue may also undergo cell division, leading to 

increased cellularity at the site of injury. Fibroblastic cells that are proliferating have a 

rounded appearance with plump nuclei, with a tenoblast-like appearance (Dahlgren, 

Mohammed & Nixon 2005).   

         Growth factors responsible for angiogenesis and mitogenesis regulate tissue activities 

during this phase. Vascular endothelial growth factor (VEGF), a prototypic angiogenic 

growth factor is up-regulated in early tendon healing (Dahlgren, Mohammed & Nixon 2005, 

Patterson-Kane, Firth 2009, Fenwick, Hazleman & Riley 2002), (Patterson-Kane, Firth 2009, 

Dahlgren, Brower-Toland & Nixon 2005). Expression of bFGF increases during this phase. 

bFGF also has angiogenic effects in healing tendons (Duffy et al. 1995). IGF-I mRNA 

expression levels are reported to peak around 4 weeks following injury in a collagenase-

induced model of tendinitis (Dahlgren, Mohammed & Nixon 2005). IGF-binding proteins 

(IGFBPs) regulate the activity of IGF-I by restricting its bioavailability to IGF-I receptors. In 

addition, IGFBPs are also thought to protect IGF-I from proteases. Increased expression of 

IGFBP-2, -3 and -4 occurs between 2-4 weeks following tendon injury and decreased 

expression of IGFBP-5 and -6 is present throughout healing period for up to 24 weeks 

(Dahlgren, Mohammed & Nixon 2006). The mitogenic effect of IGF-I plays an important 

role in stimulating cell proliferation in this phase of healing (Dahlgren, Mohammed & Nixon 

2005).   
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         In a collagenase-induced tendonitis study, mRNA expression for collagen type I was 

six-fold higher than collagen type III. Collagen type III mRNA expression was localized to 

cells within the endotenon in early stages of healing followed by intralesional tenocytes 

during later stages of healing (Riley et al. 2002). Synthesis of collagen type III peaked 3-6 

weeks post-injury, comprising up to 35% of total collagen by 1-2 weeks and remained high 

for up to 4 weeks post-injury. Collagen type I fell to approximately 66% by 1 week following 

injury. A larger proportion of small fibrils began to form in the healing response with inferior 

mechanical properties. One study showed increased mRNA expression of versican around 6 

days post-injury and of aggrecan around 24 days post-injury in rabbit flexor tendons 

(Berglund et al. 2006). A decreased expression of decorin, and a relative increase in 

expression of biglycan were also evident in injured tendons when compared to normal 

tendons. 

Remodelling 

         The remodelling or maturation phase is characterized by formation of fibrous tissue. 

During this stage, the healing tissue undergoes changes in size and shape. This phase is 

divided into consolidation and maturation processes (Sharma, Maffulli 2006). The 

consolidation stage begins at about 6 weeks and continues for up to 10 weeks post injury. 

The repair tissue changes from cellular to fibrous. However, increased vascularity and 

cellularity persists for up to 3 months post-injury (Patterson-Kane, Firth 2009, Fenwick, 

Hazleman & Riley 2002). Tenocyte nuclei gradually become more spindle-like with an 

increased synthetic activity early on which gradually decreases.  

         Persistent increases in TGF- β1 and IGF-I mRNA levels remained up to 6 months post-

injury. These increases were restricted to mature fibroblasts within the healing tendons 
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(Dahlgren, Mohammed & Nixon 2005). In addition, mRNA expression of collagen type I and 

type III was increased up to 6 months post-injury. A higher proportion of collagen type I was 

synthesized during this stage. However, collagenous tissue may still be randomly oriented 

with thickened areas of endotenon due to increased numbers of blood vessels (Patterson-

Kane, Firth 2009). 

         The maturation stage begins after approximately 10 weeks, marked by a gradual change 

from fibrous tissue to scar-like tendon tissue. This transition continues for up to a year 

(Sharma, Maffulli 2006). The newly formed collagen fibrils begin to orient longitudinally 

along tensile forces. The larger diameter collagen fibrils are not replaced following healing. 

The tendon cross-sectional area often remains increased, along with increased tissue mass. 

Healed tendons have decreased elastic properties and do not regain the original mechanical 

strength. Peritendinous fibrosis often occurs following healing with adhesions to adjacent 

structures that can significantly interfere with normal function. Together, the abnormal 

composition and arrangement of fibers, poor biomechanical properties, and prolonged period 

of healing are responsible for high occurrence of re-injury.  

 

Treatment of Tendinitis 

          Many treatment strategies have been advocated for equine tendonitis, depending on 

phase of healing. Also, therapeutic approaches differ depending on the duration of time since 

the original insult.  

Acute tendon injuries  

         Acute tendon injuries constitute a medical emergency that require rapid reduction of 

inflammation. Failure to reduce tendon inflammation can lead to further damage. Physical 
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therapies, which include ice application, cryotherapy, and compression bandaging, and 

immediate controlled mobilization are important for reducing inflammation and limiting the 

action of proteolytic enzymes on tendon extracellular matrix (Bramlage 1991). Cryotherapy 

exerts a beneficial effect through local vasoconstriction, decreased enzymatic activity, and 

reduced formation of inflammatory mediators. Cryotherapy for 20 minutes at frequent 

intervals is advised. One study reported reduction in core temperature of equine SDFT to 

21.80C with no effects on the viability of tenocytes following cryotherapy for 1 hour (Petrov 

et al. 2003). Pressure applied by compression bandaging with coaptation also reduces 

inflammation and edema formation. Coaptation by application of a palmar splint or heel 

support may be carried out to provide further support to the tendon. Administration of 

systemic non-steroidal anti-inflammatory drugs (NSAIDs) such as phenylbutazone and 

flunixin meglumine has been advocated in the acute stages to reduce inflammation and to 

provide analgesia (Dowling et al. 2000, Bramlage 1991).  

Chronic tendinopathies  

         Both, medical and surgical treatment options have been described for chronic 

tendinopathies with little objective evidence for continuing beneficial effects (Dowling et al. 

2000). A brief review of various therapeutic options is provided below. 

 

Medical Management of Tendinitis 

Controlled exercise programs  

         Earlier studies have extensively evaluated controlled exercise programs as a 

conservative approach for rehabilitation of SDFT injuries with the goal of maintaining 

gliding function, and promoting optimal collagen healing. It involves gradual increase in 
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exercise regimen over a protracted period of time, up to about a year, with careful monitoring 

with diagnostic ultrasound at 3 month intervals (Gills 1997). One study showed 71% of 

injured horses returned to performance following controlled exercise when compared to 25% 

of injured horses with pasture rest (Gills 1997). Other studies reported similar results with 

59-75% of injured horses returned to performance following controlled exercise (Sawdon, 

Yovich & Booth 1996, Marr et al. 1993). However, these studies failed to document the 

severity of the initial lesions, which may have an important influence on the outcome. 

Extracorporeal shock wave therapy  

         Extracorporeal shock waves are pressure waves generated outside the body. These 

pressure waves cause high local stresses and analgesic effects on sensory nerves, possibly 

through demyelination of nerves. One study reported a return to performance in 50% of the 

horses with injured proximal suspensory ligaments following shock wave therapy 

administered 3 times at 2-week intervals (Crowe et al. 2004). Another study reported 

increased neovascularization with no ultrasonographic improvement in collagenase-induced 

SDF tendinitis in horses at 12 weeks post-injury treated with three treatments of shock wave 

therapy at 3-week intervals (Kersh et al. 2006). A recent study showed increased gene 

expression of collagen type I and MMP-14 with disorganization of matrix structure in normal 

tendons 6 weeks post-exposure to shock waves, suggesting a potential harmful effect on 

surrounding normal tissue (Bosch et al. 2009).  

Therapeutic ultrasound  

         A few studies have reported the effect of therapeutic ultrasound for tendinopathies in 

human athletes. Beneficial effects have been shown to be due to increased cell migration and 

gene expression, along with histologic improvement in entheseous insertions of tendon to 
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bone (Tsai et al. 2008, Moraes et al. 2009). However, there are no scientific reports of its use 

in equine tendinitis.  

Intralesional medications  

(1) Polysulfated glycosaminoglycans (PSGAGs) – PSGAGs have anti-inflammatory effects   

through inhibition of collagenases, MMPs and macrophage infiltration. A recent study 

evaluating intra-lesional PSGAG injection in a collagenase-induced SDF tendinitis model 

in horses showed histological improvement in collagen fiber organization at 5 months 

post-injury (Moraes et al. 2009). However, a clinical retrospective study showed no 

difference in re-injury rates in horses treated with PSGAGs when compared to control 

horses (Ely et al. 2009).  

(2)  Hyaluronan – sodium hyaluronan has been administered peritendinously and 

intralesionaly in tendinitis. One study showed histologic improvement and gross 

reduction in adhesion formation between DDFT and tendon sheath in collagenase-

induced model of intra-synovial tendinitis (Gaughan et al. 1991). However, a 

collagenase-induced model of mid-cannon SDF tendinitis reported no improvement in 

ultrasonographic properties, biochemical parameters or biomechanical strength, with 

increased inflammation histologically following treatment with hyaluronan (Foland et al. 

