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Computer Emulation with Nonstationary Gaussian Processes∗
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Abstract. Gaussian process (GP) models are widely used to emulate propagation uncertainty in computer
experiments. GP emulation sits comfortably within an analytically tractable Bayesian framework.
Apart from propagating uncertainty of the input variables, a GP emulator trained on finitely many
runs of the experiment also offers error bars for response surface estimates at unseen input values.
This helps select future input values where the experiment should be run to minimize the uncertainty
in the response surface estimation. However, traditional GP emulators use stationary covariance
functions, which perform poorly and lead to suboptimal selection of future input points when the
response surface has sharp local features, such as a jump discontinuity or an isolated tall peak.
We propose an easily implemented nonstationary GP emulator, based on two stationary GPs, one
nested into the other, and demonstrate its superior ability in handling local features and selecting
future input points from the boundaries of such features.
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1. Introduction. Large scale computer simulation is widely used in modern scientific re-
search to investigate physical phenomena that are too expensive or impossible to replicate
directly [37, 12, 40]. Most simulators depend on a handful of tuning parameters and initial
conditions, referred to as the input arguments. Often interest focuses on quantifying how un-
certainty in the input arguments propagates through the simulator and produces a distribution
function over one or many outputs of interest. In this paper we consider only deterministic
simulators which, when run on the same input twice, will produce identical output values.

Quantifying uncertainty propagation will require several runs of a simulator at different
input points to learn the input-output map Y = f(x) accurately over the entire input space.
However, computer simulations are very time-consuming; thus running a simulator over a
dense grid of input points could be prohibitively expensive. On the other hand, running a
simulator over a sparse design chosen in advance may result in insufficient information in vast
parts of the input space. Consequently, there is considerable interest in estimating a slow
computer simulator with a fast statistical “emulator” [35, 23, 42]. The emulator is fitted to
input-output data {xt, f t}, where f t = {f(x1), . . . , f(xt)} is obtained from a few preliminary
runs of the simulator on design xt = {x1, . . . ,xt}, and the fitted model is then used for
prediction of f at input configurations not included in xt [35, 8].
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Figure 1. Plot of (true) function f(x) = sin(x) + 2 exp(−30x2), x ∈ [−2, 2] (dashed line). The black dots
represent observed data at 15 equally spaced values of x. Left: The solid line is the point predictor of f , or the
conditional mean, obtained from a stationary GP emulator fitted to the data. Shaded areas represent the error
bars. Right: Standard deviation evaluated at 200 predictive locations.

For Bayesian emulation, a common practice is to assign f a Gaussian process prior [35,
10, 38]. Gaussian process (GP) emulation is appealing due to its mathematical tractability
and ability to incorporate a wide range of smoothness assumptions. The conditional posterior
distribution of f at future inputs, given data {xt, f t} and process hyperparameters, remains
a GP distribution. The posterior mean of f(x) gives a statistical estimate or surrogate for
the simulator output at a new input x, whereas the posterior variance at f(x) quantifies how
well the simulator output has been learned at and around x. The latter is a particularly
attractive feature of GP emulation as it provides a model-based assessment of the emulator’s
accuracy and could be used to actively learn an optimal sequence of input points on which
the simulator needs to be run to minimize the uncertainty in posterior surface estimation.

Research on computer emulation has largely focused on stationary GP models [35, 23].
Stationary GPs regard the similarity between f(x) and f(x+ h) as a decaying function in h
only, known up to global smoothness and decay parameters. This is a strong prior assumption
that is not easily washed away by data and may lead to unrealistic emulation for many physical
phenomena. In practice, stationary GP emulators run into difficulties when the shape of f
has sharp localized features, e.g., abrupt discontinuities or tall peaks, and lead to poor point
predictions and selection of future inputs. A simple example is illustrated in the left panel
of Figure 1. Three aspects emerge: (i) the discovery of a tall peak in the middle has a
rippling effect and creates large oscillations of the predictive mean curve over a large part of
the input space, a phenomenon often called a “spline tension” effect in the predictor form;
(ii) prediction seems overconfident around the peak, where the error bars are too narrow to
capture the high variability around x = 0; instead, (iii) prediction intervals are quite large
where abrupt changes in the function values are not observed, and f is relatively more well-
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behaved. When the training points are equally spaced, the predictive standard deviation
given by the stationary GP is almost constant (right panel in Figure 1). Also, the predictive
standard deviation gets larger as the distance between the test point and the training data
increases. Therefore, a sequential design strategy based on uncertainty as provided by a
stationary GP does not naturally favor the exploitation of regions that are deemed important
based on the current estimate of f but rather a uniform design with selection of new points
in unexplored regions of the space (exploration).

Extrinsic diagnostics are often used to assess the adequacy of a GP emulator as surrogate
for the simulator [5, 4]. For example, one can examine the leave-one-out cross validated (CV)
standardized residuals to quantify the emulator’s uncertainty. Either too large or very small
CV standardized residuals (as compared to aN(0, 1) or a tν) at some validating points indicate
that the emulator is poorly estimating the predictive uncertainty. Outliers of this kind denote
a local fitting problem, which could be improved upon by adding new points in the vicinity.
Thus, CV examines the local behavior of f and flags those subregions where the simulator
has more variations. Therefore, CV leans toward an exploitation-driven sequential design.
Although CV is often combined with a stationary GP to better address sequential design [8],
it is difficult to reconcile the exploration-driven predictive variance of a stationary GP with the
exploitation-driven flagging of CV, and any combination is ad hoc. Also, the model remains
misspecified: a stationary model is used for a response which is often intrinsically not so [8].

Several approaches proposing nonstationary GP models can be found in the literature.
In the context of computer emulation, [17] proposes the Bayesian treed GP model (TGP),
which applies independent stationary GPs to subregions of the input space determined by
data-driven recursive partitioning parallel to the coordinate axes. Because of the parallel
partitioning, TGP adapts well to surfaces having rectangular local features (“axis-aligned”
nonstationarity). However, it may run into difficulties when the nature of the nonstationarity
is more general. Also, the sharing of information across partitions is limited and global; i.e.,
sharing does not have any local-global decay. TGP bears some similarity to the work in [24],
which adopts mixtures of GPs defined locally on a Voronoi tesselation. Voronoi tessellations
allow for complex partitioning of the input space and are not restricted to being axis-aligned,
but have the trade-off of increased complexity. [3] decomposes f into the sum of two stationary
GPs, the first capturing the smooth global trend and the second modelling local details. More
recently, [16] provides a computation-aware framework for computer experiments by means of
local GP approximation. That work modernizes the idea of local neighborhood kriging (e.g.,
[41]), which has seen a resurgence lately as a tool to simultaneously tackle large data sets
and nonstationary modelling. Other approaches in the context of GP regression include those
of [36, 38, 29, 11]. This literature makes it clear that the main challenges in nonstationary
GP modelling are to keep the number of hyperparameters under control, to facilitate efficient
learning from limited data while allowing for nonstationary features of various geometric
shapes, and, at the same time, not to enforce nonstationarity when not needed.

