
07 January 2022

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Process Coordination with Business Artifacts and Multiagent Technologies

Published version:

DOI:10.1007/s13740-019-00100-8

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1699902 since 2019-04-23T14:26:30Z

Journal on Data Semantics manuscript No.
(will be inserted by the editor)

Process Coordination with Business Artifacts and Multi-Agent
Technologies

Matteo Baldoni · Cristina Baroglio ·
Federico Capuzzimati · Roberto Micalizio

Received: date / Accepted: date

Abstract This work is set in the context of data-centric
approaches, and is motivated by the observation that
business artifacts are not devised as natural means of
coordination, despite the fact that they have this po-
tential. Instead of using orchestration and choreography
languages, we propose to enrich business artifacts with
a normative layer that defines the coordination, basing
our approach on social commitments. The straightfor-
ward advantage is an increased reusability of both pro-
cesses and business artifacts, thanks to a clear decou-
pling between the coordination logic and the business
logic. We show how social commitments can be lever-
aged for modularizing the design of distributed tasks
and discuss the advantages of the approach from a soft-
ware engineering perspective.

Keywords Business Artifacts · Normative MAS ·
Social Commitments

1 Introduction

The artifact-centric approach [8,17,14] is a viable so-
lution for specifying and deploying business operations
by combining both data and processes as first-class cit-
izens. In particular, the notion of Business Artifact [25]
opened the way to the development of a data-driven
approach to the modeling of business operations. The
data-driven approach counterposes a data-centric vi-
sion to the activity-centric vision, traditionally used
when processes are explicitly modeled in terms of work-
flows. Business artifacts are business-relevant objects

M. Baldoni · C. Baroglio · F. Capuzzimati · R. Micalizio
Università degli Studi di Torino, Dipartimento di Informatica,
Tel.: +390116706711, E-mail: firstname.lastname@unito.it

that are created and evolve as they pass through busi-
ness operations. They include an information model of
the data, and a lifecycle model. The latter captures the
key states through which data evolve and their tran-
sitions, and it is used both at runtime (to track the
evolution of business artifacts), and at design time (to
distribute tasks among the processes that operate on a
business artifact). Business artifacts, however, have a
drawback: they do not provide any means for designing
and modularizing the coordination of those processes
which should operate on them, which is obtained, in-
stead, via service choreographies [9].

These overlay on the business artifacts a sequential-
ization of the operations on them, but they are not ca-
pable of exploiting the information that evolves inside
the business artifacts themselves. Consequently, when
two processes need to coordinate their execution, in or-
der to understand whose turn it is, it becomes necessary
to add some further means of synchronization. More-
over, the processes, that use a business artifact, must
encapsulate in their bodies the exchange of messages as
prescribed by the choreography.

In the paper (Section 2), we explain the limits and
the drawbacks of this approach, with the help of the
Hiring Process example [31], and propose to enhance
business artifacts in a way that allows exploiting their
natural potential as a medium of coordination. We do
so by introducing a normative layer to capture the be-
haviors that are expected of the parties. The Hiring
Process is also used as a running example throughout
the paper. We also claim (Section 3) that results from
the research area on multiagent systems (MAS) support
the enhancement of business artifacts as coordination
media by providing conceptual (and practical) instru-
ments. An actual implementation, that relies upon Ja-
CaMo+ [3], is described in Section 4.

2 Matteo Baldoni et al.

Improvement with respect to the workshop paper. This
work improves the proposal [2] presented at the BPAI
2017 workshop in the following way. It introduces the
one-to-many coordination problem and the Hiring Pro-
cess as an instance of it, and fully develops this ex-
ample from specification to implementation. It explains
the issues concerning coordination in business processes
(both process-centric and artifact-centric). It better ex-
plains the reasons for relying on concepts and results
from the MAS literature. It develops the idea of a nor-
mative layer by introducing and characterizing coor-
dination artifacts, by explaining the relationships be-
tween business artifacts and coordination artifacts, and
by exemplifying their development and use. It consis-
tently revises the proposed architecture. It provides a
fully developed example (Hiring Process) with a link to
its implementation.

2 Challenges in Process Coordination

The way for achieving a result not always can be en-
compassed within a single process. This happens, for
instance, when the multiplicity of an activity is not
in accordance with the multiplicity of another one. In
this case, it is necessary to separate them into two dif-
ferent processes leading to the one-to-many pattern of
coordination between the process instances [31,21]. A
well-known example in literature is the hiring scenario
illustrated by Silver [31].

Example 1 (Hiring Process [31]) A hirer opens a call for
a job position for which many candidates will likely ap-
ply over a time period. As long as the position remains
open, each candidate is called for an interview, and then
evaluated. The evaluation of a single candidate takes
time, even weeks. Thus, one would not want to process
a whole application before starting to consider another.
Rather, it would be better to carry on the evaluation of
many candidates at the same time. For similar reasons,
usually one would not want to postpone the decision
on who to hire until the completion of the examination
of the last candidate. Indeed, it would be better to end
the selection as soon as a good candidate is identified –
that is, when the business goal is achieved.

Coordination and Business Processes. Silver addresses
the one-to-many problem discussing how it can be mod-
eled by way of a set of interacting BPMN processes
([31, pages 115-118]), each pursuing a different objec-
tive. Figure 1 shows the proposed solution, consisting of
a Hiring Process, each of whose instances tackles a sin-
gle job opening, an Evaluate Candidate process, whose

instances tackle each a different candidate, and an Ap-
plicant Process, whose instances amount to candidates.
While the relationship between the instances of Eval-
uate Candidate and Applicant is one-to-one, the rela-
tionship between the instances of the Hiring Process
and those of the Evaluate Candidate process is inher-
ently one-to-many. The states of all these processes are
to be coordinated and, in particular, the Hiring Process
must have a way to enable Evaluate Candidate when a
new job is opened, and to disable its running instances
when the job position has been assigned.

The solution proposed by Silver highlights the limi-
tations of BPMN in modeling the coordination. In fact,
with reference to Figure 1, the BPMN representation
only suggests that the Hiring Process should update
the status of a job opening after receiving the accep-
tance of an offer by some candidate, and that this will
let Evaluate Candidate know that it accomplished its
task for that opening. Nevertheless, the language is not
provided with the expressive means for capturing such
a coordination explicitly. The introduction of a data
storage which is external to the processes, but to which
all of them have access, supports the synchronization of
the processes [31], and the data consistency. However,
this is not sufficient. When a business goal is split over
a set of interacting processes, each of these will realize
only a part of the overall goal, and, in order to realize
such a part, it will generally depend on the achievement
of sub-goals that are realized by other processes. The
synchronization at the level of data that is realized in
BPMN by the introduction of data storages does not
capture coordination in such high-level terms, due to
the fact that interactions among the processes can be
only indirectly represented – as synchronized accesses
to data storages. Thus, the BPMN models lose part of
their descriptive power.

Coordination and Business Artifacts. An alternative ap-
proach to cope with the one-to-many coordination pat-
tern is the adoption of business artifacts. Business ar-
tifacts add an information layer concerning both the
structure and the lifecycle of the data they encompass.
Some authors [21] propose to use them as a means
to combine process engineering with data engineering.
Still, as explained in [2], they do not support coordi-
nation satisfactorily. To understand why, let us focus
on the BALSA (Business Artifacts with Lifecycle, Ser-
vices, and Associations) methodology [9], that we con-
sider as a significant representative of the business ar-
tifacts approaches. Here, coordination among of busi-
ness processes is tackled by relying on choreographies.
As an example, Figure 2 shows two business processes,
bp1 and bp2, both defined declaratively in terms of ECA

Process Coordination with Business Artifacts and Multi-Agent Technologies 3

Figure 8-3 A common beginner mistake

Ap
pl

ic
an

t

Post job

Receive
application

Screen and
interview Make offer

Ap
pl

ic
an

t

Post job Make offer

Process
applications

Receive
application

Screen and
interview

Until ready to
make offer

Ap
pl

ic
an

t

Post job Make offer

Until 5 viable

InterviewReceive and
Screen

Ap
pl

ic
an

t
Ev

al
ua

te
 C

an
di

da
te

Evaluate Candidate

Receive
resume

Check job
status

Open?

