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Abstract—In this paper, a sliding mode control (SMC)
strategy is proposed for three-phase three-level T-type shunt
active power filters (SAPF). The proposed control strategy has the
ability to balance the capacitor voltages with respect to the
neutral-point. The proposed SMC strategy is formulated in the
natural frame which eliminates abc/dq transformation and two PI
controllers compared to the design in the dq frame. In natural
frame, only one PI controller is needed to generate the amplitude
of grid current reference. The output of the PI controller is
multiplied by the unity sinusoidal waveforms, obtained from the
grid voltages, so as to obtain the grid current references. The
filter current references are obtained by subtracting the measured
load currents from grid current references. The performance of
the proposed control method is investigated by simulation study
during steady-state and transients caused by load change. It is
shown that the grid currents are almost sinusoidal with small
THD, grid currents and dc-link voltage track their references and
capacitor voltages are balanced with respect to the neutral-point.

Keywords—Three-level T-type shunt active power filter,
proportional-integral control (PI), sliding mode control.

I. INTRODUCTION

Due to the rapidly growing use of power-electronics
devices in domestic, industrial and commercial equipment, the
harmonic current distortion on the grid has increased
considerably in recent years. It is well known that the distorted
grid currents cause voltage drops on grid network impedances
which may lead to unbalanced conditions. Distorted grid
currents can also cause poor power factor, increase heating
losses, and affect other loads connected at the point of common
coupling (PCC). Therefore, in order to restrict the current
harmonics injected into the grid and keep them below specified
limits, standard regulation such as IEEE-519 is published [1].

Although conventional passive filters can be employed for
compensating the undesired harmonics, they have many
drawbacks such as resonance, fixed compensation ability, and
large size. In contrast, shunt active power filters (SAPFs) are
widely used for compensating the undesired current harmonics
[2]. When a SAPF is connected to the PCC, it injects
compensating currents having the same amplitude and opposite
phase to those of the load current harmonics so as to obtain
sinusoidal grid currents in phase with the grid voltages. In
order to achieve this, the SAPF should be controlled by an

appropriate control strategy which possesses several features
such as fast dynamic response, good current tracking
capability, robustness to parameter variations, low total
harmonic distortion (THD) in the grid currents, and good dc
bus voltage regulation. Generally, a control strategy consists of
three parts, namely: i) generation of the reference
compensating current; ii) current-control of the voltage-source
PWM converter, and iii) control of the dc bus voltage.
Generation of the reference compensating current plays an
important role that affects the filtering performance since any
inaccurate phase and magnitude of reference compensating
currents result in degradation in the compensation process.

In the existing SAPF topologies, the standard two-level
inverter is the most preferred inverter topology. However, the
performance of two-level inverter is degraded at medium and
high voltages. Nowadays, multilevel inverters are very popular
in high-power and medium-voltage applications due to their
attractive features such as high efficiency, less losses, low
waveform distortion and good performance at low switching
frequency. The increased number of levels in the inverter
yields a staircase output voltage waveform which reduces the
harmonic distortion. One of the popular multilevel inverter
topologies is the neutral point clamped (NPC) topology [3].
Various control strategies have been proposed for SAPFs
which employ the NPC topology [4]-[10]. These control
approaches offer various advantages and disadvantages related
to the control objectives mentioned above.

In [11], it is shown that the three-level T-type converter
provides better efficiency than other multilevel converter
topologies up to the medium switching frequency range. Also,
the T-type converter topology has a small part count compared
to three-level NPC topology in. Comparing NPC-type and T-
type converters, one can see that both topologies employ four
IGBTs in one leg. However, the NPC converters require
additional two clamping diodes per converter leg for clamping
the neutral point to positive or negative dc voltages. In T-type
converters clamping is achieved by using an active
bidirectional switching device connected between the midpoint
of each leg and midpoint of series connected dc-link
capacitors. Therefore, the T-type converters do not require
clamping diodes at all. That’s why T-type converters have less
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conduction losses compared with NPC-type converters [12].
However, both NPC and T-type topologies suffer from
capacitor voltage imbalance.

