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Abstract

Cytosolic calcium signals play important roles in processes such as cell
growth and motility, synaptic communication and formation of neural cir-
cuitry. These signals have complex time courses and their quantitative anal-
ysis is not easily accomplished; in particular it may be difficult to evidence
subtle differences in their temporal patterns. In this paper, we use wavelet
analysis to extract information on the structure of

[

Ca2+
]

c
oscillations. To

this aim we have derived a set of indices by which different
[

Ca2+
]

c
oscilla-

tory patterns and their change in time can be extracted and quantitatively
evaluated. This approach has been validated with examples of experimental
recordings showing changes in oscillatory behavior in cells stimulated with a
calcium-releasing agonist.
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1. Introduction1

A large array of cellular functions is under the control of fine and complex2

changes in the free cytosolic calcium concentration,
[

Ca2+
]

c
. These changes3

convey information on the specific status of the metabolic machinery and on4

the signals impinging on the cell itself, and this information can be coded5

both in amplitude and frequency (Oike et al., 1994; Prank et al., 2000). Ad-6

ditionally, these intracellular events are usually compartmentalized, i.e. they7

are restricted to specific subcellular domains, with different compartments8

showing different patterns of Ca2+ signalling (Frey et al., 2000; Goldberg9

and Yuste, 2005; Raymond and Redman, 2006). In nerve cells, the role of10

these intracellular signals is of particular relevance: they can regulate a wide11

set of processes, from cell to cell communication to integration of information12

at the cell body and to transcriptional events. Moreover, they have specific13

roles at defined developmental stages, such as in the growth, orientation and14

stabilization of neuronal processes (dendrites and axons) and in the correct15

formation of neuronal circuitry (Wen and Zheng, 2006).16

The generation of these cytosolic signals, usually showing an oscillatory17

pattern, is the result of a convergent and tightly regulated set of activations18

and deactivations of calcium import and export mechanisms, together with19

pathways involving exchange of the ion between the cytosol and intracel-20

lular compartments (Uhlén and Fritz, 2010). The resulting responses are21

often of complex time course, and their quantitative analysis is not so obvi-22

ous. In many cases, they appear to be non-periodic and it may be difficult23

to evidence subtle differences in signal patterns by qualitative or semiquan-24

titative observation. On the other hand, evidencing statistical differences25

may be necessary when analyzing changes in activity following treatments26

with different agonists (neurotransmitters, hormones, growth factors, guid-27

ance molecules) or comparing activity in different subcellular domains (soma,28

growth cone, etc.). Some simple and in some cases effective approaches have29

been developed (Constantin et al., 2009), but, in general, spectral analysis is30

mandatory. Fourier transform has been widely used (see e.g. Uhlén, 2004);31

however, it provides a mean of analysis solely in the space of frequencies. To32

overcome this limitation, some authors have employed wavelet analysis (Gor-33

bunova and Spitzer, 2002; Suzuki et al., 2002; Wegner et al., 2006), that takes34

into account the local frequency composition of the signal and enables the35

signal to be analyzed both in frequency and time spaces. On the other hand,36

many applications of wavelet analysis do not provide quantitative parame-37
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ters to describe changes in the frequency composition of oscillatory patterns38

following stimulation protocols. This is a relevant issue, since such changes39

may provide relevant information on the kinetics of the mechanisms involved.40

In this paper, we introduce a more sophisticated approach to wavelet41

analysis, and show that it can be of significant help in extracting informa-42

tion from traces in which changes in the pattern of Ca2+ oscillations cannot43

be evidenced by qualitative observation. To this purpose, starting from the44

standard wavelet analysis, we have derived a set of indices by which differ-45

ent
[

Ca2+
]

c
oscillatory patterns and their change in time can be extract and46

quantitatively evaluated. The potential usefulness of this approach can be47

extended to other contexts, such as the analysis of differences between activ-48

ities in subcellular domains of the same neuron, and, more generally, of the49

same cell.50

2. Mathematical preliminaries51

A standard method to analyze a signal f (t) is via its Fourier transform52

which, however, provides information only on the frequencies making up the53

signal: that is to say that although, in principle, it is possible to determine54