Screen and
interview

Position
closed

Make offer?

Rejected

Make offer
Accept? Accepted

Offer rejected

Cancel
Evaluation

H
ir

in
g

Pr
oc

es
s

Hiring Process

Post job

3 months

Receive acceptance

Update job
status Filled

Update job
status

Abandoned

Position filled

Position unfilled

Signal cancels in-
fight instances of
Evaluate
Candidate

Job status

Ap
pl

ic
at

io
n

Re
je

ct
io

n
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Ap
pl

ic
at

io
n

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Re
je

ct
io

n
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Rejection noticeAp
pl

ic
at

io
n

Re
su

m
e

yes

no

Po
si

tio
n

cl
os

ed

Re
je

ct
io

n
no

tic
e

yes

O
ff

er

no

Re
sp

on
se

yes

no

Po
si

tio
n

cl
os

ed

Acceptance

Fig. 1 The Hiring Process example represented in BPMN [31].

(Event-Condition-Action) rules, which access to a same
business artifact. The fact that the bp1 and bp2 comply
with the specification of a common choreography guar-
antees the right synchronization between the services
they invoke. Choreographies realize a form of subjec-
tive coordination [27]. This means that each business
process needs to include also the “interaction logic” of
the choreography role it plays along with its business
logic. Figure 3 shows a possible service choreography
for the Hiring Scenario –for the sake of readability, the
picture reports only the case of an interaction lead-
ing to filling the position. The choreography involves
five components: two business artifacts, i.e., positionBA
and applicationBA (which respectively model the sta-
tus of a job position and the status of the application
by a candidate), and three processes, i.e., the hirer hi,
the candidate i, the evaluator evi for candidate i. Solid
arrows represent operations that a process carries out
over a business artifact, whereas dashed arrows repre-
sent notices about state changes sent by an artifact to
the interested processes.

As explained, each involved process must comply
with this choreography, so, for instance, process evi

should perform task screen-interview only after a po-
sition is opened and an application for that position is
received. Both such tasks belong to the business logic of

other processes and, in principle, their occurrence does
not require an involvement of evi. However, in order
to allow the coordination among the process to occur
respecting the schema encoded by the choreography, it
is necessary to introduce explicit notifications that the
process should receive both about the opening of a job
position and about an application for that position, and
such notification should occur in the right order. Should
post-job and apply be performed in the reversed order,
the evaluator should not perform screen-interview. This
constraint cannot but be hard-coded in the evaluator’s
body –as a context condition, before starting screen-
interview, the evaluator verifies whether the previous
sequence of events is correct. This is, however, no little
requirement because in order to implement a compli-
ant evaluator, it is necessary not only to know which
actions the evaluator should perform, and their order,
but also the order in which the others will send their
notifications. In other words, there is a strict coupling
among the implementations of all the interacting pro-
cesses. Consequently, the design and implementation
become more complex, and the possibility of reusing
the same process in different contexts is reduced. Fur-
thermore, there is the need to guarantee that the mid-
dleware, and the medium through which notifications
are delivered, preserve the order in which notifications

4 Matteo Baldoni et al.

environment

bp2

ECA21 :: [service21]

ECA22 :: [service22]

. . .

business
artifact 2

business
artifact 1

role1 role2

service11

service21

. . .

service choreography

bp1

ECA11 :: [service11]

ECA12 :: [service12]

. . .

event

event

service11

service21

complies

complies

link

event

service22

Fig. 2 Synchronized access to a business artifact via a chore-
ography.

hi positionBA evi applicationBA i

post-job

update-filled

apply

screen
interview

make offer

yes

Fig. 3 A possible choreography for coordinating components
in the Hiring Scenario.

are generated. That is, the interacting processes must
be aligned [16], a condition which cannot generally be
guaranteed.

Coordination in Multiagent Systems. Since the early
proposals for MAS programming, organizations have
been seen as metaphors for modularizing the code. Or-
ganizations, in fact, provide an overall abstraction of
the task the agents have to achieve. In Gaia [40,38],
for instance, organizations are characterized by two fea-
tures: a set of roles and a set of interactions among roles.
Here interactions are seen as protocol definitions; where
a protocol is “an institutionalized pattern”, namely, a

pattern that has been formally defined [38]. The pat-
tern, thus, defines the rules (i.e., norms) through which
an institutional reality takes shape and evolves [12].
This institutional reality is the actual means of coordi-
nation of the agents: its constituent elements, the insti-
tutional facts, have a social meaning, by way of norms,
that is shared and understood by all the agents par-
ticipating to the interaction. Agents, thus, act so as
to bring about those institutional facts that represent
their goals or duties towards others.

In other terms, when norms are explicitly repre-
sented and known by all the participants, it is possible
to create expectations about the behavior of others in
response to given messages, and this allows determin-
ing when and how to act. Indeed, coordination is all
about expectations: an activity can fruitfully be car-
ried out by many parties when there is a clear under-
standing on what each one should do and when. So one
party will wait for the completion of the task by another
party before starting its part. On the same grounds, the
party who is first to act is confident that another party
will continue from where it stopped. So, for instance,
assume that the hiring scenario includes the following
norm: “whenever a job position is open, the evaluator
is held to handle any incoming application”. Knowing
such a norm, the hirer opens a position because it is now
a necessary step for accomplishing its goal of having a
new employee. The same norm is used by the evalua-
tor: in order not to violate the norm, it will only assess
applications arrived after the position was open.

In comparison, business processes and service chore-
ographies lack a clear management of expectations. For
instance, Figure 1 suggests that the Hiring Process opens
a position by adding an entry in a shared data store, and
as a consequence it expects to close this position after
receiving the acceptance of an offer by some candidate.
However, this expectation is not explicitly formulated
within the BPMN model, and it is only in the mind
of the designer. Also service choreographies in business
artifacts fall short in explicitly modeling the mutual
expectations between the processes. For instance, the
Hiring Process knows that by performing service post-
job it will change the status of positionBA from vacant
to open. Studying the lifecycle of the same business ar-
tifact, one comes to know that the job status can, then,
evolve into filled or abandoned, but this is not sufficient
to expect that it will ever progress. In fact, the pro-
gression of the job status will depend on services car-
ried out by other processes (i.e., the candidate and the
evaluator) over other business artifacts (i.e., the appli-
cationBA). All this is only partially capture by the ser-
vice choreography in Figure 3, which specifies the causal
chain of communications at the level of messages, but

Process Coordination with Business Artifacts and Multi-Agent Technologies 5

Conditional Detached

Expired Satisfied Violated

Active

antecedent fail

antecedent

consequent failconsequent

Fig. 4 Commitment life cycle [35].

provides no way for relating such communications to
the evolution of information (i.e., state changes in the
involved business artifacts).

3 Enabling Coordination on Top of Business
Artifacts

Taking advantage of the solutions conceived in the MAS
field, we present in this section our proposal for coor-
dinating (business) processes using business artifacts
complemented with a normative layer, so as to achieve
a form of objective coordination [30]. Specifically, we ex-
press such a normative layer in terms of social commit-
ments, thus the section starts with a short background
about them. The proposal is subsequently exemplified
in the Hiring Process scenario.