[7] proposes a new approach to the modelling of nonstationary processes through dimension
expansion. The method is superficially similar to that of image warping in [36], but here
the authors retain the locations in the geographical space and achieve greater flexibility by
adding extra dimensions. Specifically, the authors introduce extra dimensions for the observed
inputs x1, . . . ,xt, notated as Z1, . . . ,Zt with Zi ∈ Rd, d > 0, such that the field f(x,Z) is
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stationary with a variogram model γφ([xiZi] − [xj,Zj ]). The latent dimensions are learned
nonparametrically through optimization and from information contained within the data. The
number of augmented dimensions d is estimated through the use of a group lasso penalty to
avoid overfitting and to regularize the optimization problem. Once the Z1, . . . ,Zt are found,
a function g is built such that g(x) ≈ Z. The authors choose thin plate splines, one for each
dimension of Z. In many situations, however, it is unclear how many additional dimensions are
needed to accurately model the spatial process. In this paper, we build on [7] but assume that
the process f(x, Z) : (x, Z) ∈ Rp+1 is stationary; that is, we add only one latent dimension to
achieve a stationary process. None of the examples considered in this paper lead us to believe
that additional latent dimensions were needed, but it is possibly an idea worth exploring in
more complicated settings. The latent input, which is inferred from the data, can flag regions
of the input space characterized by abrupt changes of the function values and help correct for
inadequacies in the fit.

In addition to proposing an emulator which is adaptable to local features of many kinds
of shapes, we also want to use our emulator for online learning of an optimal sequence of
design points. To address this goal, it is absolutely crucial to have trustworthy judgement of
uncertainty of the current estimate of f to concentrate efforts only where needed. Sections
5 and 6 show results from various synthetic and real experiments where a sequential version
of our emulator outperforms similar sequential adaptations of existing GP emulators, when
performance is measured by the number of simulator runs needed to achieve a certain accuracy.
We remark that there is no attempt to emulate computer models or address sequential design
in [7].

The proposed method is also attractive from an operational point of view. In [7], the
choice of the mapping, learning of the latent inputs, and predictions are performed in isola-
tion, whereas our approach is set within a Bayesian framework which allows uncertainty to be
accurately reflected in resulting inferences. Both the latent input dimension and the response
function (of the original plus the latent inputs) are individually modelled as stationary GPs
controlled by a small number of hyperparameters that can be efficiently learned with sequen-
tial Monte Carlo (MC) computing, leveraging the conjugacy properties of GPs. Sequential
MC computing seamlessly blends with active learning of the sequential design, in contrast
to Markov chain sampling–based nonstationary GP emulators, whose sequential adaptation
requires rerunning the whole Markov chain sampler at every iteration.

The remainder of the paper is outlined as follows. Section 2 begins with an overview of
GP emulation and stationarity and then introduces our nonstationary GP emulator. Section
3 presents a fast sequential design algorithm for GP emulation. Section 4 examines the perfor-
mance of different emulators in quantifying uncertainty through a one-dimensional numerical
example. In section 5, we investigate sequential design via higher-dimensional examples. Sec-
tion 6 presents a real data application. Conclusions are reported in section 7.

2. Gaussian process emulators.

2.1. GP emulation and stationarity. The canonical emulator used for the design and
analysis of computer experiments is the GP. Specifically, for any finite collection of in-
puts (x1, . . . ,xt)

� the joint distribution of (f(x1), . . . , f(xt))
� is multivariate Gaussian with

mean E[f(x)] = μ(x) and positive definite covariance matrix Cov[f(x), f(x′)] = Cθ(x,x
′) =
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σ2Kθ(x,x
′) parameterized by θ. Note that we can write the GP emulator as

(2.1) f(x) = μ(x) + ε(x;θ),

where ε(x;θ) is a zero-mean GP with covariance function Cθ(·, ·). To simplify the notation,
we shall drop the θ subscript to the covariance and correlation functions hereafter.

The representation of f as a Gaussian vector makes the computation conceptually straight-
forward. The conditional distribution of f at a new input x̃, given data {x, f(x)}1:t ≡ {X,F }
and parameters θ, is also Gaussian with mean

(2.2) f̂(x̃) = E[f(x̃)|{x, f(x)}1:t,θ] = μ(x̃) + k�(x̃)K−1(F − μ(X))

and variance

(2.3) σ̂2(x̃) = V[f(x̃)|{x, f(x)}1:t,θ] = σ2{K(x̃, x̃)− k�(x̃)K−1k(x̃)},

where k�(x̃) is the t-vector whose ith component is K(x̃,xi), i = 1, . . . , t, and K is the t× t
correlation matrix with i, j element K(xi,xj).

The mean field μ(x) in (2.1) is typically given the linear model structure μ(x) = h(x)�β,
where β is a vector of unknown parameters. Although h(·) may be any function on the
input space X , we adopt a linear mean in the inputs, h(x) = [1, x1, . . . , xp]

�. This seems
to be a natural choice with little prior information about the input-output relationship and
helps to control overfitting. The correlation function is crucial in GP modelling; it is through
K(x,x′) that we express a belief about how similar f(x) and f(x′) should be if x and x′ were
close in X , and thereby we express a belief about the smoothness of f . Although different
formulations are possible [34], in this work we focus on the power family and use the separable
squared-exponential correlation function

(2.4) K(x,x′) = e−
∑p

l=1 φl(xl−x′
l)

2
.

Parameters {φl}pl=1 are inferred as part of our estimation procedure. Thus, the correlation is
a function only of x− x′ (stationarity) and a set of inverse range (unknown) parameters.

We embed our approach in a Bayesian framework and proceed by specifying prior dis-
tributions for the model parameters. Hereafter, we use an improper uniform prior β ∝ 1 as
conventional representation of weak prior information about β; an inverse-gamma (IG) prior
for the scale, σ2 ∼ IG(a/2, b/2); and a log-normal prior for the inverse range parameters,
φl ∼ log N(μφ, νφ), but other formulations are possible [17]. The posterior predictive distri-
bution of f at a new input x̃, conditioned on data {x, f(x)}1:t and correlation matrix K and
marginalized with respect to {β, σ2}, is a Student-t distribution with ν = t− p− 1 degrees of
freedom, mean

(2.5) f̂(x̃|{x, f(x)}1:t,K) = h(x̃)�β̃ + k�(x̃)K−1(F −Htβ̃),

and variance

(2.6) σ̂2(x̃|{x, f(x)}1:t,K) =
(b+Φ)[K(x̃, x̃)− k�(x̃)K−1k(x̃)]

a+ ν̂
,
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where H t is the t× (p+ 1) matrix which contains h(xi)
� in its rows and

Φ = F�K−1F − β̃
�
Ψ−1β̃,

β̃ = Ψ(H tK−1F ),

Ψ = (H tK−1H t)−1.

