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Abstract

We discuss the use of matrices for providing sequences of rationals
that approximate algebraic irrationalities. In particular, we study the
regular representation of algebraic extensions, proving that the ratios
between two entries of the matrix of the regular representation converge
to specific algebraic irrationalities. As an interesting special case, we
focus on cubic irrationalities giving a generalization of the Khovanskii
matrices for approximating cubic irrationalities. We discuss the quality
of such approximations considering both rate of convergence and size of
denominators. Moreover, we briefly perform a numerical comparison with
well–known iterative methods (such as Newton and Halley ones), showing
that the approximations provided by regular representations appear more
accurate for the same size of the denominator.

Keywords: algebraic irrationals, diophantine approximation, matrices, root
finding methods.
AMS Subject Classification: 11K60, 11J68.

1 Convergence properties for regular representations
of algebraic extensions

The study of approximations of irrational numbers by means of rationals is
a very important and rich research field. This research field is named Dio-
phantine approximation in honor of Diophantus of Alexandria whose stud-
ies principally deal with researching rational solutions of algebraic equations.
During the years, mathematicians have considerably improved results about
Diophantine approximation.
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In this context iterative methods, such as Newton method and higher order
generalizations (i.e., Householder methods [8]) are widely used and studied.
Recently, many different iterative root–finding methods have been developed
improving classical methods (see, e.g., [1], [13], [7]). However, iterative meth-
ods are computationally slow and denominator size of the provided rational
approximations rapidly increases. On the other hand, continued fractions
provide best approximations of real numbers. However, their use is not ever
convenient from a computational point of view.

In the case of algebraic numbers, iterative methods can be replaced by
more convenient ones. For example, in [15], the authors propose an algorithm
based on the LLL-reduction procedure for approximationg algebraic numbers.
Recently, different techniques involving powers of 2 × 2 matrices have been
developed for approximating quadratic irrationalities (see, e.g., [17] and [3]).
In [9] and [11], authors introduced particular 3 × 3 matrices for studying ap-
proximations of cubic roots. The use of matrices is very useful since power of
matrices can be fastly evaluated and their entries are linear recurrent sequences
whose properties can be exploited to study convergence. Moreover, study of
simultaneous approximations is a very classical and well–studied topic, see,
e.g., [4] and [6].

In the following, firstly, we introduce a family of matrices starting from the
regular representation of algebraic extensions, studying their approximating
properties. Then in section 2, we focus on cubic irrationalities, generalizing
Khovanskii matrices and other kinds of matrices used in the approximation
of cubic irrationalities. Moreover, In section 3, we provide numerical results
about the studied approximations. In particular, we discuss performances of
our approximations with respect to some parameters and we compare them
with well–known iterative methods, such as Newton, Halley, and Noor meth-
ods.

Let α be a real root of f(t) = tm −
∑m−1

s=0 um−st
s, with ui ∈ Q, for

i = 1, ...,m, irreducible over Q. The algebraic extension Q(α) has basis
(1, α, α2, ..., αm−1). Let

∑m−1
i=0 xiα

i be an element of Q(α), it can be rep-
resented by the m×m matrix M = (Mij) such that

m−1∑
i=0

xiα
iαj−1 =

m∑
i=1

Mijα
i−1, j = 1, ...,m. (1)

The matrix M is usually called the regular representation of Q(α). Let us
observe that the above identities can be written also in the case that f(t) is
reducible. Thus, in the following, we do not restrict f(t) to be irreducible and
we formally define the matrix M by means of (1). Sometimes we will use the
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notation M(x,u), where x = (x0, ..., xm−1) and u = (u1, ..., um).
Let A be the companion matrix of f(t) defined as

A =



0 0 0 · · · 0 0 um
1 0 0 · · · 0 0 um−1
0 1 0 · · · 0 0 um−2

· · · · · · . . . · · · · · · · · · · · ·
0 0 0 1 0 0 u3
0 0 0 0 1 0 u2
0 0 0 0 0 1 u1


By definition of M , it follows that M =

∑m−1
n=0 xnA

n. The entries of
matrices An can be explicitly written, see, e.g., Theorem 3.1 in [5] (note that
here the companion matrix is written in a slightly different form). In this way,

we can explicitly write the entries of the matrix M as Mij =
∑m−1

n=0 xna
(n)
ij ,

where

a
(n)
ij =

∑
k1+2k2+···+mkm=n−i+j

km+1−i + km+2−i + · · ·+ km
k1 + k2 + · · ·+ km

(
k1 + k2 + · · ·+ km

k1, . . . , km

)
uk11 u

k2
2 · · ·u

km
m

for k1, ..., km non–negative integers and

(
k1 + k2 + · · ·+ km

k1, . . . , km

)
is the multi-

nomial coefficient.
In the following theorem we show convergence properties of M by means

of the Vandermonde matrix.

