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A B S T R A C T

Decreased funding and shifting governmental priorities have resulted in a contraction of hydrometric mea-
surement in many regions over the past two decades. Moreover, concerns exist with respect to appropriate data
usage and (transboundary) exchange, in addition to the compatibility and extent of existing hydrometric da-
tasets. These issues are undoubtedly magnified due to enhanced data demands and increased financial pressures
on network managers, thus requiring new approaches to optimising the societal benefits and overall efficacy of
hydrometric information for future socio-hydrological resilience.

The current study employed a quantitative cross-sectional expert elicitation of 203 respondents to collate,
analyse and assess hydrometric network users’ opinions, knowledge and experience. Current usage patterns,
perceived network strengths, requirements, and limitations have been identified and discussed within the
context of hydrometric resilience in a changing social, economic and natural environment. Findings indicate that
small (< 30 km2) catchment data are most frequently employed in the Republic of Ireland, particularly with
respect to extreme event prediction and flood management. Similarly, small catchments and areas characterised
by previous/recent flooding were prioritised for resilience management via network amendment. Over half of
those surveyed (50.5%) reported the current network as inadequate for their professional requirements.
Conversely, respondents indicated network efficacy has improved (53.2%) or remained stable (26.6%) over the
course of their professional career, however, improvements (as defined by individual respondents i.e. network
density, data quality, data availability) have not occurred at a sufficient rate. User-defined efficacy (adequacy,
resilience) was found to be a somewhat vague, multivariate concept, with no individual predictor identified,
however, general data quality, network density, and urban catchment data were the most significant issues
among respondents. A significant majority (85.4%) of respondents indicate that future resilience would be best
achieved via network density amendment, with over 60% favouring geographically and/or categorically focused
network increases, as opposed to more general national increases.

1. Introduction

Effective hydrometric monitoring is vital for provision of data for
the assessment, development and management of water resources and
the water-related environment (e.g. low flows, flood prevention, bridge
design, nutrient management, groundwater resource assessment, etc.)
and, as such, their availability and quality underscores research and
operational hydrology across the globe (Mishra and Coulibaly, 2009;
Cox et al., 2014). Increasing global water demands in concurrence with
shifting climate and landuse patterns and a growing worldwide popu-
lation will necessitate higher levels of sustainable water resource

(catchment) management, and an increased ability to accurately predict
catchment hydrodynamics (Cheng et al., 2014). Conservative climate
modelling (CMIP5) predicts that by 2050, up to 3.4 billion people will
be exposed to some level of water resource stress (i.e. scarcity), while
an increased exposure to river flooding will affect between 100 million
and 580 million people. Accordingly, efficient, accurate and proactive
hydrometric monitoring and network design are now required to ensure
sustainable water resource management in the face of increasingly
frequent hydrological events (Zheng et al., 2018). Additionally, in many
regions, a functional hydrometric network is prerequisite to provincial/
federal, national, and/or international regulatory compliance. For
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example, to comply with SI 272 of 2009 (European Communities En-
vironmental Objectives (Surface Waters) Regulations 2009), regulatory
authorities require mass balancing of existing discharges to receiving
waters, thus necessitating data pertaining to low flow regimes in the
receiving water, and particularly 95th percentiles and low flows (DWF).

Recognition of the fundamental importance of hydrometric mon-
itoring, in addition to hydrometric and technological (i.e. digital re-
cording, information technology) developments resulted in a wide-
spread expansion of national hydrometric networks during the second
half of the 20th century (Rodda, 1997; Mishra and Coulibaly, 2009;
Hannah et al., 2011). However, recent studies report that decreased
funding and changing governmental priorities have resulted in hydro-
metric network contractions in many regions over the past two decades
(Grabs, 2009; Mishra and Coulibaly, 2009; Hannah et al., 2011).
Moreover, concerns exist with respect to appropriate commercial and
academic data usage and (transboundary) exchange, in addition to the
compatibility and extent of existing hydrometric datasets (Grabs, 2009;
Viglione et al., 2010). These issues are undoubtedly magnified due to

enhanced data demands and increased financial pressures on network
managers, thus requiring new approaches to optimising the societal
benefits and overall efficacy of hydrometric information. Multiple stu-
dies have sought to optimise hydrometric networks using a variety of
approaches including soft computing (e.g. fuzzy logic, machine
learning, evolutionary computation), artificial intelligence, geostatis-
tical analyses and indices development. For example, Werstuck and
Coulibaly (2017) have recently employed a dual entropy multi-objec-
tive optimization (DEMO) method in the Ottawa River Basin to identify
optimal locations for new hydrometric stations with some success.