all the frequencies present in a signal, the time at which they occur cannot be55

determined. To overcome this problem in the past decades several solutions56

have been developed to represent a signal in the time and frequency domain57

at the same time.58

A typical example is the windowed Fourier transform where the kernel59

of the Fourier transform is multiplied by a temporal window, say ga (t− b),60

where the parameter a measures the width of the window, and the parameter61

b is used to translate the window over the whole time domain. The result-62

ing transform is called the Gabor transform (windowed Fourier transform)63

(Lokenath, 1998).64

The width of the window, determined by a, provides a trade-off between65

frequency and time resolution: large windows (i.e. large a) give high resolu-66

tion of frequency and low time resolution, whereas narrow windows improve67

time resolution but provide a less accurate frequency representation. In other68

words a small a gives accurate information on the time course of the signal69

but it may lead to a coarse frequency representation, possibly losing relevant70

information on the structure of the signal itself; conversely, a large a provides71

an accurate representation of the signal structure but important events in the72

time course of the signal may be overlooked.73
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The problem of achieving good time resolution for the high frequency74

transients and good frequency resolution for low frequency components can75

be solved with the use of wavelets, a family of functions constructed from76

translations and dilations of a single function called the “mother wavelet” ψ77

(for a clear historical introduction see Lokenath (1998) and, for an in depth78

treatment, Daubechies (1992) and Mallat (1999): the literature on wavelet is79

virtually unlimited). This function must satisfy certain technical conditions80

(see, for instance, Antonini et al., 1992), among which
∫

ψ (t) dt = 0, so that81

ψ must exhibit some oscillations and a rapidly decreasing trend. The set of82

wavelets is obtained by the formula83

ψ(a,b) (t) =
1

|a|1/2
ψ

(

t− b

a

)

, (1)

where a is a scaling parameter which measures the degree of compression84

or scale, and b a translation parameter which determines the time location85

of the wavelet (Daubechies, 1992). If |a| < 1 the wavelet ψ(a,b) corresponds86

mainly to higher frequencies, when |a| > 1 it has a larger time-width than87

ψ and corresponds to lower frequencies. In other words on a large scale, the88

resolution is coarse in the time domain and fine in the frequency domain89

and, as the scale parameter a decreases, the resolution in the time domain90

becomes finer, while that in the frequency domain becomes coarser. Thus,91

wavelets have time-widths adapted to their frequencies and this is the main92

reason for their success in time-frequency analysis.93

Functions ψ(a,b) form the kernel of the wavelet transform:94

W (a,b) =
1

|a|1/2

∫ +∞

−∞

ψ∗

(

t− b

a

)

f (t) dt, (2)

where ∗ denotes complex conjugation.95

Here we have chosen the Morlet function as mother wavelet (Goupillaud96

et al., 1984):97

ψ (t) =
cs
π1/4

exp

(

−
1

2
t2
)

[exp (ist)− ks] , (3)

where ks = exp
(

−1
2
s2
)

and cs =
[

1 + exp (−s2)− 2 exp
(

−3
4
s2
)]

−1/2
is the98

normalization constant. Usually the parameter s is taken to be equal or99

larger than 5, so that ks ≃ 0 and cs ≃ 1: (3) becomes100

ψ (t) ≃
1

π1/4
exp

(

−
1

2
t2
)

exp (ist) (4)
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and the corresponding graph is shown in Fig. 1.
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Figure 1: Real and imaginary parts of the Morlet mother wavelet, as given by Eq. (4).

101

The wavelets transform is102

W (a,b) =
1

|a|1/2

∫ +∞

−∞

ψ∗

(

t− b

a

)

f (t) dt (5)

=
1

(πa2)1/4

∫ +∞

−∞

exp

[

−
1

2

(

t− b

a

)2
]

exp
[

−i
s

a
(t− b)

