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Reversible client/server interactions
Franco Barbanera1 and Mariangiola Dezani-Ciancaglini2 and Ugo de’Liguoro2

1Università di Catania(IT) 2Università di Torino (IT) 1 September 2015

Abstract. In the setting of session behaviours, we study an extension of the concept of compliance when a
disciplined form of backtracking and of output skipping is present. After adding checkpoints to the syntax
of session behaviours, we formalise the operational semantics via a LTS, and define natural notions of check-
point compliance and sub-behaviour, which we prove to be both decidable. Then we extend the operational
semantics with skips and we show the decidability of the obtained compliance.

Keywords: Client/server interaction, Session Types, Behavioural Semantics, Sub-behaviour, Semantics of
Subtyping, Coinduction.

1. Introduction

In human as well as automatic negotiations, an interesting feature is the ability of rolling back to some
previous points of a conversation, undoing choices and possibly trying different paths. Rollbacks are familiar
to the users of web browsers, and so are also the troubles that these might cause during “undisciplined”
interactions. Clicking the “back” button, or going to some previous points in the chronology when we are in
the middle of a transaction, say the booking of a flight, can be as smart as dangerous. In any case it is surely
a behaviour that service programmers want to discipline. Also on the server’s side one has to take care: a
server discovering that a service becomes available after having started a conversation could take advantage
from some kind of rollback. However, such a server would be quite unfair if the rollbacks were completely
hidden from the client. In this scenario it is also useful to allow the skipping of already done outputs, like in
the case of a logged client, who can avoid to send again the password.

Adding rollback and skip to interaction protocols requires sophisticated concepts of client/server com-
pliance and sub-behaviour. In this paper we investigate protocols admitting a simple, though non trivial
form of reversibility and skipping in the framework of the theory of contracts introduced in [CCLP06] and
developed in a series of papers, see [CGP09] and the references there. We focus here on the scenario of
client/server architectures, where services stored in a repository are queried by clients to establish two-sided
communications.

More precisely, we consider the formalism of session behaviours as introduced in [BdL10, BdL15, BH12]
and [BH15] (where they were referred to as session contracts). This is a formalism interpreting the session
types, introduced by Honda et al. in [HVK98], into a subset of CCS without τ . We extend the session
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behaviours syntax by means of markers that we call checkpoints; these are intended as pointers to the last
place where either the client or the server can rollback at any time. We then extend the formalism by
distinguishing already done outputs (by barring them): they are output which do not need to be resent,
i.e. they can be skipped. First we investigate which constraints must be imposed to obtain a safe notion of
client/server interaction in the scenario without skips, by defining a model in the form of a LTS, and by
characterising the resulting concepts of compliance and sub-behaviour, which we show both decidable. Then
we add skipping and we prove decidability of the extended notion of compliance.

Before entering into the formal development of session behaviours with checkpoints and skips, we illustrate
the basic concepts by discussing a few examples. A registered Client logs in to an online Server and then she
asks the prices of either a bag or a belt. Let the action (input) login represent the receipt of login credentials,
and the action price the receipt of a price. Dual actions represent offers, e.g. the coaction (output) login
represents the sending of credentials. Then the client behaviour is described by the process:

Client = login.(bag.price⊕ belt.price)

where dot is sequential composition and ⊕ is internal choice. In the standard contract formalism we say that
a client ρ is compliant with a server σ, written ρ



σ, if all client communication actions are matched by
the dual actions on the server side. According to this, the client will be not compliant with an online server
behaving as:

Server = login.(bag.price + suitcase.price)

where + is external choice. In fact the interaction represented by the parallel composition Client ‖ Server,
that evolves by synchronising corresponding actions and coactions, might lead to:

(bag.price⊕ belt.price) ‖ (bag.price + suitcase.price).

This means that the client cannot ask the price of a belt.

Now consider the dual behaviour of ρ, dubbed ρ, which is obtained by exchanging actions by the respective
coactions, and internal by external choices. Then the dual of Client is:

Server′ = login.(bag.price + belt.price)

and clearly we get Client



Server′. In fact with the standard contract formalism we have, as expected, that
ρ



ρ, or equivalently that σ



σ, since duality is involutive.

Taking a further step, let us consider a client that, after asking the price of a bag, wants to ask the price
of a belt. This can be achieved by rolling back to the choice bag.price⊕belt.price. Rollback is a feature present
in some programming languages and in models of distributed computations as well, but in our context it is
actually a new feature, that cannot be easily represented by usual process algebra operations [PU07].

To express rollback we introduce the symbol ‘N’ to mark the point where a session behaviour can backtrack
to; we call such a marker a checkpoint. We suppose that a suitable mechanism keeps memory of the past,
by recording the behaviour Nσ each time the checkpoint is traversed, namely when Nσ synchronises on some
actions that σ is ready to do. For simplicity we assume that only one “past” can be recorded at any time,
so that a new memorisation destroys the old one, leading to a model in which the client and the server can
backtrack just to the lastly traversed checkpoint.

By adding some checkpoints to Client we get for example:

Client′ = Nlogin.N(bag.price⊕ belt.price).

The new client can undo most of the actions and choices, in order to keep the negotiation open as much
as possible. But how should the server be redesigned to interact properly? Unfortunately the more natural
choice of taking the server as the dual

Server′′ = Nlogin.N(bag.price + belt.price)

fails. In fact, writing
fw−→ for the forward evolution step of a client/server system, and

rollbk−→ for the synchronous
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rollback, we have, among the possible interactions between Client′ and Server′′:

Nlogin.N(bag.price⊕ belt.price) ‖ Nlogin.N(bag.price + belt.price)
fw−→ synchronising on login and login

N(bag.price⊕ belt.price) ‖ N(bag.price + belt.price)
fw−→ internal choice

bag.price ‖ N(bag.price + belt.price)
rollbk−→ rollback to the last traversed N

N(bag.price⊕ belt.price) ‖ Nlogin.N(bag.price + belt.price)

which is now in a stuck state.
The mismatch between external and internal choice is the effect of the asymmetry of the respective se-

mantics in process algebra. The selection of a branch in an external choice is just one step; on the contrary
the possible synchronisation on bag comes after the internal choice has occurred. This has consequences with
respect to the backtracking, since the checkpoint alignment fails.

In [BdL10] it has been proved that the dual of a server is the minimum client that complies with the
server with respect to a natural (and efficiently decidable) ordering, and vice versa the dual of a client is the
minimum compliant server. This is an essential feature of the theory, since it is supposed to model a scenario
in which clients look for servers through a network, querying a service of a certain shape that is easier to
find if we know its minimal form. To express this precisely, let us write ρ

Nσ to denote the compliance of ρ
with σ in a setting with backtracking, where ρ

Nσ if ρ is compliant with σ in the standard sense and keeps
being so also after any possible rollback. Then we put the requirement that in the new theory the following
holds:

∀ρ. ρ

Nρ compliance of duals

For this condition to hold we change the operational semantics of ⊕ by gluing the choice and the synchro-
nisation over a coaction, that can be formalised by the rule:

a.σ1 ⊕ σ2
a−→ σ1

This has however the unpleasant consequence that a

Na⊕ b, while we have that a6



a⊕ b, where the com-
pliance



is defined according to the standard LTS [BdL10, BdL15, BH15]. In general, we expect the
compliance of behaviours with rollback to be conservative with respect to the compliance without rollback.
More precisely we require:

∀ρ, σ. ρ

Nσ implies erase(ρ)



erase(σ) conservativity of erasure

where erase deletes all checkpoints. We will accomplish this by asking that any coaction has a corresponding
action in reducing the parallel of internal and external choices.

The essence of this change is that rolling back has to be a synchronous action, and therefore it cannot
be the effect of an internal choice, since the latter is unobservable. This is a general principle. Consider the
interaction

Nbelt.price.bag.price ‖ Nbelt.Nprice.bag.price (1)

It is the pair of a client willing to know the price of a belt and the price of a bag, and a server that can
succeed by sending twice the price of the belt! The point is that the client has no way to be aware of what
happened and to react according to her own policy, which is instead the case if both are forced to backtrack
at the same time. For this to be guaranteed we require that the client and the server either both can or
both cannot rollback in all configurations. In particular we assume that in the starting configurations both
session behaviours of client and server are checkpointed.

We also observe that it is not necessarily the case that compliant behaviours show some correspondence
between the respective checkpoints. For example it holds that:

N(discount.Nbag.price⊕ bag.price)

N
N(discount.bag.price + bag.price) (2)

which makes sense, since the client N(discount.Nbag.price⊕ bag.price) is asking for the price of a bag, with or
without discount.

Notice that, if we use the operational semantics informally described above, we must rule out terms like
(Na1.σ1⊕ a2.σ2), where a single branch of a choice among two branches is checkpointed. The motivation can
be illustrated by an example; let us consider the following behaviour with checkpoints:
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Ne.(Na.b⊕ c.d).

In the present setting we are assuming that it is possible to rollback just to the last encountered checkpoint,
and that restoring a “past” doesn’t recover older checkpoints. This implies that all the informations for a
rollback are “memorised” only until a new checkpoint is crossed. Then, after the action e, the side effect of
choosing Na.b should be that of memorising the latter as the “past”, deleting Ne.(Na.b ⊕ c.d) and definitely
discarding c.d; on the other hand the choice of the latter branch would save the past Ne.(Na.b⊕ c.d), to which
we return in case of rollback. This has the undesirable effect that the actual past depends on an internal
choice, which is hidden from the partner. Beside, the actual meaning of rolling back after the choice of Na.b is
not the undo of the choice, but to insist in doing the very same choice. Observe that we are not preventing a
choice to be repeated after rollback: when restoring a past of the shape N

⊕
i∈I ai.σi, there is no record of the

branch previously taken. But whenever a rollback occurs to such a past, we ask that all choices are newly
allowed. This is why we decided to rule out terms like (Na1.σ1 ⊕ a2.σ2), imposing prefixes of summands of
internal (and external) choices not to be checkpointed.

We discuss now the addition of skips, inspired to some previous work reported in [BdL14]. Let us consider
the following pair of client and server:

Client′′ =N login.(bag.price⊕ belt.price)

Server′′′ =N login.N(bag.price + belt.price)
(3)

The interaction among them gets stuck with respect to the semantics discussed so far, since the (non well-
designed) client Client′′ is self-inflicting a new login whenever undoing the choice among a bag and a belt,
while the server would normally save data from the former identification, as expressed by the checkpoints in
Server′′′. Such mismatches make the compliance relation we study exceedingly restrictive.

In order to avoid such restrictions we relax the requirements defining compliance, and we consider a
calculus where it is allowed to skip an already done output, in the case above login. We mark by a bar
the outputs which have been already done and that may be skipped, so that Client′′ and Server′′′ are now
compliant.

On the other hand we observe that it would be unreasonable to skip outputs when the corresponding
inputs are available, as this would result into a complete loss of control. For example we would have:

Client′ ‖ Server′′ fw−→ N(bag.price⊕ belt.price) ‖ N(bag.price + belt.price)
rollbk−→ N�

��login .N(bag.price⊕ belt.price) ‖ Nlogin.N(bag.price + belt.price)
skip−→ N(bag.price⊕ belt.price) ‖ Nlogin.N(bag.price + belt.price)

We show how, although with some overhead, results that we establish about the calculus with rollback can
be extended to the case with rollback and skips.