1992). In addition, a clinical retrospective study showed no significant difference 

between re-injury rates of horses treated with intralesional hyaluronan when compared to 

those treated conservatively (Ely et al. 2009).  

(3)  Beta-aminopropionitrile fumerate (BAPN) – intralesional BAPN inhibits lysyl 

oxidase, to prevent the formation of crosslinks between collagen fibers and promote 

better alignment of newly formed collagen. One study showed improved 
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ultrasonographic appearance and histological collagen alignment in BAPN-treated horses 

in a collagenase-induced model of SDF tendinitis (Dahlgren, Nixon & Brower-Toland 

2001). In addition, long term follow-up results of horses with SDF tendinitis treated with 

BAPN showed reduced risk of reinjury. However, a recent in vitro study reported altered 

morphology of tendon fibroblasts in addition to decreased collagen synthesis in tendon 

explants following culture with BAPN, suggesting a delay in tendon healing (Dahlgren, 

Nixon & Brower-Toland 2001).   

(4) Platelet-rich plasma (PRP) - platelet-rich plasma, an autologous concentrate of blood 

platelets has been introduced recently in humans for treatment of tendon injuries. 

Platelets are thought to influence healing by releasing growth factors such as platelet-

derived growth factor (PDGF), VEGF, TGF-β and IGF-I at the site of injury, influencing 

cell migration, proliferation, and matrix synthesis (Anitua et al. 2005). An in vitro study 

reported increased expression of collagen type I, type III and COMP mRNAs in equine 

SDFT explants cultured with PRP when compared to whole blood or serum (Schnabel et 

al. 2007). Increased concentrations of TGF-β1 and PDGF were also measured. A recent 

in vivo study in horses showed improved biomechanical properties, histologic 

organization and increased biochemical composition, 6 months post-injury, in a 

mechanically-induced SDF tendonitis model treated with PRP (Bosch et al. 2010). 

 

Surgical Management of Tendinitis 

Superior/Proximal check ligament desmotomy  

         Desmotomy of the accessory ligament of the SDFT (DALSDFT) as a treatment for 

SDF tendinitis is performed to increase the length of the myotendinous unit and reduce strain 
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on the SDFT. Initial results demonstrated 70% of horses with SDF tendinitis treated with 

DALSDFT competed in at least two races without recurrent tendinitis. One study conducted 

in Standardbred racehorses reported 86% of horses treated with DALSDFT for SDF 

tendinitis returned to performance with 75% completing at least 5 starts (Hogan, Bramlage 

1995). Another study conducted in Standardbred racehorses showed similar results, however 

also reported the 12.5% incidence of suspensory desmitis as a consequence of this procedure 

(Hawkins, Ross 1995). A prospective study conducted in 127 Thoroughbred racehorses 

showed no significant difference between DALSDFT and conservative management with 

reference to return to performance and recurrence of injury (Gibson, Burbidge & Pfeiffer 

1997). 

Annular ligament desmotomy  

         Transection of the palmar annular ligament (PAL) is recommended when enlargement 

of the distal SDFT occurs and causes constrictive impingement by the PAL, preventing 

gliding function and further exacerbating the tendinitis.    

Tendon splitting  

         Early reports have described tendon splitting to improve blood flow to damaged tendon 

lesions that are relatively avascular (Stromberg, Tufvesson & Nilsson 1974). The aim of 

tendon splitting in acute tendinitis is to evacuate serum or hemorrhage. One study showed 

faster resolution of the core lesion, revascularization and increased collagen deposition in a 

collagenase-induced acute tendinitis treated with tendon splitting when compared to controls 

(Henninger et al.1992). 
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Novel Therapeutic Approaches for Tendon Regeneration 

         Complete regeneration is never achieved after tendon injury. More recent therapeutic 

developments are aimed at influencing the process of healing towards formation of 

physiologic and functional tissue. This has been attempted through the 

manipulation/application of various growth factors, use of cell-based approaches and gene 

therapy. 

Use of growth factors in tendon healing 

         Growth factors and other cytokines stimulate cell proliferation and chemotaxis, 

influence angiogenesis, and induce cell differentiation. They also regulate metabolic 

activities of cells, leading to synthesis and secretion of ECM components. Several growth 

factors influence tendon healing and have been used in both, in vitro and in vivo models of 

tendon repair. These factors include VEGF, IGF-I, PDGF, FGF-2 and TGF-β. 

         VEGF regulates angiogenesis by breaking down vascular basement membranes, 

expression of α-integrins, vasodilatation and increased vascular permeability, and endothelial 

cell proliferation and monocyte migration. In tendons, VEGF is expressed in tendon sheath 

fibroblasts and its expression increases in early healing process (Jackson et al. 1997, Bidder 

et al. 2000). Therapeutically, intralesional injections of VEGF in a murine model of Achilles 

tendinopathy resulted in significant increases in tensile strength during the early course of 

healing (Zhang et al. 2003). In addition, VEGF also caused a significant increase in 

expression of TGF-β1 in the early repair stages when compared to the controls. 

          Transforming growth factor- β1 is released from platelets, lymphocytes, macrophages, 

endothelial cells and fibroblasts and stimulates chemotaxis, angiogenesis and transcription of 

extracellular matrix genes. Despite its beneficial effects, it is implicated in fibrous tissue 



 25 

formation from excessive deposition of disorganized collagen. In vitro, TGF- β1 induces 

collagen type I production by tenocytes (Klein et al. 2002). Further, inhibition of TGF- β 

activity reduces scar formation by limiting excessive collagen formation and improves 

tendon healing. The addition of TGF- β neutralizing antibodies in healing flexor tendons of 

rabbits increased the range of motion when compared to controls (Chang et al. 2000). Current 

studies are investigating the efficacy of gene therapy strategies to cause sustained 

neutralization of TGF- β. 

         Insulin-like growth factor- I has been studied for its effects on tendon healing. The 

primary effect of IGF-I on tendon healing is through its mitogenic effect, stimulating 

tenocyte proliferation at the site of injury. Exogenously applied IGF-I stimulates replication, 

collagen and proteoglycan synthesis in healthy rabbit flexor tendons (Abrahamsson, 

Lundborg & Lohmander 1991). In an equine collagenase-induced SDF tendonitis model, 

intralesional injections of IGF-I resulted in reduced lesion size, increased cell proliferation 

and collagen synthesis, and a trend toward increased mechanical strength in treated tendons 

when compared to control tendons (Dahlgren et al. 2002). A detailed description of IGF-I, its 

function and effects, and clinical use in tendon healing is provided below. 

         PDGF acts as chemoattractant and mitogen for fibroblasts and endothelial cells. PDGF 

may exert some effects through IGF-I as it up-regulates IGF-I and its receptors in target cells. 

An in vitro study showed PDGF stimulates collagen, proteoglycan, and DNA syntheses in 

tenocytes (Yoshikawa, Abrahamsson 2001). In addition, a recent study utilizing a canine 

flexor tendon injury model showed improved functional properties and increased collagen 

synthesis with the use of controlled delivery of PDGF when compared to controls 

(Thomopoulos et al. 2009). 
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          Fibroblast growth factor-2 stimulates angiogenesis and proliferation of fibroblasts. 

Application of exogenous FGF-2 accelerated healing of human patellar tendon in an in vitro 

model (Chan et al. 1997). This was consistent with in vivo studies showing FGF-2 injected 

intralesionally into healing patellar tendons in rats increased cell proliferation and collagen 

type III synthesis (Chan et al. 2000). A more detailed description of FGF-2 and its effects is 

provided further on.  

Cell-based therapies for tendon regeneration 

         Stem cell therapy, especially the use of postnatal/adult tissue-derived mesenchymal 

stem cells (MSCs), is a recent focus of research in tendon healing.  Following tendon injury, 

a cascade of inflammatory cells takes place. Cells involved in the synthesis of new tissue are 

present locally but comprise a very small component of the tissue (Richardson et al. 2007a). 

Further, this progenitor cell population varies with the functional properties of tendon and 

decreases with the age of tendon. Multiple sources of MSCs have been used for tendon 

regeneration. A brief review of various sources of MSCs used for the treatment of equine 

SDF tendinitis is provided below. 

         Empirically, MSCs from bone marrow have been used in equine SDF tendinitis with 

documented beneficial outcomes (Frisbie, Smith 2010, Koch, Berg & Betts 2009). 

