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FICSR: Feedback-based InConSistency Resolution for
Query Processing on Misaligned Data Sources

ABSTRACT

An important challenge when integrating knowledge is that knowl-
edge from different sources may often be conflicting. In this paper,
we present a novel feedback-based approach (FICSR1) to incon-
sistency resolution when integrating data sources. We highlight
that conflict-resolution methods, which aim to achieve integration
and cleaning before the query processing, can be costly and, many
times, ineffective. Instead, we propose a ranked interpretation of
the data which enables users to observe and resolve conflicts by
considering the context provided by the queries. We show both
theoretically and experimentally that (a) system feedback regard-
ing the conflicts in the most likely candidate results can inform the
user regarding data and relationship-constraints critical to a given
query and (b) user feedback regarding the ranked interpretation can
be exploited to inform the system regarding user’s domain knowl-
edge as applicable within the context of a given query. To sup-

port such bi-directional (data
informs←→ user) feedback, we develop

data structures and novel algorithms to enable efficient off-line con-
flict/agreement analysis of the data as well as on-line query pro-
cessing, candidate result enumeration, and validity analysis.

1. INTRODUCTION
Query processing on data from different sources includesmatch-

ing/alignmentand integration tasks. The problem of automated
matching, which takes two data or schemas as input and produces
a mapping (or alignment) between elements, has been investigated
in scientific, business, and web data integration [35] contexts. For
example, [29] uses structures (schema graphs) for matching. [10]
explores matching within the context of hierarchical data and meta-
data with fuzzy, many-to-many mappings. Clio [28], LSD [11],
SKAT [30], Cupid [25], and DIKE [33] are other matching sys-
tems. In particular, [21] proposes a language that allows users to
specify alternative semantics for mapping tables between sources
and show that a constraint-based treatment of mappings leads to
efficient mechanisms for inferring new mappings. [5] proposes to
use DTDs and source-to-target dependencies (STDs) to eliminate
inconsistent data translation from one schema to another.

In many cases, however, the alignment across the available data
sources is not perfect. Two sources may not agree on the existence

1Pronounced as “fixer”.
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of a particular data entity or its relationships with other entities.
For example when a scientist is trying to work under multiple, con-
flicting assumptions or hypotheses, disagreements in the integrated
knowledge or interpretations are unavoidable. For example, Fig-
ure 1 shows two alternative mammal taxonomies that are available
to a scientist, each representing a different view of how the catego-
rization should be performed.

1.1 Misalignments and Conflicts
In this paper, wedevelop a novel methodology for dealing with

imperfectly aligned data and algorithms to assist users to pose
questions and explore alternative answers when the alignment of
data is not perfect and contains conflicts.

A major challenge when dealing with conflicts is that, in many
cases, resolution is an ill-defined problem: there may be multi-
ple ways to resolve conflicts and the appropriate conflict resolution
strategy may be user-, and query context-dependent. In many cases
(such as the scientist working under potentially conflicting inter-
pretations as in Figure??), overly-eager conflict resolution may be
detrimental to the effective use of the available knowledge. Thus,
we argue that since conflicts between sources may highlight differ-
ent interpretations of the base facts, it may be important to keep
the original views of the data, even though there might be con-
flicts. Especially, in information mashup scenarios [?], where quick
integration is more desirable than complete and clean integration,
striving for full conflict-resolution may be counter-productive. Fur-
thermore, given the many alternatives, identification of consistent
models or result enumeration may become extremely expensive.

In this paper, instead of trying to achieve fully-consistent in-
tegration, we aim to use query instances to provide contexts in
which conflicts are resolved. Like us, Piazza [17] and HepToX [6]
also recognize that it is unrealistic to expect an independent data
source entering information exchange to agree to a global mediated
schema or to perform heavyweight operations to map its schema to
every other schema in the group. Piazza presents a mediation lan-
guage for mapping both the domain and document structures and
focuses oncertain answersthat hold for every consistent instance,
while we consider conflicts explicitly and only aim to resolve them
within the context of a given query. HepToX, on the other hand,
focuses on automated mapping rule generation, without explicitly
considering conflicts.[FROM SELCUK: other work...widom]

1.2 Alternative Interpretations of Data with Conflicts
As exemplified above [?], traditionally, a consistent interpreta-

tion (or model) of the integrated data is defined as a maximal, self-
consistent subset of the data.

DEFINITION 1.1 (MODEL-BASED INTERPRETATION). A
model(or model-based interpretation) of a given knowledge base



(a) (b)

Figure 1: Two different IS-A hierarchies (taxonomies) avail-
able to a scientist represent different views on what the correct
mammal categorization should be

D is a subsetD′ of the knowledge base (D′ ⊆ D) such that there
exist no other consistent setD′′, whereD′ ⊂ D′′ ⊆ D.

Thus, any restoration of consistency in the integrated knowledge
base by selecting a consistent model could lead to loss information.
Furthermore, in many cases, the user may not have enough infor-
mation (domain knowledge) to select an appropriate model among
all the alternatives implied byD.

In this paper, instead of characterizing the user’s interpretation as
a maximally consistent portion of the available information that she
commits as being certain, we argue that a more flexible definition of
interpretation,which captures the likelihood that a given asserted
statement about the data can be considered as holding, may be
more suitable in these scenarios.

DEFINITION 1.2 (RANKED INTERPRETATION). Let D be
the data andS be a set of statements (i.e., propositions) on the
data. Then, a total ranking of statements inS is a ranked interpre-
tation of the dataD.

Note that the model-based interpretation of the data is a special
case of ranked interpretation, where the rank of all certainly (based
on the model) true statements is better than that of the rank of all
certainly false statements.

Data alignment is a subjective process in that the mappings cap-
ture the user’s interpretation of the data sources and application
requirements. These aspects are captured bysubjectiveranked in-
terpretations (i.e.,¹D,U , implicitly capturing the user,U ’s domain
knowledge or preferences), as opposed toobjectiveinterpretations
(i.e.,≤D, measuring the degree of agreement of the different data
sources about a given statement).

DESIDERATUM 1 (OBJECTIVE-SUBJECTIVE CORRESPONDENCE).
It is preferred that, for allS1, S2 ∈ S, it holds that

(S1 ¹D,U S2) ←→ (S1 ≤D S2) .

Query processing over data with conflicts require the gap be-
tween objective and subjective interpretations of the data with con-
flicts to be bridged.

1.3 The Use of Feedback in Information Retrieval
In this paper, we first note that, in the area of information re-

trieval (IR [?]), researchers face a similar challenge of objective-
subjective gap: when processing an information retrieval query,

• which features of the data are relevant (and how much so) for
the user’s query may not be known in advance, and

• the number of candidate matches in the database can be po-
tentially very large.

In the IR context, these challenges are dealt effectively through rel-
evance feedback cycles (Figure 2). The relevance feedback process
enables the information retrieval system to learn the user’s interests

Relevance Feedback Cycle in IR Systems

Figure 2: Overview of the relevance feedback process com-
monly used in information retrieval when the available data has
alternative (user- and query-dependent) interpretations

and focus to a suitable feature set through a query-driven, transpar-
ent, and iterative process. In particular, (1) given a query, using the
available index structures, the system (2) identifies an initial set of
candidate results. Since the number of candidates can be large, the
system presents a small number of samples to the user. (3) This
initial sample and (4) user’s relevance/irrelevance inputs are used
for (5) learning user’s interests (in terms of relevant features) and
this information is used for (6) updating the user query or the re-
trieval/ranking scheme. Steps 2-5 are then repeated until user is
satisfied with the ranked result samples returned by the system.