The availability in closed form of the marginalized predictive distribution is crucial for the
sequential design algorithm implementing our nonstationary GP emulator (section 3).

2.2. Nonstationary GP through latent input augmentation. In computer emulation, it
is not uncommon to observe functions that vary more quickly in some parts of the input space
than in others [17]. In response to concerns about the adequacy of the stationary assumption
for GP emulators, we build on the concept of spatial deformation [36] and model f(x) as

(2.7) f(x) = μ(x) + ε([x, Z];θ),

where μ(x) = h(x)�β and ε([x, Z];θ) is a zero-mean GP whose covariance function depends
smoothly on the p-dimensional (known) vector of inputs, x ∈ X = R

p a latent (unknown)
input Z which we infer from the data, and a handful of model parameters θ. Specifically, we
adopt an “augmented” squared-exponential correlation form for K = σ−2C:

(2.8) K[(xi, Zi), (xj , Zj)] = exp

{
−

p∑
l=1

φl(xil − xjl)
2 − φp+1(Zi − Zj)

2

}
.

Several alternative approaches to the modelling of nonstationary simulators can be found
in the literature. For example, [34] proposes gathering substantial information about the
simulator from experts and uses it to include a large number of regressors in the prior mean
field μ while retaining a stationary residual process. However, choosing the best set of re-
gressors is nontrivial, and there is no guarantee that the residual process is stationary. Also,
the authors suggest using rougher (but still stationary) correlation functions like the Matérn.
While this could lead to a better fit compared to smoother alternatives, it would require
specifying an extra smoothing parameter which is hard to infer statistically. Also, the sta-
tionary representation does not address the issue that stationary GP processes focus more
on exploration rather than exploitation of the input space, thus still leading to a suboptimal
sequential design strategy in the presence of local features. [1] let the smoothness parameter
of the Matérn model vary with the input x and estimated this and the remaining parameters
of the process via a likelihood-based approach. This approach is desirable for functions that
are smooth at most x but exhibit lack of smoothness along lower-dimensional sets. It is,
however, a rather demanding approach computationally. [29] generalizes Gibbs’ construction
[13] to obtain nonstationary versions of arbitrary isotropic covariance functions. While their
model provides a flexible and general framework, it is computationally demanding and not
feasible in high-dimensional spaces. The latent extension of the input space guarantees posi-
tive definiteness of the covariance between observations in the original space and enhances an
intuitive interpretation of the problem. When thinking of emulation of computer models that
are characterized by sharp local features, the extra input could tear apart regions of the input
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space that are separated by abrupt changes of the function values. The correlation between
points at and about a localized feature is weakened since the corresponding distance has been
stretched by the latent coordinate.

To this point we have not made any assumptions about the latent input Z. In the following,
we model Z as a continuous function of the inputs, Zi = g(xi) ∈ R, using a stationary GP:

g | θ ∼ GP(0, K̃), with(2.9)

K̃(xi,xj) = exp

{
−

p∑
l=1

φ̃l(xil − xjl)
2

}
,(2.10)

where the scale parameter is fixed to 1.
To summarize, our formulation relies on two stationary GPs, one for the function of

interest and one for the latent input,

(2.11) f |θ ∼ GP(μ,C) and g|θ ∼ GP(0, K̃),

where vector θ collects all the parameters of both the original and latent processes, θ =
[β, σ2, {φl}p+1

l=1 , {φ̃l}pl=1]. A stochastic process for f(x) is achieved by integrating out the
regression parameters β and Z, and is more adaptive than (2.1) to functions whose smoothness
varies with the inputs because it has the capacity to have several length scales. The extended
process f(x, Z) is stationary, while the marginal f(x) is not. For example, imagine a spatial
environmental process which is stationary given the location and elevation but may result
in a nonstationary field given only longitude and latitude. In this example, elevation is the
latent input and, once learnt, the expanded process becomes stationary. In general, the latent
dimension does not need to have a physical meaning, but it is only used to stretch the distance
between inputs characterized by abrupt changes in function values.

The predictive formulas for our latent input model are similar to (2.2) and (2.3). In
addition to averaging over the set of hyperparameters θ, it is also necessary to average over
the posterior distribution of the latent inputs to obtain

E[f(x̃)|{x, f(x)}1:t, x̃] =
∫
Z

∫
Θ
{μ(x̃) + k(x̃;θ, Z1:t, Z̃)�K(θ, Z1:t)

−1[F − μ(X)]}(2.12)

× p(θ, Z1:t|{x, f(x)}1:t) dθdZ
and

Var[f(x̃)|{x, f(x)}1:t, x̃] = Eθ,Z [Var(f(x̃)|{x, f(x)}1:t, x̃,θ, Z1:t)]

(2.13)

+ Varθ,Z [E(f(x̃)|{x, f(x)}1:t, x̃,θ, Z1:t)]

=

∫
Z

∫
Θ
σ2{K(x̃, x̃;θ, Z̃)− k(x̃;θ, Z1:t, Z̃)�K(θ, Z1:t)

−1k(x̃;θ, Z1:t, Z̃)}

× p(θ, Z1:t|{x, f(x)}1:t) dθdZ1:tdZ̃

=

∫
Z

∫
Θ
[{μ(x̃) + k(x̃;θ, Z1:t, Z̃)�K(θ, Z1:t)

−1[F − μ(X)]} − E{f(x̃)|{x, f(x)}1:t, x̃}]2

× p(θ, Z1:t|{x, f(x)}1:t) dθdZ1:tdZ̃,
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where p(θ, Z1:t|{x, f(x)}1:t) is the posterior joint density of the latent variables and hyper-
parameters; K(θ, Z1:t) is the correlation matrix of f , which depends on θ and Z1:t; and
k(x̃;θ, Z1:t, Z̃) is the vector of correlations of the response at the new input x̃ with the
responses in the design. This last quantity depends on Z̃ = g(x̃), the latent variable at
the new input. Since we do not observe g(x̃), we draw it from its predictive distribution
g(x̃) | g(x1:t), K̃ ∼ N(μ∗, K̃

∗
), where mean and variance are obtained via standard kriging

equations. In general, the predictive variance of the response for points in a test set (see (2.13))
depends on the value of the latent input at such points via k(x̃;θ, Z1:t, Z̃). The nonstationary
correlation structure thus allows predictive variances to change across the region even though
the marginal variance of the process is constant.

