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A B S T R A C T

Phytase with wide ranging biochemical properties has long been utilized in a multitude of industries, even so,
thermostability plays a crucial factor in choosing the right phytase in a few of the sectors. Mesophilic phytases
are not considered to be a viable option in the feed industry owing to its limited stability in the required feed
processing temperature. In the recent past, inclusion of thermostable phytase in fuel ethanol production from
starch based raw material has been demonstrated with economic benefits. Therefore, considerable emphasis has
been placed on using complementary approaches such as mining of extremophilic microbial wealth, en-
capsulation and using enzyme engineering for obtaining stable phytase variants. This article means to give an
insight on role of thermostable phytases in feed and fuel industries and methods for its development, high-
lighting molecular determinants of thermostability.

1. Introduction

Feeding swine and poultry is expensive as the feed costs account for
about 60–70 percent of the costs of livestock production (Ravindran,
2013a,b; Debbie, 2018). Furthermore, up to one-quarter of the feed get
wasted, because the animals lack the enzymes that would allow them to
digest it (International poultry production, 2014). Phosphorus (P) is the
nutrient with third economic value in monogastric diet formulation
after energy and amino acids (Lamid et al, 2018). Phytin accounts for
up to 80% of all the P in plant seeds and their by-products which are the
main ingredients for poultry, swine and ruminants. Phytate accumu-
lated in the seed aleuronic layer and the embryo, chelates magnesium,
zinc, calcium and iron. Likewise, it forms complexes with proteins and
carbohydrates leading to inhibition of their hydrolysis. Presence of
phytate in the feed alters the secretion of endogenous compounds such
as animal digestive enzymes, HCl, mucin etc and hence, availability of
energy and amino acids are reduced. Phytates are poorly utilized by
non-ruminant animals because of the low activity of phytase in their
digestive tract. Hence, there is a growing concern over the adverse
impact of antinutritional property of phytate on animal performance,
phosphorus pollution of effluents from intensive animal operations and
the skyrocketing price of inorganic phosphates. As a result, for the last
two decades phytate degrading enzyme, phytase from microbial sources
has emerged as the primary feed enzyme worldwide. The competence

of microbial phytases to release the phytate-bound phosphorous and the
potential benefits of this exogenous feed enzyme in improving nutrient
digestion and bird performance are well recognized (Selle and
Ravindran, 2007).

Phytases have been used commercially in poultry diets for over
20 years and its use will continue to grow (Amerah et al, 2011). Ac-
cording to Global Market Insights, Inc., the animal feed enzymes in-
dustry, which accumulated a revenue of USD$1.1 billion in 2016, is set
to surpass USD$2 billion by 2024 (Feed additives, 2017). Among the
different products of animal feed enzyme market including phytases,
carbohydrases, and proteases, phytase segment constitute the largest
market, as of 2015, with a share of 83.6% of the total industry in terms
of revenue (Grand View Research, 2017). The main market players in
phytase production are Novozymes, DuPont (Danisco), AB Enzymes,
DSM, BASF, etc. The sales volume of Phytases increased from 114235
MT in 2012 to 152622 MT in 2016, with an average growth rate of
5.96%. New Global Phytases Market Report (Forecast of Global Phy-
tases Market 2023) covers market forecast projects that Over the next
five years, Phytases will register a 7.9% CAGR in terms of revenue,
reach US$ 590 million by 2023, from US$ 380 million in 2017 (Digital
Journal, 2018).

Despite the wealth of knowledge on phytase and their wider ac-
ceptance as a feed supplement, achieving consistent results in animal
performance is still remaining a major limitation in the feed industry.
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The huge information available in literature on phytases from microbial
sources, their differential performance (Wyss et al., 1999; Mullaney
et al., 2000; Vohra and Satyanarayana, 2003; Oh et al., 2004; Kaur
et al., 2007; Fu et al., 2008; Ushasree et al., 2016; Priyodip et al., 2017;
Cangussu et al., 2018) and efficacy of different commercial products
demonstrate how biochemical characteristics of particular phytase limit
its use in industry (Wu et al., 2015; Jones et al., 2010; Menezes-
Blackburn et al., 2015; Shanmugam, 2018). Being proteins, highly
complex three-dimensional molecular structure of phytases has im-
portant implication in their stability during high-temperature feed
manufacture. This provided the researchers in manifold discipline to act
together with a potential prospect to enhance the phytase performance
through immobilization (Davis, 2003; Menezes-Blackburn et al., 2011;
Shankar et al., 2015) or encapsulation (Rathnayake et al., 2018; Isakova
et al., 2018), enzyme mining from extremophiles (Berka et al., 1998;
Sarmiento et al., 2015; Dokuzparmak et al., 2017), mimicking enzyme
evolution in the laboratory (Hibbert and Dalby, 2005; Kim and Lei,
2008) and using rational, computer-assisted enzyme engineering stra-
tegies (Zhang et al., 2007; Wang et al., 2018; Rigoldi et al., 2018).

