
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference Papers School of Science and Computing

2018

An investigation of the impact of language runtime on the An investigation of the impact of language runtime on the

performance and cost of serverless functions performance and cost of serverless functions

David Jackson

Gary Clynch

Follow this and additional works at: https://arrow.tudublin.ie/ittscicon

 Part of the Computer Sciences Commons

This Conference Paper is brought to you for free and
open access by the School of Science and Computing at
ARROW@TU Dublin. It has been accepted for inclusion in
Conference Papers by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/ittscicon
https://arrow.tudublin.ie/ittsci
https://arrow.tudublin.ie/ittscicon?utm_source=arrow.tudublin.ie%2Fittscicon%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fittscicon%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

An Investigation of the Impact of Language Runtime on the Performance and Cost of
Serverless Functions

David Jackson, Gary Clynch

Department of Computing
Institute of Technology, Tallaght

Dublin, Ireland
david.jackson@postgrad.it-tallaght.ie

gary.clynch@it-tallaght.ie

Abstract—Serverless, otherwise known as “Function-as-a-
Service” (FaaS), is a compelling evolution of cloud computing
that is highly scalable and event-driven. Serverless applications
are composed of multiple independent functions, each of which
can be implemented in a range of programming languages. This
paper seeks to understand the impact of the choice of language
runtime on the performance and subsequent cost of serverless
function execution. It presents the design and implementation
of a new serverless performance testing framework created to
analyse performance and cost metrics for both AWS Lambda and
Azure Functions. For optimum performance and cost management
of serverless applications, Python is the clear choice on AWS
Lambda. C# .NET is the top performer and most economical
option for Azure Functions. NodeJS on Azure Functions and
.NET Core 2 on AWS should be avoided or at the very least,
used carefully in order to avoid their potentially slow and costly
start-up times.

Keywords-serverless; FaaS; lambda; aws; azure; functions;
performance; cloud

I. INTRODUCTION

Serverless computing is a branch of cloud computing which

has evolved from the virtualisation of compute, storage and

networking towards increased abstraction of the underlying

infrastructure to the point where all that is provided for deploy-

ment is the code itself (Hendrickson et al., 2016). A server-

less platform manages all aspects of resource management,

deployment and scaling transparently. Serverless applications

are composed of multiple individual functions, each of which

can be implemented in a choice of programming languages,

based on the runtimes supported by the serverless platform.

This paper seeks to understand what impact the choice of

language runtime has on the performance and subsequent cost

of serverless function execution. In serverless billing models,

performance and cost are intrinsically linked, based on a “pay

only for what you use” model. Given the choice of language

runtimes available in each serverless platform, there would be

an expectation that some might perform faster than others. This

might be also expected to lead to a difference in overall costs

to run functions in different languages.

This paper aims to isolate the performance of serverless

platforms, in order to understand how long it takes to initialise

the internal container environment necessary for execution of

a function. It aims to eliminate the performance characteristics

of the language itself by measuring completely empty test

functions.

This paper presents a series of tests against two major

commercial serverless platforms: AWS Lambda and Microsoft

Azure Functions. A new test framework, titled “Serverless

Performance Framework” (SPF), is introduced in order to

collect the necessary metrics for analysis in an automated way

across multiple cloud platforms.

AWS Lambda supports a total of five different runtimes

(.NET Core, Java, Python, NodeJS and Go), all of which were

evaluated in this research. Where there are multiple versions

available for a single runtime, the latest version available was

chosen. For Azure Functions, the testing was limited to C#

and NodeJS for purposes of cross comparison with the same

runtimes that are available on AWS.

Serverless platforms generally use a container-based work-

load management system internally in order to execute indi-

vidual functions and provide the ability to scale on demand. If

possible, a serverless platform will re-use an existing execution

container rather than creating a fresh environment to execute

a function. This is referred to as “warm-start” and would be

expected to result in reduced latencies compared with a “cold-

start” scenario. In cold-start, there is no available container

for re-use, so a fresh container must be created and initialised

with the function code and all required dependencies before

the function execution can begin. This paper performs function

testing against both these scenarios.