Implantation of autogenous bone marrow MSCs (BMMSCs) as a potential therapeutic option 

for spontaneously occurring SDF tendinitis core lesions in performance horses was first 

described in 2003 (Smith et al. 2003). This case demonstrated the feasibility of the technique 

and reported no adverse reactions up to 6-weeks post injection.  A later study determined the 

fate of these injected cells in experimentally-induced tendon lesions and reported successful 

integration into adjacent healthy tendon (Guest, Smith & Allen 2008). Since then, a number 
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of experimental and case-based studies have been performed to determine the usefulness of 

MSCs in horses. One study evaluated the effect of BMMSCs in 11 spontaneously occurring 

lesions of the SDFT in race horses in comparison to control horses (Pacini et al. 2007). In 

MSC-injected cases, there was an improvement in ultrasonographic scores and return to 

performance in 81% of horses with no incidence of re-injury up to 2 years following 

treatment. In contrast all control horses re-injured the SDFT within 4 to 12 months. Another 

retrospective study evaluated the use of BMMSCs in spontaneously occurring SDF tendinitis 

in 168 horses followed by rehabilitation with long term follow-up (Smith 2008a). This study 

reported successful return to function in all treated horses with occurrence of re-injury in 

only 13% of horses up to one year, and 23-43% in more than 1 year follow-up. Overall, the 

re-injury rate for the MSC-treated horses was 24%, which was significantly reduced 

compared to 56% incidence of re-injury in conventionally managed horses (Dyson 2004) 

         Adipose derived-nucleated cells have also been evaluated for treatment of equine tendon 

regeneration due to ease of collection, minimal donor-site morbidity and faster recovery of 

cells due to absence of a cell culture step (Richardson et al. 2007a). One study reported 

histologic improvement of collagenase-induced SDF tendinitis in horses treated with 

adipose-derived cells, when compared to control horses (Nixon et al. 2008). An 

immunomodulatory function of these cells was suggested in the healing process due to 

reduced infiltration of inflammatory cells. Another study evaluated the effects of autogenous 

adipose-derived cells dispersed in PRP as a biologic scaffold in spontaneously occurring 

SDFT core lesions in horses (Del Bue et al. 2008). This study reported favorable results with 

return to function in 87% of treated horses.     
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         Alternative sources of cell-based therapies for tendon regeneration have been described 

in other species in experimental models. Synovial MSCs have been described in Achilles 

tendinopathy studies and were shown to stimulate superior healing of tendon-bone interfaces 

with improved fiber alignment (Ju et al. 2008). Another study reported improvement in 

histologic structure and tensile strength with use of dermal fibroblasts used to treat a porcine 

model of SDF tendon lesion (Liu et al. 2006). Autologous tenocytes engineered onto 

polyglycolic acid fibers were shown to provide superior healing in avian model of SDF 

tendon defect with improved histologic structure (Cao et al. 2002). More recently, embryonic 

stem cells have been described as a potential source of cells. A recent study, demonstrated 

better mechanical strength and histologic structure in a murine model of patellar 

tendinopathy treated with human embryonic stem cells, when compared to controls (Chen et 

al. 2009). 

Gene therapy 

         The delivery of exogenous genes to injured tendon is a relatively new approach of 

enhancing tendon healing. Transfer of growth factor cDNAs provides a means of sustained, 

prolonged expression of therapeutic proteins. In vitro adeno-associated virus-mediated gene 

transfer of bFGF in tendon explants showed effective delivery to tenocytes and significantly 

increased expression of collagen type I and type III gene expression (Wang et al. 2005). 

Modification of murine tenocytes with VEGF expression constructs has been shown to 

increase the levels of expression of TGF-β, collagen type I and type III (Wang, Liu & Tang 

2005). Similar results were obtained with exogenous PDGF gene transfection (Wang, Liu & 

Tang 2004). 
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          In addition, this technique can be used as a tool for delivering growth factor-enhanced 

MSCs. One study showed IGF-I-enhanced MSCs resulted in histologic and biomechanical 

improvement in a collagenase-induced SDF tendinitis in horses, when compared to control 

(Schnabel et al. 2009). Another study evaluating the effect of BMMSCs transfected with 

TGF-β1 gene in a lupine model of Achilles tendinopathy showed higher concentrations of 

collagen type I protein and larger fiber bundle formation at the site of injury (Hou et al. 2009, 

Fu, Wong & Chan 1999). Bone morphogenetic protein-12 is involved in tenogenesis and 

tendon healing, and stimulates increased collagen type I expression (Seeherman et al. 2008). 

Recently, an in vitro BMP-12 transfection study conducted in equine BMMSCs and SDF 

tenocytes resulted in high BMP-12 and COMP expression (Murray, Santangelo & Bertone 

2010). This study suggested the possible use of BMP-12-tranduced BMMSCs for tendon 

repair. 

 

Fibroblast Growth Factor-2 (FGF-2) 

         FGF-2, also known as basic fibroblast growth factor (bFGF), is a member of the 

heparin-binding growth factor family. It is an 18-kd, 146-amino acid, single chain 

polypeptide, although larger forms are also present. FGF-2 binds to heparin and heparan-

sulfate proteoglycans on cell surfaces and in the extracellular matrix. Following ECM 

degradation, FGF-2 is released and then binds to one of four specific cell surface receptors 

(FGFRs 1-4). FGFRs are cell surface tyrosine kinase receptors, which then initiate further 

signaling (Hsu, Chang 2004). Physiologically, FGF-2 is produced by endothelial cells, 

fibroblasts, smooth muscle cells, chondrocytes and mast cells, and acts on a wide variety of 

cells involved in biological processes, including development, differentiation, cell 
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proliferation and angiogenesis. In wound healing, FGF-2 causes proliferation and migration 

of keratinocytes. It causes fibroblasts to produce collagenase and stimulates proliferation of 

capillary endothelial cells, which are important for initiation of angiogenesis. Finally, it also 

helps in the formation of granulation tissue.  

 

Mechanisms of FGF-2-induced responses in MSCs  

         The molecular mechanisms involved in the regulation of MSC proliferation and 

differentiation by bFGF have been addressed in several studies. Long term sub-culture of 

MSCs is decreased in vitro due to increased mRNA expression level of TGF-β. TGF- βs 

arrest the cell growth of epithelial cells and blood cells in G1 phase through inhibition of G1 

cyclin-dependent kinases (CDKs). FGF-2 suppresses cellular senescence of human MSCs by 

down regulating TGF- β2 (Ito et al. 2007, Ito et al. 2008).   

         More recently, another study showed that FGF-2 induces transient activation of c-Jun 

N-terminal kinase (JNK). JNK signaling mediates FGF-2-induced stimulation of proliferation 

and maintenance of differentiation potential of human BMMSCs (Ahn et al. 2009). In brief, 

FGF receptor substrate 2 (FRS2) is a critical component of FGF signaling and is activated by 

FGF receptors. FRS2 recruits growth factor receptor-bound protein-2 (Grb2) and activates 

the Ras-Raf-mitogen-activated-protein kinase (MAPK) signaling pathway. MAPK signaling 

cascades are in turn mediated by JNK which is one of the signal transducers for growth 

factors.  

Use of FGF-2 in progenitor cell culture systems     

         FGF-2 has been used in many cell culture systems to stimulate proliferation and 

maintain self renewal capacity of multiple types of stem/progenitor cell populations which 
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include BMMSCs, adipose-derived cells, and embryonic stem cells. Previous studies have 

shown that FGF-2 enhances the growth of MSCs and maintains their multilineage differential 

potential during in vitro expansion (Solchaga et al. 2005, Bianchi et al. 2003). Increased 

proliferation and maintenance of the undifferentiated state during in vitro expansion is 

important for MSC applications in cell-based tissue repair. Many studies have shown that in 

vitro expansion of bone marrow-derived MSCs with FGF-2 supplementation stimulates 

proliferation and delays loss of chondrogenic potential (Solchaga et al. 2010, Stewart et al. 

2007). Similar effects on proliferation and maintenance of self-renewal by FGF-2 were 

demonstrated in human embryonic stem cells and adipose-derived cells (Eiselleova et al. 

2009, Lee et al. 2009). Based on the available evidence, the effect of FGF-2 on monolayer 

expansion of equine tendon-derived cells was evaluated in this study and compared to FGF-

2’s effects on bone marrow-derived cells.  

 

Insulin-like Growth Factor-I  

         Insulin-like growth factor-I (IGF-I), referred to originally as ‘sulfation factor’ and 

‘somatomedin’, was later renamed IGF-I due to its structural homology with human 

proinsulin. IGF-I has autocrine and paracrine effects, stimulating anabolic responses in target 

cells by binding to type I IGF receptor (IGF-IR), a cell surface tyrosine kinase receptor. This 

leads to a complex signal transduction pathway, resulting in modulation of gene expression 

and anabolic responses within the cell (Dahlgren, Mohammed & Nixon 2006). The 

bioavailability of IGF-I is regulated by IGF binding proteins (IGFBPs), comprising six 

structurally related proteins with a high affinity for IGF-I. IGFBPs inhibit the activity of IGF-
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I by restricting its access to IGF-IR, and also protect IGF-I from pericellular proteases and 

consequently increasing its extracellular half-life. 

Cellular mechanisms of IGF-I activities 

         The primary physiologic role of IGF-I is mitogenesis. Some studies explained this 

mitogenic capacity through activation of phosphatidylinositol 3-kinase (PI3K)/Akt and 

mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 

pathways. Both signaling pathways promote G1/S cell cycle progression leading to increased 

proliferation (Mairet-Coello, Tury & DiCicco-Bloom 2009). Hypoxia/anoxia-induced 

apoptosis has been shown to be a cause of tenocyte death in chronic tendinopathy (Birch, 

Wilson & Goodship 1997). One study showed prosurvival effect of IGF-I on Achilles tendon 

cells by activation of protein kinase B (PKB) which prevents cell death by phosphorylating 

various cytoplasmic and nuclear targets (Scott, Khan & Duronio 2005) 

Effects of IGF-I on tendon healing 

         IGF-I has been extensively studied over the last decade, with respect to its effects on 

tendon regeneration.  Expression of IGF-I is increased in tendon healing as described earlier. 