Theorem 1. Let α1, ..., αm be distinct roots of f(t) = tm−
∑m−1

s=0 um−st
s. Let

V = V (α1, ..., αm) and M(x,u) be the Vandermonde matrix of f(t) and the
matrix defined by (1) with α = αk for a given 1 ≤ k ≤ m. Let us define

c(x, αk) = min

{
|
∑m−1

i=0 xiα
i
k|

|
∑m−1

i=0 xiαij |
: j = 1, ...,m, αj 6= αk

}
.

If c(x, αk) > 1, then

lim
n→+∞

Mn
ij

Mn
pq

=
V −1ik Vkj

V −1pk Vkq
,

given any index i, j, p, q ∈ {1, ...,m} (such that i 6= p and/or j 6= q).
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Proof. Let V = V (α1, ..., αm) be the Vandermonde matrix of f(t), i.e.,

V =


1 α1 α2

1 · · · αm−11

1 α2 α2
2 · · · αm−12

...
...

... · · ·
...

1 αm α2
m · · · αm−1m


It is well–known that V can be used in order to diagonalize the companion

matrix of f(t) (see, e.g., [10] pag. 69), i.e.,

D(α1, ..., αm) :=


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αm

 = V AV −1.

Since M can be written as combination of the companion matrix, we have

VMV −1 = D

(
m−1∑
i=0

xiα
i
1, ...,

m−1∑
i=0

xiα
i
m

)
and

VMnV −1 = D

((
m−1∑
i=0

xiα
i
1

)n
, ...,

(
m−1∑
i=0

xiα
i
m

)n)
.

From the previous identity, we obtain

Mn
ij = V −1i1 V1j

(
m−1∑
i=0

xiα
i
1

)n
+ ...+ V −1im Vmj

(
m−1∑
i=0

xiα
i
m

)n
and finally

Mn
ij

Mn
pq

=
V −1i1 V1j

(∑m−1
i=0 xiα

i
1

)n
+ ...+ V −1im Vmj

(∑m−1
i=0 xiα

i
m

)n
V −1p1 V1q

(∑m−1
i=0 xiαi1

)n
+ ...+ V −1pm Vmq

(∑m−1
i=0 xiαim

)n
from which the thesis easily follows dividing numerator and denominator by(∑m−1

i=0 xiα
i
k

)n
.
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Remark 1. The condition c(x, αk) > 1 in the above theorem allows to specify

which is the limit of the ratio
Mn
ij

Mn
pq

, given any index i, j, p, q ∈ {1, ...,m}. In

particular, it specifies which root of the polynomial f(t) = tm−
∑m−1

s=0 um−st
s

can be approximated using the matrix M , since V −1ik Vkj and V −1pk Vkq, given
any index i, j, p, q ∈ {1, ...,m}, are all quantities that can be written involving
only the root αk (and its powers) of f(t), as direct calculations on the entries
of the Vandermonde matrix show. In section 2, we will see some examples
regarding cubic polynomials. In the case of totally real cubic and irreducible
polynomials, we can see that there always exists an index k such that the
condition c(x, αk) > 1 holds. Thus, when the quantity x is fixed, we can check
the values of c(x, αk), for any index k, in order to know which specific root of
f(t) we approximate using M with the chosen value of x. On the other hand,
we can choose the values of x so that c(x, αk) > 1 for a specific root αk that
we would like to approximate.

We study the rate of convergence of the ratios of the entries of Mn in the
next theorem, where we will use the following notation:

L =
Ak

Bk
=
V −1ik Vkj

V −1pk Vkq
,

with V the Vandermonde matrix as defined in Theorem 1. Moreover, we will
consider

γj =
m−1∑
i=0

xiα
i
j

and

c−1(x, αk) = max

{
|
∑m−1

i=0 xiα
i
j |

|
∑m−1

i=0 xiαik|
: j = 1, ...,m, αj 6= αk

}
= max

{
|γj |
|γk|

: j = 1, ...,m, αj 6= αk

}
,

where γnj ’s are the roots of the characteristic polynomial of Mn.