As mentioned above, [36] first pioneered an approach to the problem of nonstationarity
and anisotropy in environmental datasets through a nonlinear transformation of the sampling
space into a latent space with stationary and isotropic spatial structure. The mapping was
done via multidimensional scaling. Further, the authors used thin-plate splines to estimate
realizations of f at predictive locations while keeping the estimates of the latent process fixed
and without taking into account any measure of uncertainty about the mapping [38]. The
approach we propose in (2.11) is similar in flavor to the construction in [38], which built on [36]
and implemented spatial deformation via a GP prior. However, our construction differs from
that of [38], where K is chosen to correspond to a mixture of Gaussian correlation functions,
each of which depends on the Euclidean distance between the latent inputs Z only. Also,
those authors infer their deformation from an observation of a sample covariance matrix. The
idea of achieving nonstationarity by latent input extension can also be found in [31], which
presents two approaches for approximate Bayesian inference in GP regression models. The
first method relies on a discrete latent input and is implemented in a Markov chain Monte
Carlo (MCMC) sampling scheme, whereas the second method estimates a continuous latent
mapping by evidence maximization. We remark that [36, 38, 29, 31] are not attempting to
estimate a deterministic model or perform sequential design.

3. Implementation. We apply our adaptive nonstationary GP emulator to the sequential
design of computer experiments [42]. Sequential design is crucial to keeping designs small and
saving on expensive runs of the simulator while guaranteeing adequate learning of the input-
output map. In this paper, we adopt a technique known as particle learning (PL) to obtain a
quick update of the emulator after each sequential design iteration. An introduction to PL is
beyond the scope of this paper. The unfamiliar reader can refer to [25] for an introduction and
to [20] for its application to the online updating of GP regression models. The implementation
outlined here follows along the same lines of [20], but a few augmentations are required to
accommodate the extra latent variable and the coupling of the two GPs. These augmentations
will be specified below as appropriate.

PL provides a simulation-based approach to sequential Bayesian computation. Central

to PL is the identification of essential state vectors or particles, {S(i)
t }Ni=1, that are tracked

sequentially, with N denoting the total number of particles. These particles contain all the
sufficient information about the uncertainties given the data up to time t and are used to

approximate the posterior distribution, {S(i)
t }Ni=1 ∼ π(St | {x, f(x)}1:t). PL provides a method

for updating the particles from t to t+ 1.
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We start by identifying the quantities each particle includes. The sufficient information

necessarily depends upon [(x1, f(x1)), . . . , (xt, f(xt))];
1 thus {S(i)

t }Ni=1 = {(Z1:t,Kt, K̃t)
(i)},

with Z1:t ≡ (Z1, . . . , Zt)
�. The correlation functions have been indexed by t to stress their

dependence on data collected up to time t. Particles do not contain β or σ2, as these param-
eters can be marginalized out within our Bayesian construction [20]. As opposed to [20], in
our implementation each particle needs to store two additional quantities related to the latent
process, namely Z1:t and K̃t.

Suppose we start with (f(x1), . . . , f(xt0))
� obtained from t0 > p + 1 preliminary runs

of the simulator at design points (x1, . . . ,xt0)
�. The initial design can be chosen as, e.g., a

Latin hypercube design (LHD) or a uniform design. Particles are initialized at time t0 with
a sample of the unknown parameters from their prior distributions. In addition to the priors
in section 2.1, we also sample {φ̃l}pl=1 from φ̃l ∼ log N(mφ̃, vφ̃).

Suppose the sampler has been run t times and the current design is [x, f(x)]1:t, where
xt is the latest point included in the design and chosen at the previous iteration. Next, we

describe the backbone steps of PL that are used to update particles {S(i)
t }Ni=1 to {S(i)

t+1}Ni=1 at
iteration t+ 1:

• Resample: Generate index ζ ∼ Multinomial(w,N), with

w(i) =
π(f(xt)|S(i)

t−1)∑N
i=1 π(f(xt)|S(i)

t−1)
, i = 1, . . . , N,

where π(f(xt)|S(i)
t−1) = π(f(xt)|[x, f(x)]1:(t−1),K

(i)
t−1) denotes the probability of ob-

serving f(xt) under a Student-t distribution with ν = (t−1)−p−1 degrees of freedom
and mean and variance given by (2.5)–(2.6), respectively. Therefore, each particle is
resampled with probability proportional to the likelihood of observing xt.

• Input selection via active learning MacKay (ALM) heuristics [26]: After particles have
been resampled, the algorithm performs prediction at a set of candidate input configu-
rations based on the posterior predictive distribution. We first need to obtain an esti-
mate of the latent input g(x̃) at every candidate point via standard kriging equations
conditional on {x, f(x)}1:t and the latent process-specific parameters. Then, given the
latent input, we derive f̂(x̃|{x, f(x)}1:t), which predicts f at x̃, and σ̂2(x̃|{x, f(x)}1:t),
which quantifies the uncertainty at x̃. The cost is O(t) for computing the predictive
mean, and O(t2) for the predictive variance for each test case given K−1

t . Candidate
points can then be ordered based on their predictive variance, and the point with
largest uncertainty in predicted output is chosen as the next input, thus leading to
the new pair [xt+1, f(xt+1)]. This step is not specific to PL, but it is used here and
in [20] to use the surrogate model’s fit for an “informed” selection of new inputs, thus
combining PL with sequential design.

• Propagate: Update each resampled particle S
ζ(i)
t to S

(i)
t+1 to account for [xt+1, f(xt+1)],

via the following steps:

1To stress the dependence of f on both known and latent inputs within our approach, we should write
f(x, Z). In the remainder, however, we will omit Z and write f(x1), . . . , f(xt) to simplify the notation.
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– Construct the “propagated” correlation function of the latent GP. We build K̃
(i)
t+1

from K̃
(i)
t and k̃

(i)
t (xt+1) = K̃

(i)
(xt+1,xj), with j = 1, . . . , t:

K̃
(i)
t+1 =

⎡
⎣ K̃

(i)
t k̃

(i)
t (xt+1)

k̃
(i)�
t (xt+1) K̃(i)(xt+1,xt+1)

⎤
⎦ .

– Obtain the latent input at the newly included design point xt+1, g
(i)(xt+1). With

predictions carried out at the previous step (ALM heuristics), one just needs to
store the value of g(i)(xt+1) previously estimated, and no further computation is
involved.

– Construct the “propagated” correlation function of f . We build K
(i)
t+1 from K

(i)
t

and k
(i)
t (xt+1) = K(i)(xt+1,xj), j = 1, . . . , t, as

K
(i)
t+1 =

[
K

(i)
t k

(i)
t (xt+1)

k
(i)�
t (xt+1) K(i)(xt+1,xt+1)

]
.