We propose to benefit from a similar feedback-based approach
in the context of query processing in the presence of alternative
interpretations. The system will rely on theobjective-to-subjective
implication (←) to inform the user about the more likely (i.e., high-
est source agreement) interpretations for the given data. Then, the
subjective-to-objectiveimplication (→) will be leveraged to inform
the system about the user’s own interpretation.

DESIDERATUM 2 (CONTEXT-INFORMED INTERPRETATION).
Since the feedback process can be computationally costly and
since the user may have neither the need or nor sufficient domain
knowledge to interpret the entire data, instead of considering
all possible statements, it is preferable to focus on only those
statements relevant within the context specified by a user query.

1.4 Proposed Approach: Feedback-driven Query Pro-
cessing and Conflict Resolution in the Presence of
Imperfectly Aligned Data

In this paper, we develop data structures ( and algorithms to en-
able feedback-based conflict resolution during query processing on
imperfectly aligned and integrated data. Figure 3 illustrates the
overall process.

1.4.1 Alignment Conflicts and Objective Agreement

First, an initial alignment between the input data is obtained
through semi-automated techniques, such as [?]. The result of the
alignment is a set of mapping rules, such as those described in [?].
These rules along with the integrated data are then represented in
the form of a set ofconstraints. In this paper, we classify the con-
straints into two major classes: (a)relationship constraintsdescribe



Proposed Feedback Cycle for Conflict Resolution

Figure 3: Overview of the query-driven feedback-based conflict
resolution process to deal with imperfectly aligned data

how the individual data objects/entities relate to each other, while
(b) integrity constraintsdescribe the general rules these data enti-
ties have to obey.

Unless the constraints are conflict free, there will be multiple
solutionmodels. Consequently, “the ratio of the models (i.e., alter-
native interpretations) of the data where a particular data fragment
is consistent with the rest” can be used as a measure ofagreement
of the data sources on this data fragment. Therefore, informing the
user regarding the objective ranking involves identifying and enu-
merating results with high agreements.

1.4.2 Query Processing and Relevance Feedback-based
Conflict Resolution

The agreement-based ranking task can be computationally com-
plex if the system would need to enumerate all alternative models
(in Section 5.1, we show that the problem is NP-complete even
in highly specialized cases). Therefore, a particular challenge in
query processing in the presence of conflicts is to postpone the
computation of complete solution models until absolutely neces-
sary. In order to deal with the cost of the agreement value com-
putation in the presence of conflicts, we divide the task into three
stages:

Off-line Analysis: We first represent the relationship constraints
in the form a constraint graph which enables off-linecon-
flict/agreementanalysis as well as ranked candidate result enumer-
ation. In order to compute the agreement values efficiently, we fur-
ther partition the data graph into small-sized constraintzones, each
consisting of an mutually-dependent set of relationship constraints.
The agreement values are then computed for each zone separately
and combined efficiently for paths that span multiple zones during

query processing.

Candidate Enumeration and Ranking: Given a query, the system
first identifies and ranks an initial subset of matches, using these
zonalagreement values. Once presented with a ranked set of the
results, the user can pick and choose between available results.

Integrity Constraints and Feedback: The remaining complex in-
tegrity constraints (such as “no-cycles are allowed in data”) are
used for verifying thevalidity of the ranked interpretation obtained
through zonal agreement values. In particular, through the analysis
of integrity constraints within the context provided by the candi-
date result sets as well as user feedback, candidate results as well as
integrity constraints themselves are assignedvalidity values. Once
these validity values computed are propagated back to the objective
agreement values (completing the feedback cycle), the user can be
provided with a new subset ofrankedresults.

1.5 Contributions of the Paper
The proposed system brings together various innovative tech-

niques to deal with the computational complexity and the ill-
defined nature of the conflict resolution problem:

• First of all, we propose a novel, feedback-driven approach
to query processing in the presence of conflicts. The feed-
back process relies on a novel ranked interpretation of the
data. The objective-subjective correspondence of the ranked
interpretation enables the user to explore the available data
within the context of a query and be informed regarding data
and relationship-constraints critical to a given query before
providing feedback.

• We provide data structures and algorithms that enable effi-
cient off-line analysis of the data for agreement analysis and
online query processing, candidate result enumeration, and
result pruning and compatibility analysis. We represent data
in the form of relationship and integrity constraints (Sec-
tions 2 through 4):

– the relationship constraints lend themselves to efficient
partitioning into independentconstraint sets (called
zones, Section 4.1). The small sizes of the zones en-
able efficient off-line agreement (Section 5) and their
independent nature enables efficient on-line composi-
tion (Section 6).

– the top-k nature of the on-line candidate result enu-
meration process lets the user focus on high-agreement
parts of the data, up on demand (also in Section 6).

– the cost of theintegrity analysis and feedback stage is
kept low through the small size of candidates that need
to be verified as well as the use of the query-context that
sets the scope of the compatibility checks (Section 7).

[FROM MLS: ..incremental update]

2. DATA REPRESENTATION
Since our goal is to maximize the applicability of the algorithms

to diverse application domains, we keep assumptions from the data
low and simply take that the data,D, can be represented in the
form of an entity-relationship graph (G) and associated integrity
constraints (IC).



Figure 4: Basic data graph example

2.1 Data Relationship Graphs
A basic data (relationship) graph captures the set of rules

that describe the objects/entities in a data source and their inter-
relationships.

DEFINITION 2.1 (BASIC DATA GRAPH). A basic data
graph,G(V, E) is a node and edge labeled directed graph, where

• each node,v ∈ V , corresponds to an entity (or data object)
and

• each edge,e ∈ E, corresponds to a relationship between two
entities and labeled with a relationship name.

Each relationship name has a corresponding arity constraint1-1
(one-to-one),1-N (one-to-many),N-1 (many-to-one), orM-N
(many-to-many). ¦

In a sense, each node in the graphassertsthe existence of a dis-
tinct object and each directed edge is a constraint whichasserts
the existence of a relationship, (such as IS-A, PART-OF, WORKS-
AT) between two objects. For example, the IS-A relationships be-
tween objects and their immediate ancestors in a taxonomy are con-
strained to beN-1 (leading to tree-structured class hierarchies [?]).
Figure??presents an example basic data graph.

A data pathis, then, a sequence of relationship edges on this
graph describing how two entities are related.

DEFINITION 2.2 (DATA PATH). A data path, dp, on the
data graph, G(V, E), is a sequence of edges,dp =
〈e1, e2, . . . , elength(dp)〉, where

∀i<length(dp) dest(ei) = source(ei+1), and

where source(dp) = source(e1) and dest(dp) =
dest(elength(dp)) are both data nodes (corresponding to dis-
tinct objects/entities).

The set of data paths on the example data graph in Figure 4 includes

a
IS−A
; b

PART−OF
; e andc

IS−A
; e

IS−A
; d2. Since they describe

the relationships between entities, in this paper, we take data paths
as the basicstatements of interest.Thus, in query processing, we
mainly focus on queries about data paths between given two enti-
ties. In fact, such data path based treatment of queries is common
in richly structured data, such as OO [?] and XML [?].

2.2 Integrity Constraints
The data graph described above captures the data objects and

their stated relationships (subject to the associated arity con-
straints), while it cannot capture more general integrity constraints
to be enforced at the source or in the integrated domain. For exam-
ple, requirements about theacyclic nature or the tree-hierarchical

2Note that in the rest of the paper, we simply omit the relationship
names whenever they are not relevant to the discussion.

(a) (b) (c)

Figure 5: Example mappings of two IS-A hierarchies (a) node-
to-node, (b) node-to-tree, and (c) either-or mapping

structure of a given data can only be captured using additional in-
tegrity constraints,IC, associated with the data. This treatment is
analogous to thedatavs. integrity constraintsdifferentiation com-
mon in database management systems, and motivated in a similar
fashion for preserving query processing efficiency [?].