Aside from animal feed industry, in the past decade, thermostable
phytases have attained great consideration in biofuel industry.
Inclusion of this enzyme in bioethanol production from starch based
feed stock is reported to be beneficial as it solves waste disposal pro-
blem, simultaneously creates a higher value added ethanol co-product,
and improves the overall efficiency of ethanol production (Shetty et al.,
2008). The objective of this review is to draw attention of the global
phytase research communities to the growing demand of thermosatble
phytases in feed sector. This review discusses recent advances and ef-
fective strategies in the development of thermostable phytases, high-
lighting molecular determinants of thermostability. In addition, this
review brings in to focus the benefits associated with the application of
thermostable phytases in ethanol production. The review concludes by
suggesting the direction of future research in development of thermo-
stable phytases.

2. Temperature as a decisive factor to decide the right phytase in
feed

Animal feeds may become contaminated with harmful bacteria.
Salmonella spp. is the major microbiological hazard in animal feed
which can cause animal contamination (Jones, 2011). For this reason,
most of the countries prescribed requisite programs for the control of
Salmonella using heat treatments (Jones and Richardson, 2004). Feeds
are often pelleted for improving the digestibility, especially the starch
fraction of the feed and reduction in microbial contamination (Cox
et al., 1986; Lewis, 2011). Further-more, pelleting of feed reduces the
troubles with dust, makes the feed easier to consume for the livestocks,
and it permit incorporation of small amounts of ingredients in the feed
and to “lock” the feed mixture (Abdollahi et al., 2013). This pelleting
procedure involved adding steam to the feed where temperature can
frequently reach up to 90 °C. Most of the microbial phytases are ther-
mostable up to around 70 °C, and feed manufacturing thermal processes
beyond this value, dramatically reduces phytase activity (Patridge,
2007). The intrinsic phytase in small grains is inactivated by steam
pelleting at temperatures above 80 °C (Jongbloed and Kemme, 1990).
Loss of phytase activity obviously decreases the value of the enzyme
and compromise monogastric health as the diets become deficient in
available phosphorus (Loop et al., 2012). Extent of these losses which
appear to be affected by the type of enzyme preparation as well as by
the methods of assessing pelleting temperature and enzyme recovery
(Amerah et al., 2011).

Many studies have been conducted to evaluate the difference in
thermostability of phytase after pelleting. Previously, the thermo-
stability of two phytase products, Ronozyme NP and Phyzyme XP TP
were investigated, and the results demonstrated that more than 80% of
the enzyme activity was preserved following conditioning and pelleting

up to 95 °C. Since, pelleting processes at a feed mill normally do not
exceed 95 °C; the study concluded that the pelleting will not cause
problems to the activity of the studied enzymes (Dorthe, 2010). In a
recent study, four commercial phytase products [Quantum Blue G (AB
Vista); Ronozyme Hi Phos GT (DSM Nutritional Products); Axtra Phy
TPT (Dupont); and Microtech 5000 Plus (Guangdong Vtr Bio-Tech Co.,
Ltd)] were exposed to four temperatures (65, 75, 85, and 95 °C). Re-
sidual phytase activity decreased as the temperature increased from 65
to 95 °C at a rate of −1.9% for each 1 °C raise in conditioning tem-
perature regardless of the product. At 95 °C, Axtra Phy TPT had greater
(P < 0.05) residual phytase activity compared with Microtech 5000
Plus, with Quantum Blue G and Ronozyme Hi Phos intermediate. (De
Jong et al., 2017).