]

f (t) dt,

where we have used s = 5. It should be noted that b is a time variable103

and that s/a is related to the distance Tp between successive peaks of the104

mother wavelet (see Fig. 1) by the relation s/a = 2π/Tp so that it is possible105

to define a frequency of the wavelet by the relation ν = s/2πa (Goupillaud106

et al., 1984; Mallat, 1999). Thus, in the following the wavelet transform will107

be denoted byW (t, ν): the amplitude (modulus) ofW defines the scalogram,108

a graphical representation of the signal in the time-frequency domain.109

3. Analytical methods110

In this section a method of analysis will be described using recordings of111

changes in the intracellular free calcium concentration from cultured chick cil-112

iary ganglion (CG) glial cells. The signals represent responses to application113

to the extracellular solution of the agonist nicotinic acid adenine dinucleotide114
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phosphate (NAADP), a molecule that activates calcium release from intra-115

cellular stores (Genazzani and Billington, 2002) and that can exert its action116

when extracellularly applied (Billington et al., 2006). Changes in
[

Ca2+
]

c
117

have been recorded by means of the fluorescent calcium indicator Fura-2.118

More details on the experimental procedures will be given in Section 3.4.119

A graphical representation of the wavelet transform of one of such signals120

f (t) is presented in Fig. 2. The signal itself is in the upper box of the figure,121

and the modulus (amplitude) |W (t, ν)| of its wavelet transform is displayed122

in the lower box using an appropriate pseudocolor look-up table. It is known123

that wavelet transforms in finite time intervals give rise to the so called124

cone of influence at the edges of the time span of the recording (Torrence125

and Compo, 1998); here a detrending procedure was used that, ensuring a126

matching between the start and the end of the signal, can reduce the cone127

of influence artifact, by removing edge discontinuity; however this procedure128

does nothing about the most important source of this effect, namely the lack129

of information on the events occurring before the start and after the end of130

the recording.131

This trace was selected since even from a qualitative observation it can132

be concluded that it shows a sharp response to the agonist, in the form of a133

transient oscillatory burst. From the figure it is apparent that |W (t, ν)| takes134

its maximum values during the oscillatory burst of f (t), and that outside the135

areas of these peaks its values are relatively small, except for a low frequency136

component that corresponds to an overall oscillation of f (t). Furthermore,137

it can be noted that peaks are more spread out at low frequencies, as ex-138

pected from wavelet theory: at low frequency the time resolution tends to139

be less precise (Mallat, 1999). Thus the use of wavelet analysis implies some140

uncertainty in time (i.e. the exact time at which a specific component can141

be localized) and this holds mainly for low frequency components. However,142

the extent of the oscillatory burst is in good agreement with the temporal143

position of the peaks in the scalogram, thus showing that wavelets provide144

temporal information about the start and duration of the oscillatory part of145

the signal.146

While |W (t, ν)| provides information on both the oscillatory structure of147

the signal and its temporal trend, the question remains of how this infor-148

mation can be used. In many applications requiring to discriminate among149

different experimental conditions, e.g. in order to obtain quantitative indices150

of the effect of a particular stimulus on the time course of the signal, it may151

be useful to focus on time varying measures obtained by integration on the152
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Figure 2: A: oscillations in
[

Ca2+
]

c
observed in response to stimulation of a chick CG

glial cells with 10 nM NAADP. A vertical line marks the starting time of perfusion with
the agonist. B: |W (t, ν)|: amplitude of the wavelet transform as a function of time and
frequency.

frequency line, or, conversely, measures that depend solely on the frequencies153

making up the signal.154

In Fig. 3 the upper and left insets represent the result of the integration155

of |W (t, ν)|2 along frequency and time respectively. In other words the top156

of the figure displays the so called energy density E (t) (Bussow, 2007)157

E (t) =

∫

|W (t, ν)|2 dν, (6)

in which all contributions of all frequencies are integrated to provide a func-158

tion of time. Note that E (t) starts increasing before the application of the159

stimulus: this is an effect of the spreading of the maxima at low frequencies,160

remarked before. On the left the power spectrum is represented:161

P (ν) =

∫

|W (t, ν)|2 dt. (7)

162

Note that this power spectrum is similar, but not the same, to the one163

obtained with a Fourier transform; a comparison is shown in Fig. 4.164

In the next sections methods will be presented to compute differences165

between signals obtained in different experimental conditions, by making use166

of appropriate indices in time and frequency spaces, respectively.167
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the insets: on the left the power spectrum as defined in Eq. (7) and on the top the energy
density (see Eq. (6)).
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3.1. Focusing on time168