3. ALIGNMENT AND CONFLICT EXAMPLES
In this section, we highlight the need for extending the basic

graph-based data representation presented above to allow for con-
flicts when working with imperfectly aligned data.

In the literature, there is a multitude of data and/or schema
matching algorithms. In this paper, we refrain ourselves from as-
suming any particular matching or alignment strategy. However,
for the sake of example, we consider a mapping scenario, where
two concept hierarchies (consisting of concepts and IS-A relation-
ships, withN-1 arities, among them) are being integrated.

EXAMPLE 3.1 (NODE TO NODE MAPPING). Let us assume
that two nodesn1,i and n2,j from different IS-A hierarchies are
identified as representing the same concept. Naturally, once these
two hierarchies are integrated, these two nodes must be represented
as a single node,n′. In other words,n′ needs to preserve all the re-
lationships thatn1,i andn2,j have in their respective hierarchies.
For example, all the children of these two nodes need to become
the children of the combined node. However, preserving the origi-
nal information after integration (while maintaining the appropri-
ate arity constraints) is not always as easy. To see this, consider
Figure 5(a), wherea andb are two nodes that are mapped to each
other. In this example, (since more than one immediate ancestor
is not allowed in the integrated IS-A hierarchy) unlessc andd are
also identified as representing the same concept during mapping,
the integrated hierarchy will contain an inconsistency. In particu-
lar, in a consistent world, only one of the alternative nodes,c or d,
can be an immediate ancestor (parent) of the combined node.

EXAMPLE 3.2 (MAPPING OFGROUPS OFNODES).
Figure 5(b) provides an example where a node in one IS-A
hierarchy is mapped to an entire subtree in the second IS-A
hierarchy. Consequently, the first node,a, and the root of the
subtree, e, create a combined node in the integrated graph.
Furthermore, after the integration, the child ofa in the first IS-A
hierarchy must become a child of one of the four nodes in the
subtree corresponding toa in the second IS-A hierarchy. Thus, in
resulting graph ,h ; b ; a ; c, g ; a ; d, are independently
acceptable paths. On the other hand, these paths cannot be
accepted together.

EXAMPLE 3.3 (EITHER-OR MAPPINGS). In many integra-
tion scenarios, the user may want to describeeither-ortype of map-
pings which (positively or negatively) relate the choices for differ-
ent alternatives. Figure 5(c) provides an example of this type of
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Figure 6: Example data graph segments with (a) choice, (b)
positive coordination, (c) negative coordination, and(d) hybrid
requirements

mapping: in this example, two nodes are mapped with the con-
straint that, the children of the two nodes are not compatible. Un-
like the previous examples, this creates a graph where only one of
the nodes can belong to a path.

The basic data graph construct described in the previous section
does not have appropriate constructs for capturing alternative in-
terpretations and coordination requirements that arise in such mis-
alignment cases. In the next section, we describe how the need for
making choices among alternative interpretations can be captured
by suitably extending the constraint graph model.

4. DATA REPRESENTATION EXTENDED WITH ALTER-

NATIVES AND COORDINATION SPECIFICATIONS
As illustrated by the alignment examples in the previous section,

representing data with conflicts require constructs whichassertthe
need for making choices among the various alternatives. Thus, in
this section, we first extend the data graph with such constructs:

• Figure 6(a) presents a data graph with choice semantics. This
graph contains a special edge leavingc, which can belong to
only one path in the data; thus, in this example, either path
c ; a or c ; b can be interpreted by the user to be true in
the data, but not both.

• In a data graph with coordination, on the other hand, the al-
ternatives associated with one or more edges can be further
coordinated. In other words, coordination statementsassert
the need for making the same (or different) choices on in-
volved edges. Figure 6(b) presents a positive coordination
(where, ifa ; c is interpreted to hold, thenb ; c must also
hold), while

• Figure 6(c) presents a negative coordination requirement
(where,a ; c and b ; c can not simultaneously hold).

• Of course, the various choice and coordination constraints
can be combined to obtain more complex scenarios. Fig-
ure 6(d) provides an example with hybrid choice and coor-
dination requirements. This graph asserts that, in the given
data,a andd have the same successor, and the shared suc-
cessor is one of thec, d, ande data nodes.

In the above graphs, the various edges collectively enforce a set
of mutually-dependent relationship constraints. We build the ex-
tended data graph on such blocks (orzones) of inter-dependent re-
lationship constraints.

4.1 Zones of Relationship Contraints in a Data Graph
We refer to the building blocks of data graphs with choice and

coordination requirements aszones. Intuitively eachzonedescribes
a set of inter-dependent choices in the data.

(a) ZoneL1 (b) Three inter-dependent choices ofL1

Figure 7: Zone example: (a) zoneL1 and (b) the three inter-
dependent choices ofL1

DEFINITION 4.1 (ZONE). A zone (denoting a set of lo-
cally inter-dependent constraints) is a directed acyclic graph
L(Src, Snk, LV, LE), where

• the sources (Src) and sinks (Snk) are all data nodes (ob-
jects, entities),

• none of the (internal) vertices (LV ) is a data node,

• LE are directed edges which connect sources, sinks, and in-
ternal nodes to each other. There are four types of edges in
LE:

– exclusive edges (marked with\),
– positive coordination edges (marked with +),
– negative coordination edges (marked with -),and
– regular edges (unmarked).

• for any given pair of nodes,vi, vj ∈ Src∪Snk∪LV , there
exists an undirectedpath (vi ;undir vj) in L that does not
pass through any sources or sinks (i.e., data nodes).

Figure 7(a) depicts an example zone,L1. In this example,source
nodes(lightly shaded) andsinks (darkly shaded) are connected
through various choice and coordination edges. More specifically,
L1(Src1, Snk1, LV1, LE1) is such that

• Src1 = {a, d},
• Snk1 = {b, c}, and

• LE1 = {le1, le2, le3, le4, le5}
This zone effectively describes a number ofchoicesthat the data
allows: the paths,a ; c andd ; c, cannot be in the same data
due to the negative coordination edge,le1, while d ; c andd ; b
are incompatible due to edge,le4.

DEFINITION 4.2 (CHOICES OF AZONE). Given a zone,
L(Src, Snk, LV, LE), with k sources andl sinks, each path,
ch = i ; j, from theith source tojth sink is said to be an
availablechoicefor L.

In the above example,ch1 = a ; c, ch2 = d ; c, andch3 =
d ; b are three inter-dependent choices (Figure 7(b)).

4.2 Zone-Graphs
Since we aim to use zones as the building blocks of the data

with conflicts, we consider data graphs that can be partitioned into
zones. Such graphs are referred to as zone-graphs:

DEFINITION 4.3 (ZONE-GRAPH). A zone-graph,G(V, E),
consists of a set,L, of zones, where

• V =
⋃

Li∈L(Srci ∪ Snki ∪ LVi), and

• E =
⋃

Li∈L LEi.



Figure 8: The data path from node a to node c is passing
through two zones; i.e., it can be split into two zone-segments.
We denote this data path asa ; b ; c

Different zones are allowed to share (and connect through) source
and sink data nodes; i.e.,∀Li, Lj ∈ L, Srci ∩ Srcj ⊇ ∅, Srci ∩
Snkj ⊇ ∅, Snki ∩ Srcj ⊇ ∅, andSnki ∩ Snkj ⊇ ∅. On the
other hand, the internal, non-data vertices of the zones or their
edges can not be shared; i.e.,∀Li, Lj ∈ L, LVi ∩ LVj = ∅ and
LEi ∩ LEj = ∅.

Each zone,Li ∈ L, of a zone graph has an associated relation-
ship label,rel(Li), such as IS-A, WORKS-AT, or LIVES-AT.