2.1. Post pellet phytase application

Liquid phytase formulation can be applied to feed before pelleting
inorder to minimize the activity loss arising from instability of heat
sensitive phytases. Though this approach ensures that the enzyme is not
exposed to higher temperature, incorporation of liquid enzymes
homogenously after pelleting is time consuming and costly as it re-
quires sophisticated spraying instruments designed for individual feed
mills. The type of pellet produced, and the percentage of fines affects
the homogenous distribution of the additive (Patridge, 2007). In addi-
tion, liquid enzymes are inherently less stable in storage than their dry
granular counterparts. To avoid complications associated with liquid
enzymes, dry thermostable enzyme is a key requirement to the feed
industry which allow direct addition of enzyme to the mixer ensuring
survival of pelleting step. Comparison of post pellet liquid and dry
phytase application to broiler diet has already been demonstrated
(Edens et al., 2002). Previously, improvement in phytase thermo-
stability was demonstrated by mixing phytase solution, soluble starch,
and sorghum liquor wastes at the ratio of 1:1:10 (v/w/w). The residual
phytase activity after 30min of treatment at 70 and 80 °C were about 90
and 18% of that at 37 °C respectively (Chang-Chih et al., 2001). Liquid
phytase formulations stabilized by means of the addition of polyols,
polymers, ethylene glyol and ions exhibiting increased resistance to
heat inactivation during prolonged periods of storage have been re-
ported (Barendse et al., 2009; Rodríguez-Fernández et al., 2013).

2.2. Phytase with inherent stability

Identifying intrinsically thermostable enzymes is the most active
approach currently being investigated to produce enzymes with char-
acteristics suitable for the feed manufacturing industry. Systemic efforts
are being done in prospecting new thermostable phytases from ther-
mophilic or mesophilic microbes by conventional screening or by ap-
plying advanced molecular techniques (Ushasree et al., 2017). High
yielding strains are necessary for enzyme production in industrial
processes. Large scale enzyme production from thermophiles faces
several challenges such as knowledge on physiology and genetics of
such organisms is poor, compared to their mesophilic counterparts; the
biomass achieved by these organisms is usually disappointingly low;
they are fastidious; and are not recognized as safe (Illanes, 1999). Re-
combinant expression is a practical method to increase the yield of a
target gene. Development of vectors for expression of proteins in var-
ious thermophilic hosts have been reported (Drejer et al., 2018).
However, use of the novel thermophilic expression systems is still at
research level and more work remains before exploitation at industrial
scale can be considered (Turner et al., 2007; Drejer et al., 2018). Hence,
cloning and expression of thermophilic genes into a suitable and faster
growing mesophilic host is regarded as a suitable option for producing
thermostable enzyme required for varied purposes (Adams and Kelly,
1998). Table 1 represent an account on thermostable phytases and
structural features contributing to thermostability reported during the
last decade and their properties.
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2.3. Coating and immobilization of phytases

Coating technologies are the most widely used enzyme protection
technology used today for the commercial phytases, which will protect
the enzyme from pelleting process. However, in many cases, it was
observed that, it reduces the enzyme release in the gastrointestinal tract
of the animal. Danisco Animal Nutrition in 2009 had launched a new
highly-thermostable phytase (Phyzyme XP TPT), which is claimed to be
the most thermostable phytase on the market. The Thermo Protection
Technology (TPT) developed by Danisco ensures higher efficacy of
phytase after exposure to feed conditioning and pelleting temperatures
of up to 95 °C, while rapidly releasing the enzyme activity in the ani-
mal’s gut, without compromising animal performance. The efficacy of
this technology was confirmed by independent pelleting trials con-
ducted at Technological Institute, Kolding in Denmark. Spurt in the
number of patents issued during the last 10 years also suggest that
coating of animal feed enzymes offers greater stability to heat and other
physicochemical conditions during processing and storage of feeds.
Recently rice bran was used to synthesize dietary fibers in nanoscale
using electrospinning technique. Phytase incorporated into these na-
nofibres demonstrated improved thermal properties in which the en-
zyme denaturation temperature had increased from 80 to 170 °C. These
findings opened up new pathways for stabilization of bio-molecules in
nanofibers based on agriculture waste materials (Rathnayake et al.,
2018). A new recombinant strain of Yarrowia lipolytica synthesizing
encapsulated highly thermostable phytase of Obesumbacterium pro-
teus, which is recommended for use as a premix component of feed
compositions in animal husbandry was, described (Isakova et al.,
2018). On the other hand, researchers at the Laval University in Quebec
(Canada) studied the encapsulation of microbial phytase and its effects
on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss),
which concluded that, encapsulation diminished enzyme’s ability to
liberate phosphorous (Vandenberg et al., 2011).