To date, few studies have sought to comprehensively gather and
analyse the perceptions and requirements of network data users and
managers, and thus permit integration of user-based evidence into hy-
drometric network planning, management, optimisation, and policy.
Based on a scoping study of the international literature, no similar as-
sessment of hydrometric network expert opinion has previously been
undertaken. Accordingly, the current study employed a quantitative
questionnaire-based expert elicitation approach to realise three distinct

Fig. 1. Current Irish (RoI) operational hydrometric network of the Republic with large (> 30 km2) and small (< 30 km2) monitored catchments shown.
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research objectives, as follows:

Collate, analyse and assess hydrometric network manager and hy-
drometric data user opinions, knowledge, and experiences to iden-
tify current usage patterns, perceived network strengths, require-
ments, and limitations,
Quantify perceived (self-reported) network efficacy, and,
Provide a transferable baseline for future studies investigating hy-
drometric networks, programmes, and data.

2. The Irish hydrometric network

Hydrometric monitoring in Ireland dates to the early 20th century,
with formalised network organisation initiated in the early 1940s. The
current network is considered to have good spatial coverage, having
been driven by arterial drainage works, electricity generation, infra-
structural development and warning and control of extreme events
(MacCárthaigh, 2002). Both the Environmental Protection Agency
(EPA) and Office of Public Works (OPW) are responsible for hydro-
metric data measurement. The Environmental Protection Agency –
Local Authority (EPA-LA) hydrometric network was originally estab-
lished in response to the 1976 drought event experienced in Ireland and
the UK, which highlighted the need for closer monitoring of (low) river
flows for sustainable water provision (Murphy et al., 2013). While the
primary catalyst associated with the EPA–LA network was low flow
monitoring, the major driver originally underpinning the OPW network
was (and to an extent, continues to be) flood-risk management (i.e.
flood monitoring, arterial drainage and development of early warning
systems), and as such, OPW stations have been more frequently in-
stalled in larger catchments.

According to a recent review of the Irish hydrometric network (Nasr
and Hynds, 2017), a total of 2385 currently or previously monitored
catchments comprise the (active and inactive) network, with 957
catchments being actively monitored as of early 2017 (Fig. 1). Auto-
mated (continuous) recorder stations are employed in 99.3% (n=950)
of actively monitored catchments, with the remainder comprised of
staff gauging (n=7). Surface water discharges (Q) are measured at
58.5% (n=560) of monitoring stations, with water levels (m) recorded
at the remaining 41.5% (n= 397). River catchments predominate the
active network (n=711, 74.3%), followed by lake catchments (n=82,
8.5%), drains/canals (n= 73, 7.6%), and (semi-)tidal catchments
(n=61, 6.4%). The mean monitored catchment area is 336.4 km2,
ranging from 0.1 km2 to 8808.7 km2.

3. Methods

3.1. Expert selection

The authors have designed their study protocol based upon common
elements from previous elicitation studies relating to environmental
and infrastructural assessment (Knol et al., 2010; Fiorese et al., 2013;
Truong and Heuvelink, 2013). Within the context of expert elicitation,
it is important to clearly define the roles of “expert” and “manager”,
with experts classified based upon their expertise, while managers are
inter alia involved in decision-making (Drew and Perera, 2012). Ac-
cordingly, throughout the current study, “expert” refers to survey re-
spondents in possession of specialized, working knowledge of the Irish
hydrometric network (i.e. research, practise, or both). Conversely,
“managers” are characterised as respondents with the authority to in-
fluence processes and/or actions pertaining to the national hydrometric
network. A list of expert and managerial groups employed for partici-
pant recruitment is presented in Table 1.

3.2. Survey design

Due to the typically low costs, high level of anonymity, ease of

standardisation and completion, and relatively high response rates as-
sociated with online surveying (Dillman, 2000; Naughton and Hynds,
2013), this method was employed in the current study. The survey was
developed offline using the SurveyMonkey (www.surveymonkey.net)
survey design application. Active surveying took place over a three-
month period from mid-December 2015 – mid-February 2016. Initial
contact (including the active survey link) was made with potential re-
spondents in mid-December 2015, followed by monthly reminders in
early January and February, with the survey taken offline on February
12th, 2016. The on-line surveying tool was configured to exclude IP
addresses from data collation or storage, thus complying with current
data protection standards (www.dataprotection.ie). No financial re-
ward was offered to respondents. Due to the nature of the target au-
dience and the non-personal nature of the questionnaire, formal written
consent was not considered necessary, with a positive response deemed
adequate evidence of consent.

A cross-sectional questionnaire entitled “The Hydrometric Network in
Ireland: Uses, Efficacy, Strengths and Improvements” was developed for
expert elicitation. A 10–12-min mean completion time and 30 question
maximum were targeted during development to increase response rates,
minimise response bias and thus maximise data quality (Hardigan et al.,
2016). The final survey comprised 28 questions, including dichotomous
(n= 1), open-format (n= 3), sole-response multiple choice (n=12),
relevance-based multiple choice (n= 6) and ranking/ordinal (n= 5)
style questions. The questionnaire was delineated into four sections: (i)
Respondent Profile, (ii) Hydrometric Network and Data Usage, (iii)
Hydrometric Network Efficacy, and (iv) Hydrometric Network Re-
quirements and Improvements. The final questionnaire draft was pi-
loted (pre-tested) with 21 respondents in order that all language,
questions, and overall framing/structure were adjudged suitable for use
(i.e. optimisation of internal validity). The final questionnaire was re-
vised through three iterations of feedback from two pilot runs until
consensus was achieved. To avoid analytical bias and conform to best
practise, responses and respondents associated with pilot studies were
excluded from analyses.