A recent in vivo study showed increased expression of IGF-I and IGFBPs following 

mechanical loading in a murine model (Olesen et al. 2006). Further, this study also showed 

increased expression of mechano-growth factor (MGF), a splice variant of IGF-I, which is 

more rapidly up-regulated after loading when compared to IGF-I.  Initial in vitro studies 

showed increased matrix synthesis and cell proliferation following IGF-I supplementation of 

tendon explant cultures (Abrahamsson, Lundborg & Lohmander 1991). 

         In vivo effects of IGF-I on tendon healing have also been evaluated. Intralesional 

injection of IGF-I into healing SDF tendon in an equine collagenase-induced tendinitis model 
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resulted in increased cell proliferation and collagen content, and a trend towards improved 

mechanical strength in treated tendons when compared to controls. This study also showed 

improvement in ultrasonographic scores and a reduced lesion size (Dahlgren et al. 2002). In 

addition, a gene therapy approach using IGF-I transfected BMMSCs in an equine 

collagenase-induced SDF tendinitis model showed improvement in histologic structure and a 

trend towards increased mechanical strength (Schnabel et al. 2009)) 

 

Mesenchymal Stem/Progenitor Cells 

         A stem cell is an unspecialized cell that is capable of replicating or self renewing itself 

and developing into specialized cells of a variety of cell types. Adult stem cells, like all stem 

cells, share at least two characteristics. First, they can make identical copies of themselves 

for long periods of time; this ability to proliferate is referred to as self-renewal. 

Second, they can give rise to mature cell types that have characteristic morphologies and 

specialized functions. Typically, stem cells generate an intermediate cell type or types before 

they achieve their fully differentiated state. The intermediate cell is called a precursor or 

progenitor cell. Bone marrow consists of two populations of stem cells, which are 

hematopoietic stem cells, responsible for formation of all types of blood cells and the oldest 

recognized population of stem cells, and bone marrow stromal cells, which is a mixed cell 

population that generates bone, cartilage, fat, fibrous connective tissue, referred to as the 

mesenchymal stem cells, and was described shortly after. Since then, the presence of 

stem/progenitor cell populations has been described in a number of specialized tissues which 

includes, endothelium, nervous system, epithelial precursors in skin and digestive system, 

pancreas and liver, skeletal muscle, and dental pulp progenitor cells to name a few.  
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Bone marrow-derived MSCs  

         Bone marrow-derived MSCs undergoes physiologic differentiation through the 

mesengenic process into other phenotypes which includes cartilage, bone marrow, muscle, 

bone, tendon and ligament to maintain tissue homeostasis (Caplan 2005b, Caplan 2007b). 

Bone marrow-derived MSCs have been used extensively in cell-based reconstructive therapy 

in orthopedic injuries over the last decade with promising results (Wakitani et al. 2002b). 

Cartilage repair in osteoarthritis has been attempted in both human and veterinary patients 

with autogenous bone marrow-derived MSCs and has shown improvement in arthroscopic 

and histological grading scores (Wakitani et al. 2002a, Frisbie et al. 2009). Autogenous bone 

marrow derived-MSCs along with matrix composites have been used in promising resolution 

of critical segmental bone defects (Quarto et al. 2001).  

         Later studies have demonstrated the use of bone marrow-derived MSCs for tendon 

repair with beneficial effects. In vivo case-based studies in horses treated with autogenous 

bone marrow-derived MSCs have shown return to performance and reduced incidence of re-

injury as described earlier (Pacini et al. 2007, Smith 2008a). However, bone marrow-derived 

MSCs are shown to be heterogeneous group of cells that contain subpopulations of tissue-

committed progenitor cells or primitive pluripotent stem cells which may have a harmful 

effect on its use in tissue specific regeneration (Kucia, Ratajczak & Ratajczak 2005). One 

study reported formation of ectopic bone in a lupine model of tendon defect treated with 

autogenous bone marrow-derived MSCs demonstrating faulty repair (Dressler, Butler & 

Boivin 2005). In addition to this a significant variation in bone marrow-derived MSCs exists 

between subjects among different age groups.   
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Tendon-derived Progenitor Cells   

         Recent studies have led to the discovery of progenitor/stem cell populations in tendons 

based on the fact that tendons are derived from mesenchymal cells that also give rise to bone, 

cartilage, fat and muscle. First report of existence of MSCs in tendon tissue was made in 

2003 (Salingcarnboriboon et al. 2003). This study reported the development of tendon-

derived cell lines in transgenic mice which had enhanced proliferation in vitro with FGF-2 

treatment. In addition, these cell lines expressed tendon-phenotype related genes, which 

included scleraxis, COMP, and type I collagen. More recently, another study identified a 

unique cell population, termed tendon stem/progenitor cells (TSPCs) within the tendon 

extracellular matrix-niche and demonstrated universal stem cell characteristics, which 

include clonogenecity, multipotency and self-renewal capacity from both mouse and human 

tendon samples (Bi et al. 2007). A previous study from our lab compared equine tendon-, 

muscle-, and bone marrow-derived cells and showed that tendon-derived cells yielded higher 

cell numbers following isolation in comparison to bone marrow-derived MSCs with 

significantly greater biosynthetic capacities (Stewart et al. 2009a).  

Characterization of tendon-derived progenitor cells  

         Charaterization of tendon-derived progenitor cells have been performed in mouse and 

human samples and shown to express higher amounts of tendon-lineage specific markers like 

scleraxis, a twist-related bHLH transcription factor, COMP, the transcription factor SOX9 

(Sox9), and osteogeneic transcription factor runt-related transcription factor 2 (Runx2) and 

tenomodulin, a cell surface marker for tenocyte proliferation and maturation when compared 

to bone marrow-derived MSCs (Bi et al. 2007). A recent attempt to characterize rat tendon-

derived progenitor cells, performed flow cytometric analysis for MSC markers and showed 
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88-99% of these cells were positive for stem cell marker, CD44 and fibroblastic marker, 

CD90 (Rui et al. 2010). In addition, these cells were negative for hematopoietic stem cell 

marker, CD34 and for endothelial cell marker, CD31 confirming absence of contaminating 

hematopoietic cells and endothelial cells. The same study also showed expression of 

tenogenic markers like α-SMA, tenascin C, tenomodulin and aggrecan in rat tendon-derived 

cells. In addition, these cells did not express collagen type I at passage 0 (P0) and P3 and 

collagen type II at P0. Immuno-histochemical staining of human tendon-derived cells was 

positive for D7-FIB, a fibroblast-marker that maintained through multiple passages (de Mos 

et al. 2007a).      

Multipotency of tendon-derived progenitor cells  

         Multipotency has been confirmed by differentiation towards osteogeneic, chondrogenic 

and adipogenic lineages. Many studies have performed differentiation experiments in mouse, 

rat and human species and reported successful differentiation towards all three lineages (Bi et 

al. 2007, Salingcarnboriboon et al. 2003, Rui et al. 2010, de Mos et al. 2007a). In addition, 

the differentiation capacity of tendon-derived was greater in comparison to bone marrow-

derived MSCs with a higher osteogeneic and adipogenic capacity (Bi et al. 2007). 

In vivo effects of tendon-derived progenitor cells  

         Tendon-derived progenitor cells have been evaluated minimally in two studies in 

experimental murine models (Bi et al. 2007, Salingcarnboriboon et al. 2003). One study 

implanted sheets of tendon-derived cells in an experimentally created murine patellar tendon 

defect (Salingcarnboriboon et al. 2003). Successful incorporation was determined on 

histology 3 months after implantation. Another study evaluated in vivo osteogenesis of BMP-

2 expanded tendon-derived cells by injecting with hydroxyapatite/tricalcium phosphate 
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carrier subcutaneously in immune-suppressed mice (Bi et al. 2007). Bone formation was 

observed after 8 weeks, along with tendon-like tissue in adjacent areas confirmed by the 

presence of unique collagen fibers when the tissue was visualized under polarized light.  

          

Preplating Technique 

         Currently several methods are used to isolate and purify mesenchymal stem/progenitor 

cells for use in cell-based tissue repair due to their heterogeneous nature. Some of them 

include magnetic cell sorting, fluorescent activated cell sorting (FACS) and the preplating 

technique. Magnetic cell sorting and FACS are both cell surface marker-dependent 

techniques that isolate homogenous populations of stem/progenitor cells based on presence 

of MSC specific marker proteins on the cell surface. Immunomagnetic isolation technique 

has been reported to be used in isolating osteoprogenitors from human BMMSCs (Encina, 

Billotte & Hofmann 1999). FACS has been use to isolate mesenchymal progenitor cells from 

human, rat and mouse bone marrow (Bi et al. 2007, Scutt, Rolf & Scutt 2008).  