II. SERVERLESS REVIEW

Each time a serverless function is invoked, it is executed in-

ternally on a platform-managed server via a container which is

(potentially) provisioned in real-time. Fox et al. (2017) describe

this approach as being “server-hidden”. This section describes

recent research into performance and cost considerations under

this FaaS approach, as they relate to this paper.

A. Serverless Performance Considerations

Cold-start refers to the time taken to create a fresh container

to execute a function and perform any necessary runtime ini-

tialisation. Limiting this “cold-start” effect is cited by Varghese

and Buyya (2018) as being a key focus for a responsive

serverless implementation. This effect is observed by Ishakian

et al. (2017) in their study on the suitability of using serverless

154

2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)

978-1-7281-0359-4/18/$31.00 ©2018 IEEE
DOI 10.1109/UCC-Companion.2018.00050

functions for deep-learning tasks, where they evaluate both

“cold” and “warm” start scenarios.

McGrath (2017), investigates serverless latencies through

warm and cold start testing. The tests were performed against

functions implemented solely in NodeJS. Serverless functions

which were essentially empty were deployed to AWS Lambda.

They were designed in this way in order to allow measurement

of serverless framework performance and internal container re-

use, abstracting out any programming language performance

itself, although it does include the time taken for a round-trip

API call from the test harness. This is a similar approach to

the one taken for this paper, although this paper’s approach

removes any API or network latencies from the results.

B. Serverless Cost Considerations

Serverless functions provide the ability to scale up and

down rapidly, to the point where no cost is incurred if the

function is not in use (Baldini et al., 2017). This leads to

most commercial serverless implementations being based on

a fine-grained billing model based on function execution time

measured in sub-second intervals (often per 100ms).

Lynn et al. (2017) note the potential cost advantages provided

by commercial serverless cloud platforms. However, Baldini

et al. (2017) discuss the need to evaluate appropriate workloads

for cost-effectiveness on serverless platforms, noting that “the
frequency at which a function is executed will influence how
economical it can be”. For example, Adzic and Chatley (2017)

and Villamizar et al. (2016) present cost-saving examples for

serverless applications against traditional VM-based hosting

in the order of 99.8% and 57%. However, the throughput

presented in these examples equate to only 0.003 TPS and 7

TPS respectively. On a similar theme, Eivy (2017) encourages a

thorough evaluation of whether a serverless solution will deliver

the expected cost benefits in practice. He suggests estimating

function usage using TPS (Transactions-per-Second), noting

that AWS and Azure free tiers of one million free requests per

month only amount to 0.38 TPS. For a clearer comparison, any

free tier allocations are not included in this paper’s calculations.

The impact of the language choice on performance was cited

by McGrath (2017) as an area of future work. Given cost trans-

parency provided by serverless billing models, understanding

the impact on cost of a function’s language runtime is important

and is the subject of this paper.

1) Serverless Cost Modelling: Leitner et al. (2016) present a

comprehensive microservice cost modelling framework, named

“CostHat”, which aims to provide cost information to devel-

opers in real-time as they make changes. CostHat is a useful

model to apply to a serverless architecture, given serverless

functions usually conform to the common microservice char-

acteristic of providing a single clearly-defined capability or

function (Fowler and Lewis, 2014). The power of the CostHat1

model is in its recursive nature, calculating costs based on

downstream service dependencies. The formula is based on

various costs associated with function execution including

compute, API and I/O. This paper presents a CostHat model

1https://github.com/xLeitix/costhat

Figure 1: Architecture of Serverless Performance Framework

in order to apply performance and cost test results against a

realistic serverless architecture.

III. SERVERLESS PERFORMANCE TESTING

The following five runtimes were measured on AWS

Lambda: NodeJS, Go, Python, Java and .NET Core 2. These

were chosen as the five available languages on Lambda. Two

additional runtimes would be measured on Azure Functions

platform: NodeJS and .NET C#. These were chosen from the

available Azure Functions runtimes to enable cross comparison

with their equivalents on AWS Lambda.

A series of cold-start and warm-start tests were designed.