Theorem 2. Let α1, ..., αm be distinct roots of f(t) = tm −
∑m−1

s=0 um−st
s.

Let V = V (α1, ..., αm) and M(x,u) be the Vandermonde matrix of f(t) and
the matrix defined by (1) with α = αk for a given 1 ≤ k ≤ m. If c(x, αk) >
1 (i.e. 0 < c−1(x, αk) < 1) and AlBk − AkBl 6= 0 (where l is the index

such that c−1(x, αk) =
|γl|
|γk|

), then the order of convergence of

∣∣∣∣∣Mn
ij

Mn
pq

− L

∣∣∣∣∣ is

O
(
(c−1(x, αk))

n
)
.
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Proof. From the previous theorem, we know that

Mn
ij

Mn
pq

=

∑m
s=1Asγ

n
s∑m

s=1Bsγ
n
s

=
Ak +

∑m
s=1,s 6=k As

(
γs
γk

)n
Bk +

∑m
s=1,s 6=k Bs

(
γs
γk

)n.
Let l be the index such that c−1(x, αk) =

|γl|
|γk|

, setting y =
γl

γk
, we have

Mn
ij

Mn
pq

= B−1k (Ak +Aly
n + o(yn))

(
1 +

Bl
Bk

yn + o(yn)

)−1
= B−1k

(
Ak −

AkBl
Bk

yn +Aly
n + o(yn)

)
=

=
Ak

Bk
+
AlBk −AkBl

B2
k

yn + o(yn).

Hence, we have∣∣∣∣∣Mn
ij

Mn
pq

− L

∣∣∣∣∣ =

∣∣∣∣∣AlBk −AkBlB2
k

yn + o(yn)

∣∣∣∣∣ ≤
∣∣∣∣∣AlBk −AkBlB2

k

∣∣∣∣∣ |y|n+o(|y|n) ≤ C
(
c−1(x, αk)

)n
,

for a certain constant C depending on

∣∣∣∣∣AlBk −AkBlB2
k

∣∣∣∣∣.
Remark 2. The above theorem holds under the condition that AlBk−AkBl 6=
0. We can observe that AlBk−AkBl = 0 occurs in some special cases. In par-
ticular, there are some ratios of elements of Mn that are constant quantities.
In fact, for any index t, we can see that

At

Bt
=

1

(−1)m−1
∏m
h=1 αh

,

for i = m, j = m− 1, p = 1, q = m. This follows from the following identities:

V −1mt =
1∏

1≤h≤m
h6=t

(αt − αh)
, Vtm−1 = αm−2t

V −11t = (−1)m−1

m∏
i=1,i 6=t

αi∏
1≤h≤m
h6=t

(αt − αh)
, Vtm = αm−1t

.
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Thus, we are in a case where we have AlBk −AkBl = 0, but this corresponds

to have
Mn

ij

Mn
pq

=
Mn

mm−1

Mn
1m

constant. Similarly, we can see that

At

Bt
=

1

(−1)m−1
∏m
h=1 αh

,

for i = m, j = 1, p = 1, q = 2 and any index t.

In the next section, we focus on the cubic case, since some well–known and
studied matrices arise as particular cases of the matrix M .

2 Approximations of cubic irrationalities

The following matrix (
x r
1 x

)
,

for x, r ∈ Z and r positive square–free, is used to determine classic Rédei
rational functions [16]. Powers of this matrix yield rational approximations of√
r. In [3], the authors proved that among these approximations, Padé and

Newton approximations can be found. A natural generalization of this matrix
is given by

A =

x r r
1 x r
1 1 x


for x, r ∈ Z and r cube–free. This matrix has been introduced by Khovanskii
[9] to approximate 3

√
r and

3
√
r2. Let Anij denote the ij–th entry of An, we

have

lim
n→+∞

An11
An31

=
3
√
r2, lim

n→+∞

An21
An31

= 3
√
r.