Effect of immobilization of phytases on thermostability character-
istic was also demonstrated by previous studies. Immobilization of two
commercial microbial phytases from Aspergillus niger and Escherichia
coli on iron-coated allophane increased their thermal stability and im-
proved resistance to proteolysis (Menezes-Blackburn et al., 2011).
Zwitterionic amino acid tyrosine was used as a reducing and capping
agent to synthesize gold nanoparticles which permitted efficient im-
mobilization of phytase enzyme through charge-switchable electro-
static interactions. The immobilized enzymes exhibited greater ther-
mostability and activity which was proved by detailed kinetic and
thermodynamic studies (Shankar et al., 2015). Covalent immobililiza-
tion of phytase on to multi-walled carbon nanotubes (F-MWNT) was
described in which immobilized phytase exhibited improved stability
towards temperature than the free phytase. The free phytase retained
27% and 3% of relative activity at 80 and 90 °C, respectively after 2min
of incubations. While immobilized phytase retained about 33 and 51%
activity at the same conditions (Naghshbandi et al., 2018).

2.4. Thermostability engineering in phytases

Phytases derived from mesophiles are more extensively explored as
phytases produced by thermophiles exhibit low activity at the physio-
logical temperature of animals (Vieille and Zeikus, 1996). Mesophiles
adapt their proteins to function optimally at normal environmental
conditions and maintain their structural integrity at only a limited
range of temperatures. During the past two decades, varieties of at-
tempts including crystallization of phytases from different microbial
sources, comparison of mesophilic and thermophilic enzyme variants
and random or rational amino acid alterations have shed light on the
structural features of phytases contributing structural tolerance at ele-
vated temperature (Shivange and Schwaneberg, 2017; Rebello et al.,
2017).Ta
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2.4.1. Disulfide bridges
Disulfide bonds in enzymes have high relevance in their bio-

technological applications (Bardwell, 2007). Replacement of specific
cysteine residues can alter enzyme structure that is inconsistent with
catalytic activity by strongly affecting the rate of irreversible enzyme
inactivation (Dombkowski et al., 2014). A considerable body of litera-
ture suggests that, when disulfide bonds are introduced in phytases, it
effectively improved the thermostability characteristics. In early ex-
periments, presence of five disulfide bonds in Aspergillus ficuum phytase
was predicted by unfolding studies, by means of guanidinium hydro-
chloride (Gu·HCl) as denaturant. Later, the role of these bonds in the
conformational stability and catalytic activity was investigated (Ullah
and Mullaney, 1996; Wang et al., 2004; Song et al., 2005). Mullaney
et al. (2010) reported the relative significance of each of these five
bonds using site-directed mutagenesis. This study revealed that removal
of Disulfide Bridge 2 resulted in complete loss of activity and other
disulfide mutants displayed a broad array of altered catalytic properties
including a lower optimum temperature from 58 to 53 °C. In another
attempt, four mutants of A. niger NRRL 3135 phytase was generated
using site-directed mutagenesis of the cysteines that are involved in the
formation of a single disulfide bridge. When mutants and the native
PhyA were heated to 70 °C for five minutes, wild type phytase retained
21.3%, while all the DB mutants retained a higher percentage of ac-
tivity than the wild type. Mutants C31G, C40G, 31G/C40G and C31G/
C40S retained 24.8, 39.3, 49.6 and 84.2%, respectively (Mullaney et al.,
2012). In a different study, the disulfide intact monomer and a
monomer with broken disulfide bonds of phytase B from Aspergillus
niger, were simulated. This study indicated that the disulfide bonds
stabilize the β-sheet containing active site residue Arg66 and destabilize
the α-helix that contains the catalytic residue Asp319 which is essential
for maintaining the native conformation of the catalytic site (Kumar
et al., 2013).

At the same time, beta-propeller phytases (BPPs) from Gram-posi-
tive bacteria do not carry disulfide bonds and introduction of new
disulfide bonds did not alter its enzymatic properties (Cheng et al.,
2007). Thermostability of an acid stable phytase from Acidobacteria was
improved by introducing four additional disulfide bridges by re-
designing a mutant using Design 2.0. The amino acid residues selected
for constructing the four extra disulfide bridges were Thr101-Ser307,
Thr354-Val381, Val352-Phe398, and Ala229-Met364. Two of the en-
gineered phytases showed a half-life time at 60 °C and 80 °C, respec-
tively which is 3.0× and 2.8× longer than the wild. This study proved
Design 2.0 to be an efficient tool for the rational design of enzymes by
manipulating disulfide bridges and showed that addition of disulfide
bridges was effective in enhancing the thermal resistance of an enzyme
while retaining its activity level as well as acidophilic and acidostable
properties (Tan et al., 2016a,b). Recently, an in silico analysis on
structural relationships between disulfide-bearing phytases and dis-
ulfide-free phytases was conducted. Six out of 9 phytases used in the
study carried three or more disulfide bonds while the others lack any
disulfide bonds. Results demonstrated a remarkable correlation be-
tween the presence of disulfide bond and the number of amino acid in
each phytase. Additionally, phytases containing disulfide bonds have
some identical characteristic including aliphatic index (AI), isoelectric
pH (PI), amino acids percentage, molecular weights (MW) and 3D
structure rather than disulfide-free phytases do. Evolutionary analysis
showed that phytases with disulfide bond exhibited the same evolu-
tionary course (Ghasemian et al., 2017).