In most cases of interest the main contributions to energy density, at each169

time point, are concentrated around a few maxima (see Fig. 2), that arise170

precisely in correspondence with the most relevant events in the signal such171

as sharp peaks or oscillatory bursts, and these events are characterized by172

the occurrence of relatively high frequency components.173

In order to discriminate between results obtained in different experimental174

conditions a suitable representation of the signal must take into account both175

aspects. This can be done, for instance, by summing the contributions of the176

maxima of |W (t, ν)| along the ν axis, weighted by the corresponding values177

of ν. Maxima of |W (t, ν)| along the frequency axis can be obtained by the178

conditions179
{

∂
∂ν

|W | = 0
∂2

∂ν2
|W | < 0

, (8)

and a new index J of energy density can ben defined as180

J (t) =
1

2ǫ

∫ t+ǫ

t−ǫ

n(τ)
∑

i=1

|W (τ, νi)|
2 νi (τ) dτ, (9)

where {νi (τ)} is exactly the set of directional local maxima of W along the181

ν axis, at time τ . Since the number of these maxima changes in time, the182

parameter n is expressed as a function of τ . Integration simply serves to183

regularize the index, by avoiding abrupt variations due to discontinuities of184

frequency paths. The index J , calculated using the signal of Fig. 2, is shown185

in Fig. 5.
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Figure 5: Time course of the index J , computed applying Eq. (9) to the modulus of the
wavelet transform shown in Fig. 2.

186
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The index J gives a good quantitative evaluation of the effect of the187

agonist on the oscillatory activity shown in Fig. 2; the initial peak reflects188

the greater amplitude of the oscillations in the first part of the burst.189

A comparison with E (compare with the inset in Fig. 3) shows that J190

provides a representation that discriminates better between pre- and post-191

stimulus activity: in particular the maximum is sharper and J starts increas-192

ing after the application of the stimulus. This is because the index J has193

been obtained by taking into account the peaks of the amplitudes weighted by194

the frequencies, so that higher frequency components have a greater weight.195

Since high frequencies are better localized in time, this approach provides a196

reduction of the effect due to the spreading at low frequencies; in other words197

it enhances the components better resolved in time minimizing the effects of198

delocalization at low frequencies. The obvious trade-off is that low frequen-199

cies are somehow underrepresented; however, this is not a serious flaw since,200

as stated above, low frequencies correspond just to a global oscillatory trend201

of the signal.202

A global measure can be derived simply by taking the time average of J ,203

J̄ =
1

δt

∫ tf

ti

J (t) dt, (10)

where δt = tf − ti is the duration of the signal.204

Suppose we are given two signals f1 and f2, then the corresponding indices205

J̄1 and J̄2 can be used to derive a measure of the difference in the oscillatory206

components, for instance by defining207

rJ =
J̄2
J̄1
. (11)

Thus rJ is a measure of the activity variation of the whole trace: rJ > 1208

stands for an enhancement, while 0 < rJ < 1 corresponds to a decrease (note209

that since J (t) is a positive defined value, rJ too is always positive).210

As an example consider again the signal of Fig. 2 and let δt1, δt2 be211

the intervals before and after the application of the stimulus, respectively.212

Then J̄1, J̄2 are the temporal averages of J before and after the stimulus,213

and their values are J̄1 = 1.86, J̄2 = 6.74. The ratio rJ = 3.63 is relatively214

large, showing that J̄1, J̄2 are able to provide a measure of the effect of the215

stimulus on the signal time course; by comparison note that the ratio of pre-216

and post-stimulus averages of the density of energy E (t) is just 1.89.217
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In conclusion, by means of the index J (t), we can obtain an instantaneous218

estimate of the oscillatory activity of the signal and by computing its tem-219

poral mean J̄ , we can assign a single scalar value to each arbitrarily defined220

temporal interval (for instance a pre-treatment value J̄1 and a post-treatment221

value J̄2). Finally, the ratio rJ between J̄2 and J̄1 is a global measure of the222

variation of the oscillatory trend within a single trace; since it is defined as223

a ratio between two temporal mean quantities, any basal component can be224

ignored.225

3.2. Focusing on frequencies226

Consider the time average, in an interval δt, of the modulus |W (t, ν)| of227

the wavelet transform:228

V (ν) =
1

δt

∫ tf

ti

|W (t, ν)| dt. (12)

