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H I G H L I G H T S

• Relationship between NDVI associated
to oak trees within three training data
polygons

• Analysis of oak (Quercus) pollen con-
centration measured for a 20-year pe-
riod

• 9 years had significant results with
Granger causality and 12 years with
Spearman test

• Production of oaks tree inventory maps
at 15, 25 and 50 km-distance

• A predictive model by using Artificial
Neural Network was applied (r= 0.77).
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Techniques of remote sensing are being used to develop phenological studies. Our goal is to study the correlation
among the Normalized Difference Vegetation Index (NDVI) relatedwith oak trees included in three set data poly-
gons (15, 25 and 50 km to aerobiological sampling point as NDVI-15, 25 and 50), and oak (Quercus) daily average
pollen counts from 1994 to 2013. The studywas developed in the SWMediterranean regionwith continuous pol-
len recording within the mean pollen season of each studied year. These pollen concentrations were compared
with NDVI values in the locations containing the vegetation under a study based on two cartographic sources:
the Extremadura Forest Map (MFEx) of Spain and the Fifth National Forest Inventory (IFN5) from Portugal.
The importance of this work is to propose the relationship among data related in space and time by Spearman
and Granger causality tests. 9 out of 20 studied years have shown significant results with the Granger causality
test between NDVI and pollen concentration, and in 12 years, significant values were obtained by Spearman
test. The distances of influence on the contribution of Quercus pollen to the sampler showed statistically signifi-
cant results depending on the year. Moreover, a predictive model by using Artificial Neural Network (ANN) was
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applied with better results in NDVI25 than for NDVI15 or NDVI50. The addition of NDVI25 with the lag of 5 days
and some weather parameters in the model was applied with a RMSE of 4.26 (Spearman coefficient r = 0.77)
between observed and predicted values. Based on these results, NDVI seems to be a useful parameter to predict
airborne pollen.

© 2019 Elsevier B.V. All rights reserved.

Granger causality test
Akaike information criterion (AIC)
Artificial Neural Network (ANN)

1. Introduction

Techniques of remote sensing (such as MODerate resolution Imag-
ing Spectroradiometer (MODIS) and Advanced Very High Resolution
Radiometer (AVHRR), among others) are being used to develop pheno-
logical studies (Liu et al., 2017; Walker et al., 2015; Zhang, 2015). The
satellite sensors capture the annual variability and the phenological dy-
namics of vegetation by land surface phenology (LSP) (de Beurs and
Henebry, 2004). The phenology of the vegetation and the pollen grain
emissions to the air have beenwidely studied, showing a close relation-
ship (Romero-Morte et al., 2018; Tormo-Molina et al., 2015; Velasco-
Jiménez et al., 2015). Satellite-derived sources, such as the Normalized
Difference Vegetation Index (NDVI), have been used to capture the phe-
nology of different types of vegetation (oak and grass) in theMediterra-
nean environment (Liu et al., 2017). The NDVI is measured as follows:
NDVI= (Ch2− Ch1) / (Ch2+Ch1),where Ch1 and Ch2 are reflectance
measured in the near infrared and red channels, respectively (Lillesand
and Kiefer, 1994).

Furthermore, this index has been already applied for oak trees in some
recent studies related with modelling the spectral reflectance of open
cork oak woodland (Häusler et al., 2016). The regression tree model
was applied to high-resolution remote sensing data for predicting the
percentage of tree cover in a Mediterranean ecosystem (Donmez et al.,
2015), analyzing aerial CIR images in forestry (Lehmann et al., 2015)
and conducting dynamic analyses of ecological environments combined
with land cover (Li et al., 2017). Land use modifications and phenological
cycle of vegetation were explained due to anthropic effect (García-Mozo
et al., 2016). Remote sensing applications by one parameter as NDVI
and Aerobiology have interest with dispersal processes and ecological
scaling (Gage et al., 1999). Also in phenological phenomena of Betula
trees to establish the onset of flowering season (Hogda et al., 2002),
predicting the onset of Betula pendula with thermal data (Bogawski
et al., 2019), for forecasting land use phenology by short term data at
real time sampling (White and Nemani, 2006) and to predict long time
series of NDVI (Barbosa et al., 2006). Meteorological studies based on
trends in vegetation dynamics and their relationship to rainfall (Barbosa
et al., 2015) and air temperature (Lakshmi Kumar et al., 2013) were also
studied. Among other applications of NDVI related with pollen have
been produced a satellitemap of start pollen season of Betula pollen grains
(Karlsen et al., 2009) and for the identification of urban sources as the po-
tential origin of Poaceae airborne pollen by geographic information sys-
tem (Skjøth et al., 2013). Additionally, different landscapes can be
analyzed considering the response of native and non-native bee species,
such as Eucalyptuspollen foraging (Hilgert-Moreira et al., 2014) or the po-
tential of detecting themaize pollen release stage, by using vegetation in-
dices (Lu et al., 2015).