Intuitively, each zone describes the alternative choices and co-
ordination requirements for a mutually-related set of relationship
edges (with the same label). The various zones of the graph are
separated from each other by their shared data nodes. Conversely,
we can also state that the individual zones of a zone-graph are con-
nected to each other through their shared data nodes.

THEOREM 4.1. Given data-graphG(V, E), its zones can be
computed and enumerated efficiently, inO(E) time.

PROOF. Due to the undirected connectivity requirement in Def-
inition 4.1, the process of identifying zones can be done inO(E)
time, using a connected-components type of an algorithm and treat-
ing data nodes asboundariesof zones.

Note that in a basic data graph without conflicts (e.g., Figure 4),
each edge between two data nodes is a zone with a single source, a
single destination, and a single regular edge.

4.3 Data Paths on a Zone-Graph
Data paths on a zone-graph are defined similarly to the data paths

on a basic data graph (i.e., Definition 2.2). In this more general
case, on the other hand, a data path can pass through one or more
zones. Thus, we can segment a given data path,dp, into a sequence
of zone-segments. Intuitively, each zone-segment corresponds to a
possible relationship between two data nodes (subject to the con-
straints of the corresponding zone).

DEFINITION 4.4 (ZONE-SEGMENTS OF ADATA PATH). A
data path,dp = 〈e1, e2, . . . , elength(dp)〉, can be segmented into a
sequence of zone-segments

dp = 〈ls1, ls2, . . . , lsl〉,
where eachlsi = source(lsi) ; dest(lsi) is a data path from a
source to a sink within the corresponding zone.

Each zone-segment on a data path corresponds to achoicemade
within the corresponding zone; therefore, in the rest of the paper
we will use the termszone-segmentandchoiceinterchangeably.

EXAMPLE 4.1. Figure 8 depicts a data path,a ; b ; c, from
data nodea to data nodec through data nodeb. In this example,
this data path passes through two zones (L1 andL2) and, hence, it
consists of two zone-segments (or choices).

(a) (b) (c)

Figure 9: Zone-graphs obtained through the mapping exam-
ples in Section 3, Figure 5

4.4 Zonal-Graph Examples
In this subsection, we reconsider to the mapping examples (Ex-

amples 3.1 through 3.3) in Section 3 to show how zonal represen-
tation can capture conflicts that arise during data mapping process.

EXAMPLE 4.2 (NODE TO NODE MAPPING). Example 3.1
(Figure 5(a)), illustrated a case where only one of the data
nodes,c or d, can be a valid immediate ancestor (parent) of
a combined node, due to theN-1 arity constraint of IS-A hi-
erarchies. This situation can be captured using the proposed
zone-graph as shown in Figure 9(a): children ofa and b can
use the combined node as their parents and the combined
node can have eitherc or d as its immediate ancestor, but not
both. On the resulting zone-graph, some sets of paths, such as
{e ; b ; d, f ; b ; d, g ; a ; d, e ; a ; d} are
consistent, while others, such as{e ; b ; c, g ; b ; d} or
{e ; b ; c, g ; a ; d}, are inconsistent.

EXAMPLE 4.3 (MAPPING OFGROUPS OFNODES).
Example 3.2 (Figure 5(b)) provided a case where, after the
integration, a number of paths (includingh ; b ; a ; c,
g ; a ; d) are independently valid, but mutually incompatible
paths. Figure 9(b) illustrates how these requirement are captured
in a zone-graph using exclusive edges.

EXAMPLE 4.4 (EITHER-OR MAPPINGS). Example 3.3
(Figure 5(c)) provided an example of an integration scenario,
where the user provided expliciteither-ormappings which (pos-
itively or negatively) relate the choices for different alternatives.
Figure 9(c) shows how this captured using zones and coordination
edges. In this example, while bothe ; a ; c andg ; b ; d
are independently valid paths, they cannot be valid together due to
coordination requirements.

Finally, let us reconsider our motivating example of a scientist
working under alternative hypothesis (described by two different
taxonomies in Figure 1) in the Introduction of this paper. In these
two coding systems, although some of the concepts have the same
name, they may not be the same in terms of the corresponding se-
mantics.

EXAMPLE 4.5 (TAXONOMY INTEGRATION). Let us recon-
sider the two taxonomies in Figure 1 and let us assume a mapping
scenario where the term ’Large Mammal’ in the coding system 2
is different from the ’Large Mammal’ in the coding system 1 and
actually corresponds to both ’Medium Mammal’ and ’Large Mam-
mal’:



Figure 10: A zone graph integrating the two IS-A hiearchies in
Figure 1

• The concepts ’Cottontail’ and ’Jackrabbit’ co-exist in the
coding system 1, but not in the coding system 2. This means
that their acceptance in a given interpretation should be co-
ordinated: they both should be accepted in the merged ontol-
ogy (just as they do in the coding system 1) or rejected (just
as they do in the coding system 2). We use a positive coordi-
nation edge (+) to describe this coordination constraint.

• The concept ’Artiodactyl’ might belong to the large ’Large
Mammal’ class as defined in the coding system 1 or as de-
fined in the coding system 2. We use an exclusive edge to
describe the underlying choice.

• ’Large Mammal’ in the coding system 2 and ’Medium Mam-
mal’ in the coding system 1 are not compatible, since they
correspond to different criteria. That means that either
of them can be used in the consistent interpretation of the
merged ontology, but not both. We use a negative coordina-
tion edge (-) to describe this requirement.

Figure 10 presents a data graph describing the combined coding
systems.

4.5 Zonal-Graphs and Integrity Constraints
As described in Section 2.2, zonal-graphs cannot capture all rel-

evant constraints describing the data and their alignments. For ex-
ample, multi-zonal statements, such as “there exists no path with
a cycle” or “ there exists no path froma to b”, require constraints
beyond what can be expressed within the data graph and used for
generating candidate paths in the previous steps. Such constraints,
which require path- or multi-path level evidence to verify or re-
ject, are kept outside of the scope of the zone-graph specifically to
ensure the efficacy of the agreement computation and agreement-
based ranking processes. They are instead treated asintegrity con-
straintsat a post-processing step, along with the user’s feedback.
We will revisit the integrity constraintsand their use in candidate
result pruning and relevance feedback in Section 7.

5. OFF-LINE ANALYSIS OF ZONAL AGREEMENTS OF

DATA SOURCES
As discussed in Section 1.2, in the presence of conflicts in the

data, the proposed approach uses a feedback-driven mechanism to
deal with alternative interpretations. In particular, the system re-
lies on theobjective-to-subjectiveimplication (sub ← obj) of the
Desideratum 1 to inform the user about the more likely (i.e., high-
est source agreement) interpretations for the given data. Intuitively,

Figure 11: 3-SAT to zone reduction for the statementstm =
(a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ c)

the agreementvalues measure how much different models of the
data agree on stated relationships, with the default assumption that
sources agree unless they explicitly conflict on data or integrity
constraints. In this section, we focus on the off-line analysis of
the zone graph for the computation of suchagreementvalues on
the choices corresponding to the individual zones.

5.1 Models of a Zone and Agreement Values of the Cor-
responding Choices

We define the models of an individual zone in a way parallel to
the definition of models of the data with conflicts (Definition 1.1).

DEFINITION 5.1 (ALTERNATIVE MODELS OF AZONE).
Given a zone,L(Src, Snk, LV, LE), with k sources andl sinks,
a set,C, of choices ofL is said to be a model if all the choices in
C are pairwise consistent with the constraints associated with the
edges ofL and there is no other consistent setC′ ⊃ C of choices
of L (i.e.,C is set-maximal inL).

Given these models, the zonal agreement of a choiceobjectively
measures the degree of agreement among alternative models of the
zone on this given choice.