Outline In § 2 we introduce the calculus with checkpoints and its operational semantics. In § 3 we define
compliance and we show its decidability by means of a syntax directed formal system, which is proved to
be sound and complete. The compliance relation induces a decidable sub-behaviour relation between servers
which is the basis of query engines: this is the content of § 4. In § 5 and § 6 we present the calculus with
skips and we prove decidabilitity of compliance in the new setting. Lastly § 7 points to related works and
some future developments.

This paper is an extended and revised version of [BDdL14]. In [BDdL14] we only gave a hint to the
soundness and completeness proofs and we didn’t consider neither the sub-behaviour relation nor the calculus
with skips.

2. Calculus

In this section we introduce the syntax of session behaviours with checkpoints and we describe their opera-
tional semantics by an LTS, as usual with process algebras. The calculus is obtained from session behaviours
as treated in [BdL15, BH15], from which we take the restriction of external and internal choices to be made
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σ, ρ := 1 success

|
∑
i∈I ai.σi external choice

| N

∑
i∈I ai.σi checkpointed external choice

|
⊕

i∈I ai.σi internal choice

| N

⊕
i∈I ai.σi checkpointed internal choice

| x variable

| recx.σ recursion

Fig. 1. Syntax of raw behaviour expressions with checkpoints

of summands with pairwise distinct prefixes, that are all input actions in external choices, and all output ac-
tions in internal choices. As explained in the Introduction, we allow checkpoints to occur only before internal
or external choices, not before single branches unless the sums consist of just one branch.

Definition 2.1 (Session Behaviours with Checkpoints).

i) Let N (names) be some countable set of symbols and N = {a | a ∈ N} (conames), with N ∩N = ∅.
The set BE of raw session behaviours with checkpoints is defined by the grammar of Figure 1, where

• the set I is non-empty and finite;

• the names and the conames in choices are pairwise distinct;

• σ is not a variable in recx.σ.

ii) The set SB of session behaviours with checkpoints is defined as the restriction of BE to closed expressions.

When I is a singleton set, we just write a.σ and a.σ for
∑
a.σ and

⊕
a.σ; also we omit the trailing 1 whenever

possible. Recursion in SB is guarded and hence contractive in the usual sense. We take the equi-recursive
view of recursion, by equating recx.σ with σ[recx.σ/x]. Hence there is no point in considering terms of the
shape Nrecx.σ. In the following the notation 4σ will represent ambiguously σ and Nσ.

We use α to range over N ∪N , with the convention α =

{
a if α = a,

a if α = a.
When no ambiguity can arise, we shall refer to session behaviours with checkpoints as simply session

behaviours or behaviours.

A syntactical notion of duality on SB is easily obtained by extending the usual duality for contracts
in such a way it leaves the checkpoints unchanged. Being such a notion formally defined by induction on
the structure of (possibly open) expressions, we first define it on in BE . Duality for elements in SB is then
inherited by restricting to SB.

Definition 2.2 (Duality).

i) Let σ ∈ BE . The syntactic dual σ of σ is defined by the following clauses:

1 = 1 x = x recx.σ = recx.σ Nσ = Nσ∑
i∈I ai.σi =

⊕
i∈I ai.σi

⊕
i∈I ai.σi =

∑
i∈I ai.σi

ii) Let (·) : SB→ SB be the restriction to SB of the duality function.

Notice that Item (ii) in the previous definition is sound, since σ ∈ SB if and only if σ ∈ SB.
From now on, to avoid cumbersome definitions, any time an inductive definition on elements of SB is

provided, it will be tacitly assumed to be the restriction to SB of the corresponding inductive definition on
BE .

Definition 2.2 closely mimics the duality operator on session types as defined e.g. in [GH05]. As expected,
σ = σ for all σ. We remark that checkpoints are unaffected by the · operation.
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2.1. Operational Semantics

To correctly define the operational semantics of the calculus, we have to record the last checkpoint-prefixed
behaviour that has been crossed during the evolution of a behaviour. Therefore we introduce configurations,
that is behaviours with pasts of the shape:

γ ≺ σ′

where γ is a checkpointed internal or external choice. In the starting configuration, or just after a rollback
has occurred, there is no further point to which the behaviour might roll back. We represent such a situation
by writing ◦ ≺ σ, where ‘◦’ marks the fact that no-rollback is possible.

Definition 2.3 (Configurations).

i) Let SBN be the set of behaviours starting with N , then SBN ∪ {◦} is the set of the pasts, and we denote
its elements by γ, δ, possibly with superscripts.

ii) The set SB≺ of configurations is defined by

SB≺ = {γ ≺ σ | γ ∈ SBN ∪ {◦}, σ ∈ SB}.

We are now in place to define the LTS of configurations.

Definition 2.4 (LTS for Configurations).

γ ≺
∑
i∈I ai.σi

ak−→ γ ≺ σi (k ∈ I) (+) γ ≺
⊕

i∈I ai.σi
ak−→ γ ≺ σi (i ∈ I) (⊕)

γ ≺ σ α−→ γ ≺ σ′ α ∈ N ∪N

γ ≺ Nσ
α−→ Nσ ≺ σ′

(N) γ ≺ σ rbk−→ ◦ ≺ γ (γ 6= ◦) (rbk)

Notice that the rules for internal choice glue into just one step both the internal choice and the commu-
nication of a coname, becoming very similar to the rules for external choice. The reduction of client/server
parallel compositions (Definition 2.6 below) will be only possible when all internal choices can be matched
by the corresponding external choices, which has the effect of saving the conservativity of erasure
discussed in the Introduction. If the current behaviour has no checkpoint, the past (in either cases, ◦ or an
element of SBN) is unaffected by the choice of a branch (rules (⊕) and (+)).

Rule (N) says that, in the presence of a checkpoint, the forward reduction must update the behaviour at
which it is possible to rollback, namely the past. The rollback action is implemented by Rule (rbk) and it is
enabled only in case there is a past to roll back to, that is when γ 6= ◦. The rollback action updates the past
to ◦, hence no further rollback is allowed unless after traversing a new checkpoint.

When composing in parallel clients and servers we have to consider the different nature of the reductions
for internal and external choices. To this aim it is handy to collect the sets of names and conames prefixing
the choices, as done in the following definition. Notice that the resulting sets only contain names, since each
coname is mapped to the corresponding name.

Definition 2.5 (The functions A+(·) and A⊕(·)).

We define A+(·),A⊕(·) : SB→ P(N ) by

A+(1) = A+(
⊕

i∈I ai.σi) = ∅ A+(
∑
i∈I ai.σi) = {ai | i ∈ I} A+(Nσ) = A+(σ)

and

A⊕(1) = A⊕(
∑
i∈I ai.σi) = ∅ A⊕(

⊕
i∈I ai.σi) = {ai | i ∈ I} A⊕(Nσ) = A⊕(σ)

The interaction of a client with a server is modelled by the reduction of their parallel composition, that can
be:
• forward (

τ−→), consisting of CCS style synchronisations, when the set of offered outputs is included in
that of offered inputs (condition A⊕( ) ⊆ A+( )), or
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• backward (
rbk−→), where both behaviours synchronously go back to the respective last traversed check-

pointed behaviours, if both have such.

Definition 2.6 (Reduction of Client and Server Pairs).

δ ≺ ρ a−→ δ′ ≺ ρ′ γ ≺ σ a−→ γ′ ≺ σ′ A⊕(σ) ⊆ A+(ρ)
(+‖⊕)

δ ≺ ρ ‖ γ ≺ σ τ−→ δ′ ≺ ρ′ ‖ γ′ ≺ σ′

δ ≺ ρ a−→ δ′ ≺ ρ′ γ ≺ σ a−→ γ′ ≺ σ′ A⊕(ρ) ⊆ A+(σ)
(⊕‖+)

δ ≺ ρ ‖ γ ≺ σ τ−→ δ′ ≺ ρ′ ‖ γ′ ≺ σ′

δ ≺ ρ rbk−→ ◦ ≺ ρ′ γ ≺ σ rbk−→ ◦ ≺ σ′
(rbk)

δ ≺ ρ ‖ γ ≺ σ rbk−→ ◦ ≺ ρ′ ‖ ◦ ≺ σ′

In the following let −→ be the union of
τ−→ and

rbk−→. We denote by
τ−→∗ ,

rbk−→∗ and
∗−→ the reflexive

and transitive closure of, respectively,
τ−→,

rbk−→ and −→. We also use −→ without specifying the resulting
configuration and 6−→ with the obvious meanings.

It is easy to verify that if ◦ ≺ ρ ‖ ◦ ≺ σ τ−→∗ ◦ ≺ ρ′ ‖ ◦ ≺ σ′, then ρ ‖ σ reduces to ρ′ ‖ σ′ in the calculi
of [BdL15, BH15], by splitting in two steps each application of rule (⊕). If ρ ‖ σ reduces to ρ′ ‖ σ′ in the
calculi of [BdL15, BH15] we can find ρ′′, σ′′ such that both ρ′ ‖ σ′ reduces to ρ′′ ‖ σ′′ and

◦ ≺ ρ ‖ ◦ ≺ σ τ−→∗ ◦ ≺ ρ′′ ‖ ◦ ≺ σ′′.
We take ρ′′ ‖ σ′′ as different than ρ′ ‖ σ′ only in case the last applied rule is an internal choice, which in
rule (⊕) is fused with the communication of the coname.

Starting from a parallel composition, in which one of the two conditions holds

• both pasts are ◦ and both behaviours are checkpointed,

• both pasts are checkpointed behaviours,

only parallel compositions satisfying one of the two conditions can be reached, as formalised in the following
definition and proposition. This assures that the client and the server either both can or both cannot roll
back in all configurations, an essential property as discussed in the Introduction.

Definition 2.7. We say that the client/server parallel composition δ ≺ ρ ‖ γ ≺ σ is nice if:

1. either δ = γ = ◦ and ρ, σ ∈ SBN;

2. or δ, γ ∈ SBN.

Notice that the behaviours are arbitrary in a nice parallel composition in which the pasts are checkpointed
behaviours (condition (2) of previous definition).

Proposition 2.8. If δ ≺ ρ ‖ γ ≺ σ is nice and δ ≺ ρ ‖ γ ≺ σ ∗−→ δ′ ≺ ρ′ ‖ γ′ ≺ σ′, then δ′ ≺ ρ′ ‖ γ′ ≺ σ′ is
nice too.

Proof. A nice parallel composition which satisfies condition (1) of Definition 2.7 can only be reduced using
rules (+‖⊕) or (⊕‖+) getting a nice parallel composition which satisfies condition (2) of Definition 2.7.

A nice parallel composition which satisfies condition (2) of Definition 2.7 can be reduced using rules
(+‖⊕) or (⊕‖+) getting a nice parallel composition which satisfies again the same condition. It can also be
reduced using rule (rbk) getting a nice parallel composition which satisfies condition (1) of Definition 2.7.

Thanks to previous proposition from now on we will only consider nice parallel compositions.
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Remark 2.9. By looking at the operational semantics of behaviours one can notice that checkpoints and
arbitrary rollbacks influences the evolution of behaviours in a way similar to the effect of recursion. For
instance, the possible evolution of the behaviour Na.Nb can be mimicked by the following recursive expression
without checkpoints:

recx.(a.x⊕ a.rec y.b.y)

However observe that the same name as prefix of distinct branches of an internal choice is not allowed, so
this expression is not a behaviour.