Climate change has been evaluated through plant phenology as an
indicator of the response of ecosystems to the increase in temperature
(García-Mozo et al., 2008; Ma et al., 2013; Parmesan and Yohe, 2003).
Changes in the timing of flowering and the release of pollen grains
from oak trees (Fernández-Rodríguez et al., 2016a; Grundström et al.,
2019), cypresses (Silva-Palacios et al., 2016) and olives (Fernández-
Rodríguez et al., 2016b) have been recorded in SWEurope. The relation-
ships among the airborne pollen spectrum, pollination phenology, plant
distribution and land cover modifications provoke alterations in the
aerobiological content (Maya-Manzano et al., 2017). The relation be-
tween land cover influence and aerobiological data was analyzed
(García-Mozo et al., 2016; Rojo and Pérez-Badia, 2015) with the

identification of factors related to the emission sources (Maya-
Manzano et al., 2016). Nevertheless, our understanding of the relation-
ship between the distribution of pollen types and their sources of origin,
which can often be difficult to identify, should be improved (Maya-
Manzano et al., 2017).

In view of the effect of climate change (IPCC, 2017), forecasting is in-
creasingly important, and it is necessary to use statistics (García-Mozo
et al., 2016; García de León et al., 2015; Oteros et al., 2013). Several sta-
tistics are needed to correlate data, such as the pollen grains by the
Granger causality test (Makra et al., 2016; Olchev et al., 2017) or the
Spearman correlation test (Fernández-Rodríguez et al., 2016a; Maya-
Manzano et al., 2016; Ríos et al., 2016; Uguz et al., 2017). NDVI has
been correlated with Granger causality through several relationships,
including vegetation and temperature (He et al., 2017), rainfall (He
and Lee, 2016), local surface climate (Jiang et al., 2015), CO2 with global
surface temperature (Leggett and Ball, 2014; Leggett and Ball, 2015),
rainfall and land surface (Philippon et al., 2005), or phenology in grass-
land ecosystems (Zhu and Meng, 2014). The Granger causality consists
in a statistical supposition test to decide if one time series is useful for
forecasting another (Granger, 1969). To apply the test, it is necessary
to select the number of delays or lags between the data of two time
series.

Machine learning is a termused to define complex algorithms trying
to replicate complex systems where the interactions between variables
can be difficult to explain. They have increasingly been used in atmo-
spheric science studies (Scheifinger et al., 2012). Due to its complexity
sometimes can be difficult to understand (Astray et al., 2016). However,
these state-of-the-art statistical techniques are capable of obtaining
very high performances relevant to pollen modelling (Voukantsis
et al., 2010). Among these techniques, the most commonly used has
been the Artificial Neural Networks (thereafter ANN), particularly the
Multi-Layer Perceptron approach because they are particularly tolerant
with discontinuous sampling (missing data) in data collection periods
(Puc, 2012). The input layer composes thefirst datasets to be introduced
in ANN, and after that the processing is carried out by some hidden
layers needed to generate the results (output layer) (Sánchez-Mesa
et al., 2002). Some authors have reported performances using ANN,
such as Puc (2012) with Betula, Astray et al. (2016) with Castanea or
Csépe et al. (2014) trying to predict ragweed pollen concentrations.