DEFINITION 5.2 (ZONAL AGREEMENT ON ACHOICE).
Given a zone,L(Src, Snk, LV, LE), with k sources andl sinks,
the zonal alignment agreement value associated with a choice
ch = i ; j is defined in terms of the possible alternativemodels
in which the choice path,ch, is valid versus the total number
modelsof the zoneL:

agr(ch) =
# models of L in which ch is a valid path

#models of L
=

nm(ch, L)

nm(L)
.

EXAMPLE 5.1. Consider again the zone-graph in Figure 7. In
this graph, there are three possible source/sink pairs, i.e., choices
ch1 = a ; c, ch2 = d ; c, andch3 = d ; b. Aong these,a ;

c andd ; c are incompatible,d ; c andd ; b are incompatible,
while a ; c and d ; b are compatible with each other. Thus,
the two alternative models of this zone are{a ; c, d ; b} and
{d ; c} Another way to look at this is as follows: the choice
d ; c is valid in only half of all the possible alternative models.
Similarly, the choicesa ; c and d ; b are both valid in only
half of all the alternative models. Thus, in this example, we can
conclude thatagr(a ; c) = agr(d ; c) = agr(d ; b) = 1/2.

5.2 Off-line Agreement Analysis of a Zone
Figure 12 presents the outline of an algorithm which computes

the zonal agreement value of a given choice inL. [OMITTED



Algorithm agr(L, c)
Given a zone,L(Src, Snk, LV, LE) and a choicech of L do

1. LetC be a constraint which enforces thatch is in the model

2. nm1 = countModels(L, C) /* ch is in the model*/

3. nm2 = countModels(L, ∅) /* all models*/

4. return( nm1
nm2

) /* return theagr value of the choicec*/

Figure 12: Algorithm for computing the intra-zonal alignment
agreement value associated with a given choice

EXAMPLE ] Since the definition of the zonal agreement relies on a
model-based interpretation of the zone itself, the computation com-
plexity of this task reflects the cost of computing models of data
with conflicts.

THEOREM 5.1 (PER-CHOICE COMPLEXITY). Given a zone
graph, L, and a choice,ch, the problem of counting the number
of models in whichch occurs (i.e., computingnm(ch, L)) is NP-
Complete.

PROOFSKETCH 5.1. The proof of NP-completeness of the
problem of counting the number of models in whichch occurs is
through a reduction from the well-known NP-complete 3-SAT prob-
lem, which asks the satisfiability of a boolean expression written
in conjunctive normal form with 3 variables per clause. While,
the complete reductive proof is outside of the scope of this paper,
we provide a sketch the idea through an example. Consider the
boolean expression

stm = (a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ c).

The reduction step converts this statement (in polynomial time) into
the zone,Lstm shown in Figure 11. Given this graph, we repose
the satisfiability problem as follows:

satisfiable(stm) ←→ (nm(D ; R, Lstm) ≥ 1) .

Due to the set-maximality requirement, the models which contain
the choice pathD ; R will be exactly those models which also
use edgest1 and t2; i.e., satisfying both terms of the conjunctive
statement,stm. Thusstm is satisfied iff there is at least one model
of Lstm, where the pathD ; R is used. 2

COROLLARY 5.1 (COMPLEXITY OF ALGORITHM agr() ).
Given a zone withµ edges, the complexity of the zonal agreement
evaluation Algorithm in Figure 12 isO(2µ).

PROOFSKETCH 5.2. The proof of this corollary is based on the
fact that the depth of the recursion is at most the number of edges
in the given zone. Since, the zonal value agreement computation is
NP-complete per Theorem 5.1, we do not expect to find a polyno-
mial solution for this task. 2

Nevertheless it is important to note that, although by Corol-
lary 5.1 the cost of the agreement analysis is exponential in the size
of the zones, the initial zone-partitioning of the data graph to ob-
tain small zones3 and modular (per-zone) nature of the agreement-
analysis prevents this step from becoming costly.

COROLLARY 5.2 (COMPLEXITY OF ZONE-GRAPH ANALYSIS).
The complexity of the zonal agreement evaluation for a complete
data graphG, with ζ zones, where the largest zone hasµ edges is
O(ζ × 2µ).
3Normally, each zone represent a single or closely related few rela-
tions, while the data graph can be composed of many relationships.

Thus, zone partitioning significantly reduces the cost of this off-line
process:O(ζ × 2µ) ¿ O(2ζ×µ), which would have been the cost
of agreement computation without zone partitioning.[FROM SEL-
CUK: incremental updates??]Note also that the zone-graph anal-
ysis is an off-line pre-processing process which is performed on
the integrated data graph once, at the bootstrap phase. This off-line
nature of this process ensures that the interactive relevance feed-
back process is not affected from the cost of the static agreement
analysis.

6. QUERY PROCESSING AND RANKED CANDIDATE

ENUMERATION
Since the goal is to help the user identify the best matches to

her query based on the available data, at the first stage of the query
processing and conflict resolution, the user is provided with a set
of high-agreement candidate matches. These candidates help the
user not only in observing the best matches to her query based on
the current state of integration and conflict resolution, but also in
seeing the critical conflicts that affect these most-agreed upon (i.e.,
objectively most likely) results to the query. This, we refer to as
the objective-to-subjective(sub ← obj) flow of feedback which
informs the user about the more likely (i.e., highest source agree-
ment) interpretations for the given data (Section??).

Definition ?? of ranked interpretation calls for a set,S, of state-
ments to be ranked. Although this set of statement can include any
general statement about the data, since they describe the relation-
ships between entities, in this paper, we takedata pathsas the basic
statements of interest.Thus, given a source,nsrc, and destination,
ndst, nodes, the data paths fromnsrc to ndst, are ranked and a
small (≤ k) subset of candidate data paths fromnsrc to ndst are
chosen to be presented to the user based on the agreement values
(Figure 3 in the Introduction section).

6.1 Computation of the Agreements on Data Paths
Since, per Definition 4.4, each zone-segment of a path corre-

sponds to a possible interpretation of an alignment constraint, given
a data path,dp = 〈ls1, ls2, . . . , lsl〉, its overall (multi-zonal)
agreement valuecan be defined in terms of the agreements of the
alignment choices involved in it. In particular, since

• the agreement value of achoicein a given zone is the ratio
of the number of models of the zone in which the choice is
valid to the number of all possible models of the zone, and
since

• each zonal alignment choice is independent from the choices
of the other zones (modulo the integrity constraints that will
be enforced at a later stage, in Section 7)

we can treat the agreement ratios as independent selection proba-
bilities and, thus, define the agreement value of a data path as the
multiplication of the agreements of all the involved zonal choices
(Figure 13).

DEFINITION 6.1 (AGREEMENT OF ADATA PATH). Given a
data path,p = 〈e1, e2, . . . , elength(p)〉, and its zone-segment rep-
resentation,p = 〈ls1, ls2, . . . , lsl〉, we define theagreement value
of p as

agr(p) =
∏

0≤i≤l−1

agr(lsi).

In Section 7, we will relax the independence assumption and con-
sider the affects of multi-zonal integrity constraints that tie choices
in a given zone to the choices in the other zones.