As a further example, let us consider the behaviour Na.Nb. In order to use recursion to mimic the way it
could evolve, we should use an expression like

recx.(a.x⊕ a.rec y.b.y)

This expression, besides having two branches with the same prefix, does not comply with the other syntax
constraint on session behaviours, the one imposing only input prefixes in internal choices.
Even relaxing the syntax, the notion of compliance could not be faithfully represented using recursion instead
of checkpoints and arbitrary rollbacks. For example Na

N
Na.Nb, while

recx.a.x 6



recx.(a.x⊕ a.rec y.b.y)

since as soon as the server chooses the right branch, no client’s request can be satisfied.
A last observation is that representing checkpoints by internal choices and recursion would make impos-

sible to distinguish between an evolution depending on an internal choice and an evolution depending on a
rollback.

Another question that could naturally arise is whether recursion itself could be avoided and represented
in terms of checkpoints and rollbacks. The answer is negative, since the evolution of recx.(a.b.x) cannot be
mimicked by a checkpointed expression. In fact

Na.b

produces also the sequence of outputs a a a . . ., that the recursive expression cannot produce.

3. Compliance

The compliance relation on session behaviours (e.g. in [BdL10]) requires that for any sequence of interactions
among a client ρ and a server σ, whenever a state is reached where no further communication (namely τ -
reduction) is possible, all client’s requests and offers are satisfied, that is the client ρ has evolved to 1.
Observe that in an infinite (forward) interaction such a condition is vacuously true, hence in such a case
compliance implies deadlock-freeness.

Keeping the same definition in the case of session behaviours with rollbacks leads to the following:

Definition 3.1 (Checkpoint Compliance Relation

N).

i) Let δ ≺ ρ, γ ≺ σ ∈ SB≺. We say that δ ≺ ρ is checkpoint compliant with γ ≺ σ, written δ ≺ ρ

Nγ ≺ σ,
when for all δ′ ≺ ρ′ and γ′ ≺ σ′:

if δ ≺ ρ ‖ γ ≺ σ ∗−→ δ′ ≺ ρ′ ‖ γ′ ≺ σ′ 6 τ−→ then ρ′ = 1.

ii) Let ρ, σ ∈ SBN. We say that ρ is checkpoint compliant with σ (notation ρ

Nσ) if ◦ ≺ ρ

N◦ ≺ σ.

Roughly, when δ ≺ ρ

Nγ ≺ σ holds, ρ and σ are compliant in the standard sense. Our definition is more
demanding in case ρ and σ include checkpoints, asking that they keep on being compliant after any possible
synchronous rollback. Therefore, if both δ and γ are different than ◦, then it must be ◦ ≺ δ

N◦ ≺ γ.
Moreover, it can never be the case that one of them can perform a rollback and the other one cannot,
even when ρ is in the success configuration. Notice that, by Lemma 2.8, we can safely restrict the technical
treatment to nice parallel compositions, where either both δ and γ are equal to ◦ (no rollback is possible)
ore they are both checkpointed behaviours (the rollback is allowed).

It is easy to verify that Definition 3.1(ii) satisfies the compliance of duals and the conservativity
of erasure discussed in the Introduction. Namely each session behaviour is checkpoint compliant with its
dual, and if a client and a server are checkpoint compliant, then the client and the server obtained by erasing
the checkpoints are compliant. The last property follows from the observation that all forward reductions are
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preserved when no rollback is allowed. More formally, let erase(σ) be the result of removing all checkpoints
from σ:

Proposition 3.2 (Compliance of Duals and Conservativity of Erasure). For any ρ, σ ∈ SBN:

1. ρ

Nρ.

2. If ρ

Nσ, then erase(ρ)



erase(σ).

Instead erase(ρ)



erase(σ) does not imply ρ

Nσ, take for example ρ = Na.b and σ = Na.Nb.

In the following, when ambiguity cannot arise, we shall simply say compliance/compliant instead of
checkpoint compliance/compliant.

We define a function p denoting the effect of traversing a checkpoint on the “past” of a configuration.

Definition 3.3 (The function p).
The function p : SBN ∪ {◦} × SB→ SBN ∪ {◦} is defined by

p(γ,4σ) =

{
Nσ if 4 = N
γ otherwise.

Forward reduction in Definition 2.4 can be shortly written in terms of the function p:

Lemma 3.4.

γ ≺ 4(
∑
i∈I ai.σi)

ak−→ p(γ,4(
∑
i∈I ai.σi)) ≺ σi.

γ ≺ 4(
⊕

i∈I ai.σi)
ak−→ p(γ,4(

⊕
i∈I ai.σi)) ≺ σi.

Proof. By cases, according to whether the 4’s are N or not, using Definition 3.3.

As a first step in the study of compliance, we provide a coinductive definition of

N. Let us define a new
relation



N
co as follows.

Definition 3.5. Let {

N
k | k ∈ N} be the family of relations over SB≺ such that

N
0 = SB≺ × SB≺ and

δ ≺ ρ

N
k+1 γ ≺ σ if either:

1. ρ = 1 and δ = γ = ◦; or

2. ρ = 1 and δ, γ 6= ◦ and ◦ ≺ δ

N
k ◦ ≺ γ; or

3. ρ 6= 1 and δ ≺ ρ ‖ γ ≺ σ τ−→ and

[δ ≺ ρ ‖ γ ≺ σ −→ δ′ ≺ ρ′ ‖ γ′ ≺ σ′] implies δ′ ≺ ρ′

N
k γ
′ ≺ σ′ for all δ′ ≺ ρ′, γ′ ≺ σ′.

Then we define



N
co =

⋂
k∈N

N
k.

Lemma 3.6. The relation



N
co and the compliance relation

N coincide.

Proof. The inclusion



N
co ⊆

N is immediate. Vice versa let k be the minimal natural number such that

δ ≺ ρ

6N
k γ ≺ σ. Then there is a reduction

δ ≺ ρ ‖ γ ≺ σ −→ δ1 ≺ ρ1 ‖ γ1 ≺ σ1 −→ · · · −→ δk−1 ≺ ρk−1 ‖ γk−1 ≺ σk−1
of length k − 1 such that δi ≺ ρi ‖ γi ≺ σi

τ−→ for all i < k − 1 (but note that not necessarily δi ≺
ρi ‖ γi ≺ σi

τ−→ δi+1 ≺ ρi+1 ‖ γi+1 ≺ σi+1) and δk−1 ≺ ρk−1

6N
1 γk−1 ≺ σk−1. Therefore ρk−1 6= 1 and

δk−1 ≺ ρk−1 ‖ γk−1 ≺ σk−1 6
τ−→, which implies δ ≺ ρ

6N
γ ≺ σ.

Next we define a formal system that we shall prove to axiomatically characterise the checkpoint com-
pliance relation. The system is inspired to the coinductive axiomatization of subtyping of the arrow and
recursive-types in [BH98].

Definition 3.7 (The Formal System B). The judgment of the formal system B are expressions of the
form Γ B δ ≺ ρ aN γ ≺ σ, where Γ is an environment, i.e. a finite set Γ = {δi ≺ ρi aN γi ≺ σi}i∈I .
The rules of the formal system are given in Figure 2, where in writing γ ≺ δ we assume δ ∈ SB (hence δ 6= ◦).
The symbol aN is used to denote the formal counterpart of

N.
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either δ = γ = ◦ or Γ B ◦ ≺ δ aN ◦ ≺ γ
(Ax)

Γ B δ ≺ 1 aN γ ≺ σ
(Hyp)

Γ, δ ≺ ρ aN γ ≺ σ B δ ≺ ρ aN γ ≺ σ

∀j ∈ J. Γ′ B p(δ, ρ) ≺ ρj aN p(γ, σ) ≺ σj either δ = γ = ◦ or Γ′ B ◦ ≺ δ aN ◦ ≺ γ
(+ · ⊕)

Γ B δ ≺ ρ aN γ ≺ σ

where Γ′ = Γ, δ ≺ ρ aN γ ≺ σ and ρ = 41(
∑
i∈I∪J ai.ρi) and σ = 42(

⊕
j∈J aj .σj)

∀i ∈ I. Γ′ B p(δ, ρ) ≺ ρi aN p(γ, σ) ≺ σi either δ = γ = ◦ or Γ′ B ◦ ≺ δ aN ◦ ≺ γ
(⊕ ·+)

Γ B δ ≺ ρ aN γ ≺ σ

where Γ′ = Γ, δ ≺ ρ aN γ ≺ σ and ρ = 41(
⊕

i∈I ai.ρi) and σ = 42(
∑
j∈I∪J aj .σj)

Fig. 2. The formal system B for checkpoint compliance

As usual we write B δ ≺ ρ aN γ ≺ σ for ∅ B δ ≺ ρ aN γ ≺ σ. In Figure 2 Γ, δ ≺ ρ aN γ ≺ σ is short for
Γ ∪ {δ ≺ ρ aN γ ≺ σ}. Moreover all rules but (Hyp) are in fact two, for example in case of rule (Ax) we
have:

(Ax1)
Γ B ◦ ≺ 1 aN ◦ ≺ σ

Γ B ◦ ≺ δ aN ◦ ≺ γ
(Ax2)

Γ B δ ≺ 1 aN γ ≺ σ
Observe that, in case of rule (Ax1), no rollback is possible on both sides, so ρ = 1 suffices to conclude that
ρ is compliant with σ. On the contrary in case of rule (Ax2) we have also to check that the “pasts” δ and γ
are compliant, since a rollback might occur. Note that, by restricting to nice parallel compositions, if δ 6= ◦,
then also γ 6= ◦ and vice versa. A similar remark applies to the other rules, where the use of the notation
with p helps to treat shortly the various cases with either checkpointed or non checkpointed behaviours.

Example 3.8. The following is a derivation of the judgment B Na.Nb aN
N(a.b+ b), where

Γ1 = {◦ ≺ Na.Nb aN ◦ ≺ N(a.b+ b)}, Γ2 = Γ1, Na.Nb ≺ Nb aN
N(a.b+ b) ≺ b, Γ3 = Γ2, ◦ ≺ Nb aN ◦ ≺ N(a.b+ b).

(Hyp)
Γ3 B ◦ ≺ Nb aN ◦ ≺ N(a.b+ b)

(Ax)
Γ3 B Nb ≺ 1 aN

N(a.b+ b) ≺ 1
(⊕ ·+)

Γ2 B ◦ ≺ Nb aN ◦ ≺ N(a.b+ b)
(Ax)

Γ2 B Nb ≺ 1 aN
N(a.b+ b) ≺ 1

(Hyp)
Γ2 B ◦ ≺ Na.Nb aN ◦ ≺ N(a.b+ b)

(⊕ ·+)
Γ1 B Na.Nb ≺ Nb aN

N(a.b+ b) ≺ b
(⊕ ·+)

B ◦ ≺ Na.Nb aN ◦ ≺ N(a.b+ b)

By the Soundness property we shall prove below, such a derivation implies that Na.Nb

N
N(a.b+ b).

Remark 3.9. In case of derivations with checkpointed behaviours in the conclusions (as it is our case, since
the behaviours we consider result from reducing nice parallel compositions), the axiom (Ax) with δ = γ = ◦,
that is (Ax1), is actually never applied, and the the leaves of a derivation are always instances of the axiom
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(Hyp). In fact in any derivation with height greater than 0 with a (Ax1) leaf, the judgments in the path
from the (Ax1) leaf to the conclusion have all the pasts equal to ◦ and the behaviours in the conclusions are
not checkpointed.