Internationally, hydrometric monitoring is increasingly focusing on
larger catchments and river basins, resulting in decreased data avail-
ability and modelling capabilities with respect to smaller (often
flashier) catchments (Nasr and Hynds, 2017). Thus, catchment size was
delineated and included in a number of survey questions. Previous
hydrological studies of small catchments carried out in Ireland and the
UK have typically defined and examined catchments of ≤30 km2 (e.g.
Gebre and Nicholson, 2012). Accordingly, the same ≤30 km2 classifi-
cation cut-off was employed in the current study.

Table 1
Expert and managerial groups employed for participant recruitment.

Experts (Data Users) Managers (Decision Makers)

National Roads Authority Employees Office of Public Works Employees
Met Eireann Employees Environmental Protection Agency

Employees
Inland Fisheries Employees Electricity Supply Board Employees
Waterways Ireland Employees Marine Institute Employees
Geological Survey of Ireland

Employees
Local Authorities (County Council)
Employees

IAH (Irish Chapter) Members
Teagasc Employees
National Parks and Wildlife Employees
COFORD Employees
ESAI Members
ACIE Members

Hydrological Researchers

Notes: IAH - International Association of Hydrogeologists); ESAI -
Environmental Association of Ireland; COFORD - Competitive Forestry
Research for Development, Department of Agriculture, Food and the Marine,
ACIE - Association of Consulting Engineers of Ireland; Teagasc – Agriculture
and Food Development Authority.
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3.3. Statistical analyses

3.3.1. Bivariate analyses
All collated data were exported to MS Excel 2016, with data for-

matting, filtering, cleaning, and development of derived (dummy)
variables carried out using conditional formatting and developed
macros. Respondents were categorised based upon (a.) level of ex-
perience with hydrometric network data (Classification value: 5 years
i.e.< 5 years= less experienced; ≥5 years= experienced), and (b.)
expert/manager classification (See Table 1). All bivariate analyses were
undertaken within the R statistical environment, using the FactoMineR,
compareGroups and MVN sub-packages. Odds ratios (OR) and associated
95% CIs were used to examine levels of association between dichot-
omous (2×2) variable pairs. Pearson chi-square (χ2) tests of in-
dependence were used to determine the presence of associations be-
tween categorical (dichotomous (2) or (> 2) nominal) variable pairs.
Independent samples t-tests (t) (difference of means with equal variance
assumed) were used to test for the presence of associations between
dichotomous and continuous variables, with one-way analysis of var-
iance (ANOVA) used to test for relationships between continuous
variables and categorical variables with> 2 levels of classification (F
statistic). Spearman’s non-parametric measure of rank correlation (Rsp)
was used to examine relationships between continuous variables with
non-linear distributions, and the Mann Whitney U test was employed
for assessing association between ordinal (ranked) and categorical
variables. A statistical significance of p < 0.05 has been used by con-
vention.

3.3.2. Multivariate analyses
Multivariate modelling of respondent-reported “network efficacy”

was undertaken using hierarchical logistic regression (HLR) with step-
wise parameter entry (Forward Conditional). Variables were entered
based on their bivariate correlation with the binary response variable
(i.e. network adequate Y/N) with variable entry taking place at
p=0.05 and removal at p= 0.1. A maximum of 20 estimation itera-
tions were run for each model step, with estimation terminated where
parameter estimates changed by less than 0.001 between two estima-
tion iterations. Variable collinearity was evaluated within HLR models
using the variance inflation factor (VIF). Variables with a low tolerance
statistic (< 0.7) contribute little additional information to the model,
and were subsequently removed.

4. Results

4.1. Respondent profile

In all, 203 respondents participated, of which 67.2% were male.
Most respondents were categorised within the 30–40 year (33.7%) and
40–50 year (28.2%) age brackets, with responses acquired from 28 of
32 administrative Irish counties; counties Dublin (28.4%), Cork
(13.2%) and Galway (8.8%) were the most frequently represented.
Overall, 4.9% (n=10) of respondents resided outside of Ireland, but
had previously worked with Irish hydrometric data. Self-reported re-
spondent professions, areas of professional expertise, professional ex-
perience, and expert/manager classification are presented in Fig. 2.

“Experienced” (> 5 years) respondents had an average of 16.7 years
previous experience working in hydrological science, while less ex-
perienced respondents (< 5 years) reported a mean of 2.4 years, with
an overall sample mean of 11.1 years (Std. Dev 9.18, Min 0.25, Max
45). One third (34.1%) of less experienced (< 5 years) respondents
were employed in hydrological research, compared with 14.1% of ex-
perienced respondents. A significantly higher proportion of experienced
respondents (27.3%) were employed in governmental agencies than
was the case among less experienced respondents (9.1%). Similarly, a
higher proportion of experienced respondents were classified as
“managers” (46.6%) than was encountered among less experienced

respondents (13.8%) (χ2(1)= 16.865, p < 0.001).