3.1 Background

A social commitment [15,32] models the directed rela-
tion between two principals: a debtor and a creditor,
that are both aware of the existence of such a rela-
tion and of its current state: a commitment C(x, y, s, u)
captures that principal x (debtor) commits to princi-
pal y (creditor) to bring about the consequent condi-
tion u when the antecedent condition s holds. Commit-
ments are always created by their debtor and can be
manipulated by means of the standard operations can-
cel (executed by debtor), release (by creditor), assign
(by debtor), delegate (by creditor) [32].

Commitment evolution follows the lifecycle formal-
ized in [35], which is reported in Figure 4. A commit-
ment is Violated either when its antecedent is true but
its consequent is false, or when it is canceled when De-
tached. It is Satisfied, when the consequent is true. It is
Expired, when its antecedent is false (the commitment
is no longer in effect). A commitment is Active when
it is initially created. Active has two substates: Con-
ditional as long as the antecedent does not occur, and
Detached when the antecedent has occurred.

Commitments have a normative power in the sense
that they bring about the expectation that the debtor
will satisfy the commitment once detached.

The events that constitute the commitment condi-
tions are always observable and all the involved prin-
cipals, by observing their occurrence, can infer which
commitments hold, and their state. In particular, we
adopt precedence logic [33] to express antecedent and
consequent conditions. The interpretation of such a logic
deals with occurrences of events along runs (i.e., se-
quence of instanced events). Under this respect, event
occurrences are assumed as nonrepeating and persis-
tent: once an event has occurred, it has occurred for-
ever. The precedence logic has three primary operators:
‘∨’ (choice), ‘∧’ (concurrence), and ‘·’ (before). The be-
fore operator allows one to constrain the order with
which two events must occur, e.g., a · b means that a

must occur before b, but the two events do not need
to occur immediately after one another. Such a lan-
guage, thus, allows us to model complex expressions
about the relevant events that may occur during the
progression of a business process, and to consider these
expressions as antecedent or consequent conditions of
commitments. Intuitively, events in antecedent and con-
sequent conditions correspond to the sending/reception
of messages, the throwing/catching of signals, and the
execution of activities of a business process. In the fol-
lowing, eventrole denotes the business role that brings
about event.

The works described in [20,4] propose methodolo-
gies, namely Amoeba and the 2CL Methodology, for
designing the commitments involved in an interaction
protocol.

3.2 Coordination Architecture

The conceptual architecture of our proposal is shown in
Figure 5. The architecture shows how principals can co-
ordinate while operating in their environment through
the introduction of a normative layer, which amounts
to the set of social commitments that can be created
and evolve along with the interaction.

Principals operate in the environment by “using”
business artifacts, that is, by invoking some of the ser-
vices/operations made available by the business arti-
facts themselves. These operations act at the data level,
and in some cases they can will cause a progression of
the business artifact state along its lifecycle. The state
of a business artifact falls into the information model
layer of our picture. Thus, whenever a business artifact
changes its state, this change is propagated to all the
linked artifacts.

6 Matteo Baldoni et al.

Principal Business Artifact
Information

Model
Data Layer

Business Artifact
Information

Model
Data Layer

Normative State
(commitments)

Coordination Artifact

Principal

Environment

link
link

link
use/observe

use/observe

use/observe

use/observe use/observe

Fig. 5 Environment/Information System based on business artifacts and coordination artifacts.

In particular, we reify the normative layer by means
of a specific class of artifacts, called coordination arti-
facts, which are made available to the interacting pro-
cesses. Such resources allows the interacting principals
to know which commitments hold; these, in turn, create
expectations on the others’ behavior, that is, that the
debtors of commitments will behave so as to satisfy the
corresponding consequent conditions. When this does
not happen, a violation is detected and made available
for the appropriate management. The propagation of
a state change to a coordination artifact, in general,
will cause the creation of new commitments or the evo-
lution of already existing ones. This, in turn, will, on
one hand, push a principal to act so as to satisfy any
detached commitment in which the principal appears
as the debtor, and on the other hand, push a principal
who is the creditor of a conditional commitment to act
so ast to detach it.

To make this discussion more concrete, let us con-
sider a simple example, featuring a merchant m and
a customer c as two interacting principles. These two
principles share an environment where a business ar-
tifact payments and coordination artifact purchase are
available. The first artifact traces the payments that
c does for some specific goods whose price amounts
to 300 euros. To this end, the artifact makes avail-
able operation pay(amount), through which the cus-
tomer can pay for the goods. The customer can ei-
ther pay the sum with a single pay operation, or pay
by installments, e.g., three installments of 100 euros
each. In both cases, as soon as the requested amount of
300 euros is deposited, the business artifact payments
progresses into the state “paid”. This is the informa-
tion that is notified to the linked coordination artifact
purchase. This artifact traces the state of commitment
C(m, c, paidc, shipm), meaning that, when the goods are
paid for (event paidc occurs), the merchant m is com-
mitted to ship the goods, and hence bring about event

shipm. The point, now, is that if the customer is inter-
ested in having the goods, it will act so as to detach
the commitment, by paying. To do that, the customer
will act upon business artifact payments, by means of
the operations made available by this artifact. As soon
as the goods are paid for, this information, just local
in the business artifact, assumes a social value by being
mapped into an event that makes commitment progress
to the detached state. The merchant is now asked to
satisfy its commitment by shipping the goods.

Thus, principals act upon both business artifacts
and coordination artifacts. In particular, by observing
on a coordination artifact, a principal will be aware of
the existing commitments and of the expectations that
are yielded by them. Instead, by observing on a busi-
ness artifact, principals get to know the set of opera-
tions the artifact makes available, and which transitions
these operations cause, according to the artifact lifecy-
cle. Principals can, then, act in two ways. The first way
is through operations performed upon some business
artifacts. Such operations impact on the data layer of
the artifacts, but, as we explained, they can also cause
a change in the state of the artifact information layer.
The second is to act directly on the coordination arti-
facts by executing commitment operations, like create
or cancel, with the aim of shaping the coordination [3].

In contrast to the service choreographies of the BAL-
SA model, our architecture enables a form of objective
coordination [27], where coordination is addressed out-
side the interacting principals. Objective coordination
enables a clear separation between the implementations
of the business logic and of the coordination logic by ex-
plicitly representing the environment where the princi-
pals operate. In our proposal, we meet this property
by reifying a normative layer, expressed in terms of
commitments, inside a dedicated coordination artifact,
which is external to the principals. The interaction logic
is thus encoded into a single component (i.e., the coordi-

Process Coordination with Business Artifacts and Multi-Agent Technologies 7

nation artifact), and is not distributed and intermingled
within the principals’ code. A positive consequence is
that the implementation of environment resources (i.e.,
artifacts) and of the principals’ processes can be carried
out and verified in isolation.

3.3 The Hiring Process Scenario

We exemplify the presented architecture in the scenario
of the Hiring Process, that we have used to introduce
the challenges of the one-to-many coordination pattern.
In Figure 6, hi (hirer), evi (evaluator), and i (candi-
date) represent the principals of this scenario, that ob-
serve and use artifacts in a shared environment. For
each available position, there will be just one princi-
pal playing the hirer role, whereas many evaluators and
candidates will be possible. To simplify the exposition,
we will assume that a candidate i will be evaluated by
a specific evaluator evi; this does not exclude, however,
that the same principal be an evaluator for different
candidates. The workspace includes also three artifacts:
one coordination artifact, and two business artifacts.
The coordination artifact hiringNormativeState contains
the social commitments through which the normative
layer is realized. It is accessed by all the principals, and
instantiated just once. The business artifact positionBA,
instead, maintains the state of the position, it is instan-
tiated just once, and it is only accessed by the hirer
and the evaluators. Finally, the business artifact appli-
cationBA is instantiated once for each candidate, each
instance keeping track of the status of the application
that was made by that specific candidate. This artifact
is, therefore, accessed only by the candidate and by the
associated evaluator.