The intuition is that recursive behaviours show an evolution that somewhat resembles that of checkpointed
behaviours, even if, as discussed in Remark 2.9, the former ones cannot actually been defined in terms of the
latter ones, and vice versa. In the formal systems for behaviour compliance, as those in [BdL15, BDLdL15],
and those dealing with recursive types in general [BH98], axioms like (Hyp) are used to deal with recursion
only.

We do not show this property, since it does not affect in any way the formalism and the related proofs,
and consider rule (Ax1) instead, showing that the system is sound and complete even with respect non nice
compositions.

3.1. Soundness and Completeness

It is handy to extend the compliance relation to judgments.

Definition 3.10 (Judgment Semantics). We write

• |= Γ if δ′ ≺ ρ′

Nγ′ ≺ σ′ for all δ′ ≺ ρ′ aN γ′ ≺ σ′ ∈ Γ;

• Γ |= δ ≺ ρ aN γ ≺ σ, if |= Γ implies δ ≺ ρ

Nγ ≺ σ.

To facilitate the proofs below, it is convenient to consider a stratified version of Definition 3.10.

Definition 3.11 (Stratified Judgment Semantics). We write

• |=k Γ if δ′ ≺ ρ′

N
k γ
′ ≺ σ′ for all δ′ ≺ ρ′ aN γ′ ≺ σ′ ∈ Γ,

• Γ |=k δ ≺ ρ aN γ ≺ σ if |=k Γ implies δ ≺ ρ

N
kγ ≺ σ,

where k ≥ 0.

Observing that

N
k+1 ⊆

N
k, we have |=k+1 Γ implies |=k Γ. Also it is immediate to verify that the

following holds:

Fact 3.12. If Γ |=k δ ≺ ρ aN γ ≺ σ for all k, then Γ |= δ ≺ ρ aN γ ≺ σ.

The opposite implication of Fact 3.12 does not hold, as shown in the following example.
Consider Γ = {◦ ≺ Na.c aN ◦ ≺ Na} and ◦ ≺ Nb aN ◦ ≺ Nc. Clearly ◦ ≺ Nb

6N◦ ≺ Nc, moreover it is easy to check
that 6|= Γ. However, |=1 Γ. In fact ◦ ≺ Na.c

N
1◦ ≺ Na (since, trivially, c

N
01). So, Γ |= ◦ ≺ Nb aN ◦ ≺ Nc holds

simply because 6|= Γ, whereas Γ |=k ◦ ≺ Nb aN ◦ ≺ Nc for all k does not hold, since |=1 Γ but (◦ ≺ Nb)

6N
1(◦ ≺ Nc).

As a matter of fact the best we can say is that if Γ |= δ ≺ ρ aN γ ≺ σ, then Γ |=k δ ≺ ρ aN γ ≺ σ for all
but finitely many k. However we don’t have to bother about this, because in the the next proofs only Fact
3.12 and δ ≺ ρ

N
kγ ≺ σ for all k if and only if δ ≺ ρ

Nγ ≺ σ (which is true by Lemma 3.6) are needed.

We can now show that the formal system is sound with respect to the judgment semantics.

Theorem 3.13 (Soundness). If Γ B δ ≺ ρ aN γ ≺ σ, then Γ |= δ ≺ ρ

Nγ ≺ σ.
Proof. In view of Fact 3.12 it suffices to prove that:

Γ B δ ≺ ρ aN γ ≺ σ implies Γ |=k δ ≺ ρ aN γ ≺ σ for all k.
We proceed by simultaneous induction over the derivation D of Γ B δ ≺ ρ aN γ ≺ σ and over k. Since
Γ |=0 δ ≺ ρ aN γ ≺ σ trivially holds, we shall keep implicit the case k = 0. We distinguish the possible cases
of the last rule in D.

Case (Ax). Then either D consists of the inference:

(Ax1)
Γ B ◦ ≺ 1 aN ◦ ≺ σ

and the thesis is immediate since ◦ ≺ 1

N
k ◦ ≺ σ for all k; or D ends by:

Γ B ◦ ≺ δ aN ◦ ≺ γ
(Ax2)

Γ B δ ≺ 1 aN γ ≺ σ
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For k > 0, let |=k Γ; then |=k−1 Γ and, by induction over D, Γ |=k−1 ◦ ≺ δ aN ◦ ≺ γ. Hence we have
◦ ≺ δ

N
k−1 ◦ ≺ γ, that implies δ ≺ 1

N
kγ ≺ σ by definition, and lastly Γ |=k δ ≺ 1 aN γ ≺ σ as required.

Case (Hyp). Then D consists of the inference:

(Hyp)
Γ, δ ≺ ρ aN γ ≺ σ B δ ≺ ρ aN γ ≺ σ

where Γ, δ ≺ ρ aN γ ≺ σ |=k δ ≺ ρ aN γ ≺ σ holds trivially for all k.

Case (+ · ⊕). Then, if δ = γ = ◦, D ends by:

∀j ∈ J. Γ′ B p(◦, ρ) ≺ ρj aN p(◦, σ) ≺ σj
(+ · ⊕)

Γ B ◦ ≺ ρ aN ◦ ≺ σ
where Γ′ = Γ, δ ≺ ρ aN γ ≺ σ and ρ = 41(

∑
i∈I∪J ai.ρi) and σ = 42(

⊕
j∈J aj .σj).

We have to prove that Γ |=k ◦ ≺ ρ aN ◦ ≺ σ for all k.
Let k > 0; let us assume, by induction over k, Γ |=k−1 ◦ ≺ ρ aN ◦ ≺ σ. If |=k Γ, then |=k−1 Γ, which implies
◦ ≺ ρ

N
k−1◦ ≺ σ and hence |=k−1 Γ′, since Γ′ = Γ, ◦ ≺ ρ aN ◦ ≺ σ. By induction over D we know that

Γ′ |=h p(◦, ρ) ≺ ρj aN p(◦, σ) ≺ σj for all j ∈ J and for all h, hence Γ′ |=k−1 p(◦, ρ) ≺ ρj aN p(◦, σ) ≺ σj .
Combining this with |=k−1 Γ′ we get p(◦, ρ) ≺ ρj

N
k−1p(◦, σ) ≺ σj for all j ∈ J . The one step reducts

of ◦ ≺ ρ ‖ ◦ ≺ σ are exactly

◦ ≺ 41(
∑
i∈I∪J

ai.ρi) ‖ ◦ ≺ 42(
⊕
j∈J

aj .σj)
τ−→ p(δ, ρ) ≺ ρj ‖ p(γ, σ) ≺ σj

for all j ∈ J . So we conclude ◦ ≺ ρ

N
k◦ ≺ σ as desired.

Otherwise D ends by:

∀j ∈ J. Γ′ B p(δ, ρ) ≺ ρj aN p(γ, σ) ≺ σj Γ′ B ◦ ≺ δ aN ◦ ≺ γ
(+ · ⊕)

Γ B δ ≺ ρ aN γ ≺ σ
where Γ′, ρ and σ are as in the previous case, and both δ, γ 6= ◦. Reasoning as before, if |=k Γ, then
|=k−1 Γ′ and hence p(δ, ρ) ≺ ρj

N
k−1p(γ, σ) ≺ σj for all j ∈ J . We get Γ′ |=k−1 ◦ ≺ δ aN ◦ ≺ γ by

induction over D, which implies ◦ ≺ δ

N
k−1 ◦ ≺ γ. Since p(δ, ρ) ≺ ρj ‖ p(γ, σ) ≺ σj for j ∈ J and

◦ ≺ δ ‖ ◦ ≺ γ are all the one step reducts of δ ≺ ρ ‖ γ ≺ σ, we conclude δ ≺ ρ

N
k γ ≺ σ by definition ofN

k.

The proofs for the remaining cases of rule (⊕ ·+) are similar.

We now establish the completeness of the axiomatic system and decidability of derivability (and therefore
of compliance) by means of the proof reconstruction algorithm Prove of Figure 3.

Given a judgment Γ B δ ≺ ρ aN γ ≺ σ, if the algorithm Prove terminates, then it either returns a
derivation D with conclusion Γ B δ ≺ ρ aN γ ≺ σ, or it returns fail. As a matter of fact we prove in Lemma
3.21 that Prove always terminates.

The Prove algorithm tries to construct a proof for a given judgment by recursively proceeding bottom-
up, each time applying the only possible rule that has the given judgment as conclusion, once it has been
checked that rule (Hyp) does not apply. The algorithm fails as soon as the current judgment cannot be the
conclusion of any rule.

Recall that, as discussed in Remark 3.9, due to the presence of rollbacks and how they affect the opera-
tional semantics of behaviours, rule (Hyp) can apply also in absence of recursion.

We put the algorithm Prove at work on the compliant client and server of judgment (2) in the Introduc-
tion. In this example, as well as in the following ones, we use bg, bt, dsc, pr as short for bag, belt, discount,
price, respectively.

Example 3.14. Let ρ = N(dsc.Nbg.pr⊕ bg.pr) and σ = N(dsc.bg.pr + bg.pr). The following is the result of
Prove(δ ≺ ρ aN γ ≺ σ), where Γ1 = {◦ ≺ ρ aN ◦ ≺ σ}, Γ2 = Γ1, ρ ≺ Nbg.pr aN σ ≺ bg.pr, Γ3 =
Γ2, Nbg.pr ≺ pr aN σ ≺ pr, Γ4 = Γ3, ◦ ≺ Nbg.pr aN ◦ ≺ σ, Γ5 = Γ1, ρ ≺ pr aN σ ≺ pr.
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Prove(Γ B δ ≺ ρ aN γ ≺ σ)

if δ ≺ ρ aN γ ≺ σ ∈ Γ then (Hyp)
Γ B δ ≺ ρ aN γ ≺ σ

else if ρ = 1 then

if δ = ◦ or γ = ◦ then (Ax)
Γ B δ ≺ ρ aN γ ≺ σ

else let D = Prove (Γ B ◦ ≺ δ aN ◦ ≺ γ) 6= fail in
D

(Ax)
Γ B δ ≺ ρ aN γ ≺ σ

else if ρ = 41(
∑

i∈I∪J ai.ρi) and σ = 42(
⊕

j∈J aj .σj) then

let Γ′ = Γ, δ ≺ ρ aN γ ≺ σ in

foreach j ∈ J let Dj = Prove (Γ′ B p(δ, ρ) ≺ ρj aN p(γ, σ) ≺ σj) 6= fail in

if δ = ◦ or γ = ◦ then
Dj (∀j ∈ J)

(+ · ⊕)
Γ B δ ≺ ρ aN γ ≺ σ

else let D = Prove (Γ′ B ◦ ≺ δ aN ◦ ≺ γ) 6= fail in
Dj (∀j ∈ J) D

(+ · ⊕)
Γ B δ ≺ ρ aN γ ≺ σ

else if ρ = 41(
⊕

i∈I ai.ρi) and σ = 42(
∑

j∈I∪J aj .σj) then

let Γ′ = Γ, δ ≺ ρ aN γ ≺ σ in

foreach i ∈ I let Di = Prove (Γ′ B p(δ, ρ) ≺ ρi aN p(γ, σ) ≺ σi) 6= fail in

if δ = ◦ or γ = ◦ then
Di (∀i ∈ I)

(⊕ ·+)
Γ B δ ≺ ρ aN γ ≺ σ

else let D = Prove (Γ′ B ◦ ≺ δ aN ◦ ≺ γ) 6= fail in
Di (∀i ∈ I) D

(⊕ ·+)
Γ B δ ≺ ρ aN γ ≺ σ

else fail

Fig. 3. The algorithm Prove.