Figure 13: A path which passes through four zones involves
four independently made alignment choices along the way.
Thus, the ratio of the models of the data where this path is valid
can be computed by multiplying the intra-zonal agreements of
the individual choices

Algorithm K −HighAgreementPaths(G, nsrc, ndst, k)
Given a zone-graphG(V, E), a source node,nsrc, and a destination node,ndst, and a
positive integerk, do

1. LetV ′ = ∅ andE′ = ∅ /* Construct a dual graph*/

2. LetL be the set of all zones ofG,

3. for all Li ∈ L do

(a) V ′ = V ′ ∪ Srci ∪ Snki;

(b) for all ch = src(ch) ; dest(ch), wherech is a choice path inLi;

i. Let ech be a new edge with lengthlength(ech) =
−log(agr(ch));

ii. E′ = E′ ∪ {ech}

4. resultPaths = Y enKShortestPath(V ′, E′, length, nsrc, ndst, k);

5. returnresultPaths; /* Returnk-shortest paths of the dual*/

Figure 14: Algorithm for ****

6.2 Agreement-Ranked Enumeration of Candidate
Paths

To provide the user with the most likely paths based on the avail-
able zonal conflict/agreement analysis, the system needs to identify
the highest-agreement data paths. We formally pose this task in the
form of ak highest-agreement data paths problem.

DEFINITION 6.2 (k HIGHEST-AGREEMENTDATA PATHS).
Given a zone-graphG(V, E), a source node,nsrc, and a destina-
tion node,ndst, identify thek highest-agreementdata paths from
the source node,nsrc, to the destination node,ndst.

Figure 14 presents an algorithm to solve thek high-agreement
data paths problem by translating it into thek-shortest simple paths,
a classical problem in graph theory. Due to its application in vari-
ous application domains, such as transportation or networking, this
problem has been studied extensively and a number of algorithms
have been developed [?]. Among these, Yen’s algorithm [?] is well-
known due to its general and optimal nature [?]. This algorithm
uses a tree-based data structure to[FROM SELCUK: complete].
Various other algorithms [?] build on this approach, yet their im-
provements are limited to specific application domains[FROM SEL-
CUK: we need to say a little bit more about the newer algo-
rithms and their complexities]. In the algorithm presented in Fig-
ure 14, we use Yen’sk-shortest simple paths algorithm for enumer-
atingk highest-agreementdata paths.

THEOREM 6.1 (CORRECTNESS). The k-highest agreement
algorithm presented in Figure 14 is correct.

PROOF. Given a graphG(V, E), the algorithm presented in Fig-
ure 14 constructs a dual graph,G′(V ′, E′), where the choices in

each zone are replaced with explicit edges between the correspond-
ing source/sink pairs. Thus, it is trivial to show that there is a one-
to-one mapping between any data path onG(V, E) and a path on
G′(V ′, E′).

In Step 3(b)i of the algorithm, given a choicech in G, the length
of the corresponding edge inG′ is set to

length(ech) = −log(agr(ch)),

which is always a positive number. Thus, thek-shortest path algo-
rithm ran onG′ (Step 4) will returnk simple paths, such that the
term

∑

ch∈path

−log(agr(ch)) = log


 ∏

ch∈path

1

agr(ch)


 ,

is minimized. Since thelog function is monotonic, this corresponds
to the minimization of the term

∏
ch∈path

1
agr(ch)

or, equivalently,
the maximization of the term∏

ch∈path

agr(ch).

By Definition 6.1, this term is equal to the agreement of the data
path on the original zone graphG. Hence, these enumerated paths
are also thek highest-agreementdata paths inG.

THEOREM 6.2 (COMPLEXITY). The worst case execution
time of thek highest-agreementdata paths algorithm in Figure 14
is O(kn(m2 + nlogn)).

PROOF. Given a dual graph,G′, with n′ nodes andm′ edges,
Yen’s algorithm would identify thek-shortest simple paths inG′

with the worst case time ofO(kn′(m′ + n′logn′)) [?].
Given a graph,G, with n nodes andm edges, the algorithm in

Figure 14 creates a dual graph,G′, with at mostn′ = n nodes and
m′ = m2 edges. The worst case occurs when a zone inG with u
edges leads toO(u2) individual choices, each with a corresponding
edge, inG′.

In the first phase of the algorithm (Steps 1 through 3), the dual
graph creation costsO(m2) time. In the second phase (Step 4),
given the dual graph,G′, with m′ = O(m2) andn′ = n nodes,
Yen’s algorithm costsO(kn(m2 + nlogn)) time. Thus, the worst
case execution time of the algorithm in Figure 14 isO(kn(m2 +
nlogn)).

The k highest-agreement paths that are generated at this step
are thek best matches to the user’s query based on the zone-
graph. However, as described in Section 4.5, the integrity con-
straints which require path- or multi-path level evidence to verify
or reject candidates are kept outside of the scope of the zone-graph
and, thus, necessitate further post-processing.

7. CONFLICTS WITH MULTI-ZONAL INTEGRITY CON-

STRAINTS AND RELEVANCE FEEDBACK
Given thek highest-agreement paths based on the zone-graph

(which are created based on the assumption that the zonal choices
are independent from each other), multi-zonal integrity constraints
need to be considered to verify thevalidity of the ranking generated
in the earlier stage.

EXAMPLE 7.1 (ACYCLICITY CONSTRAINT). Consider an
integrity constraint which asserts that the data is acyclic. Such a
constraint can be commonly found in concept (IS-A) hierarchies.

Note that, although they can be independentlysimple (i.e.
acyclic), two paths in a given candidate set may imply a cycle in



the data when considered together. This means that (a) either the
zonal-constraints that were used in the production of these paths
or (b) the integrity constraint asserting the acyclicity of the data
were overly trusted. Thus, the knowledge of this conflict needs to
be reflected back to thevalidity of the involved constraints and if
necessary on the involved candidate paths.

When it is found that highest-agreement paths are conflicting
with the integrity constraints, this may result in (a) updates on the
agreement values computed in the earlier processing stages or (b)
adjustment of the validity of the integrity constraints themselves.
The user feedback, i.e.,subjective-to-objective information flow
(sub → obj), is used to decide the appropriate adjustment.

7.1 Degree of Conflict with Integrity Constraints
Since data paths are weighted withagreementvalues, quantify-

ing their likelihood based on the zone-graph, the conflicts between
available candidate paths and the integrity constraints must also re-
flect thelikelihoodof their inconsistencies. This leads to the con-
cept ofdegree of conflictbetween a set of paths and constraints.

DEFINITION 7.1 (DEGREE OFCONFLICT). Given a set of
pathsP (on a data-graphG) and constraintsC, the degree of con-
flict betweenP andC (denoted asconfG(P, C)) is defined as

conflictG(P, C) = 1− nm(P collectively satisfy C in G)

nm(G)

As an example, let us consider the acyclicity constraint, “there
exists no path with a cycle,” and computation of the degrees of
acyclicity conflicts.

EXAMPLE 7.2 (DEGREE OFACYCLICITY CONFLICTS).
Given two paths, P1 = n1,1 ; . . . ; n1,k and
P2 = n2,1 ; . . . ; n2,l, we can define the acyclicity,
noCyc(P1, P2), as follows:

noCyc(P1, P2) = ∀i,j (∃path(n1,i, n2,j) →6 ∃path(n2,j , n1,i))∧
(∃path(n2,j , n1,i) →6 ∃path(n1,i, n2,j))

Then, we can define an acyclicity violation as

{P1, P2} → ¬ noCyc(P1, P2).

Thus, given theagreementvalues (i.e., likelihood of existence) for
all relevant paths among the nodes ofP1 andP2, the degree of con-
flict (Definition7.1) can be computed probabilistically. Note that
such agreement values can indeed be computed in advance (off-
line) using an all-pairs shortest path algorithm (such as Floyd-
Warshall’s [?]) in O(V 3). Given these off-line computed values,
the computation of the degree conflict between two pathsP1 and
P2 can be done inO(length(P1)× length(P2)).

The concepts ofintegrity constraintsanddegrees of conflictsin-
troduced above together with the concepts ofzones, choices, and
zonal agreementsintroduced in Section?? enable us to articulate
the basic axioms that these need to obey to be acceptedvalid.