The Business Artifacts. We now explain the two busi-
ness artifacts positionBA and applicationBA, whose life-
cycles are shown in figures 7 and 8, respectively. posi-
tionBA is a very simple artifact, that traces the state of
the position throughout the process carried out by the
hirer: the nodes represent the position state, while the
edge between nodes represent the possible operations
that the artifact makes available to its users.

The information model of the business artifact ap-
plicationBA encompasses two elements: the state of the
application and the state of the eventual offer. Each
node of the graph gives an intuitive idea of how these
two elements evolve as a consequence of the operations
performed on them by the principals’ processes. The
lifecycle takes into account that the evaluation process
can terminate at any stage when the position is as-
signed to a candidate. Indeed, it is interesting to point

out that this happens when the hirer performs oper-
ation update filled on positionBA, which hence evolves
to final state position filled. Notably, position filled has
also an impact on the coordination artifact hiringNor-
mativeState, making the consequent of commitment c1
progress. Such a progression is, therefore, captured by
the evaluator which should inform the candidate that
the position is no longer available. This passage will be
discussed in detail in the next section.

The Coordination Artifact hiringNormativeState. We now
discuss in detail some critical elements of our proposal.
We begin by showing how the normative layer can be
expressed in terms of commitments so as to satisfy the
specification of the BPMN processes in Figure 1.

Specifically, hiringNormativeState maintains the co-
ordination model expressed by the commitments in Fig-
ure 9, where a the expectations they create are graphi-
cally represented as edges between principals. The com-
mitment meanings are as follows.

– Commitment c1. It encodes that evi is committed to
carry out the evaluation for the application by can-
didate i according to a predefined procedure. The
procedure, outlined in evaluate-candidateevi

, is equiv-
alent to the Evaluate Candidate process in Figure 1.
The sequence position-filledhi · msg-position-closedevi

,
describes that the evaluator informs candidate i that
the position is closed as soon as the position is as-
signed by hi. On the BPMN process, this is equivalent
to the Check Job Status activity and the consequent
message sending in case the position has already been
assigned, and it also models the capturing of signal
position filled sent by the hirer while this evaluator is
still processing an application. The rest of the condi-
tion, (screen-interviewevi . . . offer-rejectedevi

) encodes
all the possible branches of the execution of process
Evaluate Candidate, including the messages sent to
and received from other roles. It is important to note
the shape of the antecedent and of the consequent
conditions of c1, among which a temporal relation is
captured. Indeed, evi’s commitment is detached (and
hence the principal will have to bring about the eval-
uation process) only when a job position has been
posted, and a candidate has applied for it. In order
to model that evi is expected to evaluate candidate
i only after this has applied for the position, the an-
tecedent condition (i.e., post-jobhi ·applyi) occurs as a
prefix in the consequent condition. A similar pattern
is used also in the following commitments.

– Commitment c2. Evaluator evi takes also commit-
ment c2 towards candidate i to take into account the
application and to provide i with an answer for the

8 Matteo Baldoni et al.

hi

positionBA
applicationBA

hiringNormativeState
{c1, c2, c3, c4}

i

evi

Hirer Scenario Environment

link
link

use/observe

use/observe use/observe

use/observeuse/observe

use/observe

Fig. 6 The Hiring Process scenario implemented with business and coordination artifacts.

start

vacant
position

position
open

post-job

position
filled

update filled

position
abandoned

update
abandoned

Fig. 7 The lifecycle of business artifact positionBA.

application. Such a commitment has the same an-
tecedent condition of c1. The answer can either be
a message informing that the position has already
been closed, or a rejection notice, or even an offer for
the job. Also in this case, applyi is used in order to
make inform-outcomeevi

follow the satisfaction of the
antecedent condition.

– Commitment c3. This commitment is pretty interest-
ing from our point of view. It represents the candidate
i’s promise to answer either “yes” or “no” to an even-
tual offer made by evi. The BPMN in Figure 1 does
not specify the internal behavior of the candidate, so
an answer for the offer cannot be taken for granted.
Indeed, the candidate could never answer, and yet
the evaluator could not be able to detect this anoma-
lous situation and would remain stuck awaiting in-
definitely. In our opinion, this example highlights the
weaknesses of BPMN in modeling the coordination
of independent processes. Certainly, one could enrich
the evaluator’s process so as to wait a predefined time
interval for an answer. But this is just a way for han-
dling the exception. With commitments, instead, our
major concern is to stimulate the principals to act so

as to make the interaction progress. When candidate
i is offered the job, it is stimulated to answer either
“yes” or “no” due to the existence of commitment
c3. Any anomalous situations in which the candidate
does not answer is clearly detected by the violation
of c3. The evaluator process does not need to capture
this eventuality directly.

– Commitment c4. Finally, commitment c4 represents
the engagement of the hirer towards the evaluators,
and in particular describes the process carried out
by the hirer in Figure 1. The antecedent condition
expresses the start event of the process (i.e., post-
jobevi

) followed by two alternative events that enables
the hirer to complete the process. The first event is
acceptevi

, meaning that an evaluator has found a suit-
able candidate. The second event is timeout 3monthshi,
which stands for the complementary event to position-
filledevi

. In precedence logic it is not possible that
both event e and its complementary e occur along
the same run of execution. Therefore, after a pe-
riod of three months, when timeout 3monthshi oc-
curs, the position cannot be assigned anymore. The
consequent condition of c4 describes how the hirer
completes the process depending on what event has
satisfied the antecedent condition. In case of event
acceptevi

, hi assign the position and notify this to all
the evaluators possibly still running (position-filledevi).
Notably, this allows the evaluators still active to bring
about event msg-position-closedevi

so as to discharge
both commitments c1 and c2. In case the antecedent
has been satisfied by event timeout 3monthshi, in-
stead, the position is abandoned.

4 Implementation in the JaCaMo+ Platform

In the previous section we have provided a conceptual
architecture for setting up, on top of business artifacts,

Process Coordination with Business Artifacts and Multi-Agent Technologies 9

start

no-application
application
submitted

apply

application
rejected

position closed

application
assessed

screen-interview

rejection
notice

offer made

make offer

position
closed

offer accepted

response yes

offer rejected

response no

Fig. 8 The lifecycle of business artifact applicationBA.

hi evi i

c1 c2

c3c4

c1 : C(evi, hi, post-jobhi · applyi, post-jobhi · applyi · evaluate-candidateevi)

c2 : C(evi, i, post-jobhi · applyi, post-jobhi · applyi · inform-outcomeevi)

c3 : C(i, evi, make-offerevi , make-offerevi · (response-yesi ∨ response-noi))

c4 : C(hi, evi, post-jobhi · (acceptedevi
∨ timeout 3monthshi), post-jobhi · hiringhi)

Where:

evaluate-candidateevi ≡ position-filledhi ·msg-position-closedevi
∨

(screen-interviewevi · (msg-rejection-noticeevi
∨make-offerevi ·

(response-yesi · acceptedevi
∨ response-noi · offer-rejectedevi

)))

inform-outcomeevi ≡ (msg-position-closedevi
∨msg-rejection-noticeevi

∨make-offerevi)

hiringhi ≡ (acceptedevi
· position-filledhi) ∨ (timeout 3monthshi · position-abandonedhi)

Fig. 9 The set of commitments included in the normative layer for the Hiring Process scenario.

a form of objective coordination. In this section we dis-
cuss how such a conceptualization finds a practical im-
plementation by exploiting agent technology.

In general, we are prone to think of processes as pro-
cedures, and as such, we do not consider a process as
an autonomous entity since every action and decision is
already specified in the procedure itself. However, at a
closer look, we can recognize that a process, which en-
codes an algorithm aimed at achieving some objective,
is indeed autonomous. It has its own control flow, that is
only influenced by the data relevant for the completion
of the process itself. A process can therefore “select”
the data that are to be used to produce a result in the
sense that it implicitly “ignores” data that are not rel-
evant nor well-formed. A process “decides” which data
are relevant based on its internal state, represented by

its private variables, and operates in an environment
consisting of its inputs and outputs.