(Hyp)
Γ4 B Nbg.pr ≺ pr aN σ ≺ pr

Γ3 B ◦ ≺ Nbg.pr aN ◦ ≺ σ
(Ax)

Γ3 B Nbg.pr ≺ 1 aN σ ≺ 1 D3
(+ · ⊕)

Γ2 B Nbg.pr ≺ pr aN σ ≺ pr D2
(⊕ ·+)

Γ1 B ρ ≺ Nbg.pr aN σ ≺ bg.pr

(Hyp)
Γ5 B ◦ ≺ ρ aN ◦ ≺ σ

(Ax)
Γ5 B ρ ≺ 1 aN σ ≺ 1 D5

(+ · ⊕)
Γ1 B ρ ≺ pr aN σ ≺ pr

(⊕ ·+)
B ◦ ≺ ρ aN ◦ ≺ σ

where Di (i = 2, 5) is the derivation (Hyp)
Γi B ◦ ≺ ρ aN ◦ ≺ σ

and D3 is the derivation
(Hyp)

Γ4 B Nbg.pr ≺ pr aN σ ≺ pr
(⊕ ·+)

Γ3 B ◦ ≺ Nbg.pr aN ◦ ≺ σ
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It is not difficult to show that the algorithm Prove builds a derivation every time it does not fail.

Lemma 3.15. If Prove (Γ B δ ≺ ρ aN γ ≺ σ) = D 6= fail, then D is a derivation of Γ B δ ≺ ρ aN γ ≺ σ.

Proof. By construction and by induction over the tree of the recursive calls of Prove, which is finite if the
execution terminates.

The following example shows that the algorithm Prove fails on the client/server parallel composition (1) of
the Introduction. For sake of readability, we omit the part “ Γ B” in the arguments of Prove.

Example 3.16. According to the algorithm of Figure 3, in order to get the result of

Prove(◦ ≺ Nbt.pr.bg.pr aN ◦ ≺ Nbt.Npr.bg.pr)

we recursively proceed to look for the result of

Prove(Nbt.pr.bg.pr ≺ pr.bg.pr aN
Nbt.Npr.bg.pr ≺ Npr.bg.pr)

which immediately calls

Prove(Nbt.pr.bg.pr ≺ bg.pr aN
Npr.bg.pr ≺ bg.pr)

(notice how the system takes care that the second checkpoint of the server has been traversed, by updating
its past). The algorithm then proceeds by calling

Prove(Nbt.pr.bg.pr ≺ pr aN
Npr.bg.pr ≺ pr)

This last call produces, in turn, the call of

Prove(Nbt.pr.bg.pr ≺ 1 aN
Npr.bg.pr ≺ 1),

that results in the following failing call (producing the overall failure of the algorithm)

Prove(◦ ≺ Nbt.pr.bg.pr aN ◦ ≺ Npr.bg.pr) = fail

since, trivially A⊕(Nbt.pr.bg.pr) ∩ A+(Npr.bg.pr) = ∅.
Notice that the algorithm detects the failure that occurs after a rollback that takes place after the

synchronisations on the names bt, pr, bg, pr. As a matter of fact, a failure would occur also in case of a
rollback taking place just after the synchronisations on the names bg, pr. In order to let the algorithm detect
the latter synchronisation failure instead of the former one, it should execute first the recursive calls of the
form Prove (Γ′ B ◦ ≺ δ aN ◦ ≺ γ).

The following lemma assure that a failure of the algorithm Prove can only happen if the configurations
are not compliant.

Lemma 3.17. If Prove(Γ B δ ≺ ρ aN γ ≺ σ) = fail, then δ ≺ ρ

6N
γ ≺ σ.

Proof. Observe that if Prove(Γ B δ ≺ ρ aN γ ≺ σ) = fail, then δ ≺ ρ aN γ ≺ σ 6∈ Γ. This will be tacitly
assumed in all cases below.

Let k be the maximum number of recursive calls of the terminating execution of
Prove(Γ B δ ≺ ρ aN γ ≺ σ)

returning fail. Then we prove by induction over k, that there exists h (actually greater than k) such that

δ ≺ ρ

6N
h γ ≺ σ. This suffices since

N =
⋂
k

N
k by Lemma 3.6.

If k = 0, then Prove(Γ B δ ≺ ρ aN γ ≺ σ) = fail implies ρ 6= 1 (otherwise either Prove succeeds or
there is at least one recursive call) and σ = 1 (again because otherwise there would be at least one recursive

call of Prove). But then δ ≺ ρ ‖ γ ≺ 1 6 τ−→ which implies δ ≺ ρ

6N
hγ ≺ 1 6 τ−→ for any h > 0.

Let k > 0. If ρ 6= 1 and σ = 1, then we reason as in the base case. Otherwise the negative result
of the computation depends on the failure of some recursive call. Since all cases are similar, we consider
for example the case when ρ = 41(

∑
i∈I∪J ai.ρi) and σ = 42(

⊕
j∈J aj .σj), and δ, γ 6= ◦. Then either

Prove (Γ′ B p(δ, ρ) ≺ ρj aN p(γ, σ) ≺ σj) = fail for some j ∈ J , or Prove (Γ′ B ◦ ≺ δ aN ◦ ≺ γ) = fail,
where Γ′ = Γ, δ ≺ ρ aN γ ≺ σ. Then the maximum number of recursive calls in these computations is ≤ k−1.
By induction hypothesis there exists h such that either p(δ, ρ) ≺ ρj

6N
h p(γ, σ) ≺ σj or ◦ ≺ δ

6N
h◦ ≺ γ. In

both cases we have δ ≺ ρ

6N
h+1 γ ≺ σ.
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The following example illustrates how recursive terms are treated in our formal system. Recall that we
identify recx.σ with σ[recx.σ/x].

Example 3.18. The following is the result of Prove(B ◦ ≺ Na.recx.b.x aN ◦ ≺ recx.N(a.x+ b.x)).

(Hyp)
Γ2 B Na.recx.b.x ≺ recx.b.x aN recx.N(a.x+ b.x) ≺ recx.N(a.x+ b.x) D

(⊕ ·+)
Γ1 B Na.recx.b.x ≺ recx.b.x aN recx.N(a.x+ b.x) ≺ recx.N(a.x+ b.x)

(⊕ ·+)
B ◦ ≺ Na.recx.b.x aN ◦ ≺ recx.N(a.x+ b.x)

where D is (Hyp)
Γ2 B ◦ ≺ Na.recx.b.x aN ◦ ≺ recx.N(a.x+ b.x)

and where

Γ1 = {◦ ≺ Na.recx.b.x aN ◦ ≺ recx.N(a.x+ b.x)}
Γ2 = Γ1, Na.recx.b.x ≺ recx.b.x aN recx.N(a.x+ b.x) ≺ recx.N(a.x+ b.x)

We show now the termination of Prove. This proof is inspired by the decidability proof for subtyping
recursive types in the π-calculus [PS96].

We define the set of subbehaviours of a behaviour as expected.

Definition 3.19. The function Sub : SB→ P(SB) is coinductively given by:

Sub(1) = {1}
Sub(

∑
i∈I ai.σi) = {

∑
i∈I ai.σi} ∪

⋃
i∈I Sub(σi)

Sub(
⊕

i∈I ai.σi) = {
⊕

i∈I ai.σi} ∪
⋃
i∈I Sub(σi).

Since we assume the equation recx. σ = σ{recx. σ/x}, behaviours containing recursive subterms are infi-
nite terms, hence the coinductive character of Sub; in particular we have that Sub(recx. σ) = Sub(σ{recx. σ/x}).
On the other hand, being recursion guarded, σ is always a regular tree. Hence:

Fact 3.20. For any σ, the set Sub(σ) is well defined and finite.

Lemma 3.21. For all judgments Γ B δ ≺ ρ aN γ ≺ σ the execution of Prove (Γ B δ ≺ ρ aN γ ≺ σ)
terminates.

Proof. Let Sub(◦) = {◦}, extending Sub to SB ∪ {◦}. Then given a judgment δ ≺ ρ aN γ ≺ σ we set:

Sub(δ ≺ ρ aN γ ≺ σ) = {δ′ ≺ ρ′ aN γ′ ≺ σ′ | δ′ ∈ Sub(δ), ρ′ ∈ Sub(ρ), γ′ ∈ Sub(γ), σ′ ∈ Sub(σ)}.
Fact 3.20 implies that Sub(δ ≺ ρ aN γ ≺ σ) is finite. On the other hand, by direct inspection of the rules
of the system in Figure 2, we find that all δ′ ≺ ρ′ aN γ′ ≺ σ′ occurring in the premises belong to the set
Sub(δ ≺ ρ aN γ ≺ σ) for some δ ≺ ρ aN γ ≺ σ that occurs in the conclusion.

Now, if Prove (Γ B δ ≺ ρ aN γ ≺ σ) would not terminate, then there would be an infinite sequence of
nested calls Prove(Γ0 B δ0 ≺ ρ0 aN γ0 ≺ σ0),Prove(Γ1 B δ1 ≺ ρ1 aN γ1 ≺ σ1), . . ., where Γ0 B δ0 ≺ ρ0 aN

γ0 ≺ σ0 is just Γ B δ ≺ ρ aN γ ≺ σ, and the sequence Γ0,Γ1, . . . is such that Γi+1 = Γi ∪{δi ≺ ρi aN γi ≺ σi}
for all i. Since Prove begins by checking δ ≺ ρ aN γ ≺ σ ∈ Γ and it returns in the positive case, non
termination would only be possible if Γi ⊂ Γi+1 for infinitely many i, contradicting the fact that each Γi is
a subset of the union of Γ and Sub(δ ≺ ρ aN γ ≺ σ), which are both finite sets.

Theorem 3.22 (Completeness). If δ ≺ ρ

Nγ ≺ σ, then B δ ≺ ρ aN γ ≺ σ is derivable.

Proof. The hypothesis δ ≺ ρ

Nγ ≺ σ implies that Prove(B δ ≺ ρ aN γ ≺ σ) 6= fail, by the inverse of
Lemma 3.17. Since the execution of Prove(B δ ≺ ρ aN γ ≺ σ) terminates by Lemma 3.21, we conclude by
Lemma 3.15 that it produces a derivation D with conclusion B δ ≺ ρ aN γ ≺ σ.

Corollary 3.23. The relation

N is decidable.

Proof. By definition ρ

Nσ is equivalent to ◦ ≺ ρ

N◦ ≺ σ. By Theorems 3.13 and 3.22 ◦ ≺ ρ

N◦ ≺ σ is
equivalent to the derivability of B ◦ ≺ ρ aN ◦ ≺ σ, which is decidable by means of Prove.
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4. The Subbehaviour Relation

In the theory of session behaviours (and contracts in general) the compliance relation induces a preorder �
formalizing the notion of (server) substitutivity. The relation σ � σ′ holds whenever, for any client ρ, if ρ



σ,
then ρ



σ′ . Here we adapt the definition of the subbehaviour relation to the behaviours with checkpoints
and to the N-compliance relation, obtaining a relation that we call N-subbehaviour and dub ≤N

.

Definition 4.1 (N-Subbehaviour). The binary relation σ ≤N
σ′ over SBN is defined by

σ ≤N
σ′ if ρ

Nσ implies ρ

Nσ′ for all ρ ∈ SBN.