This average is a function of ν that can be considered to be represen-229

tative of the frequency spectrum within the interval. Note also that V can230

be regarded as an infinite-dimensional vector, whose components are the fre-231

quencies ν, and component values are given by V (ν); therefore some tools of232

vector analysis can be applied here. For instance it is possible to determine233

a distance d, in the frequency space, between signals recorded in different234

experimental conditions.235

Consider two signals f1, f2 of duration δt1, δt2 respectively, and the cor-236

responding vectors V1 (ν) and V2 (ν). The distance d is defined as237

d =

[
∫ +∞

0

[V2 (ν)−V1 (ν)]
2 dν

]1/2

, (13)

and it is straightforward to show that238

d =
[

‖V1‖
2 + ‖V2‖

2 − 2 ‖V1‖ ‖V2‖ cos θ
]1/2

, (14)

where239

‖V‖ =

[
∫ +∞

0

[V (ν)]2 dν

]1/2

, (15)

is the norm of V (ν), and240

cos θ =
1

‖V1‖ ‖V2‖

∫ +∞

0

V1 (ν) ·V2 (ν) dν. (16)
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Equation (14) can be rewritten as241

d =
[

∆2 + 2 ‖V1‖ ‖V2‖ (1− cos θ)
]1/2

, (17)

where ∆ is the modulus of the difference between the norms, namely ∆ =242

|‖V1‖ − ‖V2‖|.243

In practice integrals (13), (15) and (16) must be replaced by summations244

over a discrete and finite set of frequencies, ranging from νlow = 1
T
to Nyquist245

frequency νnyq = 1
2δτ

, where T is the total recording time, while δτ is the246

sampling time.247

In reference to equation (17), the distance d depends on two factors:248

the difference ∆ between the norms of vectors V1 and V2 and their relative249

orientations. Consider the case θ = 0: the vectors are parallel (in the infinite-250

dimensional space), that is to say that they have the same frequency content,251

the only difference being a scale factor. In this case d = ∆. Conversely if252

θ = π/2 the scalar product is zero, that is V1, V2 are orthogonal and that253

means that one signal is made up of frequencies that have zero amplitude in254

the other one. Now d =
[

‖V1‖
2 + ‖V2‖

2]1/2.255

However, some care must be taken when considering the distance d. For256

instance, if ‖V1‖ and ‖V2‖ are equal (∆ = 0) and very large even a small257

angular difference θ can lead to a large distance d. Thus, in this framework,258

it is appropriate to consider together with d and ∆ the angular difference θ,259

that does not depend on the norms.260

An example is shown in Fig. 6. As before δt1, δt2 are the pre- and post-261

stimulus time intervals and V1 and V2 are the corresponding vectors. It is262

apparent from Fig. 6 that the difference between vectors V1 and V2 is due263

to both factors: V2 is larger than V1 at all frequencies, and at intermediate264

frequencies it has peaks that do not appear in V1: here d = 3.43, ∆ = 2.11,265

that is ∆ contributes to the 60% of the distance d.266

This approach can unravel subtle differences in the spectral components267

of the signal in different experimental conditions, that may reflect different268

mechanisms of generation of calcium oscillations.269

3.3. Computational considerations270

In order to carry out the analysis a software, called KYM, has been devel-271

oped under the freely redistributable GNU Octave environment (Eaton et al.,272

2008). Octave is a high-level language, primarily intended for numerical com-273

putations. It provides a convenient command line interface for solving linear274
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and nonlinear problems numerically, and for performing other numerical ex-275