Of these three substeps, the last corresponds to the propagate step described in [20].
The first two substeps are specific to our implementation and are needed to propagate
the latent process as well as f .

• Rejuvenate: The inverse range parameters and the latent input could be determinis-

tically propagated by copying them from S
ζ(i)
t to S

(i)
t+1 since they do not change in t.

Although this strategy is fast, it could lead to particle depletion. To avoid degener-
acy in the path space caused by successive resampling steps, we apply MCMC moves
(O((t+ 1)3)) to the particles [14, 33], and update all parameters [{φl}p+1

l=1 , {φ̃l}pl=1,Z1:t]
via elliptical slice sampling [27]. Again, the difference with [20] in this “rejuvenate”
step is related to the additional updates required for the latent process-specific param-
eters and extra coordinate. Given the updated set of parameters, we need to rebuild
the correlation matrices for f and the latent process, with complexities (p+1)(t+1)2

and p(t + 1)2, respectively, and find their Cholesky decompositions, with complexity
(t+ 1)3.

This sequence of steps is iterated until some prespecified stopping criterion is met, e.g., the
largest predictive variance falls below a certain threshold, or a total number, T , of points has
been included in the design. We remark that all but the resampling step can be performed in
parallel across particles; thus one can benefit from multicore or other distributed computing
structures to speed up the computation.

Each particle returns an estimate of predictive mean surface, f̂ (i), and predictive standard
deviation, σ̂(i). Likely, some of these particles will provide higher fidelity surfaces than others.
We take the average of the pointwise predictive distribution for each of the particles, the
posterior mean predictive curve, as our prediction of f at new inputs,

(3.1) f̂ = E(f |S(i)) =
1

N

N∑
i=1

f̂ (i),
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whereas the estimate for the predictive standard deviation is obtained as

(3.2)
√
σ̂2 = E

({σ̂(i)}Ni=1

)
+ Var

({f̂ (i)}Ni=1

)
,

where expressions for f̂ (i) and σ̂2
(i)

are given by (2.5) and (2.6), respectively. In order for
sequential design to produce an optimal sequence of points, it is necessary to have a trust-
worthy judgement of uncertainty; that is, we need to have faith in the model-based estimate
of σ̂2(x̃|{x, f(x)}1:t), which cannot be either underestimated or overestimated. Simulation
experiments (section 4) show that σ̂2 can be poorly estimated by a stationary GP when f
presents local features, thus requiring extrinsic diagnostics (e.g., examination of standardized
residuals) to help towards the selection of future inputs [8]. To avoid any ad hoc procedures,
it is necessary to rely on an adaptive emulator that can properly represent the simulator. In
section 4, we compare a stationary GP to our adaptive emulator in assessing uncertainty in
presence of local features.

To conclude this section, we remark that several alternative criteria for sequentially select-
ing new input points can be found in the literature. For instance, [22] proposes an expected
improvement criterion to estimate the global minimum of a computer simulator via the max-
imum likelihood estimator for the emulator parameters. The ALM method that we adopt
here falls into the class of “active learning” criteria, which also includes active learning Cohn
(ALC) [9]. In general, ALM could be suboptimal if the response surface is heteroscedastic,
and one could select points in regions of higher amplitude (or noise) and not necessarily where
sharp local features are. However, we showed in section 2.2 that our model accommodates
input-dependent predictive variance. [39] compared ALM and ALC and observed that ALC
often performs better than ALM. For example, the ALM criterion embedded into a station-
ary GP emulator favors the selection of new points along the boundary of the input space in
that the predictive variance is largest beyond the points which are already in the design [26].
However, the ALC criterion is more intensive to implement, therefore ALM is often preferred
in practice.

4. Case studies.

4.1. Learning local features. We considered a spatially inhomogeneous smooth function:

(4.1) f(x) = sin(x) + 2 exp(−30x2),

which was evaluated at 15 equally spaced points in Ω = [−2, 2]. For PL, we used N =
1000 particles initialized at time t0 = 4 with a randomly selected subset of size 4 of the
original 15 points. Each particle contained an estimate of the model parameters, which were
initialized by sampling from their prior distributions. {φ1, φ2} and φ̃1 were assigned log-
normal prior distributions, and 0.5 and 0.25 were chosen as the prior mean and prior variance
of the corresponding normal distribution on {log φ1, log φ2, log φ̃1}. Also, we chose a weakly
informative prior for σ2, σ2 ∼ IG(2, 1), but flat priors could be used, and particularly the
reference prior [6] would retain conjugacy.

Figure 2 shows the posterior mean predictive curve together with error bars computed
as f̂ ± 2

√
σ̂2. We also show results obtained with Bayesian TGP [17] and composite GP

(CGP) [3]. To implement TGP, we used R package TGP available from CRAN [15]. Following
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Figure 2. Comparison between stationary GP (first panel), nonstationary GP via latent input augmentation
(second panel), TGP (third panel), and CGP (fourth panel). The dashed line corresponds to the true function
(4.1), the solid black line is the posterior mean predictive curve, and grey areas denote the error bars. Estimates
(and rmse) are obtained at 200 equally spaced test points.

a referee’s remark, we modified the default specifications to allow a split when both leaves
have two points only. The limitations resulting from fitting a stationary GP to function (4.1)
were outlined in section 1. In comparison, both our emulator and CGP (panels 2 and 3 in
Figure 2) give significantly improved performance; i.e., the spline tension effect is eliminated
or strongly attenuated. TGP partitions the input space into three regions. The fit is very
good in the first and third partition, but the spline tension effect with large error bars remains
at and about the peak. This happens because TGP fits a stationary GP in each partition,
and the discovery of the central peak creates the same spline tension effect one observes with
a stationary GP emulator. The error bars obtained with our nonstationary GP and CGP are
more consistent with the local variability of the underlying surface. In terms of root mean
squared error (rmse), our emulator improves the accuracy of TGP and CPG by 25% and 40%,
respectively. For illustrative purposes, a plot of the estimated g function obtained with our
emulator is reported in Web Appendix A (Figure S1) (100151 01.pdf [local/web 1.45MB]).

4.2. Quantifying the emulator’s uncertainty. The simulator f is typically expected to
be within two or three standard deviations from the predictive mean f̂ [4]. While an isolated
outlier might be ignored, several large standardized residuals, e.g., more than 1% or 5% of
the total number of validating points, may denote a problem to be further investigated. For
example, large standardized residuals systematically observed at and around a particular input
value suggest that the emulator is not learning the local behavior of the process [8]. Further,
they indicate that the emulator is underestimating the predictive uncertainty. Ultimately,
one wants to acquire an accurate knowledge of f with as few simulator runs as possible.
The emulator can be used to quickly identify those regions of the input space where the
simulator exhibits more variations, thus helping to determine new input configurations where
the simulator should be run. However, this goal can be achieved only if the emulator’s estimate
of uncertainty is trustworthy. A sequential design strategy based on an unreliable estimate of
uncertainty will otherwise lead to a suboptimal selection of input points.