In [11], authors studied the role of x in order to ensure the fastest convergence.
In [2], authors focused on

B =

x r 0
0 x r
1 0 x


and similarly, we have

lim
n→+∞

Bn
11

Bn
31

=
3
√
r2, lim

n→+∞

Bn
21

Bn
31

= 3
√
r.
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Moreover, in this case the authors proved that
Bn

11

Bn
31

and
Bn

21

Bn
31

are convergents

of certain generalized continued fractions yielding periodic representations of
cubic roots. Finally, let α be the real root largest in modulus of t3−pt2−qt−r,
with p, q, r ∈ Q. In [12], the author showed that matrix

C =

x r pr
0 q + x pq + r
1 p p2 + q + x


yields simultaneous rational approximations of α − p and

r

α
. However, in

[12] the author did not focus on the study of rational approximations, but
studied matrix C in order to determine periodic representations for any cubic
irrational.

Matrices A, B, and C are all particular cases of the matrixM studied in the
previous section. Indeed, if we consider the cubic polynomial t3− pt2− qt− r,
p, q, r ∈ Q, then, given integer numbers x, y, z, we have

M((x, y, z), (p, q, r)) =

 x rz ry + prz
y x+ qz qy + (pq + r)z
z y + pz x+ py + (p2 + q)z

 . (2)

Previous matrices are particular cases of M . Indeed,

A = M((x, 1, 1), (0, 0, r)), B = M((x, 0, 1), (0, 0, r)), C = M((x, 0, 1), (p, q, r)).

By Theorem 1, it is possible to explicitly write limits of ratios between two
elements of (M((x, y, z), (p, q, r)))n. Let α1, α2, α3 be roots of t3− pt2− qt− r
and suppose c((x, y, z), α1) > 1, i.e., we have chosen x, y, z so that matrix M
can be used for approximating α1. For instance, we have

lim
n→+∞

Mn
22

Mn
pq

= M̄pq,

given any p = 1, 2, 3 and q = 1, 2, 3, where

M̄ =


−
α1(α2 + α3)

α2α3
−
α2 + α3

α2α3
−
α2 + α3

α1α2α3

α1 1
1

α1

−α1(α2 + α3) −α2 − α3 −
α2 + α3

α1

 =


α2
1(α1 − p)

r

α1(α1 − p)
r

α1 − p
r

α1 1
1

α1

α1(α1 − p) α1 − p
α1 − p
α1

 .
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Another example is provided by

lim
n→+∞

Mn
33

Mn
pq

= M̄pq,

given any p = 1, 2, 3 and q = 1, 2, 3, we have

M̄ =



α2
1

α2α3

α1

α2α3

1

α2α3

−
α2
1

α2 + α3
−

α1

α2 + α3
−

1

α2 + α3

α2
1 α1 1


=



α3
1

r

α2
1

r

α1

r

α2
1

α1 − p
α1

α1 − p
1

α1 − p

α2
1 α1 1


.

Clearly, if we have c((x, y, z), α2) > 1, then above results still hold exchanging
indexes 1 and 2.

Remark 3. We can check the considerations of the Remark 2 in the above

matrix. Indeed, we have that
M̄31

M̄12
=
M̄32

M̄13
= r

3 Numerical results

In this section, we will deal with the quality of approximations provided by
M comparing it with known iterative methods as Newton, Halley and similar
ones. We would like to highlight that our method consists in evaluating powers
of the matrix M and this is accomplished using only integer arithmetic, i.e.,
it is an error–free method.

It is well–known that continued fractions provide best approximations of
real numbers (see [14] for a good survey about continued fractions). In partic-

ular, given the n–th convergent
pn

qn
of the continued fraction of a real number

α, then ∣∣∣∣∣α− pn

qn

∣∣∣∣∣ ≤
∣∣∣∣∣α− a

b

∣∣∣∣∣ , a, b ∈ Z,

for all b ≤ qn. However, evaluation of approximations by means of contin-
ued fractions is not generally an used method since a continued fraction is
a non–terminating expression. Indeed, many different methods are studied
and used in this context. In the particular case of approximations of alge-
braic numbers, many root–finding algorithms have been developed. Here, we
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compare some of these methods with approximations provided by M . Taking
into account classic definition of best approximations above described, we will
compare quality of rational approximations, provided by different methods,
having denominators with same size.