Recently, three-level T-type SAPFs are proposed to
increase efficiency [13]-[16]. In [13], a phase separated
control is introduced which eliminates the influence of DC-link
voltage unbalance. In [14], a different capacitor voltage
balancing strategy is proposed. The authors in [15] proposed to
use fast Fourier transform (FFT), instantaneous reactive power
method and synchronous reference frame techniques in
generating the filter reference currents. In [16], the T-type
inverter is connected to the point of common coupling (PCC)
with the LCL filter. Since the T-type converter topology has
emerged recently, there is no sufficient study investigating the
performance of the T-type SAPF under various control
methods such the SMC.

In this study, SMC of three-phase three-level T-type SAPF
is proposed in the natural frame. The main advantages of SMC
include fast dynamic response, high robustness against
disturbances and variations in the system parameters, and
implementation simplicity. The SMC with these features is
recognized as one of the popular and powerful control tools in
a wide range of applications such as uninterruptible power
supplies (UPS) [17], DC-DC converters [18], grid-connected
inverters [19], and PWM rectifiers [20]. The proposed SMC
strategy can compensate the grid current harmonics, regulate
the dc-link voltage and eliminate the imbalance existing in the
capacitor voltages. Also, it offers implementation simplicity,
robustness, and fast dynamic response.

II. T-TYPE SAPF AND ITS OPERATING STATES

Fig. 1 shows a three-phase three-level T-type SAPF. It
consists of four switches per leg. It can be seen that the three-
level T-type SAPF is an extended version of the standard two-
level voltage source inverter with an additional active
bidirectional switch which consists of two anti-series insulated
gate bipolar transistors (IGBTs) connected between each phase
leg and the capacitor’s midpoint.

Fig. 1. Three-phase three-level T-type shunt active power filter.

Considering the combination of switching states, the SAPF

can generate three different pole voltages kOv (k=a, b, c).

These voltages occur when the midpoint of each leg is
connected to positive (P), neutral (O) and negative (N) points.
The operating states, switching states and generated pole
voltages are shown in Table I. Clearly when the switches Sk1

and Sk2 are ON, and Sk3 and Sk4 are OFF, the SAPF operates in

the P state generating 1 2( ) / 2 / 2kO C C dcv V V V   . When Sk2

and Sk3 are ON and Sk1 and Sk4 are OFF, the SAPF operates in
the O state generating 0V. Finally, when Sk1 and Sk2 are OFF
and Sk3 and Sk4 are ON, the SAPF operates in the N state and

generates / 2kO dcv V  . Hence, it can be seen from the

generated voltage levels that the T-type SAPF in Fig. 1 is able
to generate a three-level voltage waveform. Similar to the
traditional two-level SAPFs, the inductance L connected
between the grid and midpoint of each phase achieves boost
operation such that the dc-link voltage is always greater than
the grid voltage.

TABLE I

OPERATING STATES, SWITCHING STATES AND POLE VOLTAGES

Operating
State

Sk1 Sk2 Sk3 Sk4
kOv

P ON ON OFF OFF Vdc/2

O OFF ON ON OFF 0

N OFF OFF ON ON -Vdc/2

III. MATHEMATICAL MODELING OF T-TYPE SAPF

The differential equation of the SAPF can be written as

d
L R

dt
  

i
e i v (1)

where R is the resistance of inductor L and
T

a b ce e e   e ,
T

Fa Fb Fci i i   i ,
T

an bn cnv v v   v (2)

The grid voltages are defined as

cos( )a me E t (3)

cos( 2 / 3)b me E t   (4)

cos( 2 / 3)c me E t   (5)

where mE denotes the amplitude. The pole voltages are

dependent on the switching states. It is worth noting that the

dc-link capacitors are assumed to be identical 1 2( )C C . In this

case, the voltage across each capacitor is half of the dc-link

voltage ( 1 2 / 2C C dcV V V  ). The control strategy of a SAPF

has two objectives. The first objective is to achieve sinusoidal
grid currents which are in phase with the corresponding grid
voltages. The second objective is the regulation of the output
voltage at the desired level. In order to achieve the first
objective, an inner current loop is required which forces the
grid currents to track their references.

IV. SLIDING MODE CONTROL OF T-TYPE SAPF

As mentioned in the previous section, one of the control
objectives in a SAPF is to regulate dc-link voltage (Vdc) at the
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desired level. It is well known that the PI controller exhibits
good dynamic and steady-state performances for dc quantities.
Hence, this control objective can be achieved by using a PI
controller which generates the reference amplitude of the grid

currents by processing the dc-link voltage error (
*

dc dcV V ). In

this case, the reference amplitude of the grid currents can be
generated as

* * *( ) ( ) ( )s p dc dc i dc dcI t K V V K V V dt    (6)

where
*

dcV is the reference of dcV , pK and iK are the

proportional and integral gains, respectively. Equation (6)
satisfies the dc-link voltage regulation provided that the line
currents track their references.