Previous research by McGrath (2017) and Ishakian et al. (2017)

has shown that the actual lifetime of a serverless execution

container is indeterminate, however their research showed that

a cold-start interval of 1-hour would be sufficient to guarantee

execution in a new container. The “Warm Start” interval rate

was set to be 1-minute intervals. The tests were designed

around empty test functions to measure the time taken to setup

the function’s execution environment. All tests were performed

in batches as described in sections IV and V. These batches

were executed in early 2018.

A. Serverless Performance Framework

A new test framework was created to enable consistent,

automated metrics gathering for this research. In addition it

has the purpose of eliminating any external latencies (such as

API invocation) from test results. This framework is dubbed the

“Serverless Performance Framework” (SPF). The components

were created via the popular open-source serverless devel-

opment tool called “Serverless Framework”2. This simplifies

serverless function development and deployment across a num-

ber of different serverless platforms. The technical implemen-

tation details of the solution are described in Figure 1. Full

source code is available on GitHub3.

2https://serverless.com/framework/
3https://github.com/Learnspree/Serverless-Language-Performance-

Framework

155

1) Common Components: To enable recording of data from

any serverless platform, all functionality for recording, calcu-

lation and analysis of performance and cost metrics is exposed

through a standard API. Currently, there is just a single POST

operation in the API, which triggers the “Metrics Lambda”

function and performs the task of storing the provided metrics

and any derived data into persistent storage (DynamoDB table).

This component is implemented as a .NET Core 2 AWS

Lambda function.

The “Cost Lambda” function is triggered via an event when

the main performance metrics are persisted to DynamoDB

(labelled “Metrics” table in Figure 1). It takes those values,

combines with the latest pricing data and calculates the es-

timated cost of execution of that function. The pricing data

is stored to DynamoDB “Costs” table. This component is

implemented as a NodeJS (6.10) function.

2) AWS Components: Test components that were specific to

testing AWS Lambda functions were required which ultimately

connect with the common SPF components via the API Gate-

way.

The AWS test functions to be measured were implemented

as completely empty functions. The purpose of this was to

eliminate from the testing anything other than the performance

of the serverless platform in creating the environment for code

execution. Note that AWS Lambda supports two flavours of

Python (2.x and 3.x) and NodeJS (4.x and 6.x). In these cases,

the latest framework versions (Python 3.6 and NodeJS 6.10)

were measured.

By default, AWS Lambda sends three entries to CloudWatch

Logs for every lambda function execution. This includes an

execution “REPORT”, which contains all the required metrics

such as execution duration, memory and function name. The

AWS Logger component of the SPF performs the task of

parsing this CloudWatch entry and translating these values into

a call to the SPF API. This logger component is implemented

as a NodeJS (6.10) AWS Lambda function.

3) Azure Components: Like the AWS components, Azure

components also store metrics via the same SPF API. The test

functions were implemented in NodeJS 6.10 and .NET C#. Test

functions were configured to integrate with Azure Application

Insights, which collects rich logging and telemetry data.

Unlike for its AWS equivalent, CloudWatch, it is not possible

to trigger the logger function from Application Insights directly.

Instead, Application Insights was configured for continuous

export to Azure Storage. Azure Functions can be triggered

from the insertion of data into a specified Azure Storage

container. This ability was used to allow the logger function

to send performance data for processing via the SPF API. The

logger function in Azure performs a very similar function to

its equivalent in AWS Lambda, parsing the required metrics to

send to the API.

IV. AWS TEST RESULTS

This section presents the tests results for AWS Lambda. Tests

were performed on each of the five language runtimes available

in AWS: NodeJS, Python, Go, Java and .NET C#. All tests were

performed on empty functions in order to measure purely the

Figure 2: Average of Execution Times (ms) across all Warm

Start Testing in AWS Lambda

serverless platform’s performance in creating and running the

environment to execute the function.

A. Warm Start Tests

In total, four separate 1-hour warm-start tests were executed

on AWS Lambda. In total, 248 individual tests were executed

against each of the five language runtimes. The average exe-

cution time for a completely empty function in each runtime is

presented in Figure 2.