periments using a language that is mostly compatible with other popular276

high-level language environments. As it is easily expandable and customiz-277

able we wrote KYM as user-defined functions in Octave’s 3.2.3 own language278

and tested it on both Microsoft and Linux Debian systems.279

At the present KYM is made up of 14 .m files each containing a single280

function, for a total of about 1700 code lines, but only 4 of them (VX, WT,281

PD, FEAT) need to be directly managed by the end user. The other ones282

are auxiliary functions invoked on the fly by the mains. All numerical and283

graphic results presented in this work have been obtained by means of KYM284

routines but only a small part of the features is shown in the present work.285

The architecture allows component reuse and quick prototyping of new tracks286

processing algorithms, making new developments and further optimizations287

easier to be implemented. KYM has a command-line user-interaction that288

has not been developed taking into account the end users and, therefore, a289

future effort will be to make a user-friendly interface.290

In order to use KYM, data need to be stored in a .csv (comma separated291

values) file. It must contain the vector of time samples as first column, while292

the time courses of the fluorescence intensity for each cell (or region of in-293

terest) must fill the next columns in the matrix. Some parameters can be294

passed as argument to the main functions, in order to specify time units,295

points at which changes in the extracellular medium have been performed,296

threshold levels, and so on. Actual wavelet computation consists in the usual297

method that implements a time convolution as a product in the Fourier298

transformed domain; code for this algorithm can be downloaded at http:299

//www-stat.stanford.edu/~wavelab/. Peak detection uses a technique300

that is based on images dilation (see for instance http://www.mathworks.301

com/matlabcentral/fileexchange/authors/26510/). The rest of code has302

been written and developed ad hoc to perform the analysis presented here.303

At the moment KYM does not implement any algorithm to detect the cone304

of influence; this problem will be addressed in an upgraded version of the305

software.306

We make KYM available as supplementary material: as it is an open307

source code one can inspect it to see exactly what algorithms have been308

used, and then modify the source to produce a better code or to satisfy other309

particular needs. Users may redistribute it and/or modify it under the terms310

of the GNU General Public License (GPL) as published by the Free Software311

Foundation. Because KYM is a free software users are encouraged to help312
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make Octave more useful by writing and contributing additional functions313

for it, and by reporting any problems they may have.314

The most up-to-date version can be downloaded from the well-established315

public-domain repository SourceForge (http://sourceforge.net/projects/316

kym/). The .m files come with an extended documentation in the heading,317

explaining the syntax and the meaning of each function and related argu-318

ments.319

To our knowledge this is the first open source tool specifically dedicated to320

the analysis of the time course of cellular calcium signals and more generally321

of oscillatory signals recorded by means of fluorescent dyes from biological322

systems.323

3.4. Experimental procedures324

Chick ciliary ganglion cells were obtained from 7 day embryos and main-325

tained for 1-3 days in a chemically defined N2 medium as previously described326

(Distasi et al., 1998). Cells were loaded for 30 min at 37 ◦C with 0.5 µM327

Fura-2 (Invitrogen, USA), transferred in a perfusion chamber (Bioptechs,328

USA) and mounted on an inverted microscope (Eclipse TE 300, Nikon,329

Japan). Experiments were performed at a temperature of 37 ◦C. During330

experiments cells were continuously superfused by means of a gravity mi-331

croperfusion system combined with electrovalves to allow switching between332

different solutions. The control solution was a standard Tyrode solution of333

the following composition, in mM: NaCl, 154; KCl, 4; CaCl2, 42; MgCl2, 1;334

N-(2-Hydroxyethyl)-piperazine-N’-ethanesulfonic acid (HEPES), 54; glucose,335

5.5; NaOH to pH 7.4.
[

Ca2+
]

c
measurements were performed exciting the336

dye Fura-2 alternatively at 340 nm and 380 nm for 100 ms by means of a337

monochromator (Polychrome IV, T.I.L.L. Photonics GmbH, Germany), and338

recording emission at 510 nm. Images were acquired with a cooled CCD339

camera (SensiCam, PCO, Germany) and stored on a computer. Fluores-340

cence was determined from regions of interest (ROI) covering single glial cell341

bodies. The use of a ratiometric probe allowed to rule out any effect on342

signal amplitudes of dye loading and potential changes in fluorescence emis-343

sion during the experiments. Dye excitation, image acquisitions and ROI344

analysis protocols were performed with Axon Imaging Workbench software345

(Axon Instruments, USA). Satellite glial cells were identified on morpholog-346

ical and functional criteria as previously reported (Bernascone et al., 2010)347

and NAADP was synthesized and purified as described in Billington and348

Genazzani (2000).349
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4. Results350