2.4.2. Alteration in hydrogen bond network
Functional importance of hydrogen bonds and ionic interactions in

supporting the thermostability in phytases has already been demon-
strated. In comparison with the commercial phyA derived from A. niger,
Aspergillus fumigatus phytase is well-known for its heat resilience as it
retains 90% of its initial activity after being heated at 100 °C for 20min.
These two enzymes possess very similar crystal structures however,

sharing only 66% sequence homology. This thermostability in A. fu-
migatus phytase was analyzed to be associated with hydrogen bonding
network in E35 to S42 region and ionic interactions between R168 and
D161 and between R248 and D244 which was proved by single or
combined loss of function mutations (E35A, R168A, and R248A). And
when corresponding substitutions were introduced in A. niger phytase,
the developed quadruple mutant (A58E P65S Q191R T271R) retained
20% greater activity than that of the wild after being heated at 80 °C for
10min (Zhang et al., 2007). Introduction of side-chain hydrogen bond
to stabilize a loop structure (Gln137-Asn144) was reported in E. coli
appA (pH 2.5 acid phosphatase) in mutant D144N which showed 15%
enhancement in thermostability and 4–5 °C increases in the melting
temperatures (Kim et al., 2008). Two phytase variants K46E and K65E/
K97M/S209G developed by directed evolution in appA also increased
hydrogen bonding and subsequently exhibited over 20% improvement
in thermostability (80 °C for 10min), and 6–7 °C increases in melting
temperatures (Kim and Lei, 2008). In another study, Mn2+-dITP (2′-
deoxyinosine 5′-triphosphate) random mutation method in a protease-
resistance phytase gene of Penicillium sp., developed two mutants
(T11A/G56E/L65F, Q144H/L151S and T11A/H37Y/G56E/L65F/
Q144H/L151S/N354D) with improved thermal stability and optimal
temperature. Both the mutants retained about 72.81% and 92.43% of
the initial activity, respectively after a heat treatment at 100 °C for
5min and this stability was attributed to the formation of new hy-
drogen bonds among the adjacent secondary structures (Zhao et al.,
2010). Formerly, using molecular dynamics simulation, Aspergillus niger
PhyA and its thermostable mutant with 20% greater thermostability
was compared by evaluating atomic root mean square deviation, radius
of gyration, and number of hydrogen bonds and salt bridges. The results
concluded that loops are the major secondary structural elements
contributing to stability, and in addition, the location of hydrogen
bonds rather than the number play the crucial role in thermostability
(Noorbatcha et al., 2013).

Improved hydrogen bonding network in Yersinia mollaretii phytase
by combining key beneficial substitutions identified through directed
evolution resulted in reduced flexibility at loops and subsequent im-
provement in thermal resistance (melting temperature increased by 3 °C
than the wild and the residual activity improved from 35 to 89% at
58 °C and 20min incubation) (Shivange et al., 2016). Recently, a ra-
tional protein design approach was used to mutate six putative solvent-
accessible amino acid residues (K74, K75, K180, R181, K183, and
K363) in E. coli phytase to introduce hydrogen bonds (K74D/K75Q/
K180N/R181N/K183S/K363N). The melting temperature (Tm) of wild
and mutant phytases was determined using Circular Dichroism (CD)
spectroscopy. As the temperature gradually increased from 25 to 85 °C,
the CD spectrum of all the phytases revealed a drop in α-helix content.
The Tm value obtained for wild phytase was 60.3 °C. While the mutants
showed a shift in melting temperature of 1.2–3.8 °C suggesting the
stabilizing role of substitutions in protecting the phytase during the
thermal denaturation process (Wang et al., 2018).