Figure 3: Box Plot of AWS Lambda Warm Start Tests (ms)

The results show, on average, that Python is just ahead of

its nearest rival at an average execution time of 6.13ms. The

surprise is the appearance of .NET Core 2 as a close second.

This was quite unexpected, as the JIT (Just-in-Time) nature of

the compiler would be expected to result in slower performance

(Hendrickson et al., 2016). It outperforms even the dynamically

typed NodeJS, as does Java. C# .NET and Java applications,

executed at runtime via the .NET CLR (Common Language

Runtime) and JVM (Java Virtual Machine), were expected to

take longer to initialise. The laggard in the first warm-start

function test is Go, at an average runtime performance of

more than 300% of Python and .NET Core 2. Go, although

a statically typed language, has certain features (such as native

binary compilation) that suggested faster performance than it

showed.

A comparative box-plot of the warm start results is displayed

in Figure 3. What this diagram helps illustrate is Golang’s poor

156

Figure 4: Average of Execution Times (ms) across all Cold

Start Testing in AWS Lambda

average execution time. Compared to the other four runtimes,

it’s execution times are far more variable and distributed,

shown by the relatively large fourth quartile, denoting that

the longest 25% of all tests were relatively widely distributed

(from 21.09ms up to 47.61ms). The box-plot also illustrates

the consistency in execution of the top performers, .NET Core

2 and Python.

B. Cold Start Tests

A full cold-start test was run over a longer period than the

warm-start testing, consisting of a total 144 hours (6 days). This

involved 144 individual invocations of each runtime’s empty

test function. This was done in order to measure cold-start

performance across different overall environment conditions

which may occur at different days of the week or times of

the day.

The results showed some interesting contrasts to the warm-

start tests. Figure 4 shows the average cold-start execution time

of the five language runtimes. .NET shows the largest increase

(a massive 39,558%) in cold start time vs. warm-start scenarios.

Java also shows a significant (although not quite as dramatic)

relative increase of 3,459%. The other runtimes show more

consistent performance between cold and warm-start. What is

difficult to understand is the clearly better performance of Go

and Python in the cold-start tests against warm-start. They

perform over 50% slower in warm-start scenarios. This is

counter-intuitive to the expected pattern and requires future

investigation.

.NET Core 2 showed unexpectedly strong performance in the

initial warm-start test. This makes its dramatically slow per-

formance in this cold-start scenario surprising. Average empty

function duration has increased from 6.32ms to 2500.09ms.

This provides some interesting guidelines in the suitability of

.NET Core as a language of choice for AWS Lambda. The

most obvious conclusion is that, if possible, .NET should only

be used in functions that are frequently accessed and are less

prone to significant scale-out events.

Figure 5: Box Plot of Azure Functions Warm Start Performance

(ms)

V. AZURE TEST RESULTS

This section presents the tests performed on the Microsoft

Azure Functions serverless platform and describes the results

produced. Tests were against two language runtimes: C# .NET

and NodeJS. Azure Functions assigns memory to functions

dynamically and not in the pre-defined way AWS Lambda

is configured. In the process of testing, it was observed (via

Azure CLI and Application Insights metrics) that each function

executed comfortably consumed less than the 128MB minimum

billing threshold for Azure Functions.

A. Warm Start Tests

Warm-Start tests were performed at 1-minute intervals. There

were a total of 273 Warm-Start tests over a total 4.5-hours

for both Azure runtimes tested. As can be seen from the box-

plot in Figure 5, C# performs consistently faster of the two

runtimes tested in Azure, showing an average sub-millisecond

performance of just 0.93ms. This compares to 4.91ms for

NodeJS.

B. Cold Start Tests

There were a total of 144 Cold-Start tests (for both runtimes)

over a 6-day period. These were performed at the same 1-hour

intervals as in AWS Lambda testing.

Figure 6: Histogram of Azure Functions Cold Start Perfor-

mance (ms)

157

In the Cold-Start scenario, C# performs significantly better

than NodeJS - 16.84ms average compared to 276.42ms. The

histogram displayed in Figure 6 provides details on this dispar-

ity. C# shows considerable consistency, with the vast majority

of tests falling in the 0-20ms bucket. The NodeJS runtime

shows significant variability in execution time, with a relatively

even “bell curve” across the 20ms buckets between 120ms and

340ms.