This characterization of a process closely resembles
that of agent [39], given by Artificial Intelligence (AI).
An agent is, by definition, autonomous and situated
within an environment. Here, agents are “situated” in
the sense that they perceive and manipulate the envi-
ronment in which operate – as well as processes “per-
ceive” and modify (relevant) data structures. Agents
are “autonomous” in the sense that they implement a
deliberative cycle, which gives them control of their in-
ternal state and behavior. Such a deliberative cycle nat-
urally emerges as the control flow of the process “hid-
den” within the agent.

As already pointed out in [1], the notion of agent
is an abstraction of that of process. This abstraction
is justified by the fact that it enables a further form

10 Matteo Baldoni et al.

of software modularization in which both agent (pro-
cess) and environment (data) are first-class elements of
the software design [36]. It is worth noticing that such
a modularization also recurs naturally in the concep-
tual architecture we have illustrated: the environment
is populated by (business and coordination) artifacts
that are shared by a number of principals. Thus, it is
straightforward to map our proposal into a multiagent
setting where principals are seen as agents.

4.1 Implementing the Hiring Process in JaCaMo+

In this paper we use the JaCaMo+ [3] platform for re-
alizing the coordination architecture we propose. Ja-
CaMo+ extends the well-known JaCaMo [10] platform
with the social commitments as primitive programming
elements. More precisely, JaCaMo is a conceptual model
and programming platform that integrates agents, envi-
ronments and organizations. It is built on top of Jason
[11] for programming agents, CArtAgO [29] for pro-
gramming environments, andMoise [22] for program-
ming organizations. A MAS in JaCaMo consists of an
agent organization, realized through Moise, organiz-
ing autonomous agents, programmed in Jason, working
in a shared, artifact-based environment, programmed
in CArtAgO.

For the purpose of this paper, it is sufficient to focus
on the Jason and CArtAgO components. A Jason agent
consists of a set of plans expressed as ECA-like rules
(Event-Condition-Actions). In particular, each agent has
a belief base, a set of ground (first-order) atomic formu-
las which represent the state of the world according to
the agent’s vision, and a plan library. Moreover, it is
possible to specify achievement (operator ‘!’) and test
(operator ‘?’) goals. A Jason plan is specified as:

triggering event : context← body

where the triggering event denotes the event the plan
handles (which can be either the addition or the dele-
tion of some belief or goal), the context specifies the
circumstances when the plan could be used, and the
body is the course of action that should be taken. In
JaCaMo+, the triggering event can be a state change
occurring in some active commitment.

CArtAgO is a possible realization of the A&A meta-
model [36], where the environment is modeled as a set of
computational resources, named artifacts. Artifacts can
be manipulated by agents through a set of predefined
operations made available by the artifacts themselves.
Moreover, artifacts expose some observable properties
that can be perceived by the agents, and that can trig-
ger agents’ plans. In particular, in JaCaMo+ the nor-

mative state, which contains the collection of the com-
mitments that can be created along the execution and
their states, is realized by means of a special class of
artifacts (i.e., CoordinationArtifact).

Using JaCaMo+ as reference model for the imple-
mentation1, we map the three principals’ processes (hi,
evi, and i) in Figure 6 onto Jason agents. Business ar-
tifacts positionBA and applicationBA and the normative
state are instead naturally mapped into CArtAgO ar-
tifacts. To simplify the implementation of the example,
we assume that a given candidate i is evaluated by a
dedicated evaluator evi and that the couple shares an
instance of applicationBA on which the two agents op-
erate. By exploiting the CArtAgO facility, the three ar-
tifacts are linked together, so the operations performed
by the agents on the positionBA and applicationBA ar-
tifacts have effect on the hiringNormativeState, too, al-
lowing the commitments to progress.

Implementing the Coordination Artifacts

The code snippet in Figure 10 sketches the implemen-
tation of the normative state for the Hiring Process.
The artifact is an extension of CoordinationArtifact
specifically provided by JaCaMo+ to support commit-
ments. It is worth noting that the code is declarative
in nature. The programmer, in fact, just specifies the
commitments that can be created during the interac-
tion (see method initCommitments in lines 7–22), and
then specifies the operations that are possible upon this
artifact (from line 25 on). In particular, antecedent and
consequent conditions of commitments are specified in
terms of Fact instances, and by using an extension of
CArtAgO LogicalExpression in order to include the
before operator of the precedent logic. Operations sim-
ply consists in the assertion of a specific Fact within
the normative state, this corresponds to the occurrence
of an event. Note that each operation is adorned with
a @LINK annotation, this indicates that the operation
is linked to some other operation on another artifact.
Thus, whenever the business artifact operation is in-
voked, the linked operation on the normative artifact
is invoked, too, enabling in this way the reporting of
relevant information from the the business artifacts to
the normative layer. Note that the progression of the
commitments as events occur is captured by the un-
derlying JaCaMo+ facilities (see line 5). This means
that the management of the commitment lifecycles is
not upon the programmer, making thus our implemen-

1 The code of the whole system can be downloaded
from https://sourceforge.net/p/twocomm/code-svn/HEAD/
tree/2COMMJaCaMoExamples/hiring/.

 https://sourceforge.net/p/twocomm/code-svn/HEAD/tree/2COMMJaCaMoExamples/hiring/
 https://sourceforge.net/p/twocomm/code-svn/HEAD/tree/2COMMJaCaMoExamples/hiring/

Process Coordination with Business Artifacts and Multi-Agent Technologies 11

1 public c lass Hir ingNormativeState extends C o o r d i n a t i o n A r t i f a c t {
2 . . .
3 public Hir ingNormativeState () {
4 super () ;
5 commitmentState = new AutomatedSocia lStateSingleThreaded (this) ;
6 }
7 public void initCommitments (RoleId h i r e r I d , RoleId eva luator Id , RoleId candidate Id) throws . . . {
8 L o g i c a l E x p r e s s i o n ant ;
9 L o g i c a l E x p r e s s i o n cons ;

10 /∗ . . . d e f i n i t i o n o f events o c c u r r i n g in antecedent and consequent o f commitments . . . ∗/
11 Fact postJob = new Fact (" postJob " , h i r e r I d . t o S t r i n g ()) ;
12 Fact p o s i t i o n F i l l e d = new Fact (" p o s i t i o n F i l l e d " , h i r e r I d . t o S t r i n g ()) ;
13 Fact apply = new Fact (" apply " , cand idate Id . t o S t r i n g ()) ;
14
15 /∗ . . . d e f i n i t i o n o f antecedent and consequent e x p r e s s i o n s . . . ∗/
16 ant = new CompositeExpression (. . .) ;
17 cons = new CompositeExpression (. . .) ;
18 /∗ . . . commitments c r e a t i o n . . . ∗/
19 Commitment c1 = new Commitment (eva luator Id , h i r e r I d , ant , cons) ;
20 createCommitment (c1) ;
21 . . .
22 }
23 /∗ . . . a r t i f a c t o p e r a t i o n s l i n k e d to (b u s i n e s s) a r t i f a c t s s t a t e changes . . . ∗/
24 @LINK
25 public void postJob (RoleId h i r e r I d) throws MissingOperandException {
26 a s s e r t F a c t (new Fact (" postJob " , h i r e r I d . t o S t r i n g ())) ;
27 }
28 @LINK
29 public void apply (RoleId candidate Id) throws MissingOperandException {
30 a s s e r t F a c t (new Fact (" apply " , cand idate Id . t o S t r i n g ())) ;
31 }
32 @LINK
33 public void s c r e e n I n t e r v i e w (RoleId e v a l u a t o r I d) throws MissingOperandException {
34 a s s e r t F a c t (new Fact (" s c r e e n I n t e r v i e w " , e v a l u a t o r I d . t o S t r i n g ())) ;
35 }
36 @LINK
37 public void makeOffer (RoleId e v a l u a t o r I d) throws MissingOperandException {
38 a s s e r t F a c t (new Fact (" makeOffer " , e v a l u a t o r I d . t o S t r i n g ())) ;
39 }
40 @LINK
41 public void u p d a t e F i l l e d (RoleId h i r e r I d) throws MissingOperandException {
42 a s s e r t F a c t (new Fact (" p o s i t i o n F i l l e d " , h i r e r I d . t o S t r i n g ())) ;
43 }
44 . . .
45 }

Fig. 10 The outline of the hiringNormativeState artifact implementation of Figure 6.

tation a practical and simple tool to be used for the
coordination of business processes.