4.2. Hydrometric data usage

Altogether, 52.3% of respondents reported current (within the last
month) hydrometric data use, with the remainder (47.7%) reporting
usage within the last two years. Overall, 43.3% of respondents reported
sporadic (annual or less than annual) data usage, with 32.3%, 17.3%,
and 7.1% of those surveyed typically utilising data on a monthly,
weekly, and daily basis, respectively. Some level of association existed
between frequency of use and self-reported hydrological experience
(> /<5 years), however, albeit not at a 95% confidence level
(χ2(4)= 8.811, p=0.066); frequent usage (daily/weekly) was evenly
distributed among both categories, however more experienced users
were more likely to report infrequent usage. In all, 71.2% of re-
spondents reported that they download the most recently updated data
on a site- or catchment-specific basis as required, while 19.8% employ
previously acquired (cached) data; less frequent users were more likely
to employ cached data (χ2(16)= 30.465, p=0.016).

Of those respondents whose professional work typically focused on
one hydrological catchment size, 51%, 29% and 17.6% indicated that
their work concentrated on small catchments (< 30 km2), large catch-
ments (> 30 km2), and larger hydrological basins (> 1000 km2), re-
spectively. Experienced users (> 5 years) were over twice as likely to
employ small catchment data (OR 2.066, 95% CI 1.085–3.921), while
network managers were significantly more likely to use data from
larger hydrological basins (χ2(1)= 3.801, p=0.043) (OR 2.318, 95%
CI 1.085–3.921). Respondents whose work focused on larger catch-
ments (> 30 km2) were associated with significantly higher levels of
usage frequency (χ2(4)= 11.854, p=0.018). Sub-daily (15-min in-
tervals) (44%) and daily (43.1%) data were the most frequently em-
ployed data resolutions (Fig. 3a).

River (54.4%), urban (19.6%), and tidal (18.1%) catchment data
were the most frequently accessed and employed (Fig. 3b); where re-
spondents only indicated the use of data from one catchment type, river
catchments represented a significant majority (83.8%), thus reflecting
current network composition (Section 2). Respondents whose work
focuses on river catchments were categorically more experienced
(χ2(1)= 11.619, p=0.001), used data more frequently
(χ2(4)= 32.377, p < 0.001), were more likely to employ recently
updated data (χ2(4)= 13.492, p=0.009), and more likely to utilise
high resolution (sub-daily) data (χ2(4)= 19.136, p=0.001).

Water level (m) (37.3%), discharge (m3/sec) (34.3%), and summary
hydrological statistics (32.4%) were the most frequently employed
hydrometric variables among surveyed users (Fig. 3c). Where just one
variable was utilised, water level data (41.9%) remained the most fre-
quently utilised, followed by summary statistics (30.2%), discharge
(18.6%), and instantaneous data (7%). A significantly greater propor-
tion of “experienced” network users (> 5 years) reported use of in-
stantaneous hydrometric data (χ2(1)= 5.738, p=0.017); 81.1% of
instantaneous data users had> 5 years of hydrological experience. In-
stantaneous data were strongly associated with small catchment studies
(χ2(1)= 5.196, p= 0.023); 94.6% of respondents reporting current or
previous work in small catchments used instantaneous data. Survey
participants that reported using up to date hydrometric data were more
likely to employ discharge (χ2(4)= 11.765, p= 0.019) data, as were
those who characterised themselves as “current users” (χ2(2)= 10.960,
p=0.004). Usage frequency was also associated with the use of dis-
charge data (χ2(4)= 14.531, p= 0.006), for example, 72.8% of re-
spondents reporting at least monthly hydrometric data usage (i.e. daily,
weekly, or monthly) employed discharge data, with an equivalent
figure of 41.2% among more sporadic users (<monthly). Conversely,
respondents that typically employed previously acquired (i.e. less cur-
rent) data were more likely to employ instantaneous measurements
(χ2(4)= 10.523, p=0.032).
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Fig. 2. Self-reported professional categories (a), professional classification and experience (b), and areas of professional expertise (c) among expert elicitation
participants.

Fig. 3. Self-reported data usage among respondents in terms of (a) data source (b) catchment/waterbody type, and (c) data type.
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4.3. Network efficacy

Just over half (50.5%) of surveyed network users indicated that the
network is currently inadequate, with a further 8.5% reporting that
efficacy is highly local or station-dependant; 32.4% believe that the
network is currently adequate. Neither hydrological experience
(p=0.188) nor expert/manager classification (p= 0.368) were asso-
ciated with perceived levels of efficacy. Previous users were over twice
as likely (OR 2.243; 95% CI 1.002, 5.390) than current users to classify
the current network as being adequate for their professional require-
ments (χ2(6)= 16.261, p= 0.012). Network efficacy was not statisti-
cally associated with a particular data type, source, or usage pattern
(p > 0.05).