Here we examine how model-based evaluations (Figure 2 and the first row in Figure 3)
combine with extrinsic diagnostics (second row in Figure 3). For extrinsic diagnostics, we
examine the leave-one-out CV standardized residuals. According to the exploration-driven

http://epubs.siam.org/doi/suppl/10.1137/141001512/suppl_file/100151_01.pdf
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Figure 3. Estimated standard deviation at 200 predictive locations (top panels) and leave-one-out CV
standardized residuals (bottom panels) for the peak function (4.1): comparison between stationary GP (st-GP),
nonstationary GP via latent input (nst-GP), TGP, and CGP. Top panels also report the maximum estimate
of predictive standard deviation.

predictive standard deviation of a stationary GP, one is essentially equally likely to locate the
new point anywhere in [−2, 2] (top left panel in Figure 3). Instead, CV captures well the misfit
around 0 (exploitation-driven CV). Thus, model-based evaluations and extrinsic diagnostics
are inconsistent, and the latter shows that uncertainty is being underestimated around the
peak. Model-based evaluations and extrinsic diagnostics also fail to reconcile with CGP (top
and bottom right panels in Figure 3), with the predictive standard deviation suggesting that
one should choose the next input around the peak (x = 0), and CV suggesting that one should
locate it at either boundary of the input space (x = −2 or x = 2). As for TGP, the maximum
a posteriori tree corresponds to three partitions, and as a result, one obtains in the central
region the same fit of a stationary GP (compare the third plot in the top row of Figure 3 to
the top left plot). TGP definitely restricts the sampling region of the next most suitable point
as compared to the stationary emulator, but all points remain almost uniformly likely to be
selected within the central partition. Both model-based evaluations and CV for our emulator
(nst-GP) identify that the next point is needed around x = 0.

In general, it is not clear how to reconcile model-based and extrinsic diagnostics whenever
these lead to different evaluations. In particular, it is not obvious in what measure to favor
the exploration-driven predictive standard deviation over the exploitation-driven CV. An
emulator whose model-based evaluations reconcile with extrinsic diagnostics is preferred, in
that it automatically learns to create a good balance between exploration and exploitation,
and one does not have to resort to ad hoc combinations. Our emulator seems to achieve this
balance adequately.

5. High-dimensional examples and sequential design.
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Figure 4. True functions for the two-dimensional numerical examples and initial 40 observation LHD
(black points) used to train the emulators.

5.1. Two-dimensional functions with local features. In this section, we examine several
test functions possessing nonstationary features (Figure 4). Most of these surfaces are con-
tinuous, whereas the last two examples are of surfaces with discontinuities. The first function
(wavy) fluctuates rapidly when x1 or x2 is small, but gradually becomes smooth as x1 and
x2 increase toward 1. The second function appears in [21]. The fifth function (“building”)
is naturally suited to TGP because of the axis-aligned nonstationarity. To shorten our pre-
sentation, we show here results obtained on two continuous (wavy and with four structures)
and one discontinuous (well) functions, and defer results on the remaining examples to Web
Appendix B (100151 01.pdf [local/web 1.45MB]).

We first compare the performance of the emulators when trained on a common and fixed set
of input points (no sequential design). For this purpose, we use a 40 observation LHD (black
points in Figure 4), which allows the emulators to gather knowledge on the overall shape of f
because of its “space-filling” nature. As an alternative to LHD, one could also start with 40
random draws from the uniform distribution over the hypercube or, more generally, any other
space-filling design. Figure 5 shows the posterior predictive mean surface, f̂ , and the predictive
standard deviation, σ̂, for wavy (first and second rows), four-structure (third and fourth rows),
and well (fifth and sixth rows) functions. TGP’s recursive rectangular partitioning of the
input space challenges the learning of the wavy function (one can notice a ridge at x1 = 0.5).
Our emulator and CGP’s maps in predictive standard deviations show higher uncertainty for
small values of x1 and x2, thus calling for more points in the third quadrant of the space. No
significant differences among emulators emerge on the four-structure function. As for the well
function, our emulator is learning the geometry, as shown by a distinctive circular pattern

http://epubs.siam.org/doi/suppl/10.1137/141001512/suppl_file/100151_01.pdf
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Figure 5. Comparison between stationary GP (st-GP), nonstationary GP via latent input augmentation
(nst-GP), TGP, and CGP on the two-dimensional wavy, four-structure, and well functions. The emulators
are fit to a common design corresponding to a 40 LHD (black points). First, third, and fifth rows: posterior
mean predictive surface, f̂ , and rmse. Second, fourth, and sixth rows: predictive standard deviation, σ̂, and
maximum predictive standard deviation (max psd). The quality of the prediction is assessed at a collection of
900 points, i.e., an expanded grid of 30 equally spaced points along each coordinate axes.
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in predictive standard deviation which is not traceable in the map produced by the other
emulators.

Next, we address the issue of sequential design and assess whether the emulators can
correct for inadequacies in the fit. In other terms, we want to examine whether the emulators
can learn about, and thus concentrate exploration in, the most interesting or complicated
regions of the input space. Therefore, we let the emulators select 20 additional points (60
for four-structure and well) sequentially based on their model-based estimate of uncertainty
(ALM). The resulting final designs will, therefore, be different across emulators.

Figure 6 shows f̂ and σ̂ for wavy, four-structure, and well functions. For wavy and well
functions, we observe that the predictive standard deviation maps obtained with our emulator
inform us about the shape of the features, thus favoring the sampling of new points at and
about them. Therefore, our emulator strikes a good balance between exploration (initial LHD)
and exploitation (newly selected points). This behavior is not necessarily observed with the
other emulators across different functions. For example, TGP and CGP sample more points
where the wavy function fluctuates rapidly, but no particular sampling pattern appears on
the well function. TGP’s selection is driven by the partitioning scheme in that the predictive
standard deviation is generally higher at the edges between consecutive partitions. Thus, TGP
seems to concentrate in learning the partition rather than the local feature. No particular
pattern emerges, however, across emulators on the four-structure function.

For a more quantitative numerical comparison among emulators, we calculated the rmse
of predictive means to the truth on a random LHD of size 500. This was repeated 10 times,
each with new LHD training (size 40, as above) and test sets. Figure 7 shows the progression
of the rmse with error bars as additional inputs are being selected. Our emulator outperforms
the others on wavy and well functions, but CGP is best on the four-structure function. This
function is a “two-frequency” truth in that it has two global features, one that varies smoothly
and one that has finer order variations. Therefore, it is an ideal example for CGP but not for
our emulator, which locally behaves likes a stationary GP.