7.2 Axioms of Validity
The following axioms characterize the dependencies between

zonal-choices of the candidate paths and the conflicts implied by
the set of integrity constraints:

AXIOM 1 (ZONAL CONFLICTS AND VALIDITY ). If two
valid paths are conflicting within a given zone, then both corre-
sponding zonal choices cannot be simultaneouslyvalid: i.e., it
holds that∀p1,p2∈P

valid(p1)∧valid(p2)∧conflictG({p1, p2}, z) → ¬valid(zc1)∨¬valid(zc2)

AXIOM 2 (INTEGRITY CONSTRAINTS AND VALIDITY ). If
a given set of paths and constraints are in conflict, then it can not
be true that all paths and all the constraints are valid: i.e., it holds
that∀P ′⊆P,C′⊆C

conflictG(P
′
, C

′
) →


 ∨

c∈C′
¬valid(c)


 ∨


 ∨

p inP ′
¬valid(p)




In addition, the validity predicate satisfiesvalid(¬u) =
¬valid(u), valid(u ∨ v) = valid(u) ∨ valid(v), andvalid(u ∧
v) = valid(u) ∧ valid(v).

7.3 User Feedback and Subjective Ranked Interpreta-
tion

Although the axioms above provide a framework in which the
validity of the candidate paths as well as zonal and integrity con-
straints can be assessed, they do not do so unambiguously; in other
words, these axioms can be satisfied in multiple ways. Thus, the
user feedback is necessary to inform the system to decide on the ap-
propriate adjustment (i.e.,subjective-to-objective information flow,
sub → obj).

Given the initial set of candidates, their agreement values, and
their degrees of conflicts with the integrity constraints, the user can
provide validity feedback in the form of preferred validity rank-
ings. Examples include,valid(pi) > valid(pj), valid(ci) >
valid(cj), and valid(pi) > valid(cj). These describe users’
ranked interpretation of the statements regarding the paths and the
constraints.

7.4 Relationship between Validity and Agreement
Both agreement and validity values assess the rank the likelihood

of a given statement.Agreementdescribes the objective ranked in-
terpretation, based on the zonal graph, while thevalidity includes
integrity constraints as well as user feedback to reflect the sub-
jective ranking. Thus, the subjective to objective correspondence
(Desideratum *) implies that validity values should be related to
the objective agreement values computed in the previous steps, un-
less there are multi-zonal conflicts or user intervention.

DESIDERATUM 3. ∀p ∈ P , it should be that

valid(p) ∼ 1− log(agr(p))

log(agrmin)
,

and

∀zc∈zonalchoice(p) valid(zc) ∼ 1− log(agr(zc))

log(agrmin)
.

Here,agrmin > 0 is the smallest agreement value computed for
the paths and the zonal choices input to the integrity constraint
analysis and user feedback phase.

For the smallest agreement value in the input,1 − log(agrmin)
log(agrmin)

is equal to0; for any choice or path with agreement value1,
1 − log(1)

log(agrmin)
is also equal to1. Thus, intuitively, this desider-

atum implies that validity should always be between0 and1 and
should increase monotonically with the agreement value,agr. The
desideratum uses∼ as opposed to=, because agreement values are
computed without considering multi-zonal constraints and conflicts
with such complex constraints and user feedback may affect the va-
lidity. Baring such conflicts and user intervention, validity should
mirror agreement values

Furthermore, the desired relationship between the agreement and
validity values necessitates a correspondence between the validity
of a path and the validity of the choices involved in it.



PROPOSITION7.1 (ZONAL CHOICES AND PATH VALIDITIES ).
A path’svalidity is related to the validity of its zonal choices; in
particular, it holds that∀p∈P

valid(p) = 1 +
∑

zc∈zonechoice(p)

(valid(zc)− 1).

PROOFSKETCH 7.1. The use of
∑

to relate validity of a path
to the validity of the corresponding zonal choices is similarly mo-
tivated to the use of

∑
in the computation ofk highest agreement

paths in Section??. In particular, Desideratum 3 and the fact that
agr(p) =

∏
zc∈zonalchoices(p) agr(zc) together imply that

1− log(agr(p))

log(agrmin)
= 1−


 ∑

zc∈zonalchoices(p)

log(agr(zc))

log(agrmin)




Thus,valid(p), i.e., the right hand side of the equation, should be
equal to

1 +
∑

zc∈zonalchoices(p)

((
1− log(agr(zc))

log(agrmin)

)
− 1

)
,

i.e., the left hand side of the equation). This term can be rewritten
as1 +

∑
zc∈zonechoice(p) (valid(zc)− 1). 2

7.5 Measuring Validity and Updating Zonal Agreements
Measuring validity based on the above axioms require a compat-

ibility and conflict analysis scheme. Maximal clique-based model
enumeration (used in most truth maintenance work [27] for com-
patibility and conflict analysis), could be extremely costly. even
within the limited context of candidate results and the relevant in-
tegrity constraints. Furthermore, the conflict and agreement values
associated with the paths and constraints are non-boolean. Thus,
for measuring validity based on the above axioms, we can not rely
on boolean or set-based schemes. Instead, we use the conflict and
agreement values by translating the axioms and user-feedback into
a fuzzy constraint program.

A fuzzy set,F , with domainD is defined [39] using a member-
ship function,F : D → [0, 1]. A fuzzy predicate then corresponds
to a fuzzy set; instead of returningtrue(1) or false(0)values for
propositional functions, fuzzy predicates return the corresponding
membership values. The meaning of the constraint program de-
pends on the fuzzy semantics chosen for the logical operators∧
and∨. It is well established that the only fuzzy semantics which
preserves logical equivalence of statements (involving conjunction
and disjunction) and is also monotonic is themin semantics, where
a∧b = min(a, b), a∨b = max(a, b), and¬a = 1−a. Therefore,
we use fuzzymin semantics to translate the validity axioms into a
constraint program as shown in Figure 15.

Given this constraint program, we search for a solution with
maximal integrity constraint validity and better achievement of
Desideratum 3; i.e., themaximization function for solving the con-
straints in Figure 15 is

∑

ic∈IC

valid(ic)−
∑

zc∈ZC

∣∣∣∣valid(zc)−
(

1− log(agr(zc))

log(agrmin)

)∣∣∣∣

Once the validity values are computed, the final step in the rele-
vance feedback process is the update of the zonal agreement values
of the choices based on the validity assessments obtained in this
step: i.e, using the computed validities and Desideratum 3, we can
compute new agreemeent values,agrnew, as follows:

log(agrnew(zc)) = (1− valid(zc))× (log(agrmin)).

After this update, the system is ready re-compute thek highest
agreement paths for the next cycle.

7.6 Time to Compute Trust Values
Table 1 presents the execution times for a constraint solver

(LINGO on a 2GHz Pentium4 with 1GB main memory) under dif-
ferent scenarios and using different optimization strategies. In par-
ticular, the table lists results by LINGO’s global solver (Glb.) as
well as by itsmultistart(MS) solver, which selects a subset of can-
didate starting points for local optimizations.

The first thing to note is that the local optima found by the mul-
tistart solver are very close to the optimal score obtained by the
global solver. In fact multistart with few initial starting points is
in many cases as good as multistart ran with a larger number of
initial starting points4. Thus, less than optimal, but fast, multistart
solver can be used effectively when the optimal trust values are too
expensive.

The second thing to notice is that, for all the experimented sce-
narios the execution time of the multistart solver is less than 20
seconds. In particular, the multistart solver with two initial points
returns results in less than 3 seconds. The global solver (Glb.) on
the other hand works very fast (under 4 seconds) for scenarios with
small number of conflicts. But, as the number of conflicts in the
assertions increases, the global solver becomes too slow for inter-
active use. Therefore, for such cases,QUESTrelies on the multi-
start solver which approximates the objective value well. Note also
that, interestingly, when the number of conflicts in the results are
also large, the global solver works faster than the case with only
assertion conflicts. This points to the fact that conflicts in results
indeed inform the solver.