Mediterranean forest-derived ecosystems in the SWMediterranean
region are mainly formed by tree species of oak (Quercus) (Maya-
Manzano et al., 2016). These kind of trees occurs as in the studied area
as “dehesas” forming rural landscape. Only in Extremadura oak trees oc-
cupy 1/3 of the total area (Morillo and Espejo, 2008). To analyze the size
and frequency distribution of polygons of land cover and trees maps is
used the methodology of Potential Natural Vegetation (PNV) (Ibáñez
and Gómez, 2016). Polygons are widely used to delimit space units for
riparian vegetation (Wang et al., 2018) to assess the effects of different
feature sets on land cover classification (Chen et al., 2018) and to corre-
late among the land uses and aerobiological airborne particles with dis-
persion patterns of air masses (Maya-Manzano et al., 2017). Other
papers have studied the landscape pattern and its relationshipwith veg-
etation naturalness (Szilassi et al., 2017) and the response of land sur-
face phenology to variation in tree cover during green-up and
senescence periods (Cho et al., 2017). Furthermore, vegetation surveys
using drone images and image analysis software (Han et al., 2017)
and to address islands of biogeodiversity (Ibáñez et al., 2016) have re-
cently been carried out.
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The advanced features in this aerobiological study are based in the
innovation of remote sensing and the application of machine learning.
Remote sensing data are important predictors in habitat types related
to forests, rock outcrops and pastures. Ecological modelling by remote
sensing have multiple advantages over traditional field surveys and
image interpretation of habitat maps in time scale (Álvarez-Martínez
et al., 2018). In order to forecast aerobiological data, ANN is being an im-
portant tool of differentmachine learning algorithms toworkmodelling
complex data inputs of data as pollen concentration (Astray et al., 2016;
Iglesias-Otero et al., 2015), for vegetation dynamic change simulations
(Cai and Wang, 2010) and NDVI times series (Fernandes et al., 2017).

Our goal is to study the correlation among theNDVI relatedwith oak
trees included in three set data polygons (15, 25 and 50 km to aerobio-
logical sampling point as NDVI-15, 25 and 50), and oak (Quercus) daily
average pollen counts from 1994 to 2013 in the SWMediterranean re-
gion. Spearman correlation and Granger causality tests have been used
to accomplish these goals. Moreover, a predictive model using ANN
and testing the use of the different values of NDVI for each distance to
the sampler was created as a first attempt to test the validity of this pa-
rameter (NDVI) as a forecasting tool.

2. Materials and methods

2.1. Sampling site

The studied city is placed in Badajoz (SWMediterranean region). The
analyzed area encompassed a diameter of 15, 25 and50 kmto aerobiolog-
ical sampling point (Hirst, 1952) (Fig. 1). The areas were established by
considering previous studies of Quercus pollen, such as Jato et al. (2002),
which suggested adequate distances of 15 to 30 km based on the pollen
in the air and thephenological stage ofQ. robur andQ. pyrenaica. Other au-
thors such asHernández-Ceballos et al. (2015) suggested pollen transport
distances of 40 km, and most recently, Maya-Manzano et al. (2016) esti-
mated transport values of up to 65 km as suitable.

The sampling point was located (38°53′45″N, 6°58′07″W) at 6 m
above ground level in the School of Agricultural Engineering belonging
to the University of Extremadura, studying oak (Quercus) daily average
pollen counts from 1994 to 2013. The adhesive petrolatum white (CAS
number 8009-03-8) was used to capture airborne Quercus pollen, as in
previous studies by Tormo-Molina et al. (2013) and Maya-Manzano
et al. (2018). Standardized data procedures were followed as indicated
by the Spanish Aerobiology Network (REA) (Galán et al., 2007).

Meteorological information (maximum andminimum temperature,
mean temperature and rainfall for the previous ten days, and growing
degree days, GDD, over 0 °C) were supplied by the AEMET placed in
the airport (38°53′N, 6°49′W) during the period 1993–2000 and from
the university campus (38°53′N, 7°00′W) for the period 2001–2013.

2.2. Satellite images of NDVI from NOAA/AVHRR

Daily NDVI data (imagefiles)were downloaded by the United States
Geological Survey (USGS) from 1981 to 2013, on the website https://
earthexplorer.usgs.gov/. These images have 1 kmof nominal spatial res-
olution (depending on the angle of view of the satellite) that have been
resampled at 1 km2. Additionally, maximum search algorithms have
been applied for the elimination of cloud cover. NDVI values from the
corrected data are stored in a separate channel (Eidenshink and
Faundeen, 1994), as well as Projection Goode Homolosine (Goode,
1925), radiometric and geometric corrections and the width of the
image (approximately 2700 km). The pixel info of the images is scaled
to 10,000. Therefore, to obtain the real NDVI values, it is necessary to
multiply them by a scale factor of 0.0001.