As in the case of behaviours without checkpoints, a behaviour with more external choices and less internal
choices is “bigger than” a behaviour with less external choices and more internal choices. Formally

N

∑
i∈I∪J ai.σi ≤

N

N

∑
i∈I ai.σ

′
i

N

⊕
i∈I ai.σi ≤N

N

⊕
i∈I∪J ai.σ

′
i

where we assume σi ≤
N
σ′i for all i ∈ I. A simple example is Na.(b⊕ c) ≤

N

N(a.b+ d).

The addition of checkpoints produces behaviours which are incomparable in general, even in in case their
erasures be identical. For example Na.b is compliant with Na.b, but not with Na.Nb, while Na.Nb is compliant
with Na.Nb, but not with Na.b.

Nevertheless we can show decidability of the N-subbehaviour relation. This proof will be obtained as a
corollary of the property that the dual of a session-behaviour is actually the minimum among its servers
with respect to ≤N

. For any theory of subcontracts this duals as minima result is quite relevant, since the
possibility of implementing contract-based query engines relies on it (see the Introduction of [Pad10] for a
detailed description of the use of subcontract relations in search engines).

Lemma 4.2. For all ρ, σ, ω ∈ SBN:

[ ρ

Nω and ω

Nσ ] imply ρ

Nσ.

Proof. It is easy to verify that an alternative definition of

N is the following one.

Let δ ≺ ρ

Nγ ≺ σ if

1) δ ≺ ρ ‖ γ ≺ σ 6 τ−→ implies ρ = 1;

2) δ ≺ ρ ‖ γ ≺ σ β−→ δ′ ≺ ρ′ ‖ γ′ ≺ σ′ implies δ′ ≺ ρ′

N γ′ ≺ σ′, where β ∈ {τ, rbk}.
Therefore it is enough to show that

{(δ ≺ ρ, γ ≺ σ) ∈ SB≺×SB≺ | ∃ω.ϑ. δ ≺ ρ

Nϑ ≺ ω & ϑ ≺ ω

Nγ ≺ σ}
satisfies the above conditions (extending the duality operation to ◦ = ◦).

1) δ ≺ ρ ‖ γ ≺ σ 6 τ−→ implies ρ = 1. If we had, by contradiction, ρ 6= 1, let δ ≺ ρ
a−→ for some a (the case

in which δ ≺ ρ
a−→ can be treated similarly). From δ ≺ ρ

Nϑ ≺ ω we then get ϑ ≺ ω
a−→ and hence

ϑ ≺ ω
a−→. So from ϑ ≺ ω

Nγ ≺ σ, we get γ ≺ σ
a−→. Notice that we have A+(ρ) ⊇ A⊕(σ), since

A+(ρ) ⊇ A⊕(ω) and A+(ω) ⊇ A⊕(σ). So we could conclude δ ≺ ρ ‖ γ ≺ σ τ−→.

2) δ ≺ ρ ‖ γ ≺ σ
β−→ δ′ ≺ ρ′ ‖ γ′ ≺ σ′ with β ∈ {τ, rbk} implies δ′ ≺ ρ′

Nϑ′ ≺ ω′ and ϑ′ ≺ ω′

Nγ′ ≺ σ′

for some ω′, ϑ′.
If β = rbk we have actually to show that

δ ≺ ρ ‖ γ ≺ σ rbk−→ ◦ ≺ δ ‖ ◦ ≺ γ implies ◦ ≺ δ

N◦ ≺ ω′ and ◦ ≺ ω′

N◦ ≺ γ for some ω′.

From δ ≺ ρ ‖ γ ≺ σ rbk−→ ◦ ≺ δ ‖ ◦ ≺ γ we can infer that δ, γ ∈ SBN. Being δ ≺ ρ

Nϑ ≺ ω also ϑ ∈ SBN.

Therefore δ ≺ ρ ‖ ϑ ≺ ω
rbk−→ ◦ ≺ δ ‖ ◦ ≺ ϑ and ϑ ≺ ω ‖ γ ≺ σ

rbk−→ ◦ ≺ ϑ ‖ ◦ ≺ γ. This implies
◦ ≺ δ

N◦ ≺ ϑ and ◦ ≺ ϑ

N◦ ≺ γ. We can then choose ω′ = ϑ in order to get what we need.
If β = τ we have actually to show that
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δ ≺ ρ ‖ γ ≺ σ τ−→ δ ≺ ρ′ ‖ γ ≺ σ′ implies δ ≺ ρ′

Nϑ′ ≺ ω′ and ϑ′ ≺ ω′

Nγ ≺ σ′ for some ω′, ϑ′.
We proceed by cases, according to the form of ρ.
Let ρ =41

∑
i∈I ai.ρi and ρ′ = ρk and δ′ = p(δ, ρ). Then σ =42

⊕
j∈J aj .σj and σ′ = σk and γ′ = p(γ, σ).

Now, from δ ≺ ρ

Nϑ ≺ ω and ϑ ≺ ω

Nγ ≺ σ, we can infer that ω =43

⊕
l∈L al.ωl and J ⊆ L ⊆ I.

Notice that by construction p(ϑ, ω) = p(ϑ, ω) So in order to obtain what we need we can simply choose
ϑ′ = p(ϑ, ω) and ω′ = ωk.
The case ρ =4

⊕
i∈I ai.ρi can be treated similarly.

Proposition 4.3. Let ω ∈ SBN. Then ω is the minimum server of ω, i.e.

ω

Nσ implies ω ≤N
σ for all σ ∈ SBN.

Proof. We observe that ω

Nω. Hence it remains to show the minimality property with respect to ≤N
.

Let σ be a server ω is compliant with, i.e. ω

Nσ. Now, in order to show ω ≤N
σ, let ρ be a client compliant

with ω, i.e. ρ

Nω. Then we have ρ

Nω and ω

Nσ. By Lemma 4.2 and being duality an involution we get
what we need, that is that ρ is compliant with σ.

We are finally in place to establish the expected relation between subtyping, compliance and duality.

Theorem 4.4. σ ≤N
σ′ if and only if σ

Nσ′

Proof. (⇒) Let σ

6N
σ′. Since we have σ

Nσ, we get then that σ 6≤N
σ′.

(⇐) Let σ

Nσ′. Then, by Proposition 4.3, we get σ = σ ≤N
σ′.

By Theorem 4.4 and the decidability of

N we can now conclude:

Corollary 4.5. The relation ≤N
is decidable.

5. Calculus with Skips

In this section we modify the calculus of behaviours to allow the skip of certain outputs occurring after a
rollback. To represent the fact that just already done outputs can be skipped, we bar them as in 6a. Then we
define session behaviours as in Figure 1 adding barred outputs. In the following −a stands for either a or 6a.
We use SBskp to denote the set of session behaviours with checkpoints and skips. From now on we call just
behaviours the expressions in SBskp.

In the operational semantics of the calculus we have to record not only the last encountered behaviour
that was prefixed by a checkpoint in the interaction leading to the current behaviour (as before), but also
the sequence of executed inputs and outputs (trace). As usual a trace µ is a finite sequence of actions and

coactions, where the outputs can be either barred or not. We say that µ is a trace of σ if σ
µ−→, according

to the LTS of ordinary behaviours. Therefore we will consider configurations of the shape:

(σ, µ) ≺ σ′

where σ is a checkpointed internal or external choice, and σ
µ−→ σ′ if σ becomes σ′ after performing all the

actions in µ and in the given order. Let SBN

skp
be the set of behaviours starting with N and TR be the set

of traces. Then SBN

skp
× TR ∪ {◦} is the set of the “pasts with skips”, and we denote by χ, ζ, possibly with

superscripts, its elements.

To formalise the LTS of clients and servers we record the outputs that can be skipped by means of a
function which, applied to a behaviour and to a trace of it, returns the behaviour where all the executed
coactions have been barred. Given a pair (σ, µ) such that µ is a trace of σ, we define the function b(σ, µ) by
induction on µ, using ε to denote the empty trace:
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b(σ, ε) = σ

b(Nσ, µ) = Nb(σ, µ)

b(
∑
i∈I ai.σi, ak µ) =

∑
i∈I\k ai.σi + ak.b(σk, µ)

b(
⊕

i∈I −ai.σi, ak µ) =
⊕

i∈I\k −ai.σi ⊕ 6ak.b(σk, µ)

where if µ is a trace of σ then k ∈ I in both cases; also k is unique such, by definition of behaviours. The equi-
recursive treatment of recx.σ implies b(recx.σ, µ) = b(σ[recx.σ/x], µ) if µ 6= ε, and b(recx.σ, µ) = recx.σ,
otherwise.

We define N?σ =

{
σ if σ =Nσ

′,

Nσ otherwise.
We are now ready to give the LTS of clients and servers.

Definition 5.1 (Reduction of Session Behaviours with Skips). Let k ∈ I.

◦ ≺
∑
i∈I ai.σi

ak−→ ◦ ≺ σk (◦+) ◦ ≺
⊕

i∈I −ai.σi
ak−→ ◦ ≺ σk (◦⊕)

(σ, µ) ≺
∑
i∈I ai.σi

ak−→ (σ, µ ak) ≺ σk (+) (σ, µ) ≺
⊕

i∈I −ai.σi
ak−→ (σ, µ−ak) ≺ σk (⊕)

χ ≺ N

∑
i∈I ai.σi

ak−→ (N

∑
i∈I ai.σi, ak) ≺ σk (N+) χ ≺ N

⊕
i∈I −ai.σi

ak−→ (N

⊕
i∈I −ai.σi,−ak) ≺ σk (N⊕)

◦ ≺ N(
⊕

i∈I −ai.σi ⊕ 6a.σ)
skp−→ ◦ ≺ N?σ (skp) (σ, µ) ≺ ρ rbk−→ ◦ ≺ b(σ, µ) (rbk)

Since we only allow to skip barred outputs, the starting configuration of the first application of rule (skp)
must be the result of a rollback. This implies that the past must be ◦ and the current behaviour must
be checkpointed. In the new configuration we preserve the past and the checkpoint. This choice can be
illustrated by looking at reduction rules of client/server pairs and so we will discuss it after defining them.

We extend the function A+(·) of Definition 2.5 just by ignoring bars. The interaction of a client with
a server is modelled by the reduction of their parallel composition, that can also involve barred outputs
in synchronisations and be forward, skipping an already done output when no synchronisation is possible
(condition A⊕( )∩A+( ) = ∅ in rules (skp‖) and (‖skp)). Therefore we allow skipped outputs in rules (+‖⊕)
and (⊕‖+) of Definition 2.6 and we add the following rules:

◦ ≺ ρ skp−→ ◦ ≺ ρ′ A⊕(ρ) ∩ A+(σ) = ∅
(skp‖)

◦ ≺ ρ ‖ ◦ ≺ σ skp−→ ◦ ≺ ρ′ ‖ ◦ ≺ σ
◦ ≺ σ skp−→ ◦ ≺ σ′ A⊕(σ) ∩ A+(ρ) = ∅

(‖skp)
◦ ≺ ρ ‖ ◦ ≺ σ skp−→ ◦ ≺ ρ ‖ ◦ ≺ σ′

In the following we will use −→ for the union of
τ−→,

rbk−→ and
skp−→ and similarly of the other arrows denoting

reductions.