We will consider real roots of the Ramanujan cubic polynomial t3+t2−2t−1
and we study approximations of M for different values of (x, y, z). The roots
of this polynomial are quite famous (see, e.g., [18]) and they are

α1 = 2 cos
2π

7
, α2 = 2 cos

4π

7
, α3 = 2 cos

8π

7

with |α3| > |α1| > |α2|.

3.1 Approximations of M for different values of (x, y, z)

Considering M = M((x, y, z), (−1, 2, 1)), for some values of (x, y, z), we pro-
vide approximations of α3 by means of the sequence

mn(x, y, z) :=
Mn

21(x, y, z)

Mn
31(x, y, z)

− 1.

In Table 1 and 2, we summarize quality of our approximations for different
values of (x, y, z). In particular, we consider

x = 0, y = 0, z = 1, c(0, 0, 1) = 2.08815

x = 1, y = −1, z = 1, c(1,−1, 1) = 3.68141

x = 0, y = −1, z = 1, c(0,−1, 1) = 7.85086

x = 69, y = 99, z = −124, c(69, 99,−124) = 1343.4

and we show values of |mn(x, y, z)−α3| and size of denominators of mn(x, y, z),
i.e., number of digits Dn(x, y, z) of Mn

31(x, y, z).
In Figures 1 and 2, we depict the situations described in Tables 1 and 2,

respectively.
We can observe that approximations provided by mn(69, 99,−124) are the

most accurate. However, they have the greatest denominators. Thus these ap-
proximations could not be optimal taking into account previous considerations
about continued fractions.

It is interesting to observe that approximations mn(0,−1, 1) are more accu-
rate thanmn(1,−1, 1) and furthermore they have smaller denominators. Thus,
approximationsmn(0,−1, 1) are surely better than approximationsmn(1,−1, 1)
in any case.
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In Table 3, we compare approximations whose denominators have the same
number of digits (for 16, 35, and 62 digits). We can observe that approx-
imations mn(0,−1, 1) are more accurate than others with the same size of
denominators.

In conclusion, if we want to obtain accurate approximations with low val-
ues of n and we are not interested in the size of denominators, it is sufficient to
find values (x, y, z) that maximize c(x, y, z, α3). However, in this way approx-
imations could not be the better than others with the same size of denomina-
tors. Indeed, we have seen that approximations obtained in correspondence
of c(0,−1, 1, α3) = 7.85086 are more accurate than approximations with same
size of denominators provided for c(69, 99,−124, α3) = 1343.4. It would be re-
ally interesting to study techniques that allow to determine values of (x, y, z)
that provide best approximations in this sense.

3.2 Approximations of M for same values of (x, y, z)

By Theorem 1, we can obtain approximations of a cubic irrationality by using
different ratios of Mn, for same values of (x, y, z). Let us consider (x, y, z)
such that c(x, y, z, α3) > 1, then the reader can check that

lim
n→+∞

Mn
22

Mn
21

= lim
n→+∞

Mn
23

Mn
22

= lim
n→+∞

Mn
33

Mn
32

= α3.

In this paragraph, we briefly compare these approximations with each other.
Let us consider (x, y, z) = (0,−1, 1). In Tables 4 and 5, we report distance
from exact value of α3 and size of denominators for these approximations,
respectively. We can see that there are not significative differences among
these approximations. Similar results are obtained for other triples (x, y, z).

3.3 Approximations of M for different values of (p, q, r)

By Theorem 1, we can also obtain approximations of a cubic irrationality using
different values of (p, q, r). In this paragraph, we focus on approximations of
α2.

Considering (p, q, r) = (−1, 2, 1) we can find a triple (x, y, z) such that
c(x, y, z, α2) > 1. For instance we have c(10,−2,−3, α2) = 2.67 and we know
that

lim
n→+∞

Mn
21

Mn
31

− 1 = α2.

Moreover, we can consider polynomial t3 + 2t2 − t − 1 (i.e., the reflected
polynomial of t3 + t2 − 2t − 1) whose roots are 1

α1
, 1
α2

, 1
α3

. In this case
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we use (p, q, r) = (−2, 1, 1) and for (x, y, z) = (−3, 1,−1, 1/α2) we obtain
c(x, y, z, 1/α2) = 2.67. Thus, by theorem 1, we have

lim
n→+∞

Mn
11

Mn
31

− 1 = α2,

since r = 1. Let us observe that we have searched for triple (x, y, z) determin-
ing a value of c(x, y, z, 1/α2) similar to the previous case.