         However marker profile-dependent isolation methods are limited as they rely on the 

expression of cell surface marker proteins that are variable and change under cell culture 

conditions. These techniques also do not take into consideration behaviors such as cell 

survival, proliferation rates and multipotency in vivo and in vitro. Further, marker profile-

dependent isolation methods are not feasible to isolate progenitor cell populations in species 

that do not have specified cell surface markers and established genotype databases. 

          A marker profile-independent method, known as the preplating technique has been 

described and evaluated for isolating myoblasts, a progenitor cell population in skeletal 

muscles (Gharaibeh et al. 2008). This technique involved culturing digested muscle tissue for 



 38 

a set period of time to allow the fibroblastic cell fraction to attach while transferring the 

supernatant containing the myogenic fraction onto a new plate, thus separating the desired 

cell fraction. This step was repeated at 12-24 hour intervals for 5 consecutive days to give 

rise to cells fractions in preplate 0 (PP0) on day 0 to preplate 6 (PP6) on day 5.   

         Progenitor cells obtained via the preplating technique have been characterized and the 

technique validated by comparing with FACS and magnetic cell sorting. The first cells to 

adhere during the early stages of the preplating technique are known as the rapidly adhering 

cell (RAC) fraction and have been shown to be comprised of mostly fibroblast-like and 

myoblast cells. Cells isolated from the later stages of preplating contain muscle-derived stem 

cells and are known as slowly adhering fraction (SAC). One study showed increased 

immunochemical expression of desmin, a marker specific to myogenic cells in later 

preplates, PP4-PP6 ranging from 75-94% as compared to 5-37% in PP1-PP3 (Jankowski et 

al. 2001). Flow cytometric analysis of the PP6 cell fraction in the same study showed 

expression of surface proteins like Sca-1, CD34 and c-Kit, markers all specific to myogenic 

population. Another study compared magnetic cell sorting and preplating to purify human 

myoblasts (Park, Moon & Kim 2006). This study reported 83% increase in desmin positive 

cells from primary culture to PP5, as compared to 21% primary culture and positive selection 

of myoblasts by magnetic cell sorting increased from 30% to 42%. 

          Based on the evidence summarized above, this study aimed at isolating a progenitor 

cell population from the lateral digital extensor tendon of horses for cell-based therapies in 

tendon regeneration using the preplating technique and comparing with bone marrow-derived 

mesenchymal cells with reference to cell viability, tendon gene expression and matrix 

synthesis in an in vitro three dimensional model of tendon healing.  
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In vitro Models of Tendon Regeneration 

         Lack of successful outcomes with existing treatment options for equine tendinitis has 

led to constant efforts in developing novel approaches of tendon regeneration with cell-based 

therapies to improve biomechanical strength. Various in vitro and in vivo models of tendinitis 

are described for evaluating the efficacy for these novel approaches. Most widely used in 

vivo-models of equine tendinitis include the collagenase-induced model and the mechanical 

model (Nixon et al. 2008, Dahlgren et al. 2002, Schnabel et al. 2009, Bosch et al. 2010). 

However, in vivo models are expensive, more labor intensive and involve ethical concerns to 

research animals. In addition, an in vitro screening step is omitted in many new therapies 

being evaluated, and assessing the need to carry out an in vivo evaluation in only promising 

therapies.   

         Acellular tendon has been used in tissue-engineering studies to develop a construct for 

an appropriate scaffold material for reseeding in cell-based approaches for flexor tendon 

injuries in lupine models with a goal of therapeutic use in humans (Zhang et al. 2009, Chong 

et al. 2009). Acellularization of tendons was carried out in these studies by freeze-thaw 

cycles followed by treatment with trypsin. One study comparing tenocytes and mesenchymal 

stem cells for reseeding of lupine acellular flexor tendon showed adherence of both cell types 

used and viability of cell-acellular construct up to 1 week in vitro (Kryger et al. 2007). A 

previous study from our lab used autogenous acellular tendon prepared as sheets of 1 cm X 1 

cm from equine superficial digital flexor tendon as an in vitro model to compare tendon-, 

muscle- and bone marrow-derived cells with reference to cell adherence and viability, tendon 

gene expression and viability (Stewart et al. 2009a). Although viability of the cell types used 

to the acellular tendon was confirmed on histology, adherence and proliferation was possible 
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only to the surface of the acellular tendon, which does not simulate conditions present in vivo 

where cells are dispersed in the tendon matrix that contains bundles of collagen fibers.      

Hence, autogenous acellular pulverized superficial digital flexor tendon is used in this study 

to provide a 3-dimensional matrix model to evaluate adherence and viability of equine 

tendon- and bone marrow-derived cells expanded in monolayers with or without FGF-2 

supplementation. 

 

Objectives and Hypothesis 

         The objective of this study was to determine whether FGF-2 supplementation during 

monolayer expansion can enhance the proliferative capacity and matrix synthesis of both 

tendon- and bone marrow-derived cells.  Secondly, this study evaluated whether IGF-I 

supplementation alone or following FGF-2 monolayer expansion would have a beneficial 

effect on cell viability, tendon gene expression, and  matrix synthesis of tendon- and bone 

marrow-derived cells cultured with tendon matrix. For this study our laboratory utilized 

differential adherence pre-plating technique to isolate tendon-derived cells previously 

described to isolate progenitor cells from muscle. Bone marrow-derived progenitor cells were 

used as the current source for cell-based tendinitis therapy. My hypothesis was that tendon-

derived cells expanded with FGF-2 followed by IGF-I supplementation with tendon matrix 

will have an increased cell viability/ proliferation, tendon gene expression, and matrix 

synthesis when compared to bone marrow-derived cells with or without growth factor 

cultured under similar conditions. 
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Figure 1: Equine distal limb anatomy (Richardson et al. 2007a). 
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Figure 2: Representation of hierarchical structure of equine superficial digital flexor tendon 

(Thorpe, Clegg & Birch 2010).  
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Figure 3: Photomicrograph of equine superficial digital flexor tendon stained with 

hematoxilin and eosin. Bar = 100 µm 

 

 

 

 

 

 

 

 

 

Figure 4: Photomicrograph of equine superficial digital flexor tendon stained with picro-

sirius red under polarization light showing characteristic crimp pattern of collagen fibers.  

Bar = 100 µm 
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CHAPTER 3 

 
MATERIALS AND METHODS 

 
 

Collection of Samples  

         Bone marrow and tendon were collected aseptically from six horses (two to four years 

of age) euthanized for reasons unrelated to musculoskeletal disease. All samples were 

obtained in accordance with guidelines reviewed and approved by the Institutional Animal 

Care and Use Committee. All horses were sedated with 0.01 to 0.03 mg/kg of detomidine 

administered IV via a jugular catheter. Following collection of the bone marrow aspirates, all 

horses were euthanized by an intravenous injection of sodium pentobarbital (104mg/kg). The 

tendon specimens were collected immediately following euthanasia.   

 

Progenitor Cell Culture                                                                                                                                      

Processing of bone marrow-derived cells 

          Sternal bone marrow aspirates were collected using Jamshidi needles a (Schnabel et al. 

2009).  Approximately 15-20 mLs of bone marrow was aspirated into syringes containing 

1,000 units of heparin. Each bone marrow aspirate was diluted with 15 mL of PBS solution 

and centrifuged at 300 X g for 10 minutes. The supernatant was removed, the pellet was 

resuspended in PBS solution, and centrifugation was repeated. Pelleted cells were 

resuspended in 12 mL of low-glucose DMEMb supplemented with 10% fetal bovine serumc, 

300 µg of L-glutamined/mL, 100 U of sodium penicilline/mL, and 100 µg of streptomycin 

sulfatee/mL. Resuspended cells were placed in a 75 cm2 flaskf and incubated at 37oC in a 5% 

carbon dioxide atmosphere with 90% humidity. The bone marrow-derived cells were 
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passaged after they reached focal confluence. The cells were monolayer expanded in culture 

medium supplemented with or without 100 ng FGF-2g/mL for two passages which provided 

sufficient cells for subsequent experiments. Time to confluence and cell counts at 

trypsinization were recorded. 

Processing of tendon-derived cells  

        The lateral digital extensor tendon from a hind limb was harvested aseptically from each 

horse. A 4-cm x 1-cm sample of tendon was reserved for cell isolation. The specimen for cell 

isolation was diced into 0.25 cm3 pieces and digested for 16 hours at 37°C in 0.2% 

collagenaseh high-glucose DMEM supplemented with 1% FBS, 100 U of sodium 

penicillin/mL, and 100 µg of streptomycin sulfate/mL. Following digestion, the isolated cells 

were passed through a 40 µm filteri. The isolated cells were collected by centrifugation at 300 

X g for 5 minutes. The supernatant was removed and the cell pellet was resuspended in 

media. Cell viability was determined by the use of exclusion of trypan blue dye j (O'Brien, 

Gottlieb-Rosenkrantz 1970). 