A significant majority (81.9%) of respondents stated that missing
hydrometric data (i.e. incomplete time series) had represented a lim-
itation during their professional work, with these respondents sig-
nificantly more likely to attribute a low level of efficacy to the network
and associated data (χ2(2)= 8.404, p= 0.015). While 29.2% of re-
spondents associated with previous data issues noted that the current
network was adequate, an equivalent figure of 77.8% was found among
those not previously experiencing data limitations. Missing data were
reported as having previously occurred among 82.1% (small catch-
ments) to 86% (large hydrological basins) of data users, with highest
levels of missing data attributed to urban catchments (85.7%). The
issue of missing data was not statistically associated with any specific
data type, source, or usage pattern (p > 0.05).

Most respondents reported that overall hydrometric network effi-
cacy had improved (53.2%) or remained unchanged (26.6%) over the
course of their professional career, while 13.8% reported a decline
(Fig. 4). A significant difference was found between experts perceived
network efficacy and their level of hydrological experience
(χ2(3)= 11.956, p=0.008), with experienced users more likely to
report a notable (upward or downward) shift in temporal network ef-
ficacy. As shown (Table 2), a low level of efficacy was attributed to both
current network density (33.8%) and network representivity (33.3%),
with neither indicator significantly associated with catchment size (i.e.
poor ranking independent of catchment scale). Level of respondent
experience was associated with ranking of network data availability
(χ2(2)= 7.396, p=0.025), network density (χ2(2)= 12.626,
p=0.002), and network representivity (χ2(2)= 6.889, p=0.032)
(Table 2), with lower levels of satisfaction exhibited by more experi-
enced users in all cases.

The final HLR model had a mean prediction accuracy of

approximately 85%, with a particularly high level of predictive accu-
racy associated with perceived network inadequacy (92.9%) (Table 3).
As shown (Table 4), two significant hierarchies (model blocks) were
found, namely network user traits (Model Significance=0.009, 18.3%
of variance) and network attribute ratings (Model Significance<
0.001, 38.9% of variance). Respondents currently using network data
and urban catchment data were significantly more likely to report
network inadequacy. Data quality and network density were the in-
dividual attributes most strongly associated with overall network

Fig. 4. Respondent reported changes in hydrometric network efficacy stratified by respondent experience and expert/shareholder classification.

Table 2
Ordinalised “level of efficacy” attributed to the current hydrometric network
indices by expert elicitation respondents (n=203).

Network Index High (%) Moderate (%) Low (%)

Data Quality 33.3 59.1 7.5
Data Availability 20.4 59.1 20.4
Data Formatting 23.6 61.8 14.6
Network Density 7.5 58.8 33.8
Network Representivity 9.9 56.8 33.3

Table 3
HLR “Network Efficacy” Model Classification (n= 199).

Observed Predicted Percent Correct

Network Adequate 72 51 70.8
Network Inadequate 127 118 92.9
Total 84.8

Table 4
Final HLR Model for Respondent Reported Network Efficacy.

β β Sig. Model Sig. H/L Sig R2

Hierarchy 1: User Traits
Data Usage (Currency) −2.022 0.009
Urban Catchments 1.559 0.035 0.009 0.185 0.183

Hierarchy 2: Attribute Rating
Data Quality −1.604 0.023
Network Density −2.185 0.004 < 0.001 0.580 0.572

Here β, regression coefficient; βSig., regression coefficient significance; Model
Sig., significance of hierarchy within overall model (cumulative); H/L Sig.,
significance of Hosmer-Lemeshow goodness of fit diagnostic (p > 0.05); R2,
Nagelkerke coefficient of determination (cumulative).
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efficacy.

4.4. Network optimisation

Overall, 85.4% of experts agreed that network density should be
amended as a priority, of which 60.2% favoured focused network
density increases (i.e. specific catchment types, catchment sizes, geo-
graphical areas, etc.), and the remaining 39.8% reported a preference
for a “generalised” (i.e. national) network density increase. As shown
(Fig. 5), catchment size (27.9%), flood prone areas (23.5%), and
catchment (waterbody) type (22.1%) were the most frequently selected
catchment attributes on which to base network density increases.

When asked to identify and rank which hydrometric and climactic
variables require optimisation to maximise overall network utility, river
discharge (i.e. continuous flow recording) (34.1%) and water level (i.e.
river stage) (33.3%) were most frequently selected (Fig. 6).

Respondents characterised by lower levels of professional experience
were more likely to prioritise an increase in groundwater level mea-
surements (χ2(5)= 12.021, p= 0.035). A higher proportion of net-
work data users (22.2%) prioritised improved rating curves than net-
work managers (12.0%), however this was not significant at a 95%
level (p= 0.060).