2.4.3. Glyco engineering phytase
Protein glycosylation is one of the most common structural mod-

ifications employed by biological systems to expand proteome di-
versity. Protein residues have been found to be glycosylated with a
variety of glycans at asparagine residues (N-linked glycosylation
through Asn-X-Thr/Ser recognition sequence) and at serine or threo-
nine residues (O-linked glycosylation). It is well known that the glycans
have an important role in augmenting the overall stability of glyco-
proteins and rational manipulation of the glycosylation parameters
through introduction of new glycosylation sites in proteins provide
ample opportunities to optimize the operational stability of both in-
dustrial and pharmaceutical proteins. The increase in glycosylation
degree rigidifies the protein structure and increases the effective dis-
tance between the protein electrostatics (Solá and Griebenow, 2009).
Glycosylation in Aspergillus niger and Aspergillus japonicus phytase was
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reported for its functional expression and thermostability when ex-
pressed from yeast systems (Han and Lei, 1999; Fonseca-Maldonado
et al., 2014). Formerly, a number of studies have been conducted to
engineer the glycosylation in these enzymes. Addition of N-glycosyla-
tion sites in E. coli appA phytase showed glycosylation level 48, 89 and
145% for the mutants A131N/ V134N/D207N/S211N, C200N/D207N/
S211N, and A131N/ V134N/C200N/D207N/S211N respectively
(Rodriguez et al., 2000). In a different study, substitutions of glycosy-
lation sites in a codon optimized E. coli, the mutant (Q258N/Q349N)
showed a 40% enhancement in thermostability (85 °C for 10min) and
4–5 °C increases in the melting temperatures (Tm) than the wild (Yao
et al., 2013). Wu et al. (2014), carried out a rational design experiment
in which N-glycosylation motif from Citrobacter phytases was in-
troduced in E. coli phytase. The outcome of the study was promising as
three of the single mutants retained 5.6–9.5% activity after treatment at
80 °C. In addition, the mutant carrying triple glycosylation motifs ex-
hibited 27% residual activity (1.8% for wild type).

2.4.4. Other structural elements contributing stability
Based on sequence alignment and molecular modeling of E. coli

phytase, a divergent residue, Ser51 in close proximity to the catalytic
site was mutated to A, T, D, K and I by site-directed mutagenesis. Here
the electrostatic interaction and side chain structure near the active site
in the mutants contributed to greater activity over pH 2.0–5.5, and
increased thermal stability (Fu et al., 2009). Fei et al. (2013a) reported
that the C-terminal end of E. coli phytase plays an important role in
thermostability. When heated at 80 °C for 10min, the C-lose mutants
Q307D, Y311K, and I427L constructed in their study exhibited 39.07%
thermostability enhancement than the wild-type. In another attempt of
multiple-factors rational design-new mutation strategy by combining
alteration in protein flexibility, protein surface, and salt bridges in E.
coli appA, the authors reported that single and multiple mutants de-
veloped by this strategy improved thermostability (Fei et al., 2013b).

A further study report development of an improved variant of
Yersinia mollaretii phytase using newly developed OmniChange method
for multi-site saturation mutagenesis with 32% improved residual ac-
tivity (58 °C for 20min), 2 °C increased apparent melting temperature
(Tm) when compared to the wild-type Ymphytase. Here the mutant
developed with residue change V298Fcontributed to improved thermal
resistance by introducing aromatic-aromatic interactions (Shivange
et al., 2014). In addition to hydrogen bonds and disulfide bridges, in-
troduction of other structural factors such as increasing α-helix content
and greater exposed hydrophobic surface in E. coli appA enhanced the
thermal tolerance exhibiting 7.5 °C increase in the melting tempera-
tures (Tm) (Wang et al., 2015). Among the six mutants generated by
using site-directed mutagenesis in E. coli appA, two mutants W46E and
K24E showed strong thermostability and retained more than 60% ac-
tivity after heat treatment for 20min at 90 °C. Here the change in re-
sidual charge of the protein was suggested as the reason for enhance-
ment of thermostability (Zhang et al., 2016). Recently, phytases from
Yersinia enterocolitica and Y. kristensenii were mutated by optimizing
amino acid polarity and charge. In this study, the variants developed
(F89S, E226H, and F89S/E226H) at the predicted pepsin/trypsin clea-
vage sites, elevated pepsin resistance and thermostability (Niu et al.,
2017).