VI. COMPARISON OF AWS LAMBDA AND AZURE

FUNCTIONS

This section describes a comparison between Azure Func-

tions and AWS Lambda based on the two runtimes tested in

Azure: NodeJS and .NET C#.

A summary of the average execution times in each scenario

is shown in Table I. It shows that each serverless platform

has advantages. For NodeJS, AWS Lambda shows a significant

advantage in terms of cold-start performance (23.67ms vs.

276.42ms average). The box-plot shown in Figure 7 adds more

detail as to the spread of test results in this cold-start scenario

for NodeJS. Azure is clearly much more optimised for C#

support than NodeJS. Perhaps this is related to the internal

containers on Azure which are currently based on windows

container technology versus the linux-based containers in use

on AWS. However, this would need specific further study.

For C# .NET performance, the situation is reversed. Table

I shows that Azure Functions significantly out-perform AWS

Lambda in warm-start and particularly in cold-start scenarios.

In a warm-start, AWS performance is reasonable at an average

of just 6.32ms per execution (compared to 0.93ms on Azure)

and both platforms are equivalent from a cost perspective.

However, the particularly poor cold-start performance of AWS

Lambda (average 2500.09ms) compares badly with Azure in

both performance and cost.

Figure 7: Box Plot of Cold Start Performance (ms) for NodeJS

on Azure and AWS

For warm-start tests in C#, the box plot in Figure 8 shows

a comparison of performance between Azure and AWS. Azure

significantly (but not unexpectedly) out-performs AWS. Given

.NET is a core technology for Microsoft, Azure Functions

would be expected to have solid support for C#. Also, it is

worth noting that .NET Azure Functions are implemented as

Serverless Language Warm Start Cold Start
Platform Runtime Average (ms) Average (ms)

AWS .NET C# 6.32 2500.09
AWS NodeJS 11.46 23.67
Azure .NET C# 0.93 16.84
Azure NodeJS 4.91 276.42

Table I: Summary of Average Performance Between Azure and

AWS

c-sharp “script” (.CSX extension) files running on windows

containers. This is different to AWS which uses the open-source

.NET CLR (Common Language Runtime) on linux containers.

VII. COST ANALYSIS

The cost of serverless functions are directly related to their

execution times. This is due to the prevalent billing model

across the major serverless platforms of cost per milliseconds

of execution. Both Azure and AWS bill in 100ms blocks.

There are three main factors in a function’s execution cost

- execution time, fixed invocation cost per individual function

execution and memory allocated to the function. Both platforms

provide similar “free-tier” allocations of 1 million executions

per month and 400k GB/s of execution time45. For the purposes

of a consistent comparison across platforms, these free-tier

allocations are excluded from cost calculations.

Figure 8: Comparison of Warm-Start C# Function Performance

(ms) Between Azure and AWS

A. AWS Lambda

Table II contains the cost calculations based on the per-

formance data from all cold-start tests. Note that warm-start

tests were omitted as all runtimes’ average execution time were

below 20ms, well below the 100ms billing increment meaning

all costs were the same at $0.41. Costs shown were calculated

using latest AWS Lambda pricing of $0.20 per million function

invocations and $0.00001667 per GB/s of execution time,

applied to average execution times recorded.

The long initialisation times for Java and, in particular, .NET

Core in cold-start have a significant effect on cost. Calculated

4https://aws.amazon.com/lambda/pricing
5https://azure.microsoft.com/en-us/pricing/details/functions/

158

Language Average Average Average
Runtime Execution Billed Cost Per

Time Duration Million
(ms) (ms) ($)

C# .NET 2500.09 2600.00 5.61775
Golang 8.97 100.00 0.408375
Java 8 391.91 400.00 1.0335