To further explore the perception of “network efficacy”, respondents
were asked to rank (high, moderate or low) several “resilience in-
dicators” for improving overall levels of utility associated with the
current hydrometric network and data. As shown (Table 5), highest
levels of importance were attributed to data centralisation (65.5%),
increasing representivity (i.e. appropriate proportions of catchment
types and sizes) via focused network amendments (61.2%), and in-
creasing the number of gauged small catchments (60.2%). The only
listed resilience indicator significantly associated with perceived net-
work adequacy was small catchment network density (p=0.045).
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Fig. 5. Prioritised categorical areas for future hydrometric network density increases in the Republic of Ireland.
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Fig. 6. Hydrometric/climatic variables requiring amendment for increasing hydrometric network resilience/efficacy.
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Finally, respondents were asked to prioritise general organisational
amendments for increased future network efficacy and resilience in
terms of changing climate, landuse, and residential patterns (Fig. 7). As
shown, highest levels of priority were ascribed to management co-
operation (77.9%), funding (64.6%) and the use of telemetry (60.2%).
No statistically significant associations were found between respondent
prioritisation (Table 5) and respondent-matched network efficacy.
However, a significant difference was found between respondent clas-
sification (expert/manager) and prioritisation of data collection out-
sourcing (Mann Whitney U=247.5, p= 0.001), with experts

approximately 10 times more likely than network managers to allocate
high levels of importance to outsourcing.

5. Discussion

The current study sought to elicit the experiences, opinions and
requirements of Irish hydrometric data users and managers to develop
evidence-based recommendations, realisable within the context of
current resources, and permit an increasingly proactive and qualitative
approach to future proofing hydrometric networks.

Table 5
Prioritised amendments and respondent-matched association with perceived network efficacy.

Efficacy Indicator Priority Association with Network Efficacy*

High (%) Moderate (%) Low (%)

Record Periods 33.7 47.7 17.4 0.926
Data Accuracy 38.4 39.5 19.8 0.292
Network Representivity 61.2 31.8 4.7 0.455
Network Density 58.9 32.2 6.7 0.588
Small Catchment Monitoring 60.2 26.1 12.5 0.045
Large Catchment Monitoring 43.5 40.1 14.1 0.775
Data Centralisation (Availability) 65.5 24.1 5.7 0.161
Data Formatting 34.1 34.1 28.2 0.423

* p-value associated with Mann Whitney U test.
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Fig. 7. Prioritised general organisational amendments for increased future network efficacy and resilience.
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5.1. Redefining users needs

Accommodation of user needs should be at the forefront of hydro-
metric network design; providing an efficient and accurate data re-
pository which allows for rapid and precise interpretation across mul-
tiple sectors. The diversity of users has increased in recent years, with
consultants (34%), academic researchers (25.3%) and government
agency employees (22%) comprising the majority of the population
(n=203) surveyed in this study. Within these sectors, myriad areas of
expertise, and thus data requirements were identified, with water
quality (29.9%), flood risk management (25%), catchment studies
(22.1%), and education or research (15.2%) comprising the primary
focus areas, demonstrating a shift towards legislative compliance and
water quality research, thus mirroring global trends (Cassidy and
Jordan, 2011). In line with this, a shift in user profile patterns was also
identified with a significant proportion of “less experienced” (< 5
years) respondents employed through hydrologic consultancies and
academic research identified as network users. These ‘new’ users fre-
quently reported requiring up-to-date data, while in contrast, more
experienced users utilise hydrometric data less frequently, tend towards
using cached data and are more likely to require flow duration curves,
perhaps due to natural career progression into project management and
supervision. The disparity of user needs across user groups is a common
trend throughout this study, suggesting that there is an increasing need
for a dynamic hydrometric network which can provide multi-modal
data collation and extraction in line with evolving user needs. The
authors consider that without a move away from a homogenised data
needs model, the potential for hydrometric data applications may
stagnate, further reducing network efficacy into the future.

For example, focusing on specific data needs and interaction, small
(< 30 km2) catchment data are most frequently employed in the
Republic of Ireland, with over half of respondents working exclusively
with these data. However, in spite of the high demand, the small
catchment network in RoI has contracted significantly over the past two
decades, with the current network focusing principally on large
catchment monitoring (Nasr and Hynds, 2017) (Fig. 1). This trend of
reduced or constricted hydrometric monitoring is not indigenous to
Ireland and has been reported globally; indeed, hydrometric monitoring
has declined worldwide over the past three decades, representing a
concern when viewed within the context of widespread climate and
land use changes, with experts consequently less equipped to monitor
water supplies and forecast hydrological extremes (Mishra and
Coulibaly, 2009; Hannah et al., 2011).