Finally, we can also consider (p, q, r) = (2, 1,−1). In this case t3 − 2t2 −
t + 1 has roots α1 + 1, α2 + 1, α3 + 1 and the reader can check that, e.g,
c(x, y, z, α2 + 1) = 2.67 so that

lim
n→+∞

Mn
21

Mn
31

+ 1 = α2,

since p = 2.
In Figures 3 and 4, we depict behavior of these approximations, considering

differences with exact value of α2 and size of denominators, respectively. Even
in this case, there are not significative differences among these approximations.
Thus, in general quality of approximations is heavily affected by values of
c(x, y, z, α).

3.4 Comparison with known root–finding methods

In this paragraph, we compare approximations provided by M with Newton,
Halley, and Noor [13] methods. We briefly recall these methods.

Definition 1. The Newton method provides rational approximations of a real
root α of f(t) by means of the sequence of rational numbers xn by the equation

xn+1 = xn −
f(xn)

f ′(xn)
, ∀n ≥ 0

with a suitable initial condition x0.

Definition 2. The Halley method provides rational approximations of a real
root α of f(t) by means of the sequence of rational numbers xn by the equation

xn+1 = xn −
2f(xn)f ′(xn)

2(f ′(xn))2 − f(xn)f ′′(xn)
, ∀n ≥ 0

with a suitable initial condition x0.
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Definition 3. The Noor method provides rational approximations of a real root
α of f(t) by means of the sequence of rational numbers xn by the equations

yn = xn −
f(xn)

f ′(xn)
, ∀n ≥ 0

xn+1 = yn −
f(yn)

f ′(yn)
−

(f(yn))2f ′′(yn)

2(f ′(yn))3
, ∀n ≥ 0

with a suitable initial condition x0.

In Table 6, we report approximations of α3 provided by Newton, Halley,
and Noor methods. In particular we report the size of denominators and the
difference between these approximations and the exact value of the root.

Using notation of subsection 3.1, let us consider (p, q, r) = (−1, 2, 1) and
(x, y, z) = (0,−1, 1). Sequence mn(x, y, z) approximates α3. In particular, we
have that |m10 − α3| = 2.7 × 10−9 and number of digits of denominator is 7.
Furthermore, we have

|m25 − α3| = 1.0× 10−22, |m852 − α3| = 8.3× 10−763,

where denominators have 17 and 595 digits, respectively. Thus, approxima-
tions mn, with same accuracy of iterative methods, have size of denominators
much less than iterative methods. Equivalently, we can say that our approxi-
mations, having same size of denominators with respect to iterative methods,
are much more accurate.

If we are only interested to have high accuracy in few steps, we can consider

(p, q, r) = (−1, 2, 1), (x, y, z) = (69, 99,−124), N = M3 and Nn =
Nn

21

Nn
31

− 1.

In Table 7, we report quality of approximations Nn for n = 1, ..., 6. We can
observe that in this case we reach high accuracy in few steps, with better
performances than iterative methods.

Finally, we would like to observe that evaluation of powers of matrices is
very fast from a computational point of view and it is faster than iterative
methods.

4 Conclusion

We have introduced and studied a family of matrices (which generalize known
ones) whose powers yield rational approximations of algebraic irrationalities.
These matrices depend on some parameters whose meaning has been deeply
discussed. These parameters allow to obtain many different approximations
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for the same irrational, providing a very handy method that can be adjusted as
necessary, in order to obtain the desired quality of approximation. Numerical
results have been also presented in order to show effectiveness of our approach.
Some questions should be deeper analyzed:

• study the role of x in the size of denominators;

• explicitly determine maximum of c(x, α);

• study of the quality of simultaneous approximations (as defined, e.g., in
[4]).
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5 FIGURES AND TABLES