3. Phytase: application in ethanol production from starch-based
feedstocks

To trim down the dependence on fossil fuels and greenhouse gas
emissions, in many countries, the governments direct to use alternate
biofuels. With high agricultural productivity and advances in infra-
structure, currently, ethanol is the most widely used biofuel in the
world. Moreover, over 64 countries now have active programmes pro-
moting the use of ethanol as a mainstream fuel. The International
Energy Agency predicts that, together, conventional and advanced

biofuels will represent 8% of the transport energy consumption by
2025. In spite of a major research swing over to the second, third and
fourth generation of biofuels, fuel grade ethanol from starch-based
feedstock still continues to grow on a global basis. In this scenario,
beyond basic needs for better and lower cost starch hydro-
lyzing enzymes, the ethanol industry is constantly searching for novel
enzymes that improve the production efficiency, provide energy saving
and create value added co-products in the conversion of food crops to
fuel.

3.1. Requirement of thermostable phytase in ethanol production

Phytic acid present in cereal based raw materials can complex with
many compounds (polyvalent cations such as Fe, Zn, Ca and Mg; pro-
teins and starch) and therefore limit their availability to the yeast
during the alcoholic fermentation process (Mikulski et al., 2015).
Phytates bind to polysaccharides and lower the susceptibility to enzy-
matic hydrolysis thereby lowering the amount of fermentable sugars..
Binding with starch occurs either directly by means of hydrogen bonds
or indirectly via starch-associated proteins. Hydrolysis of phytic acid
using phytase is the one possible route to tackle this issue. Release of
inositol from phytic acid would improve yeast ethanol tolerance ability
resulting in higher ethanol yields (Chi et al., 1999; Keiji et al., 2004). In
addition, it allow more minerals eg Ca2+ to be available to the fer-
menting yeast; remove the phytic acid interference with mineral such as
Ca2+, Mg2+, Zn2+ and Fe2+ that reduces the stability of different types
of amylases especially those from Bacillus and A. niger used in ethanol
production; availability of more free phosphorous, minerals and vita-
mins to the fermenting yeast improves which subsequently increase the
ethanol yield (Fig. 1) (Veit et al., 2001).

Within the same plant species, different genetic lines show differ-
ence in phytic acid content (Raboy et al., 2001). Hence, studies on the
analysis of phytic acid concentration in different raw plant materials
have been conducted to determine the limitations caused by decreased
availability of biogenic compounds bound to phytase (Frontela et al.,
2008; Tahir et al., 2012). Mikulski and Kłosowski. (2015) have eval-
uated the concentration of phytic acid in selected raw starchy materials
(maize, rye, wheat and triticale grain) used for ethanol production and
the rate of phytate hydrolysis using various microbial phytases for the
further development of more efficient and cost-effective industrial fer-
mentation procedures.

In ethanol production process from starch based raw materials,
milled grain is slurried with water and a thermostable alpha amylase
enzyme. The slurry is cooked to 105–150 °C to gelatinize and liquefy
the starch in the liquefaction process. The resulting mash is cooled and
a secondary enzyme, glucoamylase, is added to convert the liquefied
starch to fermentable sugars in the saccharification stage. In a further
step, addition of yeast allows fermentation of the sugars to ethanol and
carbon dioxide. In addition to alpha amylase and glucoamylase, pro-
tease can be added to improve the fermentation process, and phytase,
can be added either in the liquefaction stage to enhance the perfor-
mance of thermostable alpha amylase, or in the yeast fermentation
process. The temperature range in liquefaction process is 76–87 °C for
90–140min and hence, application of thermostable phytases are pre-
ferred at this stage as they can perform efficient hydrolysis (Don
Cannon, 2014, DuPont Danisco Animal Nutrition). Earlier, phytases
applied in addition to alpha-amylase during liquefaction have been
reported to reduce slurry viscosities and stabilization of alpha-amylase
(SPEZYMETM Xtra). Improved alpha-amylase activity resulted in better
starch hydrolysis (Shetty et al., 2008). Effect of phytase addition on
ethanol yield was investigated for E-Mill dry grind corn process and it
was reported that the final ethanol concentrations were higher in E-Mill
processing with phytase addition (17.4% v/v) than without addition of
phytase (16.6% v/v) (Khullar et al., 2011). Recently, a patent on
methods for application of thermostable phytase for ethanol production
was reported (Tan et al., 2018). A thermo-acid stable phytase from
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thermophilic mould Thermomyces lanuginosus SSBP was used to enhance
bioethanol production from Colocasia esculenta was demonstrated in
which the enzyme reduced phytate content in Colocasia esculenta starch
(from 1.43mg/g to 0.05mg/g) that resulted in an improvement in the
availability of fermentable sugars with a concomitant reduction in
viscosity and 1.59-fold improvement in ethanol production
(Makolomakwa et al., 2017). Thermostable recombinant Buttiauxiella
phytase was included in the starch processing step in ethanol produc-
tion to reduce the levels of phytic acid in end-product (Kensch et al.,
2016; Breneman et al., 2013).