Implementing the Agents

In order to implement the agents, it is possible to rely
on a set of predefined patterns by exploiting some prag-
matic rules. Telang et al. [35] studied the relationships
between goals and commitments, capturing different
ways in which the creation and evolution of the ones
impacts on the creation and evolution of the others.
The pragmatic rules include both rules from goals to
commitments, and rules from commitments to goals.

Among those described in [35], the main rules are
the following. The entice rule is used to create an in-
teraction: when agent x seeks for support in achieving
a goal p that it cannot obtain on its own, x makes an
“offer” to another agent y by creating the commitment
c : C(x, y, p, q). The intuition, here, is that y can achieve
p, i.e., it is capable of performing a procedure to make p

true, and it is interested in q which, on the other hand,

is under the control of x. We can think of this commit-
ment as a promise made by x to y that if y brings about
p then x will provide y with q.

The creation of commitment c, thus, stimulates a
form of cooperation between the two agents. The pro-
gression of such an interaction is driven by other prac-
tical rules. The deliver rule takes the point of view of
agent y. If y, observing commitment c, estimates that q

is an adequate achievement in exchange of the service p

it can provide x with, it will engage the commitment by
bringing about p. The deliver rule, thus, has the aim of
making the commitment progress from conditional to
detached, in this way the debtor agent x will be pushed
bring about q.

The discharge rule, instead, helps the debtor agent
selecting its next goals. The rule states that, if a com-
mitment c : C(x, y, p, q) is detached, then agent x has
to include q among its goals. In other terms, x is now
committed to bring about q lest the violation of com-
mitment c.

12 Matteo Baldoni et al.

1 +! post−job <− postJob [a r t i f a c t i d (positionBA)] .
2 +cc (hi , evi , post-job · (accepted ∨ timeout 3monthshi) , post-job · hiring , DETACHED) [a r t i f a c t i d (normativeState)]
3 : p o s i t i o n S t a t u s (POSITION OPEN)
4 <− updatePos i t ion [a r t i f a c t i d (positionBA)] .

Listing 1 Hirer hi.

1 +cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
2 : p o s i t i o n S t a t u s (POSITION OPEN)
3 <− s c r e e n I n t e r v i e w [a r t i f a c t i d (appl icat ionBA)] ;
4 // . . . Choice
5 ! o f f e r O r R e j e c t (Choice) .
6 +! o f f e r O r R e j e c t (Choice) : Choice == yes
7 <− makeOffer [a r t i f a c t i d (appl icat ionBA)] .
8 +! o f f e r O r R e j e c t (Choice) : Choice == no
9 <− r e j e c t i o n N o t i c e [a r t i f a c t i d (appl icat ionBA)] .

10 +responseYes (candidatei) [a r t i f a c t i d (normativeState)]
11 : cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
12 <− o f f e r A c c e p t e d [a r t i f a c t i d (appl icat ionBA)]
13 +responseNo (candidatei) [a r t i f a c t i d (normativeState)]
14 : cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
15 <− o f f e r R e j e c t e d [a r t i f a c t i d (appl icat ionBA)] .
16 +cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
17 : not p o s i t i o n S t a t u s (POSITION OPEN)
18 <− p o s i t i o n C l o s e d [a r t i f a c t i d (appl icat ionBA)] .

Listing 2 Evaluator evi.

1 +postJob (hi) [a r t i f a c t i d (normativeState)] <− apply [a r t i f a c t i d (appl icat ionBA)] .
2 +cc (candidatei , evi , make-offer , response-yes ∨ response-no , DETACHED)
3 <− // . . . Choice
4 ! r e s po n s e (Choice) .
5 +! r e sp o n s e (Choice) : Choice == yes
6 <− responseYes [a r t i f a c t i d (appl icat ionBA)] .
7 +! r e sp o n s e (Choice) : Choice == no
8 <− responseNo [a r t i f a c t i d (appl icat ionBA)] .

Listing 3 Candidate i.

A specification of the commitments involved in an
interaction is a means that helps programming the in-
volved agents. For instance, in the Hiring Process, the
designer of the evaluator process will use the entice rule
to offer the hirer process the service of candidate evalu-
ation provided that a job position is posted. In addition,
the designer will use the discharge rule to carry out the
evaluation when a position is actually posted. Similarly,
the designer of the hirer process will use the deliver rule
to exploit the evaluator’s offer.

Listing 1 shows the body of the hirer process. The
first rule, at line 1, means that when the hirer has the
goal of posting a job position, it performs operation
postJob on artifact positionBA. The second rule, at line
3, is instead originated following the discharge rule pat-
tern: the hirer, in fact, has to properly react as soon
as the commitment c4 gets detached, and hence hi up-
date the position status depending on the events that
have satisfied the antecedent by performing operation
updatePosition upon postJob.

The evaluator code in Listing 2 is a bit more so-
phisticated since it encompasses the whole evaluation
process. Also in this case, however, the discharge rule
pattern drives the implementation of such a process. In
the first rule, the evaluator reacts to the detachment of

commitment c1 by interviewing the candidate, this cor-
responds to operation screenInterview performed upon
business artifact applicationBA that is shared between
the candidate and the evaluator. After this operation,
the evaluator comes up with a Choice, either accept
the candidate or reject it. This choice will, thus, active
a proper behavior, and hence the corresponding opera-
tion on applicationBA, see the rules at lines 7 - 10. Rules
at lines 12 - 17 are, instead, used to react to a candi-
date’s answer, either “yes” or “no”, to a possible offer.
Accordingly, the evaluator performs an operation on ap-
plicationBA so as to progress in the evaluation process
and, then, discharge its commitment. The rule starting
at line 19 captures the situation in which the evaluator
is held to inform the candidate as soon as the position
gets filled. Interestingly, no specific rule is requested
for treating commitment c2 because whenever such a
commitment gets detached, the evaluator satisfies it by
satisfying c1. However, at a normative layer, commit-
ment c2 is fundamental to detect the misbehavior of the
evaluator towards the candidate.

Finally, Listing 3 sketches the pseudocode of a can-
didate, which applies for a position when a job is posted
(see operation apply performed upon applicationBA),

Process Coordination with Business Artifacts and Multi-Agent Technologies 13

and, then, reacts to the detachment of commitment c3
by answering either “yes” or “no” to an offer.

5 Conclusions

In this paper we have shown how business artifacts can
be turned into coordination means in their own right,
and that to this aim agent-based technology provides
an adequate support. Specifically, social commitments,
whose nature is to be “shared information” built on top
of observable behavior, provide a normative interpreta-
tion layer to the state changes occurring to business
artifacts.

Coordination in business applications is usually mod-
eled via choreographies (see e.g., the recent proposal in
[19]), even when processes and artifacts are addressed
in a declarative way. For instance, besides the already
cited BALSA methodology, which relies on event con-
dition action rules, the GSM model [23] is an attempt
to represent in a declarative way the artifact lifecycle.
Such a goal is considered so important that recently the
OMG has released the issue 1.1 of the document for the
specification of Case Management Model and Notation
(CMMN) [26], which is an extension and refinement of
GSM.