To conclude, our emulator tends to concentrate the selection of new points in interesting
areas of the input space. From a comparison of several different numerical examples here and
in Web Appendix B (100151 01.pdf [local/web 1.45MB]), we can conclude that no emulator
is consistently the best, and the performance somehow depends on the characteristics of the
function examined. Some patterns of preference emerge, though. In particular, it appears
that our emulator is particularly suited to functions that change rapidly in the input space or
present discontinuities. It performs as well as TGP on functions with axis-aligned nonstation-
arity (building), and early on, with fewer data points to train on, our emulator does in fact a
better job of identifying feature localization. Also, it has the advantage over TGP of adapting
better to functions whose nonstationarity is more general (wavy and well). On functions that
are smoother or have two frequencies, CGP appears to be preferred. It is possible that a
combination of ours and CGP’s modelling assumptions and methods will perhaps be the most
ideal route for real applications.

5.2. Six-dimensional examples. We consider two six-dimensional examples, which are an
extension of the two-dimensional building and well functions. The six-dimensional building

http://epubs.siam.org/doi/suppl/10.1137/141001512/suppl_file/100151_01.pdf
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Figure 6. Comparison between stationary GP (st-GP), nonstationary GP via latent input augmentation
(nst-GP), TGP, and CGP on the two-dimensional wavy function at T = 60, and on the four-structure and well
functions at T = 100. Black points: initial 40 LHD (common to all emulators). Blue points: additional points
selected via ALM. First, third, and fifth rows: posterior mean predictive surface, f̂ , and rmse. Second, fourth,
and sixth rows: predictive standard deviation, σ̂, and maximum predictive standard deviation (max psd). The
quality of the prediction is assessed at a collection of 900 points, i.e., an expanded grid of 30 equally spaced
points along each coordinate axis.
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Figure 7. Progression of the rmse as additional input points are being selected for the two-dimensional
functions with error bars.
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Figure 8. Comparison among stationary GP (stGP), nonstationary GP via latent input augmentation
(nstGP), TGP, and CGP in terms of progression of the rmse as additional input points are being selected. Left:
six-dimensional building function (5.1). Center: six-dimensional well (5.2). Right: LGBB CFD experiment
(see section 6).

has true function

(5.1) f(x1, x2, x3, x4, x5, x6) =

{
e
∑6

i=1(
1
i )

2
xi if x1, x2, x3, x4, x5, x6 > 0.25,

0 otherwise

on the hypercube X = [0, 1]6. The six-dimensional well has true function

(5.2) f(x1, . . . , x6) =

{
1 if

∑4
i=1(xi − 0.5)2 > 0.025 and

∑4
i=1(xi − 0.5)2 < 0.25,

0 otherwise

on the hypercube X = [0, 1]6. Therefore, f in (5.2) is constant in x5 and x6.
All emulators are trained on an identical 120-observation LHD. Emulators then select

80 additional points from a 1000-candidate LHD according to ALM. This is repeated five
times, each with new LHD training and test sets. Similar to the two-dimensional examples,
our emulator outperforms the others in terms of reduction of rmse (left and central panels
in Figure 8). Therefore, inactive covariates adding noise to the process, such as x5 and x6
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for function (5.2), do not affect the performance of our emulator. Additional summaries
are reported in Web Appendix C of the Supplementary Materials (100151 01.pdf [local/web
1.45MB]).

6. LGBB CFD experiment. This section presents an application to a computational fluid
dynamics (CFD) simulator of a proposed reusable NASA rocket booster vehicle, the Langley
glide-back booster (LGBB). The interest is in learning about the lift force as a function of
the speed of the vehicle at reentry (measured by Mach number), the angle of attack (the
alpha angle), and the sideslip angle (the beta angle). [17] remarks that the sideslip angle is
quantized in the experiments, so it is run only at six particular levels. Here, we examine the
lift response as a function of Mach and alpha with the sideslip angle fixed at zero. See [17] for
more details on the study. The CFD simulation involved an iterative integration of systems
of inviscid Euler equations, each run taking 5–20 hours on a high-end workstation available
to the scientists [18].

The lift response hypersurface indeed exhibits quite a bit of heterogeneity and local fea-
tures. It is smooth over vast parts of the input space, but has an interesting ridge-like structure
near the Mach = 1 hyperplane and a series of wrinkles along the angle of attack (refer to Web
Appendix D of the Supplementary Materials (100151 01.pdf [local/web 1.45MB]) for a plot
of lift as function of Mach and alpha). The ridge in response at Mach = 1 separates subsonic
flows and supersonic flows.

We obtain an interpolation onto a 30× 30 grid over Mach and alpha, and use the interpo-
lated lift as our truth. All emulators are trained on a fixed and common initial design given
by 20 randomly selected points from a 30 × 30 grid (Mach ∈ [0, 6], alpha ∈ [−5, 30]), then
select 80 additional points via ALM. Figure 9 shows a slice of the posterior mean predictive
surface as a function of Mach and alpha. The distinction between subsonic and supersonic
flows is well captured by all nonstationary emulators, which tend to select new points at small
Mach number, and our emulator and CGP do so particularly for large alpha. A stationary
GP focuses mostly on a uniform exploration of the space and will require ad hoc extrinsic
diagnostics to focus around the ridge.

We run ten replicates randomizing over the initial designs (20 points randomly selected
from the original dataset) and candidate sets (400 points randomly selected from the original
dataset at each replicate). The third panel in Figure 8 shows the progression of rmse with
error bars. Our emulator performs better than TGP on a surface that favors the latter because
of the axis-aligned local feature, and improves the accuracy over stationary GP and CGP at
T = 100.