In order to obtain the grid current references, the reference

amplitude * ( )sI t should be multiplied with the sinusoidal

waveform templates obtained from the grid voltages in (3)-(5)
as follows

* *( )cos( )sa si I t t (7)

* *( )cos( 2 / 3)sb si I t t   (8)

* *( )cos( 2 / 3)sc si I t t   (9)

However, in order to control the SAPF currents, their
references are needed. These references are obtained by
subtracting the measured load currents from the reference grid
currents in (7)-(9) as follows

* *
1 2( )Fa sa La c C Ci i i K V V    (10)

* *
1 2( )Fb sb Lb c C Ci i i K V V    (11)

* *
1 2( )Fc sc Lc c C Ci i i K V V    (12)

In (10)-(12), the term 1 2( )c C CK V V is needed to eliminate the

imbalance which exists in the capacitor voltages. The gain cK

can be used to adjust the dynamics of the compensation, and it

should satisfy 0cK  for a stable operation [21].

In this study, the SAPF current control is performed by
using SMC. Now, let the sliding surface functions are defined
as

*
a Fa Fai i   (13)

*
b Fb Fbi i   (14)

*
c Fc Fci i   (15)

The sliding mode occurs if the existence conditions are
satisfied. Generally, existence conditions are derived from the

sliding surface function ( k ) and its derivative k which

should have opposite signs around the sliding line. The sliding
mode is stable if the following condition holds

0k k   (16)

Now, let us show that the condition in (16) can be satisfied for
phase A. Substituting the derivative of (13) into (16) yields

*

0Fa Fa
a

di di

dt dt


 
   

 
(17)

Assuming that * ( )sI t , 1CV and 2CV are constant in the steady-

state, the derivative of (10) is written as
*

*( )sin( )Fa
s

di
I t t

dt
   (18)

Substituting (18) and the expression obtained from (1) into
(16) gives

 2 * 2( ( ( )) cos( ) 0a
m s aOE LI t t v

L


      (19)

where phase shift is given by
*

1 ( )
tan s

m

LI t

E


   
   

 
(20)

The inductor resistance (R) is neglected in the derivation of
(19). Clearly, (19) can be modified as

2 * 2( ( ( )) cos( )a m s a aOE LI t t v       (21)

Hence, if aOv is large enough, (21) is always satisfied. Since

the pole voltage aOv contains dcV as shown in Table I, then the

stability can be dictated either by selecting large dcV values or

by selecting small mE , and L values. The stability of the other

phases can be obtained similarly.

V. SIMULATION RESULTS

The effectiveness and correct operation of the proposed
control strategy has been verified by simulations using
Matlab/Simulink. The block diagram of the proposed control
method and the PWM generation scheme are shown in Fig.
2(a) and (b), respectively. The PWM signals are generated by
comparing the sliding surface functions with the level shifted
triangular carrier signals which are shown as “Car1” and
“Car2” in Fig. 2(b). The system and control parameters used in
the simulation studies are given in Table II.

(a)
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(b)

Fig. 2. Block diagram of the (a) proposed control method, (b) PWM generation
scheme.