The approach described above was tested on a group of traces obtained351

from the same experiment of the trace shown in Fig. 2 (i.e. ciliary ganglion352

glial cells challenged with 10 nM NAADP). We selected traces showing dif-353

ferent patterns in time and for which in some cases the interpretation of the354

results was not straightforward.355

The upper box of Fig. 7 refers to a case in which the occurrence of a356

change in the oscillatory pattern after the stimulus can be deduced from a357

visual observation. The index J (middle box) starts to increase with the ap-358

plication of the agonist, the corresponding ratio rJ has a relatively high value,359

rJ = 2.43. Vector analysis (lower box) shows an increase of all frequency360

components between 10 and 96 mHz, and indeed the distance is mainly due361

to differences between the norms ∆ since amplitude enhancement affects all362

frequency components: d = 2.86 and ∆ = 2.33.363

On the contrary the trace displayed in the upper box of Fig. 8 shows364

oscillatory activity both before and after the stimulus with a random compo-365

nent, and it is therefore difficult to extract information, by means of direct366

observation, on the occurrence of a response. However, the relatively large367

values taken by the index J , with rJ = 1.64, points to an enhancement of368

the oscillatory pattern; vector analysis reveals that the growth of J is due369

to a different modulation in the post-stimulus interval and in particular to370

an increase of the components in the frequency range 24 − 98 mHz. The371

fact that most of the distance d between V2 and V1 is due to the variation372

of spectral contents in the pre- and post-stimulus intervals is shown by the373

small contribution of ∆ = 0.51 to d = 1.61.374

In the trace of Fig. 9 after the administration of the agonist a clear re-375

sponse can be observed, consisting of a sharp transient of
[

Ca2+
]

c
followed376

by a plateau with limited oscillations. The wavelet transform of this type of377

signal is mainly formed by the contribution of a low frequency component378

that, as explained earlier, is poorly discriminated in time; thus is not sur-379

prising that the index J starts to slowly increase before the stimulation, and380

it is characterized by a lower value of ratio rJ (rJ = 1.28). Note that the381

step size increase in the signal produces large values of V1 and V2 that, in382

turn, give rise to a relatively large distance (d = 2.97) even in absence of a383

significant difference between the spectral content of vectors V1 and V2, as384

explained before. Indeed both the norm and angular differences are small:385

∆ = 0.79, θ = 0.24 rad.386
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A

B

C

Figure 7: Second trace. A: oscillations in
[

Ca2+
]

c
observed in response to stimulation of

a CG glial cells with 10 nM NAADP. B: time course of the index J . C: the dashed line
represents the vector V1, computed from the pre-stimulus signal, whereas the continuous
line refers to V2, corresponding to the post-stimulus signal.
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A

B

C

Figure 8: Third trace. A: oscillations in
[

Ca2+
]

c
observed in response to stimulation of

a CG glial cells with 10 nM NAADP. B: time course of the index J . C: the dashed line
represents the vector V1, computed from the pre-stimulus signal, whereas the continuous
line refers to V2, corresponding to the post-stimulus signal.
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A

B

C

Figure 9: Fourth trace. A: oscillations in
[

Ca2+
]

c
observed in response to stimulation of

a CG glial cells with 10 nM NAADP. B: time course of the index J . C: the dashed line
represents the vector V1, computed from the pre-stimulus signal, whereas the continuous
line refers to V2, corresponding to the post-stimulus signal.
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The observation that changes in the frequency content span the same387

range in all four cells shown (Figs. 6, 7, 8, 9) can be formalized in a more388

objective quantification of the effect of the agonist, simply defining a new389

function:390

R(ν) =
1

N

N
∑

i=1

(

V2 (ν)

V1 (ν)

)

i

, (18)

where the sum runs over cells number: thus R is the mean ratio of post- to391

pre-treatment spectra.392

The function R represents the average spectral distribution of the oscil-393

latory activity enhancement, following agonist administration. The function394

we obtained is clearly a non-flat distribution (Fig. 10). In particular it

165.3 82.6 41.3 20.6 10.3 5.1 2.5 1.2

Period (s)

1

1.5

2

2.5

3

3.5

4

6 12 24.1 48.3 96.7 193.4 386.9 773.9

R

Frequency (mHz)

Figure 10: The function R as given by Eq. (18); here N = 4.