Table 1: Quality of approximations of matrices M : |mn(x, y, z)− α3|.
n = 5 n = 20 n = 35 n = 50 n = 75 n = 100

|mn(0, 0, 1)− α3| 0.06 9.8×10−7 1.6×10−11 2.5×10−16 2.5×10−24 2.6×10−32

|mn(1,−1, 1)− α3| 0.002 1.2×10−11 3.8×10−20 1.2×10−28 8.7×10−43 6.1×10−57

|mn(0,−1, 1)− α3| 8×10−5 3.1×10−18 1.2×10−31 4.4×10−45 1.9×10−67 7.9×10−90

|mn(69, 99,−124)− α3| 1×10−15 4.0×10−63 9.5×10−110 8.6×10−157 6.1×10−235 3.7×10−313

Table 2: Quality of approximations of matricesM : number of digitsDn(x, y, z)
of Mn

31(x, y, z).
Number of digits n = 5 n = 20 n = 35 n = 50 n = 75 n = 100

Dn(0, 0, 1) 2 9 14 25 36 49
Dn(1,−1, 1) 4 16 21 39 59 78
Dn(0,−1, 1) 3 12 21 35 50 69

Dn(69, 99,−124) 13 52 92 135 203 269

Table 3: Comparison of approximations mn(x, y, z) with same number of digits
of denominators, for different values of (x, y, z).

(x, y, z) n |mn(x, y, z)− α3| Dn(x, y, z)

(0, 0, 1) 37 3.6× 10−12 16
(1,−1, 1) 20 1.2× 10−11 16
(0,−1, 1) 23 6.4× 10−21 16

(69, 99,−124) 6 1.0× 10−19 16

(0, 0, 1) 74 5.3× 10−24 35
(1,−1, 1) 45 8.3× 10−26 35
(0,−1, 1) 50 4.4× 10−45 35

(69, 99,−124) 14 1.9× 10−44 35

(0, 0, 1) 128 2.9× 10−41 62
(1,−1, 1) 82 9.4× 10−47 62
(0,−1, 1) 91 8.9× 10−82 62

(69, 99,−124) 23 3.7× 10−72 62
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Table 4: Distance from exact value of α3 and different ratios of M with
(x, y, z) = (0,−1, 1).

n = 5 n = 20 n = 35 n = 50 n = 75 n = 100

|
Mn

21

Mn
31

− 1− α3| 8.0×10−5 3.1×10−18 1.2×10−31 4.4×10−45 1.9×10−67 7.9×10−90

|
Mn

22

Mn
21

− α3| 5.0×10−5 2.1×10−18 8.1×10−32 3.0×10−45 1.3×10−67 5.4×10−90

|
Mn

23

Mn
22

− α3| 2.0×10−5 5.3×10−19 2.0×10−32 7.5×10−46 3.2×10−68 1.3×10−90

|
Mn

33

Mn
32

− α3| 2.1×10−5 7.6×10−19 2.9×10−32 1.1×10−45 4.6×10−68 1.9×10−90

Table 5: Number of digits of Mn
31, M

n
21, M

n
22, M

n
32 with (x, y, z) = (0,−1, 1).

Number of digits n = 5 n = 20 n = 35 n = 50 n = 75 n = 100

Mn
31 3 12 21 35 50 69

Mn
21 3 14 25 35 50 70

Mn
22 4 14 25 35 53 70

Mn
32 4 14 25 34 53 70

Table 6: Quality of approximations of iterative methods.
Method n n. digits den. |xn − α3|
Newton 3 9 1.1×10−6

Newton 5 80 9.2×10−14

Newton 10 19352 3.7×10−762

Halley 2 9 8.1×10−8

Halley 3 45 4.8×10−22

Halley 6 28140 1.2×10−527

Noor 2 18 1.1×10−6

Noor 3 186 2.7×10−18

Noor 6 43136 4.8×10−471
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Figure 1: Rate of convergences of mn(x, y, z) for different values of (x, y, z).
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Table 7: Quality of approximations of Nn.
n n. digits den. |Nn − α3|
1 8 1.9×10−9

2 24 2.8×10−28

3 73 1.1×10−84

4 219 1.0×10−253

5 658 1.7×10−760

6 1975 8.4×10−2281

Figure 2: Number of digits of Mn
31 for different values of (x, y, z).
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Figure 3: Differences between approximations provided by M and α2 for dif-
ferent values of (p, q, r): (-1,2,1), (-2,1,1), (2,1,-1)
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Figure 4: Number of digits of denominators for different values of (p, q, r):
(-1,2,1), (-2,1,1), (2,1,-1)
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