Tendon-derived cell culture 

         Progenitor cells were collected from tendon by use of a previously described protocol 

(Stewart et al. 2009a, Gharaibeh et al. 2008). Tendon-derived cells were seeded at 13,300 

cells/ cm2 in culture flasks  in high-glucose DMEM supplemented with 20% FBS, 300 ug of 

l-glutamine/mL, 100 U of sodium penicillin/mL, and 100 ug of streptomycin sulfate/mL. The 

slowly adherent, tendon-derived cells were preferentially isolated from the rapidly adherent, 

fibroblast-like cells by differential attachment. The culture medium and unattached cells were 

serially transferred to fresh culture flasks every 24 hours during the first 6 days of culture 

(Stewart et al. 2009a). The tendon-derived cells that adhered on day 6 of the transfer protocol 
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were maintained until confluence and expanded in monolayers with or without 

supplementation of FGF-2 (100ng/mL) for two passages to generate sufficient cells for 

subsequent experiments.  

 

Tendon Matrix Culture Model   

         Superficial digital flexor tendons were collected from donor horses and pulverized in a 

freezer millh under liquid nitrogen. The pulverized tendon was subjected to four rounds of 

freeze-thaw cycles at -80°C and 4°C to kill the resident tenocytes. A 1 percent (mass/volume) 

acellular tendon matrix suspension was prepared with tenogenic medium (high-glucose 

DMEM supplemented with 10% fetal bovine serum, 300 µg of L-glutamine/mL, 100 U of 

sodium penicillin/mL, 100 µg of streptomycin sulfate/mL, and 37.5µg/mL ascorbic acid). 

The tendon matrix suspension was maintained in culture without additional cells to serve as a 

negative control (matrix only), or seeded with 250,000-cell aliquots of the expanded tendon- 

and bone marrow-derived cells, supplemented with or without 100 ng IGF-Ii /mL, in 24-well 

ultra-low attachment culture plates.j This experimental design (Figure 5) comprised nine 

treatment groups. Each treatment group contained eighteen replicates. Twelve replicates were 

used for RNA isolation, three replicates were used for collagen synthesis, and three replicates 

were used for GAG synthesis. The replicates for each treatment group were averaged as one 

data point. This was repeated for each of the 6 horses included in the study. Each treatment 

well was supplemented with one mL of tenogenic medium containing 0 or 100 ng/mL of 

IGF-I. Fresh medium was added to all wells every two days after removal of the exhausted 

medium. All culture samples were collected on day 7 by separating the medium from the 

matrix with cells by centrifugation.  
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Cell Number 

         Three replicates of each treatment group were used to measure cell number on day 7, 

by use of an mitochondrial metabolic assayk as per manufacturer’s instructions. In brief, 50 

µL of the assay reagent containing tetrazolium was added to fresh medium in each well and 

the cells were incubated at 37oC for 2.5 hours. One hundred µL of medium from each well 

was transferred to a 96-well plate and absorbance was measured at 492nm in a microplate 

readerl to detect concentrations of the metabolic product, formazan. All samples were 

assayed in duplicates, and a mean value was calculated to provide a single data point. The 

optical density data were converted to ‘cell number’ by reference to standard curves 

generated from known numbers of tendon- and bone marrow-derived cell cultures. 

 

RNA Isolation and Gene Expression  

         Twelve replicates from each treatment group were pooled, snap-frozen in liquid 

nitrogen, and stored at -80˚C for RNA isolation. Total RNA was extracted using Trizolm 

reagent according to the manufacturer’s suggested protocol and purified in silica columns.n 

RNA concentration and purity were assessed by UV spectrophotometry and agarose gel 

electrophoresis respectively. One µg of RNA in each sample was converted to cDNA with a 

commercial reverse transcription kito and oligo(dT) primers. Target cDNAs were amplified 

via real-time PCR using Taq DNA polymerasep and gene-specific primers designed from 

available published sequences in Genbank, and a multiple sequence alignment program.q 

Primer specificity was confirmed by cloning and sequencing the PCR products (Appendix). 

Real-time quantitative PCR was performed in triplicate for collagen I, collagen III, and 

COMP mRNAs and the reference gene, elongation factor-1α (EF1α). A fluorescence 
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detection systemr was used to measure PCR-generated cDNA and generate threshold cycle 

values. All reactions were run as singleplex and the relative gene expression was quantified 

by use of the 2-∆∆CT method (Livak, Schmittgen 2001). 

 

Collagen Synthesis 

          Collagen synthesis was determined via [3H] proline incorporation according to a 

published protocol (Cechowska-Pasko, Surazynski & Bankowski 2009). On day 6, three 

wells of each treatment group were radiolabeled with 50 µCi of [3H] prolines/mL of 

tenogenic medium and incubated for 24 hours. The samples were washed three times with 

0.5mL of PBS containing 1mM Proline and stored at -80˚C. Radiolabeled samples were 

freeze-thawed three times, digested, and homogenizedt prior to RNase treatment. The total 

protein was precipitated with tricholoroacetic acid and washed three times with L-proline to 

remove traces of unincorporated [3H] proline. The resulting pellets were digested with 

purified collagenase,u and centrifuged at 3220Xg for 10 minutes. The supernatant and pellets 

were separated and transferred to scintillation liquid. Radioactivity was measured in a 

scintillation counter.v Newly synthesized collagen was detected on the basis of radioactivity 

in the sample supernatants following collagenase-digestion. 

 

Glycosaminoglycan (GAG) Synthesis 

         GAG synthesis was determined by measuring 35SO4 incorporation into each sample. 

Three wells of each treatment group were radiolabeled with 10 µCi of 35S labeled sodium 

sulfate/mLw during the last 24 hours of the experiments (Masuda, Shirota & Thonar 1994). 

The samples were washed three times with PBS and then digested in 1 mL of buffer 
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containing 0.5 mg of papainx at 65oC for 16 hours. Twenty-five µL aliquots of 35S-labelled, 

papain-digested samples were placed in multiwell punch plates,y precipitated with alcian blue 

dye, and counted by scintillation(Masuda, Shirota & Thonar 1994, Stewart et al. 2009b). All 

counts per minute (CPM) values were adjusted for decay of 35S-radioisotope from the time of 

radiolabeling to assay. Values were expressed as CPM per 250,000 cells. 

 

Statistical Analyses 

          Mean + SE for each statistic were calculated for each cell type and supplementation of 

FGF-2, IGF-1, and the combination of FGF-2 and IGF-1. Background values detected in the 

matrix-only group were subtracted from the values of the other groups for quantification of 

collagen and GAG synthesis. Cell number, collagen synthesis and GAG synthesis data were 

log-transformed for data normalization. The effect of cell type was analyzed using a Mixed 

Effects Model, with the subject as a random effect. Among the individual cell types (tendon- 

and bone marrow-derived cells), the effect of growth factor supplementations were evaluated 

using 2-way repeated-measures ANOVA to control for differences between horses. When 

group differences for growth factor supplementation were noted, pair-wise multiple 

comparisons were made using Holm-Sidak non-parametric test. A commercially available 

statistical program was used to perform statistical analyses.z Values of P < 0.05 were 

considered significant. 
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Figure 5: Experimental design 
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CHAPTER 4 

RESULTS 

 

Monolayer Cell Expansion  

             Overall, the mean cell number following monolayer expansion was significantly (P = 

0.011) higher in tendon-derived cells when compared to bone marrow-derived cells (Table 

1). Monolayer expansion of tendon-derived cells with FGF-2 significantly (P = 0.027) 

increased cell number when compared to the unsupplemented tendon-derived cultures 

(Figure 6). In contrast, monolayer expansion with FGF-2 did not significantly (P = 0.311) 

affect proliferation of bone marrow-derived cells. 

 

Cell Number  

          After seven days in culture with pulverized tendon matrix and IGF-I, there was no 

significant effect of cell type on mean cell number, as determined by mitochondrial 

metabolic assay (Figure 7). Monolayer expansion with FGF-2 did not significantly change 

the numbers of tendon- (P = 0.052) or bone marrow-derived (P = 0.096) cells cultured with 

tendon matrix. There was no significant (P = 0.178) effect of IGF-I supplementation on cell 

number for either cell type. The cell number of the “matrix only” control group was zero, 

confirming the absence of viable cells. 

 

Extracellular matrix gene expression  

         As expected, no mRNA was isolated from the acellular matrix samples, verifying that 

no viable endogenous tenocytes remained. Therefore, the gene expression data derived from 
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bone marrow-derived cells cultured with tendon matrix without growth factor 

supplementation (bone marrow-derived cells only) were used as reference values for 

comparative analyses.  

Collagen type I  

        Collagen type I mRNA expression in tendon-derived-cell groups and bone marrow-

derived-cell groups was not significantly different (P = 0.087) (Figure 8). Among the 

tendon-derived cell groups, supplementation with IGF-I did not significantly (P = 0.095) 

increase collagen type I mRNA expression. In the bone marrow-derived cell groups, IGF-I 

significantly (P = 0.028) increased collagen type I mRNA expression. Monolayer expansion 

with FGF-2 had no effect on subsequent collagen type I mRNA expression in either tendon- 

or bone marrow-derived cell types cultured with tendon matrix. 

Collagen type III mRNA expression 

          Overall, tendon-derived cell groups cultured with tendon matrix expressed 

significantly (P = 0.003) more collagen type III mRNA than bone marrow-derived cell 

groups (Figure 9). Within the tendon-derived cell groups, there was no significant effect of 

FGF-2 (P = 0.623) or IGF-I (P = 0.119) on collagen type III mRNA expression. In the bone 

marrow-derived cell groups, IGF-I supplementation significantly (P = 0.048) increased 

collagen type III mRNA expression. Monolayer FGF-2 expansion of bone marrow-derived 

cells had no effect (P = 0.523) on collagen type III expression.  