Comparing our proposal with the above approaches,
however, we can highlight many advantages, the first
and most relevant one residing in the role played by a
business artifact: in [9,23,26] a business artifact is just
a piece of data, or as pointed out in [25], the basis for
factorization of knowledge that enables business oper-
ations. In our proposal, business artifacts, through co-
ordination artifacts, become the media through which
interaction happens.

This idea has a software engineering solid founda-
tion. In his survey on Concurrent Object-Oriented Lan-
guages (COOLs), Philippsen [28] highlights the impor-
tance of a locality principle for class correctness, and
advocates that a way to achieve it is to realize a form
of coordination on the side of the callee. Namely, the co-
ordination is implemented in the class that is accessed
concurrently. Moreover, Philippsen advocates that de-
sirable properties of coordination code are isolation and
separability. Isolation means that the code for coordi-
nation is isolated from the code that implements class
functionality. Separability means that portion of the
code for the coordination can be refined while other
portions are reused. These two properties promote the
modularity and reuse of code. Our proposal falls en-
tirely in such a coordination model. The coordination
is in fact implemented solely inside the artifact itself
(i.e. the class called by the interacting parties). Con-
sequently, coordination correctness can be assessed lo-

cally. Related to this, our proposal induces a form of
objective coordination [27], where coordination is ad-
dressed outside the interacting agents. Objective coor-
dination enables a clear separation between the imple-
mentation of the business logic and of the coordination
logic. In our proposal, we meet this property by adding
coordination artifacts. In this view, data themselves be-
come a coordination media. Communication becomes
generative [13], in the sense that agents communicate
by generating data in the dataspace, and these data
are available to any agent having access to the datas-
pace. This vision is in contrast to the message passing
paradigm, at the basis of choreographies, where com-
munication is only enabled between processes sharing
the same channel.

Our proposal contributes also to research on MAS.
Works on coordination protocols from the research area
on MAS mainly focus on the sequence of messages that
can be exchanged between two communicating agents,
and disregard the information conveyed by these mes-
sages. Recent approaches, like HAPN [37] and BSPL
[34], have started to consider also the information di-
mension. HAPN is formally based on automata, whose
nodes represent states of the interaction and guarded
transitions between nodes represent the messages that
can be exchanged. A similar approach is followed by
BSPL, where the information flow is decomposed in a
number of “simple protocols”, each defining the schema
of the messages that can be exchanged together with
their parameters. BSPL protocols can be verified against
properties like liveness or safety.

These approaches, however, show weaknesses in in-
formation handling. In HAPN, the protocol (e.g. transi-
tion guards) can refer to information which is not car-
ried by the messages, but rather is maintained in an
external information system –not an integral part of
HAPN. This hinders interaction verification. BSPL, on
its side, assumes a distributed view of information, i.e.
each participant has its own knowledge base, which is
modified as the interaction progresses. The problem is
that each participant has just a local view of the infor-
mation lifecycle, and this does not allow agents to create
expectations about the behaviors of other participants
as a consequence of the messages it sends. The approach
we propose, by providing a comprehensive view that ac-
counts for all such dimensions as data, information, and
coordination overcomes these limitations.

This work can be extended along many lines of re-
search. First of all, an explicit normative layer paves
the way to formal verification. For instance, the notion
of computational accountability [6,5] is gaining momen-
tum, and it would be interesting to study how to sup-
port accountability by design inside information sys-

14 Matteo Baldoni et al.

tems, based on the proposal we have explained. Espe-
cially in those cases where a complex task can only be
accomplished by decomposing it into a number of con-
current processes (as in the hiring scenario discussed
in this paper), the notion of accountability gains im-
portance in modeling the mutual bindings among all
the participants. As discussed in [7], it is convenient
to adopt a goal-oriented perspective. Broadly speaking,
goals capture the tasks assigned to the agents. Account-
ability relationships among agents, instead, specify the
mutual expectations, and bind the activities of an agent
as functional to the achievement of some other agent’s
goal.

An issue that the proposal does not currently tackle
is data integration (see [24]): a coordination artifact
is directly affected by modifications that possibly occur
in many business artifacts. An alternative that deserves
investigation is to sit the coordination artifacts onto a
global view of the information in the system, that is
obtained through data integration techniques, applied
to the business artifacts seen as data sources. This ap-
proach would implement a separation of concerns be-
tween source integration and coordination, enhancing
the modularity of the system.

To conclude, we mention RAW-SYS [18], which en-
riches the prescriptive process model with data-aware-
ness. Although RAW-SYS looks similar to a coordina-
tion artifact, the objectives of the two models are quite
different. RAW-SYS is essentially a framework for ver-
ifying business processes taking into account both the
control- and the data-flows. A coordination artifact, in-
stead, aims at coordinating autonomous agents.

Acknowledgements The authors would like to thank Olivier
Boissier (Laboratoire Hubert Curien UMR CNRS 5516, Insti-
tut Henri Fayol, MINES Saint-Etienne, Saint-Etienne, France)
and Jomi Fred Hübner (Department of Automation and Sys-
tems Engineering, Federal University of Santa Catarina, Flo-
rianópolis, Brasil) for the interesting discussions, and for hav-
ing suppported the improvement of the draft. Special thanks
to Stefano Tedeschi who supported the implementation. This
work was partially supported by the Accountable Trustworthy
Organizations and Systems (AThOS) project, funded by Uni-
versità degli Studi di Torino and Compagnia di San Paolo (CSP
2014).

References

1. Baldoni, M., Baroglio, C., Calvanese, D., Micalizio, R.,
Montali, M.: Towards Data- and Norm-aware Multiagent
Systems. In: Post-Proc. of the 4th International Workshop
on Engineering Multi-Agent Systems, EMAS 2016, Revised
Selected and Invited Papers, no. 10093 in LNAI, pp. 22–38
(2016)

2. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.:
Objective coordination with business artifacts and social

engagements. In: Proc. of First Workshop on Business Pro-
cess Innovations with Artificial Intelligence, BPAI (2017)

3. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.:
Commitment-based Agent Interaction in JaCaMo+. Fun-
damenta Informaticae 157, 1–33 (2018)

4. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., Capuzzi-
mati, F.: Engineering commitment-based business proto-
cols with the 2CL methodology. JAAMAS 28(4), 519–
557 (2014). DOI 10.1007/s10458-013-9233-1. URL http:
//dx.doi.org/10.1007/s10458-013-9233-1

5. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R.,
Tedeschi, S.: Computational Accountability. In: F. Chesani,
P. Mello, M. Milano (eds.) Deep Understanding and Rea-
soning: A challenge for Next-generation Intelligent Agents,
URANIA 2016, vol. 1802, pp. 56–62. CEUR, Workshop
Proceedings, Genoa, Italy (2016)

6. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R.,
Tedeschi, S.: ADOPT JaCaMo: Accountability-driven orga-
nization programming technique for JaCaMo. In: PRIMA
2017 - 20th Int. Conf., Proceedings, LNCS, vol. 10621.
Springer (2017)

7. Baldoni, M., Baroglio, C., Micalizio, R.: Goal distribution
in business process models. In: G. Chiara, B. Magnini,
A. Passerini, P. Traverso (eds.) AI*IA 2018 - Advances in
Artificial Intelligence - XVIIth International Conference of
the Italian Association for Artificial Intelligence, Trento,
Italy, November 20-23, 2018, Proceedings, Lecture Notes
in Computer Science, vol. 11298, pp. 252–265. Springer
(2018). DOI 10.1007/978-3-030-03840-3\ 19. URL https:
//doi.org/10.1007/978-3-030-03840-3_19

8. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A.,
Wu, F.Y.: Artifact-centered operational modeling: Lessons
from customer engagements. IBM Systems Journal 46(4),
703–721 (2007)