395

presents its highest values inside that same range of frequencies previously396

mentioned (24 − 193 mHz), with a peak centered on 50 mHz. Even if the397

number of cells used in this data analysis is small (N = 4), function (18)398

turns out to be able to discriminate the frequencies involved in cellular oscil-399

latory response, but is reasonable to think that this function would have been400

more smooth and more peaked if we had kept into account a larger number401

of traces. A step in this direction is presented in the following section.402
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4.1. Statistical validation403

It has been observed in section 3.1 that the ratio rJ provides a global404

measure of the effect of the stimulus on the signal time course and that, in405

particular, rJ > 1 should correspond to an enhancement of
[

Ca2+
]

c
oscilla-406

tions and 0 < rJ < 1 to an inhibition.407

To provide a statistical validation of rJ values, we have considered a set408

of 36 traces from 6 different experiments similar to those described above,409

the only difference being that now CG glial cells were bathed in a Tyrode410

standard solution and then stimulated with a higher dose of NAADP (1 µM;411

data not shown). For each trace the corresponding rJ was computed, thus412

generating a sample {rJ} whose histogram is shown in Fig. 11.A.413

While it is clear that rJ is not normally distributed, as it could be expected414

since its range is from 0 to +∞, a distribution more closely resembling a415

normal can be obtained by considering a transformation from rJ to log rJ416

(see Fig. 11.B). Indeed a Q-Q plot (Fig. 11.C) shows the data lying very417

close to the bisector; a Shapiro-Wilk (SW) normality test gives p = 0.639,418

much higher than the threshold for the rejection of normality hypothesis419

α = 0.05.420

It follows that we can assume the distribution of rJ to be log-normal, and421

this holds also for the sampling distribution obtained by application to our422

sample of a bootstrap procedure with 106 iterations.423

We have then computed the mean and corresponding confidence inter-424

val (CI) for the original data and the bootstrap distribution, and both ap-425

proaches lead to the same numerical results. In both cases r̄J = 2.49, and426

CI = [2.02; 3.04] is the 99% confidence interval; namely there is a probability427

p ≥ 0.99 that the true value of the index rJ is comprised between 2.02 and428

3.04.429

If rJ did not measure the effect of the stimulus on the oscillatory activity430

of
[

Ca2+
]

c
time course any departure from rJ = 1 would be ascribed solely431

to chance; since rJ = 1 is outside the 99% confidence interval we can reject432

the null hypothesis that rJ = 1 is the true value of index rJ .433

With this approach, therefore, we provide a statistical validation of a434

significant difference between pre- and post-stimulus condition in a whole set435

of data, that is to say that the results reflect the occurrence of a response of436

the cell population to the stimulus.437

For comparison we have computed the index J using W values of all438

frequencies, and not just those corresponding to the maxima; the index com-439

puted this way does not give better results, thus confirming our hypothesis440
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that maxima contain most of the relevant information about the frequency441

composition.442

5. Conclusion443

Wavelet analysis is a well known tool to study the properties of a signal444

and to extract information about the temporal changes of its oscillatory445

structure. However there are applications, such as analysis of changes in the446

cytosolic free calcium concentration
[

Ca2+
]

c
, that require to discriminate447

between different patterns of signal activity either in space or in time. Here448

an approach has been presented in which by separating time and frequency449

domains, indices have been derived to characterize quantitatively changes450

in the oscillatory behavior of
[

Ca2+
]

c
with respect to different experimental451

conditions, in particular pre- and post-stimulus conditions. This approach452

has been tested on a set of experimental recordings showing heterogeneous453

patterns of activation, and it has been proved to be able to discern subtle454

differences between them.455

In particular the procedure described here represents a general method456

that allows a rigorous and automated characterization of both cellular spon-457

taneous activity and effects of agonists in terms of oscillatory behaviors. This458

approach has been used here for discriminating between different patterns in459

time, but it could be highly useful in different contexts, such as in analyzing460

spatial differences in signals recorded from subdomains of the same cell.461
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