COMP mRNA expression 

          Overall, tendon-derived cell groups cultured with tendon matrix expressed 

significantly (P = 0.001) more COMP mRNA than bone marrow-derived cell groups (Figure 
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10). However, there was no significant effect of FGF-2 or IGF-I on COMP mRNA 

expression in either tendon- or bone marrow-derived cells. 

 

Collagen Synthesis  

          Although mean collagen synthesis of tendon-derived cell groups approached 

significance (P = 0.055), the synthesis rate was still less than that of bone marrow-derived 

cell groups (Figure 11). Monolayer expansion of tendon-derived cells with FGF-2 did not 

affect their subsequent collagen synthesis (P = 0.367). Further, IGF-I did not affect collagen 

synthesis by tendon-derived-cell groups (P = 0.055). There was no significant (P = 0.532) 

effect of FGF-2 expansion on collagen synthesis by bone marrow-derived cells when 

compared to the unsupplemented controls. However, collagen synthesis in the bone marrow-

derived cell grouos supplemented with IGF-I remained lower than collagen synthesis in the 

tendon-derived groups. 

 Collagen synthesis normalized to cell number 

         When values of collagen synthesis were normalized to cell number, no significant 

difference (P= 0.134) was seen in the per-cell collagen synthesis between tendon- and bone 

marrow-derived cell groups (Figure 12). Among the tendon-derived cell groups, monolayer 

expansion with FGF-2 had no significant effect (P = 0.342) on sequential per-cell collagen 

synthesis. However, supplementation of IGF-I significantly (P = 0.030) increased the per-cell 

collagen synthesis of tendon-derived cells in comparison to the supplemented control. In the 

bone marrow-derived cell groups, monolayer expansion of bone marrow-derived cells with 

FGF-2 had a favorable effect (P = 0.071) on sequential per-cell collagen synthesis. 
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Supplementation of IGF-I had no significant (P = 0.671) effect on mean log collagen 

synthesis normalized to cell number in bone marrow-derived cell groups. 

 

GAG Synthesis  

          GAG synthesis was significantly (P = 0.0058) higher in the tendon-derived cell groups 

than the bone marrow-derived (Figure 13). Within the tendon-derived cell groups, 

monolayer expansion with FGF-2 significantly (P = 0.030) increased GAG synthesis. 

Further, IGF-I supplementation of tendon-derived cell:matrix cultures also increased GAG 

synthesis (P = 0.016). In the bone marrow-derived cell groups, monolayer expansion with 

FGF-2 had no effect (P = 0.305) on GAG synthesis. However, IGF-I significantly (P = 

0.022) increased GAG synthesis by bone marrow-derived cells, in comparison to 

unsupplemented cultures.  

GAG synthesis normalized to cell number 

         When GAG synthesis was normalized to cell number, overall, per-cell synthesis of 

tendon-derived cell groups approached significance (P = 0.066) in comparison to bone 

marrow-derived cell groups (Figure 14). However, there was no significant effect of 

supplementation with FGF-2 or IGF-I on per-cell GAG synthesis of tendon- or bone marrow-

derived cell groups cultured with tendon matrix. 
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Table 1: Mean + SE values for cell number following monolayer expansion with or without 

FGF-2 supplementation in tendon- and bone marrow-derived cells. *Significant effect based 

on cell type. ‡ Significant effect of monolayer expansion with 100 ng/mL of FGF-2. 

 

 

 

 

 

 

 

 

Cell Type (+) FGF-2 (-) FGF-2 P- value 

Tendon-derived 
Cells 

15.34X106 + 2.597 X106 *‡ 9.14 X 106 + 1.03 X106 * 0.027 

Bone marrow-derived 
Cells 

5.87 X 106 + 1.79 X106 3.06 X 106 + 0.85 X106 0.311 
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Figure 6. Bright field photomicrograph during monolayer expansion of tendon-derived cells 

with FGF-2 (A) and without FGF-2 (B), bone marrow-derived cells with FGF-2 (C) and 

without FGF-2 (D) supplementation. Bar = 50 µm 
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Figure 7: Log mean + SE cell numbers present in each treatment group following expansion 

with and without FGF-2 and cultured for 7 days with and without IGF-I and pulverized 

acellular tendon matrix.  
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Figure 8: Mean ± SE values (log scale) for  collagen type I  mRNA expressionn normalized 

to EF1-α. The x- axis represents equine tendon- and bone marrow-derived cells expanded 

with and without FGF-2 and cultured for 7 days with and without IGF-I and pulverized 

acellular tendon matrix. § Significant effect of supplementation of IGF-I when compared to 

no IGF-I. N=6.  
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Figure 9: Mean ± SE values (log scale) for collagen type III mRNA expression normalized 

to EF1-α. The x- axis represents equine tendon- and bone marrow-derived cells expanded 

with and without FGF-2 and cultured for 7 days with and without IGF-I and pulverized 

acellular tendon matrix. * Significant effect based on cell type. § Significant effect of 

supplementation of IGF-I when compared to no IGF-I. N=6.  
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Figure 10: Mean ± SE values (log scale) for collagen type III mRNA expression normalized 

to EF1-α. The x- axis represents equine tendon- and bone marrow-derived cells expanded 

with and without FGF-2 and cultured for 7 days with and without IGF-I and pulverized 

acellular tendon matrix. * Significant effect based on cell type.  
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Figure 11: Log mean + SE (DPM- disintegrations per minute) incorporation of [3H] proline 

into collagen of the matrix formed by the combination of cells and pulverized acellular 

tendon. Cells were expanded with and without FGF-2 and cultured for 7 days with and 

without IGF-I and pulverized acellular tendon matrix. § Significant effect of supplementation 

of IGF-I in comparison to control. N=6. 
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Figure 12: Log mean DPM (disintegrations per minute) normalized to cell number + SE. 

Cells were expanded with and without FGF-2 and cultured for 7 days with and without IGF-I 

and pulverized acellular tendon matrix.§ Significant effect of supplementation of IGF-I. 
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Figure 13: Log mean + SE (CPM- counts per minute) incorporation of sulfur 35-labeled 

sodium sulfate into GAG of the matrix formed by the combination of cells and pulverized 

acellular tendon. Cells were expanded with and without FGF-2 and cultured for 7 days with 

and without IGF-I and pulverized acellular tendon matrix. * Significant effect based on cell 

type. ‡ Significant effect of monolayer expansion with FGF-2 in comparison to control. § 

Significant effect of supplementation of IGF-I in comparison to control. N=6.  
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Figure 14: Log mean CPM (counts per minute) normalized to cell number + SE.  Cells were 

expanded with and without FGF-2 and cultured for 7 days with and without IGF-I and 

pulverized acellular tendon matrix. 
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CHAPTER 5 

DISCUSSION 

 

         The objective of this study was to evaluate the effect of sequential growth factors, FGF-

2 and IGF-I on tendon-derived cells as a therapeutic option for cell-based therapies for the 

treatment of tendinitis. Bone marrow-derived cells were used as the gold standard for 

comparison. Overall, FGF-2 increased cell proliferation during monolayer expansion and 

IGF-I increased subsequent matrix synthesis in the tendon-derived cells. Tendon-derived 

cells were more proliferative in culture in vitro and required a shorter duration of time to 

generate clinically relevant numbers than bone marrow-derived cells. In addition, less inter-

animal variability was noted in statistics derived from tendon-derived cells when compared 

to bone marrow-derived cells. The results obtained in this study were derived from six young 

adult horses and the statistical power for significance ranged from 0.6 - 0.9. 

        This in vitro study suggests that tendon-derived cells can be obtained in sufficient 

numbers from an autogenous specimen for cell-based treatment of tendinitis in horses(Smith 

2008b); (Nixon et al. 2008, Schnabel et al. 2009). Recent studies have evaluated the presence 

of a stem cell population within a tendon extracellular matrix niche(Bi et al. 2007, de Mos et 

al. 2007a, Scutt, Rolf & Scutt 2008). Moreover, differentiation towards adipogenic, 

osteogeneic and chondrogenic pathways have been reported, confirming the multipotential 

capacity of the tendon stem cell populations in mice, rats, rabbits, horses, and humans(de 

Mos et al. 2007a, Scutt, Rolf & Scutt 2008). One study showed increased chondrogenic 

capacity of caprine tendon-derived cells in comparison to bone marrow-derived MSC 

controls, suggesting that tendon-derived progenitor cells are feasible for cell-based therapies 
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directed towards tissues other than tendon itself (Funakoshi, Spector 2010). In this study, 

tendon-derived cells, overall, had an increased expression of collagen type III mRNA when 

compared to bone marrow-derived cells. An increased expression of collagen type III can 

alter the collagen type I/type III ratio and eventually affect the quality of the resulting 

structure. Determinations of collagen type I and III protein production or consequent 

extracellular matrix organization were not performed in this study. These analyses will 

require an in vivo study, to clarify the clinical benefits of sequential FGF-2 and IGF-I 

administration for cell-based repair of tendon injuries. In addition, following monolayer 

expansion with FGF-2, both tendon- and bone marrow-derived cells were cultured in 

tenogenic medium with pulverized tendon and IGF-I. It is possible that this medium may 

have provided optimum conditions for matrix synthesis of tendon-derived cells versus bone 

marrow-derived cells.  