9. Bhattacharya, K., Hull, R., Su, J.: A data-centric design
methodology for business processes, pp. 503–531. Hand-
book of Research on Business Process Modeling. IGI Pub-
lishing (2009)

10. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A.,
Santi, A.: Multi-agent oriented programming with Ja-
CaMo. Science of Computer Programming 78(6), 747 – 761
(2013). DOI http://dx.doi.org/10.1016/j.scico.2011.10.004.
URL http://www.sciencedirect.com/science/article/
pii/S016764231100181X

11. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming
Multi-Agent Systems in AgentSpeak Using Jason. John
Wiley & Sons (2007)

12. de Brito, M., Hübner, J.F., Boissier, O.: Situated artificial
institutions: stability, consistency, and flexibility in the reg-
ulation of agent societies. Autonomous Agents and Multi-
Agent Systems 32(2), 219–251 (2018)

13. Busi, N., Ciancarini, P., Gorrieri, R., Zavattaro, G.: Coor-
dination Models: A Guided Tour, pp. 6–24. Springer Berlin
Heidelberg (2001)

14. Calvanese, D., De Giacomo, G., Montali, M.: Foundations
of data-aware process analysis: a database theory perspec-
tive. In: R. Hull, W. Fan (eds.) Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS 2013, New York, NY,
USA - June 22 - 27, 2013, pp. 1–12. ACM (2013)

15. Castelfranchi, C.: Commitments: From individual inten-
tions to groups and organizations. In: V.R. Lesser,
L. Gasser (eds.) Proceedings of the 1st International Con-
ference on Multiagent Systems, June 12-14, 1995, San Fran-
cisco, California, USA, pp. 41–48. The MIT Press (1995)

16. Chopra, A.K.: Commitment Alignment: Semantics, Pat-
terns, and Decision Procedures for Distributed Computing.

http://dx.doi.org/10.1007/s10458-013-9233-1
http://dx.doi.org/10.1007/s10458-013-9233-1
https://doi.org/10.1007/978-3-030-03840-3_19
https://doi.org/10.1007/978-3-030-03840-3_19
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://www.sciencedirect.com/science/article/pii/S016764231100181X

Process Coordination with Business Artifacts and Multi-Agent Technologies 15

Ph.D. thesis, North Carolina State University, Raleigh, NC
(2009)

17. Cohn, D., Hull, R.: Business Artifacts: A Data-centric Ap-
proach to Modeling Business Operations and Processes.
IEEE Data Eng. Bull. 32(3), 3–9 (2009)

18. De Masellis, R., Di Francescomarino, C., Ghidini, C., Mon-
tali, M., Tessaris, S.: Add data into business process ver-
ification: Bridging the gap between theory and practice.
In: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., pp. 1091–1099 (2017)

19. Decker, G., Weske, M.: Interaction-centric modeling of pro-
cess choreographies. Information Systems 36(2), 292–312
(2011)

20. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A method-
ology for modeling and evolving cross-organizational busi-
ness processes. ACM Trans. Softw. Eng. Methodol. 19(2)
(2009). DOI 10.1145/1571629.1571632. URL http://doi.
acm.org/10.1145/1571629.1571632

21. Dumas, M.: On the convergence of data and process engi-
neering. In: Advances in Databases and Information Sys-
tems - 15th International Conference, ADBIS. Proceedings,
Lecture Notes in Computer Science, vol. 6909, pp. 19–26.
Springer (2011)

22. Hubner, J.F., Sichman, J.S., Boissier, O.: Developing or-
ganised multiagent systems using the MOISE+ model: Pro-
gramming issues at the system and agent levels. Int. J.
Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007). DOI
10.1504/IJAOSE.2007.016266. URL http://dx.doi.org/
10.1504/IJAOSE.2007.016266

23. Hull, R., Damaggio, E., De Masellis, R., Fournier, F.,
Gupta, M., III, F.F.T.H., Hobson, S., Linehan, M.H.,
Maradugu, S., Nigam, A., Sukaviriya, P.N., Vacuĺın, R.:
Business artifacts with guard-stage-milestone lifecycles:
managing artifact interactions with conditions and events.
In: Proceedings of the Fifth ACM International Conference
on Distributed Event-Based Systems, DEBS 2011, New
York, NY, USA, July 11-15, 2011, pp. 51–62 (2011)

24. Lenzerini, M.: Data integration: A theoretical perspective.
In: L. Popa, S. Abiteboul, P.G. Kolaitis (eds.) Proceed-
ings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 3-5,
Madison, Wisconsin, USA, pp. 233–246. ACM (2002)

25. Nigam, A., Caswell, N.S.: Business artifacts: An approach
to operational specification. IBM Systems Journal 42(3),
428 – 445 (2003)

26. (OMG), O.M.G.: Case management model and nota-
tion (cmmn), version 1.1. OMG Document Number
formal/2016-12-01 (http://www.omg.org/spec/CMMN/1.1/
PDF) (2006)

27. Omicini, A., Ossowski, S.: Objective versus subjective coor-
dination in the engineering of agent systems. In: AgentLink,
Lecture Notes in Computer Science, vol. 2586, pp. 179–202.
Springer (2003)

28. Philippsen, M.: A survey of concurrent object-oriented lan-
guages. Concurrency - Practice and Experience 12(10),
917–980 (2000)

29. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environ-
ment Programming in CArtAgO, pp. 259–288. Springer
US, Boston, MA (2009)

30. Schumacher, M.: Objective Coordination in Multi-agent
System Engineering: Design and Implementation. Springer-
Verlag, Berlin, Heidelberg (2001)

31. Silver, B.: BPMN Method and Style, with BPMN Imple-
menter’s Guide, second edn. Cody-Cassidy Press, Aptos,
CA, USA (2012)

32. Singh, M.P.: An ontology for commitments in multiagent
systems. Artificial Intelligence and Law 7(1), 97–113 (1999)

33. Singh, M.P.: Distributed Enactment of Multiagent Work-
flows: Temporal Logic for Web Service Composition. In:
The Second International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2003, July 14-
18, 2003, Melbourne, Victoria, Australia, Proceedings, pp.
907–914. ACM (2003)

34. Singh, M.P.: Information-driven interaction-oriented pro-
gramming: BSPL, the blindingly simple protocol language.
In: 10th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 491–498 (2011)

35. Telang, P.R., Yorke-Smith, N., Singh, M.P.: Relating Goal
and Commitment Semantics. In: Proc. of ProMAS, LNCS,
vol. 7212, pp. 22–37. Springer (2012)

36. Weyns, D., Omicini, A., Odell, J.: Environment as a first
class abstraction in multiagent systems. JAAMAS 14(1),
5–30 (2007)

37. Winikoff, M., Yadav, N., Padgham, L.: A new Hierarchical
Agent Protocol Notation. Autonomous Agents and Multi-
Agent Systems 32(1), 59–133 (2018)

38. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia
methodology for agent-oriented analysis and design. Au-
tonomous Agents and multi-agent systems 3(3), 285–312
(2000)

39. Wooldridge, M.J.: Introduction to multiagent systems. Wi-
ley (2002)

40. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Devel-
oping multiagent systems: The Gaia methodology. ACM
Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003). DOI
10.1145/958961.958963. URL http://doi.acm.org/10.
1145/958961.958963

http://doi.acm.org/10.1145/1571629.1571632
http://doi.acm.org/10.1145/1571629.1571632
http://dx.doi.org/10.1504/IJAOSE.2007.016266
http://dx.doi.org/10.1504/IJAOSE.2007.016266
http://www.omg.org/spec/CMMN/1.1/PDF
http://www.omg.org/spec/CMMN/1.1/PDF
http://doi.acm.org/10.1145/958961.958963
http://doi.acm.org/10.1145/958961.958963