In order to analyze the NDVI images, they were compared with the
days of the Oak (Quercus) Main Pollen Season (MPS) from 1994 to
2013, estimated by Fernández-Rodríguez et al. (2016a). Based on the
MPS of each year, a dataset of 1279 NDVI images was studied by
extracting the values of the vegetation index in the three training areas.

Fig. 1. Study area.
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2.3. Cartography

The analyzed area includes two regions, Extremadura in Spain and
Alentejo in Portugal, of the SW Mediterranean region. For this reason,
the Extremadura Forest Map (MFEx) and data from the Fifth National
Forest Inventory of Portugal (IFN5), related with oak trees, were used.
Autoridade Forestal Nacional (AFN) (2010) supplied IFN5 information
from National Forest Inventory 2005-06, Continental Portugal-IFN5
2005-06. The polygons containing the vegetation (oak trees) under
studywere extracted from theMFEx and the IFN5, and to avoid the pos-
sible georeferencing misalignments of the different data sources, inner
buffers of 200 mwere achieved. To establish the distribution of Quercus
within each one of the study areas, one intersection of those polygons
and three circumferences of 15, 25 and 50 km-distance around the vol-
umetric samplerwere performed, and theNDVI values for eachMPSday
were extracted (Fig. 1).

The training area located 15 km around the sampler contained 25
polygonswith oak treeswith a total area of 227.01 km2. For the area ap-
proximately 25 km from the sampler, 69 polygons in an area of
433.58 km2 were studied. Finally, covering the total training area of
50 km, 268 polygons that entail an area of 2598.60 km2were evaluated.
Lastly, a graphic representation of both time series (NDVI values and
pollen concentration) was created to establish the correspondence be-
tween them (Fig. 2).

2.4. Statistical analysis

The relationship between oak (Quercus) pollen concentration and
NDVI was evaluated by the Spearman and the Granger causality test.
The objective of the latter test was to determine if one variable X causes
another variable Y. Once the variables X and Y are defined, the regres-
sion of the endogenous variable Yt on its own past, that is, Yt−1, Yt−2,
Yt−3; on the variable Xt a series of delayed values of the same, that is,
Xt−1, Xt−2, Xt−3, etc. Once this regression is done, it is determined if it
is easier to predict the future of the variable Y with this instrument or
if it would be easier to estimate Yt exclusively using the function of its
past without knowing its relation with X. In other words, it is analyzed
if the current X variable and past provides valuable information to ex-
plain the future of Y (it is said, in that case, that X is the Granger cause
of Y).

In this study, this Granger causality test aimed to test if there is causal-
ity between NDVI and the oak (Quercus) airborne pollen concentration
within the studied areas. If NDVI behaves as a predictor of pollen concen-
tration, then NDVI becomes the causal Granger for oak (Quercus) pollen

concentrations. A crucial aspect for the causality test is to determine the
number of delays or lags between the two time serieswithwhich the pre-
diction can be ensured. The lag is important for a suitable forecasting, and
its determination can be tested by different decision criteria such as FPE:
final prediction error; AIC: Akaike information criterion; SC: Schwarz in-
formation criterion; or HQ: Hannan-Quinn information criterion. AIC is
the most commonly used estimator for this determination. On basis to
the set of themodel data, AIC calculates the quality of eachmodel in rela-
tion to the rest of the other models (Akaike, 1978; Akaike, 1979; Akaike,
1987). Initially, the study of several lags must be attained between the
time series of each year, and via the AIC, the best one must be selected.
The AIC statistic has been used to analyze the fit among forecast models.
AIC model with lower value has a suitable fit to the observed data and a
better model performance (Taghipour Javi et al., 2014). Some studies as
Huang et al. (2010) and Jing et al. (2014), have utilized the AIC to estimate
the correlation of NDVI data for modelling and prediction of crop canopy
coverage (Ottosen et al., 2019).