         In this study, FGF-2 significantly increased proliferation of tendon-derived cells during 

monolayer expansion; however, this effect was not significant in the bone marrow-derived 

cells. This contrast may be due to the considerable “between donor” variation in bone 

marrow aspirate responses. FGF-2 had minimal effects on cell viability and adherence of 

both tendon- and bone marrow-derived cells on acellular pulverized tendon. In addition, 

FGF-2 did not influence ECM gene expression or matrix synthesis in either cell type. There 

have been no previous reports describing the effect of FGF-2 expansion on subsequent 

activities of tendon-derived cells. In vitro studies, evaluating the effect of FGF-2 on bone 

marrow-derived MSCs have shown mitogenic effects and a protective effect on subsequent 

multilineage potential during proliferation in vitro (Stewart et al. 2009a, Tsutsumi et al. 

2001). Further, in vivo studies with intratendinous injections of FGF-2 in murine and canine 
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models demonstrated angiogenic stimulation in the early stages of tendon healing(Dahlgren, 

Mohammed & Nixon 2005, Chan et al. 2000)(Duffy et al. 1995, Chan et al. 1997). Based on 

this study, supplementation with FGF-2 should be considered to increase the proliferation 

rate of tendon-derived cells in vitro, without detrimental effects on subsequent matrix 

synthesis. 

Previously, an in vitro study described IGF-I enhanced tenocyte proliferation and 

matrix synthesis in equine tendon explants (Murphy 1997). In the current study, IGF-I 

increased collagen and proteoglycan synthesis in both tendon and bone marrow-derived cells, 

although this effect was only seen at a transcriptional level in the bone marrow derived cells. 

In addition, sequential administration of IGF-I to FGF-2 expanded tendon-derived cells 

significantly increased GAG synthesis when compared to tendon-derived cells without 

growth factor supplementation. These variables may alter per cell biosynthetic rates among 

the different treatment groups. These increases in matrix synthesis suggest that IGF-I 

supplementation is justified for tissue regeneration applications of both cell types, as 

supported by two recent in vivo studies that utilized the equine collagenase model of 

tendinitis (Dahlgren et al. 2002, Schnabel et al. 2009). Both these in vivo studies showed 

improvement in biomechanical properties which is a critical outcome for successful tendon 

repair. In this study, the improvement in gene expression and matrix synthesis was apparent 

in bone marrow-derived cells with IGF-I supplementation and is similar to other in vitro 

studies (Dahlgren, Nixon & Brower-Toland 2001, Murphy, Nixon 1997). However, the 

increases in gene expression and matrix synthesis by bone marrow-derived cells 

supplemented with IGF-I remained lower than the corresponding activities of tendon-derived 

cells supplemented with IGF-I.  
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In this in vitro study, acellular pulverized tendon was used to provide a three 

dimensional substrate for cell adherence with the goal of simulating the in vivo micro-

environment of a damaged tendon, in contrast to acellular tendon matrix explants which 

provide an intact, surface for attachment. Previous studies have shown tendon-derived cells 

had superior adherence to and viability on acellular tendon matrix explant than bone marrow-

derived cells (Stewart et al. 2009a).aa In contrast, the results from this study show no 

difference in viability between tendon- and bone marrow-derived cells in co-culture with  

pulverized matrix suspension. This suggests that the powdered tendon used in the current 

study have cell adhesion and survival properties that differ from acellular tendon matrix 

explants used previously. Further, acellular tendon explants may provide topographic cues 

for cell attachment due to the organized fiber pattern as present in vivo. Further work needs 

to be done to assess the differential effects of specific substrate characteristics on progenitor 

cell colonization and survival.    

Hind limb lateral digital extensor tenectomies were performed to obtain tendon-

derived cells and tendon matrix. In this technique, a 4 cm X 1 cm tendon specimen provided 

sufficient numbers of tendon-derived cells for potential clinical applications. This procedure 

is used clinically for the treatment of refractory stringhalt; however, the long-term safety and 

morbidity associated with lateral digital extensor tenectomies needs further evaluation. In 

addition, a recent study demonstrated metabolic and homeostatic differences between equine 

flexor and extensor tenocytes (Hosaka et al. 2010). Common digital extensor tenocytes were 

less proliferative and had reduced matrix synthetic capacity in vitro when compared to 

superficial and deep digital flexor tenocytes. It is possible that lateral digital extensor tendon-
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derived cells, although an expedient source of tendon-derived progenitors, are not 

biosynthetically ideal for the repair and/or regeneration of digital flexor tendon injuries. 

           In conclusion, the results of this study demonstrate that, in vitro, tendon-derived cells 

have increased matrix gene expression and matrix synthetic capacity when compared to bone 

marrow-derived cells. In general, growth factor supplementation had more pronounced 

effects on bone marrow-derived cells. However, tendon-derived cells proliferated more 

rapidly in monolayer culture than bone marrow-derived cells with FGF-2 supplementation. 

Also, GAG synthesis of tendon-derived cells was increased following FGF-2 supplemented 

monolayer expansion and IGF-I administration during cell:matrix suspension culture. 

Accepting these beneficial responses, these results were obtained in an in vitro model and 

require careful interpretation and in vivo assessment before translation into clinical therapies. 

Based on the results obtained from this study, further research in use of tendon-derived cells 

and growth factor enhancement of these cells for therapeutic applications in in vivo models of 

tendinitis is warranted.  
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APPENDIX  
 
 
 

Primers used for real-time PCR amplification of genes in this study of equine bone marrow- 

and tendon-derived cells  

 

Gene Sequence Amplicon 

(bp) 

Eq Col I (S) GAA AAC ATC CCA GCC AAG AA 

Eq Col I (A) GAT TGC CAG TCT CCT CAT CC 
231  

Eq Col III (S) AGG GGA CCT GGT TAC TGC TT 

Eq Col III (A) TCT CTG GGT TGG GAC AGT CT 
215  

Eq COMP (S) TCA TGT GGA AGC AGA TGG AG 

Eq COMP (A) TAG GAA CCA GCG GTA GGA TG 
223  

Eq EF1-α (S) CCC GGA CAC AGA GAC TTC AT 

Eq EF1-α (A) AGC ATG TTG TCA CCA TTC CA 
328  

      

      bp = base pairs; S = sense; A = antisense 
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FOOTNOTES 
 
 

a. Jamshidi bone marrow biopsy needle, Cardinal Health, Dublin, Ohio. 

b. DMEM, Mediumtech Inc, Herndon, Va. 

c. Gemini Bioproducts, Woodland, Calif. 

d. L-glutamine, 200 mM, Invitrogen, Carlsbad, Calif. 

e. Penicillin-streptomycin, BioWhittaker, Cambrex Bio Science, Walkersville, Md. 

f.          FGF-2, R & D systems, Minneapolis, MN. 

g. Collagenase type II, Worthington Biochemical Corp, Lakewood, NJ. 

h.         Freezer mill, SPEX Certi Prep, Matuchen, NJ. 

i.          IGF-I, R & D systems, Minneapolis, MN. 

j.          24 well ultra-low attachment plates, Fisher Scientific, Pittsburgh, PA.  

k.         Cell Titer 96 Aqueous One Solution Cell Proliferation Assay, Promega, Madison, WI. 

l.          Microplate reader, FLUOstar Optima, BMG Laboratories, Durham, NC. 

m.        Trizol, Invitrogen, Carlsbad, Calif. 

n.         Rneasy, Qiagen, Valencia, Calif. 

o.         Superscript II, Invitrogen, Carlsbad, Calif. 

p.          iQ SYBR Green Supermix, Bio-Rad Laboratories, Hercules, Calif. 

q.         ClustalW, www.ebi.ac.uk.  

r.          iCycler iQ real-time PCR detection system, Bio-Rad Laboratories, Hercules, 

            Calif. 

s.         [3H] proline, Sigma Chemical Co, St Louis, MO. 

t.          Hand-held or post-mounted homogenizer, Pro Scientific, Oxford, CT. 

u.         Collagenase, purified, Worthington Biochemical Corp, Lakewood, NJ. 
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v.         LS6500 Multi-purpose scintillation counter, Beckman Coulter Inc, Fullerton,     

            Calif. 

w.             35S- labeled sodium sulphate, MP Biochemicals, Irvine, Calif. 

x.         Papain, Sigma-Aldrich, St Louis, Mo. 

y.         Multiwell punch plates, PDVF plate, Millipore, Bedford, Mass. 

z.         R 2.9.1 statistical software, online at www.r-project.org. 

aa.       Durgam SS, Stewart AA, Pondenis H, et al. In vitro comparison of IGF-I  

            enhanced tendon- and bone marrow-derived progenitor cells cultured on tendon  

            matrix (abstr), in Proceedings. 43rd ACVS Symposium 2009. 

 
 
 