8. RELATED WORK
In this section, we review the related work on different aspects

related to possibly conflicting data integration.
In the area ofcollaborative data sharing, the systemOrches-

tra [41,42] focuses on managing disagreement (at both schema and
instance levels) among different (relational) collaborating mem-
bers, and addresses the problem of propagating updates possibly
occurring at any information source. No global consistency re-
quirement is imposed in the collaborative system. Acceptance of
tuples from other sources is seen as an option, and no participant
is required to update its data instance to agree with the other par-
ticipants. Similarly, updates are propagated, through a series of
acceptance rules, only to those participants who trust their sources
and/or their values.

In TRIO [43], the existence of alternative database instances is
captured through the notion of uncertainty associated to the avail-
able data. An uncertain database represents multiple possible in-
stances, each representing a possible state for the database.Proba-
bility values are attached to the data stored in uncertain databases,
and lineage captures data items’ derivation (and it can be used
for understanding and resolving uncertainty). Similarly to our ap-
proach, the probability associated to attribute values in uncertain
databases can be interpreted as a way of capturing the likelihood
for the data values, in the alternative (possibly mutually inconsis-
tent) scenarios, and we can seelineageas correlating uncertainty
in query results with the uncertainty in the input data, thus pro-
viding the ”context of validity” for the derived data. As a major
difference with our approach, inTRIO the probabilities associated
to data items are taken as known at the storage time (derivation time

4Due to the randomness of the initial points, multistart with a larger
number of starting points can sometimes return a lower objective
value.



Given paths,P , zones,Z, zonal choices,ZC, and integrity constraints,IC,
∀c ∈ ZC ∪ IC 0 ≤ valid(c) ≤ 1;
∀p ∈ P 0 ≤ valid(p) ≤ 1;
∀p ∈ P valid(p) = 1 +

∑
zc∈zonalchoices(p)(valid(zc)− 1)

∀p1, p2 ∈ P, z ∈ Z min{valid(p1), valid(p2), conflict({p1, p2}, z)} ≤ 1−min{valid(zc1), valid(zc2)}
∀P ′ ⊆ P, C′ ⊆ IC conflict(P ′, C′) ≤ max{max{1− valid(c)|c ∈ C′}, max{1− valid(p)|p ∈ P ′}}

Figure 15: Fuzzy constraint program capturing the validity axioms

Scenario Time to Compute (seconds) Percentage of Glb.’s Objective Value
|R| |E| |A+| |A−| Conflicts in

pairs of Rs
Conflicts in
pairs of As

MS2 MS4 MS8 MS16 Glb. MS2 MS4 MS8 MS16

10 2 50 2 2% 2% 1.3 2.6 4.4 11.5 0.8 97.6% 99.3% 99.7% 100.0%
10 2 100 2 2% 2% 2.3 5.0 10.4 13.0 2.1 99.5% 99.5% 100.0% 100.0%

20 4 100 4 2% 2% 1.4 4.3 9.5 15.8 3.2 97.9% 98.9% 99.5% 99.2%
20 4 100 4 10% 2% 1.4 14.2 16.4 16.8 9.8∗ 95.4% 95.1% 96.0% 94.0%
20 4 100 4 2% 10% 1.9 17.7 17.7 17.6 >10mins 98.5% 98.1% 98.4% 98.6%
20 4 100 4 10% 10% 1.6 16.1 15.6 16.1 161.2∗∗ 99.1% 99.1% 98.8% 99.1%

50 5 250 5 2% 2% 2.3 15.8 15.2 15.4 >10mins 99.4% 99.4% 99.1% 99.4%
50 5 250 5 10% 10% 5.6 36.1 36.1 35.4 518.4∗ 99.9% 99.9% 99.9% 99.8%
* For this configuration, LINGO global solver took more than 10minutes in 40% of the runs. The reported average execution time for Glb. are of the remaining runs.
** For this configuration, LINGO global solver took more than 10minutes in 20% of the runs. The reported average execution time for Glb. are of the remaining runs.

Table 1: Trust value computation using LINGO optimization software. For each scenario, the table lists the objective scores for the
local optima by LINGO’s multistart solver (MS), relative to the optimum by its global solver (Glb.).for derived items), and they do not reflect user’s feedback. More-
over, in the derivation process, lineage guarantees that a coherent
derivation flow is maintained, and there is no way for the user to
specifically choose to trust and combine results that are not coher-
ent with the original lineage derivation policy, i.e., the constraints
dictated by the derivation strategy cannot be overruled by users’
data interpretations.

From a more theoretical (i.e, system independent) perspective,
[?, 44, 45] investigate on formal characterizations of the notion of
consistent data in a possibly inconsistent database. They introduce
a number of alternative repair semantics, where arepair of a (rela-
tional) database instance is another database instance over the same
database whichmaximally closeto the given one (different seman-
tics correspond to different definition of the closeness metric), and
they discuss on the complexity of consistent query answering in in-
tegrated databases. Similarly, [?] addresses modeling and query
answering complexity issues in data integration systems, with a
global architecture providing a reconciled, integrated, virtual view
over the real data sources. Also in these cases, integrity constraints
are taken as valid, and the focus is on the problem of returning an-
swers to the queries while guaranteeing consistency with respect to
the given constraints. In our case, we give the user the option of
assessing her belief in the validity of the integration constraints, as
well as on the integrated data sources.

In their work on nondeterministic choices in logic programming
languages, Zaniolo [40] and his colleagues suggest that in logic
database languages, one may often wish to express the fact that
only one of several possible ways of satisfying an atom is nonde-
terministically selected. They then use this to define a choice se-
mantics for logic programs with negation. In contrast, in our work
we are not dealing with logic programming languages, and we use
choice (feedback) mechanisms to assigntrust values to underlying
data sourcesandconstraints.

In the Artificial Intelligence community, the problem of deal-
ing with incomplete and/or inconsistent information led to the def-
inition of alternative, multiple model semantics, and to the devel-
opment of non monotonic reasoning systems. Multiple model se-
mantics, like thestable model semantics, [15], associate multiple,
equally likely, models to the given knowledge base, each one cor-
responding to a possible context, or a possible consistent scenario
described by the knowledge base. A query (goal) succeeds if at
least a context (model) is found in which the query is true. Prob-

lem solvers interact withtruth maintenance systems(TMSs) [12],
that record and maintain the justifications for the possible context
(belief sets) under consideration. Dependency networks allow the
detections of the possible reasons for conflicts, and in the presence
of a conflict a knowledge base revision process starts, restoring con-
sistency. Unlike the related work in this area, we choose to tolerate
conflicting information in the knowledge base, and we propose ef-
ficient rankingalgorithms to enable the user to explore and revise
the knowledge within the context of a given query.

To enable this, we propose an assertion (constraint)-based model
of knowledge, (

9. CONCLUSION
In this paper, we presented innovative techniques to deal with the

computational complexity and the ill-defined nature of the conflict
resolution problem. In particular, we presented a novel, feedback-
driven approach to query processing in the presence of conflicts.
The novel feedback process relies on a ranked interpretation of the
data, as opposed to more traditional model-based interpretations.
The objective-to-subjective correspondence of the ranked interpre-
tations enables the user to explore the available data within the con-
text of a query and be informed regarding data and relationship-
constraints critical to a given query before providing feedback. In
a similar fashion, the subjective-to-objective correspondence of the
ranked interpretations inform the system regarding user’s prefer-
ences and domain knowledge within the context of a query. We
provided data structures and algorithms that enable an efficient and
effective implementation of the proposed feedback cycle.
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