Without skips, starting from nice client/server parallel compositions, only nice client/server parallel
compositions can be reached (Proposition 2.8). This assures that the client and the server either both can
or both cannot roll back in all configurations, an essential property as discussed in the Introduction. So we
designed rule (skp) preserving this property.

Let us extend Definition 2.7 to the present calculus just replacing SBN with SBN

skp
. Then rules (‖skp) and

(skp‖) can only be applied to nice parallel compositions which satisfy condition (1) of Definition 2.7 producing
parallel compositions which satisfy the same condition. Therefore we can consider only nice client/server
parallel compositions also when dealing with skips.

6. Compliance with Skips

We denote the set of configurations by SB≺skp, i.e. SB≺skp = {χ ≺ σ | χ ∈ SBN

skp
× TR ∪ {◦}, σ ∈ SB}.

Definition 6.1 (N
skp

-Compliance Relation

Nskp).

18



i) Let ζ ≺ ρ, χ ≺ σ ∈ SB≺skp. We say that ζ ≺ ρ is N
skp

-compliant with χ ≺ σ, written ζ ≺ ρ

Nskpχ ≺ σ, when

for all ζ ′ ≺ ρ′ and χ′ ≺ σ′:
if ζ ≺ ρ ‖ χ ≺ σ ∗−→ ζ ′ ≺ ρ′ ‖ χ′ ≺ σ′ 6τ,skp−→ then ρ′ = 1,

where
τ,skp−→ =

τ−→ ∪ skp−→.

ii) Let ρ, σ ∈ SBN

skp
. We say that ρ is N

skp
- compliant with σ (notation ρ

Nskpσ) if ◦ ≺ ρ

Nskp◦ ≺ σ.

Also N
skp

-compliance satisfies the conservativity of erasure discussed in the Introduction. So similarly
to Proposition 3.2 we get

Proposition 6.2. ρ

Nskpσ implies erase(ρ)



erase(σ) for all ρ, σ.

The example given after Proposition 3.2 shows that the vice versa does not hold. Moreover

Nskp does not
imply

N, take for example ρ =N a.b and σ =N aNb. Instead

N implies

Nskp, since rules (skp‖) and (‖skp)
apply only when the parallel composition of client and server is stuck with the reduction of Definition 2.6.

With skips we did not manage to find a suitable notion of duality. In fact duality requires involution,
and therefore we need to extend the syntax in order to remember barred outputs. In absence of duality we
cannot characterise subtyping as done in Section 4 for the calculus without skips.

In order to give a formal system characterising N
skp

-compliance it is handy to define a function

s : (SBN

skp
× TR ∪ {◦})× SB× (N ∪N )→ SBN

skp
× TR ∪ {◦} which returns:

• the pair of the second and the third argument, when the second argument is checkpointed,

• the first argument modified using the third, when the second argument is not checkpointed, and the first
argument is pair,

• ◦ otherwise.

More precisely:

s(χ,4σ, α) =


(Nσ, α) if 4 = N
(ρ, µα) if 4 6= N and χ = (ρ, µ)

◦ otherwise.

The first six reduction rules in Definition 5.1 can be shortly written in terms of the function s:

Lemma 6.3.
χ ≺ 4(

∑
i∈I ai.σi)

ak−→ s(χ,4(
∑
i∈I ai.σi), ak) ≺ σk.

χ ≺ 4(
⊕

i∈I −ai.σi)
ak−→ s(χ,4(

⊕
i∈I ai.σi), ak) ≺ σk.

We now axiomatically characterise the N
skp

-compliance relation by means of a formal system, whose judg-
ments are of the form Γ B ζ ≺ ρ aN

skp χ ≺ σ, where Γ is an environment, i.e. a finite set Γ = {ζi ≺ ρi aN
skp

χi ≺ σi}i∈I . The rules of the formal system are given in Figure 4, where in writing bζ we assume that
ζ ∈ SBN

skp
× TR. We denote by aN

skp the formal counterpart of

Nskp.

The following example shows N
skp

-compliance of the client and the server as defined in equations (3) of the
Introduction.

Example 6.4. Let ρ = Nlg.(bg.pr⊕ bt.pr) and σ = Nlg.N(bg.pr + bt.pr) and
Γ = {◦ ≺ ρ aN ◦ ≺ σ},
Γ1 = Γ, (ρ, lg) ≺ bg.pr⊕ bt.pr aN

skp (σ, lg) ≺ N(bg.pr + bt.pr),

Γ2 = Γ1, (ρ, lg bg) ≺ pr aN
skp (N(bg.pr + bt.pr), bg) ≺ pr,

Γ3 = Γ2, ◦ ≺ N��lg.(��bg.pr⊕ bt.pr) aN
skp ◦ ≺ N(bg.��pr + bt.pr),

Γ4 = Γ3, ◦ ≺ N(��bg.pr⊕ bt.pr) aN
skp ◦ ≺ N(bg.��pr + bt.pr),

Γ5 = Γ4, (N(��bg.pr⊕ bt.bg), bg) ≺ pr aN
skp (N(bg.��pr + bt.pr), bg) ≺ ��pr,

Γ6 = Γ4, (N(��bg.pr⊕ bt.bg), bt) ≺ pr aN
skp (N(bg.��pr + bt.pr), bt) ≺ ��pr.
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D
(Ax)

Γ2 B (ρ, lg bg pr) ≺ 1 aN
skp (N(bg.pr + bt.pr), bg pr) ≺ 1 D

(+ · ⊕)
Γ1 B (ρ, lg bg) ≺ pr aN

skp (N(bg.pr + bt.pr), bg) ≺ pr D1 D2
(⊕ ·+)

Γ B (ρ, lg) ≺ bg.pr⊕ bt.pr aN
skp (σ, lg) ≺ N(bg.pr + bt.pr)

(⊕ ·+)
B ◦ ≺ ρ aN

skp ◦ ≺ σ
where:
D is the derivation

(Hyp)
Γ5 B ◦ ≺ N(��bg.pr⊕ bt.bg) aN

skp ◦ ≺ N(bg.��pr + bt.pr)
(Ax)

Γ5 B (N(��bg.pr⊕ bt.pr), bg pr) ≺ 1 aN
skp (N(bg.��pr + bt.pr), bg pr) ≺ 1 D4

(+ · ⊕)
Γ4 B (N(��bg.pr⊕ bt.pr), bg) ≺ pr aN

skp (N(bg.��pr + bt.pr), bg) ≺ ��pr D3
(⊕ ·+)

Γ3 B ◦ ≺ N(��bg.pr⊕ bt.pr) aN
skp ◦ ≺ N(bg.��pr + bt.pr)

(skp·)
Γ2 B ◦ ≺ N��lg.(��bg.pr⊕ bt.pr) aN

skp ◦ ≺ N(bg.��pr + bt.pr)

D4 is the derivation

(Hyp)
Γ5 B ◦ ≺ N(��bg.pr⊕ bt.bg) aN

skp ◦ ≺ N(bg.��pr + bt.pr)

D3 is the derivation

...

Γ6 B ◦ ≺ N(��bg.pr⊕��bt .pr) aN
skp ◦ ≺ N(bg.��pr + bt.��pr)

(Ax)
Γ6 B (N(��bg.pr⊕ bt.pr), bt pr) ≺ 1 aN

skp (N(bg.��pr + bt.pr), bt pr) ≺ 1 D5
(+ · ⊕)

Γ4 B (N(��bg.pr⊕ bt.pr), bt) ≺ pr aN
skp (N(bg.��pr + bt.pr), bt) ≺ ��pr

D5 is the derivation

...

Γ6 B ◦ ≺ N(��bg.pr⊕��bt .pr) aN
skp ◦ ≺ N(bg.��pr + bt.pr)

We omit writing D1 and D2. Derivation D1 has the very same structure of the subtree to its left considering
the bt choice instead of the bg one. Derivation D2 is similar to D, but taking care of the fact that the action
bg has not been performed.
The derivations with vertical dots are shown incomplete for sake of readability. Actually one could wonder
why the judgments right below the vertical dots are not derived by means of rule (Hyp). As a matter of
fact, the subjects of such judgments are present in the respective environments only modulo some bars. In
the omitted derivations these judgments go into the environments and become the subjects of instances of
rule (Hyp).

The remaining of this section is devoted to the proof of the soundness and completeness of the formal
system in Figure 4.

6.1. Soundness and Completeness

As for the calculus without skips we start by providing a coinductive definition of N
skp

-compliance.

Definition 6.5. Let {

Nskp

k | k ∈ N} be the family of relations over SB≺skp such that

Nskp

0 = SB≺ × SB≺
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either ζ = χ = ◦ or Γ B ◦ ≺ bζ aN
skp ◦ ≺ bχ

(Ax)
Γ B ζ ≺ 1 aN

skp χ ≺ σ
(Hyp)

Γ, ζ ≺ ρ aN
skp χ ≺ σ B ζ ≺ ρ aN

skp χ ≺ σ

∀j ∈ J. Γ′ B s(ζ, ρ, aj) ≺ ρj aN
skp s(χ, σ, aj) ≺ σj either ζ = χ = ◦ or Γ′ B ◦ ≺ bζ aN

skp ◦ ≺ bχ
(+ · ⊕)

Γ B ζ ≺ ρ aN
skp χ ≺ σ

where Γ′ = Γ, ζ ≺ ρ aN
skp χ ≺ σ and ρ = 41(

∑
i∈I∪J ai.ρi) and σ = 42(

⊕
j∈J −aj .σj)

∀i ∈ I. Γ′ B s(ζ, ρ, ai) ≺ ρi aN
skp s(χ, σ, ai) ≺ σi either ζ = χ = ◦ or Γ′ B ◦ ≺ bζ aN

skp ◦ ≺ bχ
(⊕ ·+)

Γ B ζ ≺ ρ aN
skp χ ≺ σ

where Γ′ = Γ, ζ ≺ ρ aN
skp χ ≺ σ and ρ = 41(

⊕
i∈I −ai.ρi) and σ = 42(

∑
j∈I∪J aj .σj)

∀j ∈ J. Γ′ B ◦ ≺ ρ aN
skp ◦ ≺ N?σj A⊕(σ) ∩ A+(ρ) = ∅

(·skp)
Γ B ◦ ≺ ρ aN

skp ◦ ≺ σ
where Γ′ = Γ, ◦ ≺ ρ aN

skp ◦ ≺ σ and ρ = N(
∑
i∈I ai.ρi) and σ =N (

⊕
j∈J 6aj .σj ⊕

⊕
l∈L al.σl)

∀i ∈ I. Γ′ B ◦ ≺ N?ρi aN
skp ◦ ≺ σ A⊕(ρ) ∩ A+(σ) = ∅

(skp·)
Γ B ◦ ≺ ρ aN

skp ◦ ≺ σ
where Γ′ = Γ, ◦ ≺ ρ aN

skp ◦ ≺ σ and ρ = N(
⊕

i∈I 6ai.ρi ⊕
⊕

l∈L al.ρl) and σ = N(
∑
j∈J aj .σj)

Fig. 4. The formal system for N
skp

-compliance

and ζ ≺ ρ

Nskp

k+1 χ ≺ σ if either conditions (1), (2) and (3) of Definition 3.5 (with ζ, χ and

N in place of
δ, γ and

Nskp, respectively) hold, or if

ρ 6= 1 and ζ ≺ ρ ‖ χ ≺ σ skp−→ and

ζ ≺ ρ ‖ χ ≺ σ −→ ζ ′ ≺ ρ′ ‖ χ′ ≺ σ′ implies ζ ′ ≺ ρ′

N
k χ
′ ≺ σ′ for all ζ ′ ≺ ρ′, χ′ ≺ σ′.