NodeJS 23.67 100.00 0.408375
Python 2.94 100.00 0.408375

Table II: AWS Lambda Cold-Start Performance Mapped to

Cost

Language Cost Per Cost Per Cost Per Cost Per
Runtime Day @ Day @ Year @ Year @

100-TPS 30k-TPS 100-TPS 30k-TPS
C# .NET $48.54 $14,561 $17,716 $5,314,840
Golang $3.53 $1,059 $1,288 $386,355
Java 8 $8.93 $2,679 $3,259 $977,774

NodeJS $3.53 $1,059 $1,288 $386,355
Python $3.53 $1,059 $1,288 $386,355

Table III: Cost of Cold-Start execution at Varying Throughput

(TPS)

per million requests, the cost for .NET is $5.62 compared with

just $0.41 for the top three runtimes (Golang, NodeJS and

Python). This is a 1,371% higher cost. For Java, the cost of

$1.03 is 251% higher. To put this into context, Table III shows

these costs applied to increasing levels of throughput, measured

in TPS (Transactions Per Second). While 30k TPS may seem

very high for a single function, a realistic system totalling 30k

TPS is discussed via the CostHat model in section VII-C.

B. Azure Functions

Unlike AWS Lambda, Azure Functions are not pre-assigned

a memory allocation. Instead, they are dynamically assigned

memory based on their execution. From a billing perspective,

this is measured in 128MB increments based on the maximum
recorded memory consumed by the function, with a minimum

of 128MB. Note that all functions tested in Azure were running

within a maximum of 128MB memory.

Costs were calculated using latest Azure pricing of $0.20

per million function invocations and $0.000016 per GB/s of

execution time. The data presented in Table IV shows a

comparison between the costs of running .NET C# and NodeJS

functions based on the performance and cost figures recorded

during testing the cold-start scenario. The NodeJS runtime has

the potential to cost double that of a C# function in Azure. At

the extreme high load example of 30k TPS, this could lead to

extra annual running costs for a single function of over $378k.

C. Cost Hat Model

The “CostHat” model is a microservice cost-modelling al-

gorithm developed by Leitner et al. (2016). This is a useful

model to investigate the costs of a complex set of serverless

functions which combined could represent a high throughput

system. To demonstrate cost implications of language runtime

on a high-volume system (30k TPS), a CostHat model6 of a

6https://github.com/Learnspree/costhat/tree/spf tests

slightly modified version of the SPF was created (see Figure

9).

In this sample architecture, each single call to the Test

Controller Function results in a total of 30 function invocations.

The numbers in the diagram indicate the number of invocations

of each downstream function based on a single call to the top-

level “Test Controller” function. This implies that a scalability

test running at a rate of 1,000 TPS would result in overall

system throughput of 30k total function executions.

The current implementation of the metrics function using

.NET Core2 now has hugely significant cost implications.

Based on actual performance and cost metrics recorded for this

research, the CostHat model reveals an overall running cost at

1,000 TPS of $31,463 per day. Applying the performance of the

NodeJS Cost Metrics function to the model, this could reduce

to $8,716 per day (a reduction of 72%).

Figure 9: CostHat Model of Modified Serverless Performance

Framework

VIII. CONCLUSION

There were significant differentials between language run-

times on the two serverless platforms tested - AWS Lambda

and Azure Functions. For optimum performance and cost-

management of serverless applications, Python is the clear

choice on AWS Lambda. Similarly, and perhaps unsurprisingly,

C# .NET is the clear best choice for Azure Functions, and

in fact across both serverless platforms that were measured.

The performance of NodeJS in Azure Functions in cold-start

scenarios demands caution on its usage on that platform, as

with Java and especially C# .NET on AWS Lambda.

Cold-start scenarios expose the cost implications of choosing

a poorly performing runtime. Measuring costs per million

requests, AWS .NET Core (C#) was shown to cost $5.62

compared with $1.03 for Java and just $0.41 for the other

supported AWS Lambda runtimes (Python, NodeJS and Go).

The relatively poor performance of NodeJS runtime in Azure

Functions in cold-start scenarios also has a significant cost im-

plication. Functions implemented in NodeJS cost, on average,

200% of the C# function cost in the cold-start scenario ($0.80

per million requests compared to $0.40).