5.2. Perceived network efficacy

Overall, a general level of dissatisfaction among hydrometric data
users in the RoI was noted with 50.5% of surveyed network users in-
dicated that the network is currently inadequate and a further 8.5%
reporting that efficacy is highly localised or station-dependent.
Moreover, results from this study demonstrate that a significant asso-
ciation exists between hydrological experience and perceived network
efficacy (p=0.008), with network user traits also associated with re-
ported network limitations and inadequacies (Table 4). Previous (as
opposed to current) data users were over twice as likely (OR 2.243) to
classify the network as being adequate for their professional require-
ments (p=0.012), further reiterating the importance of redefining user
needs on an ongoing basis. As current and less experienced profes-
sionals are largely “non-managerial” users, i.e. researchers, academics
and consultants, they have significantly different data/usability re-
quirements, requiring consideration and periodic evaluation. Of note,
one such difference is the application of increasingly complex catch-
ment modelling to hydrological issues, for which data requirements
vary significantly depending on modelling objectives and catchment
type. For example, modelling of large-scale rural catchments typically
requires extensive spatial monitoring to obtain representative data

describing the physical settings within the catchment. Conversely,
while temporal resolution is undoubtedly a critical concern for mod-
elling all catchments, previous studies have shown it is a particular
issue when modelling small urban catchments to appropriately capture
hydrodynamic behaviours (Kannan et al., 2007; Kalantari et al., 2014).
Additionally, specific causative factors of perceived inefficiency or in-
adequacy were identified, with respondents who had previously en-
countered missing data (81.9%) almost 5 times more likely to exhibit
dissatisfaction with the network. Likewise, inadequate network density
and network representivity with respect to both catchment type and
spatial distribution were also associated with a perceived lack of net-
work resilience. Multivariate modelling of network efficacy at the in-
dividual level indicated that network user traits (professional demo-
graphic) (Hierarchy 1) and perceived network attributes (Hierarchy 2)
combined to correctly predict 85% of surveyed respondent’s percep-
tions, with network attributes accounting for 68% of variance within
the model (i.e. predictive significance). This lack of consistency across
networks is particularly problematic in terms of accuracy and will in-
evitably increase the error and uncertainty associated with regional
streamflow predictions. For example, a study in the Mackenzie Basin in
western Canada found that where stations were closed or non-com-
parable within a network, extrapolation error increased by ∼16% for
all flow regimes (Spence et al., 2007). As such, no ‘one size fits all’
approach exists for data homogenisation or optimisation after hydro-
metric network design and/or closure and thus, moving forward, the
involvement of key share/stakeholders in the (re)design stage is para-
mount to the sustainable optimisation and evolution of the hydrometric
network.

5.3. Towards an optimum hydrometric network

An optimum hydrometric network has been defined by
Bobrovitskaya et al. (2001) as “….…achieved when the volume and
quality of data collected and processed is economically justifiable and
meets users’ needs”, with hydrometric network design and optimisation
being gradual processes (Hannaford and Marsh, 2008; Mishra and
Coulibaly, 2009; Hannah et al., 2011; Cox et al., 2014). This sentiment
is mirrored within this study, whereby the three most pressing issues
surrounding the Irish hydrometric network were: (1) Incorporation of a
wider scope of user needs, (2) Increased hydrometric network density
and (3) Multilevel management strategies and structures which facil-
itate an iterative process of optimisation.

5.3.1. Incorporation of a wider scope of user needs
Within this study, an overarching pattern was the existence of

myriad definitions of hydrometric network efficacy, depending on re-
spondents’ personal experience and current requirements, thus em-
phasising the importance of stakeholder interaction for network opti-
misation. Indeed, the primary recommendation of this research is that
consultations prior to network upgrading should include the opinions
and requirements of a diverse group of hydrometric data users to ensure
resilience, as well as user satisfaction. Moreover, recently qualified, less
experienced users whose requests may outstrip those of more experi-
enced managers and supervisors must be listened to and where possible,
accommodated. As such, the authors consider it inappropriate to rely
solely on the opinions of a small group of individuals, and particularly
groups with shared data requirements (e.g. network managers) when
designing or upgrading hydrometric networks, which has previously
been done. Instead, a move towards the integration of both managers
and non-managerial data users in the hydrometric network design
process is paramount, and has shown to be effective elsewhere. For
example, Pyrce (2004) reports that both the Grand River (Ontario)
catchment and Ontario stream gauge rationalisation projects success-
fully prioritised stations using an auditing approach, whereby evalua-
tions were based upon practitioner/user inputs. Indeed, the integration
of user needs at the network conception stage not only permits wider
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data development, but also allows for change.