Then we define

Nskp

co =
⋂
k∈N

Nskp

k .

Lemma 6.6. The relations

Nskp and

Nskp

co coincide.

Toward the axiomatic characterisation of the N
skp

-compliance we define the semantic counterparts of the
judgments in the formal system. The following definitions are the analogous of Definitions 3.10 and 3.11,
respectively.

Definition 6.7. We write

• |=skp Γ if ζ ′ ≺ ρ′

Nskpχ′ ≺ σ′ for all ζ ′ ≺ ρ′ aN
skp χ

′ ≺ σ′ ∈ Γ;

• Γ |=skp ζ ≺ ρ aN
skp χ ≺ σ if |=skp Γ implies ζ ≺ ρ

Nskpχ ≺ σ.

Definition 6.8. We write

• |=skp
k Γ if ζ ′ ≺ ρ′

Nskp

k χ′ ≺ σ′ for all ζ ′ ≺ ρ′ aN χ′ ≺ σ′ ∈ Γ,

• Γ |=skp
k ζ ≺ ρ aN χ ≺ σ if |=skp

k Γ implies ζ ≺ ρ

Nskp

k χ ≺ σ,

where k ≥ 0.

Theorem 6.9 (Soundness). If Γ B ζ ≺ ρ aN
skp χ ≺ σ, then Γ |= ζ ≺ ρ aN

skp χ ≺ σ.
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Proveskp(Γ B ζ ≺ ρ aN χ ≺ σ)

if ζ ≺ ρ aN χ ≺ σ ∈ Γ then (Hyp)
Γ B ζ ≺ ρ aN χ ≺ σ

else if ρ = 1 then

if ζ = ◦ or χ = ◦ then (Ax)
Γ B ζ ≺ ρ aN χ ≺ σ

else let D = Proveskp (Γ B ◦ ≺ bζ aN ◦ ≺ bχ) 6= fail in
D

(Ax)
Γ B ζ ≺ ρ aN χ ≺ σ

else if ρ = 41(
∑

i∈I∪J ai.ρi) and σ = 42(
⊕

j∈J −aj .σj) then

let Γ′ = Γ, ζ ≺ ρ aN χ ≺ σ in

foreach j ∈ J let Dj = Proveskp (Γ′ B s(ζ, ρ, aj) ≺ ρj aN s(χ, σ, aj) ≺ σj) 6= fail in

if ζ = ◦ or χ = ◦ then
Dj (∀j ∈ J)

(+ · ⊕)
Γ B ζ ≺ ρ aN χ ≺ σ

else let D = Proveskp (Γ′ B ◦ ≺ bζ aN ◦ ≺ bχ) 6= fail in
Dj (∀j ∈ J) D

(+ · ⊕)
Γ B ζ ≺ ρ aN χ ≺ σ

else if ρ = 41(
⊕

i∈I ai.ρi) and σ = 42(
∑

j∈I∪J −aj .σj) then

let Γ′ = Γ, ζ ≺ ρ aN χ ≺ σ in

foreach i ∈ I let Di = Proveskp (Γ′ B s(ζ, ρ, ai) ≺ ρi aN s(χ, σ, ai) ≺ σi) 6= fail in

if ζ = ◦ or χ = ◦ then
Di (∀i ∈ I)

(⊕ ·+)
Γ B ζ ≺ ρ aN χ ≺ σ

else let D = Proveskp (Γ′ B ◦ ≺ bζ aN ◦ ≺ bχ) 6= fail in
Di (∀i ∈ I) D

(⊕ ·+)
Γ B ζ ≺ ρ aN χ ≺ σ

else if ρ =N (
∑

i∈I ai.ρi) and σ =N (
⊕

j∈J 6aj .σj ⊕
⊕

l∈L al.σl) and A⊕(σ) ∩ A+(ρ) = ∅ then

let Γ′ = Γ, ζ ≺ ρ aN χ ≺ σ in

foreach j ∈ J let Dj = Proveskp (Γ′ B ◦ ≺ ρ aN ◦ ≺ N?σj) 6= fail in
Dj (∀j ∈ J)

(·skp)
Γ B ζ ≺ ρ aN χ ≺ σ

else if ρ =N (
⊕

i∈I 6ai.ρi ⊕
⊕

l∈L al.ρl) and σ =N (
∑

j∈J aj .σj) and A⊕(ρ) ∩ A+(σ) = ∅ then

let Γ′ = Γ, ζ ≺ ρ aN χ ≺ σ in

foreach i ∈ I let Di = Proveskp (Γ′ B ◦ ≺ N?ρi aN ◦ ≺ σ) 6= fail in
Di (∀i ∈ I)

(skp·)
Γ B ζ ≺ ρ aN χ ≺ σ

else fail

Fig. 5. The algorithm Proveskp.

Proof. Again we have Γ |=skp
k ζ ≺ ρ aN

skp χ ≺ σ for all k implies Γ |= ζ ≺ ρ aN
skp χ ≺ σ, so that it suffices to

prove that Γ B ζ ≺ ρ aN
skp χ ≺ σ implies Γ |=skp

k ζ ≺ ρ aN
skp χ ≺ σ for all k, by simultaneous induction over

the derivation D of Γ B ζ ≺ ρ aN
skp χ ≺ σ and over k.

The argument is similar to the proof of Theorem 3.13 but in case the derivation ends by rules (·skp) or
(skp·). We show only the first case, since the second one is similar.
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Now suppose that D ends by the inference:

∀j ∈ J. Γ′ B ◦ ≺ ρ aN
skp ◦ ≺ N?σj A⊕(σ) ∩ A+(ρ) = ∅

(·skp)
Γ B ◦ ≺ ρ aN

skp ◦ ≺ σ

where Γ′ = Γ, ◦ ≺ ρ aN
skp ◦ ≺ σ and ρ = N(

∑
i∈I ai.ρi) and σ =N (

⊕
j∈J 6aj .σj ⊕

⊕
l∈L al.σl). If |=skp

k Γ for

some k > 0, then |=skp
k−1 Γ. By induction we have Γ |=skp

k−1 ◦ ≺ ρ aN
skp ◦ ≺ σ, and hence ◦ ≺ ρ

Nskp

k−1◦ ≺ σ, that

is |=skp
k−1 Γ′. From this and the induction hypothesis over D, i.e. Γ′ |=k−1 ◦ ≺ ρ aN

skp ◦ ≺ N?σj for all j ∈ J ,

we get ◦ ≺ ρ

Nskp

k−1◦ ≺ N?σj . Notice that A⊕(σ) ∩ A+(ρ) = ∅, and ◦ ≺ ρ ‖ ◦ ≺ N?σj for all j ∈ J are exactly
the one step reducts of ◦ ≺ ρ ‖ ◦ ≺ σ. Then we conclude ◦ ≺ ρ

Nskp

k ◦ ≺ σ, as required.

Theorem 6.10 (Completeness). If ζ ≺ ρ

Nskpχ ≺ σ, then B ζ ≺ ρ aN
skp χ ≺ σ is derivable.

Proof. As in the case of the calculus without skip the completeness can be shown by using an algorithm
Proveskp which builds a derivation in the formal system of Figure 4 if possible, and it fails otherwise. Figure 5
shows this algorithm. The main difference between Prove (Figure 3) and Proveskp are the last two cases,
which correspond to the application of the rules (skp‖) and (‖skp). Clearly these cases do not destroy
termination and just build the derivations which can be obtained using these rules.

The main result of this section is that the formal system provides a complete axiomatic characterisation
of the N

skp
-compliance, which leads to an decision procedure for N

skp
-compliance:

Theorem 6.11. The formal system of Figure 5 characterises N
skp

-compliance, i.e.

ρ

Nskpσ iff B ◦ ≺ ρ aN
skp ◦ ≺ σ.

7. Related work and conclusion

Since the pioneering work by Danos and Krivine [DK04], reversible computations in process algebras have
been widely studied. The calculus of [DK04] adds a distributed monitoring system to CCS [Mil89] allowing
to rewind computations. Phillips and Ulidowski [PU07] propose a method for reversing process operators
that are definable by SOS rules in a general format, using keys to bind synchronised actions together. A
reversible variant of the higher-order π-calculus is defined in [LMS10], using name tags for identifying threads
and explicit memory processes. In [LMSS11] Lanese et al. enrich the calculus of [LMS10] with a fine-grained
rollback primitive. To the best of our knowledge the first works dealing with rollback of communicating
systems are [dVKH10a, dVKH10b, KSH14]. In these papers an extension of CCS models the combination
of rollback recovery and coordinated checkpoints.

As pointed out in [PU07], reversibility in process calculi is challenging, since we cannot distinguish be-
tween the processes a‖a and a.a by simply recording the past actions. For this reason both histories and
unique identifiers for threads have been used to track information. A key requirement, dubbed causal con-
sistency in [DK04], is that of undoing only actions if no other action depending on them has been executed
(and not undone). Session behaviours overcome all these problems: in fact both the client and the server
reduce in a sequential way. This justifies the relative simplicity of our calculus.

A work close to ours has been carried on by Tiezzi and Yoshida in [TY14, TY15], where they study the
interplay between reverse computations and session-based interactions (for a comparison between session
types and contracts see, e.g., [LP08]). Their calculus uses tags and memories as previous proposals in the
literature on reversibility. In particular, they define the semantics for reversible sessions by adapting the
approach in [LMS10], but they do not consider compliance. Compliance in a setting with rollback has been
first studied in [BDdL14].

The version with skips of our system has been inspired by [BdL14], where the notion of standard com-
pliance on session behaviours has been loosened, by allowing a server to skip outputs not needed by its
client. In the present context both the client and the server are allowed to skip an output, but here this can
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be done with a different motivation, since the outputs that can be skipped are actually already been received.

Notice that a process whose behaviour is described by a session-behaviour with checkpoints is assumed
to have the possibility, after a rollback, of resuming the computation following the very same branch of the
computation on with the rollback has been performed. In our formalism no assumption is in fact made about
the point and the motivation for a rollback. This make our session behaviours suitable as a basis of reversible
session-structured computations where rollbacks depends intrinsically on the single interacting processes.
From a different point of view, instead, rollbacks could be used as a strategy to get compliance. For instance
assuming the interacting processes to roll back whenever the current branch of the computation cannot
proceed and a different branch could work in its stead. This approach has been investigated in [BDLdL15],
where compliance does not enjoy conservativity of erasure but the inverse property: if behaviours with-
out checkpoints are compliant, then an arbitrary addition of checkpoints preserves the compliance between
them. More precisely the calculus of [BDLdL15] does not have checkpoints, but external choices of conames.
Two external choices can be viewed as agreement points to which processes can roll back. So the previous
property can be rephrased as: if behaviours without checkpoints are compliant, then the behaviours obtained
by replacing some internal choices by external ones are compliant too.

Natural extensions of the present work consist in allowing to possibly perform several consecutive roll-
backs and having sequences of checkpointed behaviours as pasts. It is easy to see that both extensions, even
if they would not lead to great difficulties from a technical point of view, will lead instead to notions of
compliance which are more demanding and less applicable in a general setting than the current one.

We plan to investigate whether our approach can be extended to multi-party sessions [HYC08], the
rational being that the parallelism is limited since the interactions must follow the communication protocols
prescribed by global types.
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