The relationship between oak (Quercus) pollen concentrations and
differentmeteorological parameters (maximum andminimum temper-
ature, mean temperature and rainfall for the previous ten days, wind
speed and growing degree days, GDD, over 0 °C) and NDVI values
(NDVI50, NDVI25, NDVI15)was evaluated andmodelled by ANN analy-
sis (Zhang Guoqiang et al., 1998), to predict Quercus pollen. To do it, the
package “neuralnet” in R software (Team, 2014) has been used. Data
normalization (in our case from 0 to 1) was performed before the train-
ing process in order to avoid computational problems (Lapedes and
Farber, 1988), according to the specifications in thementioned package.
The 70% of datawere used to train themodel, and the remaining 30% for
validation. After the validation, the results were rescaled. The ANN
model with the lowest RMSE (root mean square error) was chosen
after optimization for the different NDVI combinations under evalua-
tion. Later, according to the AIC index, we chose those lags days with
better results (3, 4 and 5 days) belonging to this training area
(NDVI25), and all of them were compared depending again on the
RMSE. Spearman rho's rank is also shown for the chosen one. Thus, for
NDVI25 the optimal lag day was 5 days.

3. Results

3.1. Time series

The average of NDVI values within the three training areas for each
day of the MPS were calculated and represented. This time series,
NDVI 15 km, NDVI 25 km and NDVI 50 km (Fig. 2), was correlated

Fig. 2. NDVI and airborne pollen concentration time series. Negative values of NDVI come from wet soil caused by rain before the date of acquisition of the satellite imagery.

410 R. González-Naharro et al. / Science of the Total Environment 676 (2019) 407–419



with airborne pollen concentration during the MPS from 1994 to 2013.
From the visual analysis of the matching between time series, peaks of
NDVI that predicted peaks of Quercus can be detected. Fig. 2 shows in
2006, the maximum and minimum peaks of NDVI precede the maxi-
mum and minimum peaks of pollen concentration.

3.2. Determination of lags

Based on the AIC, the optimum lags between time series were deter-
mined. As shown in Table 1, the value is not constant but ranges from
only 1 day (years 1996, 1997, 1999, 2002 and 2011) up to 13 days in
2007 and 2012.

3.3. Statistical analysis

The correlationwas statistically studied using the Spearman test and
the Granger causality test. The results forthcoming from the Spearman
correlation test (Table 1) show that 1996, 1999 and 2012 had non-
significant correlations with pollen concentration within the three
training areas. Additionally, years 1994, 2000 and 2006 had few signifi-
cant correlations in only one training area, with substantial dispersions
in the other training areas. Fig. 3a–d, the percentage of modification be-
tween consecutive data of pollen time series versus the percentage of
change of themean NDVI within the three training areas is represented.
The graphs underwrite the Spearman correlation results for those years.
More dispersion in the graphs generally means low values in the Spear-
man correlation, as in 1996, 1999 and 2000. On the other hand, 1995,
1997 and 2001, with correlations, present slightly scattered graphs.

45% of the years (1994, 1996, 1999, 2003, 2006, 2008, 2010, 2011
and 2012) had significant results in the Granger causality test in all
training areas (Table 1), and 2000 and 2013 had significant results in
two of the training areas. As can be appreciated, only 2003, 2008 and
2011 had significant values of positive correlation and causality in the
three study areas, but there is no year with no correlation and causality
significance.

Focusing on the yearly results, there are two years with significant
values of positive correlation in some of the study areas where there
are no significant results of causality. In particular, in 2000, there were
significant correlation values in the 25 km zone around the collector
and significant causality results in the 50 and 15 km zones, and in
2006, therewas significant correlation at 50 km and significant causality
at 25 km. Similarly, on four occasions, there was a significant positive

correlation in all areas of study and significant causality in only some
of them. For example, in the years 2004 and 2007, there was significant
causality only in the 50 km area, but therewas correlation in all training
areas. In the same way, for the year 2005, significant causality occurred
only within the 15 km zone, and in 2009, there was significant causality
at 50 and 25 km around themeasuring station. Finally, two years (2010
and 2013) had significant values of causality within the three areas of
study and significant correlation in only some of them.