5.3.2. Increased hydrometric network density
Focusing on network density, the majority of hydrometric data users

associate network density via increased station (re)activations with an
improved and evolved hydrometric network, with 85.4% of experts
agreeing that network density should be amended as a priority, while
60.2% favour focused network density increases. This is an important
and clear finding of this study; an increase in network density allows for
increased data generation and increased efficacy of the overall network.
However, in order to achieve the greatest level of optimisation, spatial
diversity is required- notably, approximately 27% of respondents
prioritised network density increases within varying catchment sizes
(i.e. small, large, basin), with a further 23.5% and 22.1% highlighting
the need for network upgrades in flood prone areas and specific
catchment (waterbody) types, respectively, thus indicating a shift to-
wards long-term monitoring and modelling. In Ireland, ‘benchmark’
hydrometric stations have been selected for long term monitoring of
river flows specifically for climate change assessment and mitigation
(e.g. flood defence) (Murphy et al., 2013), however, these stations are
primarily located in larger catchments. Conversely, the relative
shortage of small stream monitoring data represents a fundamental
obstacle to undertaking any rigorous investigation of the hydro-
dynamics of smaller catchments (Faulkner et al., 2012). Thus, a sig-
nificant increase in small catchment network density is required to
optimise the national network. Similarly, when asked to identify and
rank which hydrometric and climactic variables require optimisation to
maximise overall network utility, river discharge (i.e. continuous flow
recording) (34.1%) and water level (i.e. river stage) (33.3%) were most
frequently selected (Fig. 7), likely indicative of the lack of availability
of these data in smaller catchments, but also perhaps relating to con-
cerns surrounding climate change and associated events i.e. flooding.
Respondents characterised by lower levels of professional experience
were more likely to prioritise increased groundwater level measure-
ments (p=0.035) as an area for optimisation, suggesting increased
usage of and requirements for groundwater data. The authors consider
it likely that groundwater data quality requirements are associated with
increasingly universal hydrological models and growing interest in the
effects of climate and land use changes on groundwater quality/quan-
tity and groundwater/surface water interactions (Kløve et al., 2014;
Andrade et al., 2018).

5.3.3. Multi-level management strategies and structures
Management cooperation (77.9%) and funding (64.6%) were the

most frequently cited organisational (i.e. non-design) issues requiring
amendment, both of which are fundamental at the design stage and
play an underpinning role in shaping network efficacy. Network
funding is often predicated on the economic value attributed to hy-
drometric data, which is ultimately hard to quantify. The economic
benefits of data collection are often not realised ‘pre event’, i.e. after a
decision is made which could not have been undertaken in the absence
of appropriate hydrometric data. Furthermore, the benefits of hydro-
metric data are often qualitative and intangible, for example, accurate
economic assessment of compliance with statutory reporting require-
ments remain problematic Similarly, it is extremely difficult to calculate
the value to an individual or community that benefits from pre-emptive
flood warning (Walker et al., 2009). The authors consider that instead
of focusing on the economic justification of an efficacious network,
perhaps we should be vocal of the direct and indirect costs of an in-
effective network, which may result in loss of property or lives (via
network failure), a revenue and/or resource shortfall, or unforeseen
adverse impacts on users (e.g. water logging, salinization, impacts on
wetlands, lakes, floodplains, and estuaries) (Mishra and Coulibaly,
2009). Indeed, one mechanism to quell the notion that hydrometric
monitoring is potentially economically unsustainable is to re-evaluate
its importance at the global rather than national level, particularly

under the auspices of a changing climate, which affects all nations.
Moving forward, data users and hydrometric managers should consider
global data agreements founded on the exchange of environmental in-
formation and international archives, which will strengthen the argu-
ment for optimisation of hydrometric networks. However, this shift
from locally related to globally relevant requires hydrometric managers
to rethink and re-evaluate how data can be utilised whilst cir-
cumventing the associated challenges of ‘big data’ storage, management
and manipulation (Devia et al., 2015), all of which need to be in-
corporated into network design to ensure longevity and accuracy.
Nevertheless, the internationalisation of hydrometric data opens the
door to non-exchequer funding, which could provide a much needed
catalyst to increase the volume and quality of data collected in an
economically justifiable manner that meets multiple user needs; an
optimal hydrometric network.

5.4. Limitations

As for any approach to data measurement and analyses, the authors
that expert elicitation comprises several potential limitations which
should be considered and accounted for including potential inaccuracy,
overconfidence and subjectivity bias. Burgman et al. (2011) have re-
ported that perceived level of expertise (i.e. qualifications, years of
experience, track record) was not correlated with performance in terms
of quantity, frequency or probability estimation. However, while expert
elicitation is criticized in various aspects, such as selection of experts
and accurate expression of experts’ knowledge and belief in probability
forms, the quality of expert judgment can be controlled by a formal
procedure of expert elicitation and documentation (O'Hagan and
Oakley, 2004). Every effort had been made to avoid bias or inaccuracy
in the current study via elicitation of a significant sample of relevant
experts and users, however, expert opinion should be used with cau-
tion, and should not replace ‘hard’ science.

6. Conclusions

Study findings indicate a significant shift away from “manager-
driven” data usage to a more compliance-based, scientifically driven
data approach. Less experienced professionals comprise a significant
proportion of the hydrometric community and are characterised by
increased data requirements due to the use of updated modelling soft-
ware. Accordingly, their specific data requirements must be accounted
for, and preferably at the design stage. Recommendations derived from
the current study largely focused on cooperation and consultation be-
tween data users and network managers to develop a network capable
of facilitating sustainable water resource management. However, it is
important to note that future resilience and capacity building must be
achieved through targeted approaches, with geographically distinct
areas (flood prone, small catchments, high population densities, etc.)
prioritised for development. Management (design, implementation) and
funding (capital expense, time) are frequently cited as representing the
primary impediments to network efficacy, thus, the importance of an
‘integrated’ approach whereby individual needs are also considered is
most conducive to value for money and network integrity.
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