7. Discussion. In this work we describe a nonstationary GP model to be used as an em-
ulator in the sequential design of computer experiments. Our modelling approach is a hybrid
between, and extension of, the latent variable modelling of [7] and sequential MC modelling
of stationary GPs of [20] to nonstationary GP emulation. To accommodate sequential design,
we rely on active learning heuristics [39]. The numerical examples show that the extra flex-
ibility introduced by the latent input greatly improves predictions over a stationary GP fit.
In particular, the proposed methodology provides more reliable, model-based evaluations, as
opposed to extraneous explorations done with stationary GPs, thus producing better designs.
Further, it adapts well to both cases of axis-aligned nonstationarity and in situations where

http://epubs.siam.org/doi/suppl/10.1137/141001512/suppl_file/100151_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/141001512/suppl_file/100151_01.pdf
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Figure 9. Comparison between stationary GP (st-GP), nonstationary GP via latent input augmentation
(nst-GP), TGP, and CGP on the LGBB experiment with lift response as a function of Mach (speed) and alpha
(angle of attack) with beta (sideslip angle) fixed at 0. Black points: 20 points used as initial design (common to
all emulators). Blue points: 80 additional points selected via ALM. Top row: posterior mean predictive surface,
f̂ , and rmse. Bottom row: predictive standard deviation, σ̂, and maximum predictive standard deviation (max
psd). The quality of the prediction is assessed at a collection of 900 points, i.e., an expanded grid of 30 equally
spaced points along each coordinate axis.

the nonstationarity is more general. The methodology presented in this paper is applied to
single-output codes; that is, Y = f(x) is a scalar. The approach could be applied to high-
dimensional computer models by emulating each output individually, but at the expense of
potentially losing important information about correlations between outputs. The emulation
of multioutput computer models via, e.g., a q-dimensional GP emulator is an interesting topic
to be investigated in future research. Although the model was developed for the analysis of
computer experiments, it also has a wide range of uses as a simple and efficient method for
nonstationary modelling in the analysis of social, biological, and ecological data collected over
spatial domains. The extension to nonparametric regression is straightforward [38, 32, 24, 30].

We conclude this section with remarks on some important aspects for computer emulation.
To run all the examples included in this paper, we added a nugget α to the diagonal of the
correlation functions for f and g. Many authors do not include a nugget term, on the grounds
that computer codes are deterministic. In fact, the nugget introduces a measurement error
and assigns nonzero uncertainty to the design data. However, it is not uncommon practice to
include a nugget to enhance the numerical stability in factorizing covariance matrices [17, 2].
Although very small, α can have a nonnegligible impact on the estimates. For example, it
compromises interpolation of the stationary GP on the Menhir function (Figure S3 in Web
Appendix B (100151 01.pdf [local/web 1.45MB])). However, the nugget did not seem to

http://epubs.siam.org/doi/suppl/10.1137/141001512/suppl_file/100151_01.pdf
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significantly affect the estimates of our nonstationary emulator. As an alternative to fixing
the nugget to an arbitrary small value, recent literature [19] shows via empirical examples
that estimating the (nonzero) nugget can improve the fit of stationary GP emulators (e.g.,
yielding better predictive accuracy and coverage). Finally, methods from image processing,
such as curvelets or compressed sensing, are worth exploring as an alternative to GP models
whenever the simulator output presents discontinuities. In particular, compressed sensing has
been successfully employed in higher-dimensional settings; see, for example, [28].
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[6] J. Berger, V. De Oliveira, and B. Sansó, Objective Bayesian analysis of spatially correlated data, J.

Amer. Statist. Assoc., 96 (2001), pp. 1361–1374.
[7] L. Bornn, G. Shaddick, and J. V. Zidek, Modeling nonstationary processes through dimension expan-

sion, J. Amer. Statist. Assoc., 107 (2012), pp. 281–289.
[8] D. Busby, Hierarchical adaptive experimental design for Gaussian process emulators, Reliab. Eng. System

Safety, 94 (2009), pp. 1183–1193.
[9] D. A. Cohn, Neural network exploration using optimal experiment design, Neural Networks, 9 (1996),

pp. 1071–1083.
[10] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker, Bayesian prediction of deterministic func-

tions, with applications to the design and analysis of computer experiments, J. Amer. Statist. Assoc.,
86 (1991), pp. 953–963.

[11] A. Datta, S. Banerjee, A. O. Finley, and A. E. Gelfand, Hierarchical Nearest-Neighbor Gaussian
Process Models for Large Geostatistical Datasets, technical report, University of Minnesota, Min-
neapolis, MN, 2014.

[12] Y. Fan, I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, Numerical simulations and observations
of surface wave fields under an extreme tropical cyclone, J. Phys. Oceanogr., 39 (2009), pp. 2097–2116.

[13] M. N. Gibbs, Bayesian Gaussian Processes for Classification and Regression, Ph.D. thesis, Inferential
Sciences Group of the Cavendish Laboratory, University of Cambridge, UK, 1997.

[14] W. R. Gilks and C. Berzuini, Following a moving target: Monte Carlo inference for dynamic Bayesian
models, J. Roy. Statist. Soc. Ser. B, 63 (2001), pp. 127–146.

[15] R. B. Gramacy, tgp: An R package for Bayesian nonstationary, semiparametric nonlinear regression
and resign by treed Gaussian process models, J. Statist. Softw., 19 (2007), pp. 1–46.

[16] R. B. Gramacy and D. W. Apley, Local Gaussian process approximation for large computer experi-
ments, J. Comput. Graph. Statist., 24 (2015), pp. 561–578.

[17] R. B. Gramacy and H. K. H. Lee, Bayesian treed Gaussian process models with an application to
computer modeling, J. Amer. Statist. Assoc., 103 (2008), pp. 1119–1130.

[18] R. B. Gramacy and H. K. H. Lee, Adaptive design and analysis of supercomputer experiments, Tech-
nometrics, 51 (2009), pp. 130–145.

[19] R. B. Gramacy and H. K. H. Lee, Cases for the nugget in modeling computer experiments, Statist.
Comput., 22 (2012), pp. 713–722.

[20] R. B. Gramacy and N. G. Polson, Particle learning of Gaussian process models for sequential design
and optimization, J. Comput. Graph. Statist., 20 (2011), pp. 102–118.



COMPUTER EMULATION WITH NONSTATIONARY GP’S 47

[21] J. N. Hwang, S. R. Lay, M. Maechler, R. D. Martin, and J. Schimert, Regression modeling in
back-propagation and projection pursuit learning, IEEE Trans. Neural Netw., 5 (1994), pp. 342–353.

[22] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box
functions, J. Global Optim., 13 (1998), pp. 455–492.

[23] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. Roy. Statist. Ser. Soc.
B, 63 (2001), pp. 425–464.

[24] H.-M. Kim, B. K. Mallick, and C. C. Holmes, Analyzing nonstationary spatial data using piecewise
Gaussian processes, J. Amer. Statist. Assoc., 100 (2005), pp. 653–668.

[25] H. F. Lopes, C. M. Carvalho, M. S. Johannes, and N. G. Polson, Particle Learning for Sequential
Bayesian Computation, Oxford University Press, London, 2011.

[26] D. J. C. MacKay, Information-based objective functions for active data selection, Neural Comput., 4
(1992), pp. 590–604.

[27] I. Murray, R. P. Adams, and D. J. C. MacKay, Elliptical slice sampling, J. Mach. Learning Res., 9
(2010), pp. 541–548.

[28] L. J. Nelson, F. Zhou, G. L. W. Hart, and V. Ozoliņš, Compressive sensing as a new paradigm in
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