One million requests per day equates to a moderate through-

put of just over 10-TPS. However, considering an overall

159

Language Cost Per Cost Per Cost Per Cost Per
Runtime Day @ Day @ Year @ Year @

100-TPS 30k-TPS 100-TPS 30k-TPS
.NET C# $3.45 $1,036.80 $1,261 $378,432
NodeJS $6.91 $2,073.60 $2,523 $756,864

Table IV: Cost of Cold-Start execution at Varying Throughput

(TPS) for Azure Functions

enterprise-level eco-system of many serverless functions an

overall combined throughput of 30k TPS is realistic and a high

rate of cold-start scenarios is possible. An example of such

a system was presented via the CostHat model (Leitner et al.,

2016). This showed the increased cost caused by a downstream

function implemented in .NET was an extra $22,747 per day

(361% of the cost if this function was implemented in NodeJS).

Overall, the composition of functions in serverless appli-

cations is a crucial design decision, which if done in an

appropriately fine-grained manner, can lead to a more flexible

but also more cost-effective solution in the long term, as

functions can individually be implemented in the appropriate

runtime to suit their purpose and expected throughput.

ACKNOWLEDGMENT

The authors would like to thank Technology Ireland ICT

Skillnet for their support.

REFERENCES

Adzic, G. and Chatley, R. (2017), Serverless computing: Eco-

nomic and architectural impact, in ‘Proceedings of the 2017

11th Joint Meeting on Foundations of Software Engineering’,

ESEC/FSE 2017, ACM, New York, NY, USA, pp. 884–889.

Baldini, I., Castro, P. C., Chang, K. S., Cheng, P., Fink, S. J.,

Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R. M.,

Slominski, A. and Suter, P. (2017), ‘Serverless computing:

Current trends and open problems’, CoRR .

URL: http://arxiv.org/abs/1706.03178
Eivy, A. (2017), ‘Be wary of the economics of ”serverless”

cloud computing’, IEEE Cloud Computing (2), 6–12.

Fowler, M. and Lewis, J. (2014), ‘Microservices’, http:

//www.martinfowler.com/articles/microservices.html. Ac-

cessed: 2017-12-04.

Fox, G. C., Ishakian, V., Muthusamy, V. and Slominski, A.

(2017), ‘Status of serverless computing and function-as-

a-service (faas) in industry and research’, arXiv preprint
arXiv:1708.08028 .

Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V.,

Arpaci-Dusseau, A. C. and Arpaci-Dusseau, R. H. (2016),

‘Serverless computation with openlambda’, Elastic p. 80.

Ishakian, V., Muthusamy, V. and Slominski, A. (2017), ‘Serving

deep learning models in a serverless platform’, arXiv preprint
arXiv:1710.08460 .

Leitner, P., Cito, J. and Stöckli, E. (2016), Modelling and

managing deployment costs of microservice-based cloud

applications, in ‘Proceedings of the 9th International Confer-

ence on Utility and Cloud Computing’, ACM, pp. 165–174.

Lynn, T., Rosati, P., Lejeune, A. and Emeakaroha, V. (2017),

‘A preliminary review of enterprise serverless cloud com-

puting (function-as-a-service) platforms.’, 2017 IEEE In-
ternational Conference on Cloud Computing Technology
and Science (CloudCom), Cloud Computing Technology and
Science (CloudCom), 2017 IEEE International Conference
on, CLOUDCOM p. 162.

McGrath, G. (2017), Serverless Computing: Applications, Im-

plementation, and Performance, PhD thesis, University Of

Notre Dame.

Varghese, B. and Buyya, R. (2018), ‘Next generation cloud

computing: New trends and research directions.’, Future
Generation Computer Systems (Part 3), 849 – 861.

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca,

L., Verano, M., Casallas, R., Gil, S., Valencia, C., Zambrano,

A. and Lang, M. (2016), Infrastructure cost comparison of

running web applications in the cloud using aws lambda

and monolithic and microservice architectures, in ‘2016 16th

IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid)’, pp. 179–182.

160

	An investigation of the impact of language runtime on the performance and cost of serverless functions
	An Investigation of the Impact of Language Runtime on the Performance and Cost of Serverless Functions