3.2. Phytase for high value ethanol co-product: low phytate DDGS

When dry-grind process is used for the production of ethanol from
cereal grains during which the starch is saccharified and fermented by
yeast to produce ethanol. The remaining nonfermentable components
are recovered as distillers dried grains with solubles (DDGS) for feeding
the livestocks. Due to the nutritional value present in DDGS, it quickly
gained attention from the markets and in 2015 achieved a significant
share, about 23%, of the non-ruminant animal feeding markets, such as
poultry and swine industries. In the dry grind process, phytate present
in the grain is concentrated about threefold in DDGS which cannot be
digested by monogastric animals, such as poultry and swines, which in
turn produce manure with high levels of phosphorus. Low phytate
DDGS can have significantly higher true metabolizable energy (TME)
and digestibility of some amino acids, especially those present at high
concentrations in endogenous protein.

In order to increase the nutritional value of DDGS different strate-
gies are adopted such as by extracting phytate from DDGS or inclusion
of phytase in ethanol production. Phytate is a highly-valued chemical
used as food additive, preservative and antioxidant. In recent years, the
beneficial effects of phytates have been highlighted and explored by the
pharmaceutical industry, particularly in the prevention of renal calculi,
diabetes, some types of cancer and Parkinson's disease. Recently, di-
verse efforts have been taken to recover phytate from DDGS in the
downstream processing of dry-grind co-products as it can profit by
more revenue to ethanol industry and feed industry by improving feed
digestability. He et al. (2017) have used AG 1-X8 anion exchange resin
to remove and purify phytates from thin stillage, and near 100% effi-
ciency of adsorption and over 90% desorption from the resin beads was
achieved. Several attempts have also been taken to increase the de-
gradation of phytate throughout or after the fermentation using phy-
tase. Noureddini and Dang (2009) have used phytase from A. niger to

catalyze phytate hydrolysis in Whole Stillage. Whereas Khullar et al.
(2011) proposed a step of incubation with phytase prior to corn sac-
charification. In this, addition of phytases in the E-Mill process was
described and it resulted in DDGS with lower residual starch content
(6.6%) compared to E-Mill process without phytase incubation (8.1%).
DDGS produced from E-Mill processing with phytase incubation also
had higher protein content (36.5%) compared to control processing
(34.2%). In another study, Liu (2014), described addition of industrial
phytase preparations (Natuphos and Ronozyme) to treat commercially
made thin stillage (TS) and a complete phytate hydrolysis was achieved
within 5–60min of enzymatic treatment. In another study, incorpora-
tion of phytase along with non-starch hydrolase and protease promoted
fermentation performance in corn dry-grind process for ethanol and it
produced DDGS with lower amounts of nondigestible carbohydrates.
Ethanol production rate increased to 1.16 g/g dry corn per hour, and
thin stillage wet solids increased by 2% w/w (Luangthongkam et al.,
2015). Phytase displayed on the S. cerevisiae surface by fusing the en-
zyme with the glycosylphosphatidylinositol (GPI)-anchoring system
was used as a promising technology to increase the efficiency of ethanol
production and decrease the phytate phosphate content in DDGS (Chen,
2017).

4. Conclusions

Numerous thermostable phytases have been reported from ther-
mophiles. This intrinsic thermostability can be combined with high
activity at physiological temperatures using directed evolution strate-
gies with little trade-off in activity. Further, advances in current com-
putational enzyme design approaches have not yet been wholly
exploited in phytase research. Hence, by initiating research on broad-
ening the activity profile in hyperthermophilic phytases and extending
the phytase engineering research in to more communities globally, it is
expected that in near future the phytase with ideal stability parameters
will be developed.
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Fig. 1. (A) Phytate and its interference in ethanol production; (B) application of phytase in different steps in ethanol production from starch based plant material
(Shetty et al., 2008; Fuel ethanol workshop presentation given by Dr. Jay Shetty; Don Cannon, 2014, Dupont Danisco Animal Nutrition).
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