TABLE II

SYSTEM AND CONTROL PARAMETERS

Description and Symbol Value

Grid voltage amplitude, mE 230 2 V

Inductance, L 0.5mH

Inductor resistance, R 0.2Ω 

DC capacitors,
1 2C C 2000µF

Load1 (parallel RC ) R=20Ω, C=20µF 

Load2 (parallel RC ) R=40Ω, C=20µF 

DC-link voltage reference, *
dcV 800V

PI gains, pK and iK 1 , 100

Imbalance compensation gain, cK 0.1

Switching frequency, swf 2.5kHz

Fig. 3 shows the steady-state responses of grid voltages

( , , )a b ce e e , nonlinear load currents ( , , )La Lb Lci i i , filter

currents ( , , )Fa Fb Fci i i , grid currents ( , , )sa sb sci i i , capacitor

voltages 1 2( , )C CV V , and dc-link voltage ( )dcV under a

nonlinear load. It can be seen from Fig. 3(b) that the nonlinear
load draws highly distorted currents whose total harmonic
distortion is 14.5%. Based on the proposed control strategy, the
SAPF produces the currents (see Fig. 3(c)) so that the grid
currents (see Fig. 3(d)) become sinusoidal, as much as
possible, with low THD and in phase with the grid voltages
shown in Fig. 3(a). The THD of grid currents is computed to be
2.5%. The performance of the SAPF is clear when one
considers the THD improvement from 14.5% to 2.5%. On the
other hand, it can be observed that the capacitor voltages
converge to the half of the dc-link voltage. Moreover, no
imbalance exists in the capacitor voltages shown in Fig. 3(e).
The dc-link voltage shown in Fig. 3(f) is regulated at

* 800VdcV  which shows that the proposed controller achieves

its control objective successfully.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Steady-state responses under nonlinear load: (a) Grid voltages, (b) Load
currents, (c) Filter currents, (d) Grid currents, (e) Capacitor voltages, and (f)
dc-link voltage.

(a)

(b)

Fig. 4. Harmonic spectrums of load and grid currents of phase A in Fig. 3: (a)
Load current, (b) Grid current.

A
m

p
lit

u
d

e
[A

]
A

m
p

lit
u

d
e

[A
]

4941

Authorized licensed use limited to: Technological University Dublin. Downloaded on December 07,2021 at 10:01:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4 shows the computed spectrums of load and grid
currents for phase A which corresponds to the results in Fig. 3.
The THDs of load and grid currents are 14.5% and 2.5%,
respectively. This improvement in THD is due to the
compensation of 5th and 7th harmonics existing in the load
current.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Dynamic responses when load2 is connected in parallel with load1: (a)
Grid voltages, (b) Load currents, (c) Filter currents, (d) Grid currents, (e)
Capacitor voltages, and (f) dc-link voltage.

Fig. 5 shows the dynamic responses of grid voltages, load
currents, filter currents, grid currents, capacitor voltages, and
dc-link voltage when load2 is suddenly connected in parallel
with load1. As shown in Fig. 5(c), the grid currents track their
references with a reasonable response. Also, except for the
short transition period, the capacitor and dc-link voltage

voltages are regulated at * / 2 400VdcV  and * 800VdcV  as

shown in Figs. 5(e) and 5(f), respectively. It is apparent that the
capacitor and dc-link voltage have a slower response than the
response of grid currents.

Fig. 6. Steady state responses of phase A filter current and its reference.

Fig. 6 shows the steady-state responses of phase A filter

current ( )Fai and its reference
*( )Fai which corresponds to Fig.

3. It is evident that the actual filter current tracks its reference
with a negligibly small error compared to the current level.

(a)

(b)

Fig. 7. Dynamic responses of capacitor and dc-link voltage without and with
imbalance compensation control: (a) Capacitor voltages, (b) dc-link voltage.

Fig. 7 shows the dynamic responses of capacitor and output
voltages obtained with and without imbalance compensation
control. The results shown from t=0.04s to t=0.08s are
obtained when the imbalance compensation control is disabled.
It is obvious that there is an imbalance in the capacitor
voltages. However, when the imbalance compensation control
is enabled at t=0.08s, the capacitor voltages become balanced
as shown in Fig. 7(a). The dc-link voltage, except for the short
transition period, is regulated at 800V without and with the
imbalance compensation control as shown in Fig. 7(b).

VI. CONCLUSION

A SMC strategy is proposed for three-phase three-level T-
type SAPF. The proposed control strategy has the ability to
balance the capacitor voltages with respect to the neutral point.
The proposed SMC strategy is formulated in the natural frame.
The consequence of formulating the controller design in the
natural frame is that the abc/dq transformation and two PI
controllers are eliminated. In the natural frame, only one PI
controller is needed to generate the amplitude of grid current
reference. The output of the PI controller is multiplied by the
unity sinusoidal waveforms, obtained from the grid voltages,
so as to obtain the grid current references. The filter current
references are obtained by subtracting the measured load
currents from grid current references. The performance of the
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proposed control method is investigated by simulation study
during steady-state and transients caused by load change. It is
shown that the grid currents are almost sinusoidal with small
THD, grid currents and dc-link voltage track their references,
and capacitor voltages are balanced with respect to the neutral
point.
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