According to the RMSE values (Table 2), the ANN model containing
all the NDVI values showed slightly better results than the one without
values of NDVI. The fact that all together did not show comparatively as
good results as by separate, it can be due to the addition of some corre-
lated variables can cause multicollinearity and can mask the interac-
tions (Yu et al., 2015). NDVI25 obtained better results than those
considering NDVI25 and NDVI50, not only by separate but also by
groups. The better result was the model by using only NDVI25 values.
Due to the results obtained were quite similar between the model
with NDVI25 and the model with NDVI_lag5, obtaining the second
slightly higher error, it was finally selected. It is because, to introduce
theNDVI_lag5 allows to predict for 5 days in advance, due towe can ob-
tain 5 different values from the lag day to the present day, plus the fore-
casted weather, instead of only one (if we used NDVI25). Only seven
different parameters were needed to performance the model, and all
the weather parameters are easy to obtain. The final structure for our
ANN model showed a layer's structure of 6:8:4:1, which is shown in
Fig. 4. Fig. 5 shows the difference between observed and predicted
values for the validation subset.

4. Discussion

NDVI has been used to correlate pollen grain release (such as
Poaceae pollen) of one cultivation as maize, indicating that the time
most suitable for this relationship is the flowering stage (Lu et al.,
2015). This work studied whether variations in the NDVI can precede
variations in the accumulation of pollen in the atmosphere. Until this
work, there were no studies demonstrating this premise. However,
the opposite assertion has been established in the mentioned study. In
this way, it has been demonstrated that after the release of pollen
grains, the value of NDVI decreased. This could be caused by the reflec-
tance in the visible and near-infrared wavelengths decreasing once the
pollen release begins. The NDVI decreases from the day when the max-
imum concentration of pollen is reached (Lu et al., 2015).Moreover, this

Table 1
Statistical test results within the three training areas (significant correlations in bold).

Year LAGS 50 km 25 km 15 km

Spearman
correlation

Spearman
p-value

Granger
p-value

Spearman
correlation

Spearman
p-value

Granger
p-value

Spearman
correlation

Spearman
p-value

Granger
p-value

1994 9 0.3510 0.0080 0.0092 0.3220 0.0160 0.0038 0.3120 0.0190 0.0460
1995 8 0.5320 b0,0001 0.6798 0.3490 0.0100 0.9318 0.2870 0.0360 0.7063
1996 1 0.2070 0.1380 0.0350 0.1920 0.1690 0.0462 0.1450 0.3000 0.0448
1997 1 0.5930 b0,0001 0.1400 0.6340 b0,0001 0.1300 0.5760 b0,0001 0.1500
1998 10 0.3910 0.0010 0.5200 0.3810 0.0020 0.6000 0.0970 0.4390 0.0300
1999 1 0.0900 0.5200 0.0290 0.1480 0.2890 0.0242 0.0830 0.5550 0.0086
2000 12 0.2170 0.1040 0.0009 0.2200 0.0460 0.2013 0.1480 0.2710 0.0464
2001 4 0.5210 b0,0001 0.0509 0.5060 b0,0001 0.1110 0.5000 b0,0001 0.0900
2002 1 0.4280 0.0010 0.0800 0.5330 b0,0001 0.1100 0.3940 0.0020 0.1100
2003 11 0.3060 0.0060 0.0428 0.3000 0.0070 0.0321 0.2550 0.0220 0.0363
2004 4 0.2820 0.0410 0.0445 0.4060 0.0030 0.2096 0.3570 0.0090 0.1793
2005 12 0.4820 0.0000 0.2796 0.5210 b0,0001 0.2038 0.3510 0.0060 0.0495
2006 15 0.2290 0.0470 0.3960 0.1080 0.3510 0.0290 0.1030 0.3770 0.2510
2007 13 0.3190 0.0060 0.0400 0.3370 0.0040 0.0600 0.3220 0.0060 0.1400
2008 7 0.4370 0.0010 0.0149 0.4400 0.0010 0.0077 0.4160 0.0020 0.0094
2009 6 0.2570 0.0460 0.0150 0.2580 0.0450 0.0310 0.2800 0.0290 0.0900
2010 9 0.2520 0.0620 0.0400 0.3260 0.0150 0.0300 0.3500 0.0080 0.0400
2011 1 0.6080 0.0000 0.0209 0.6060 0.0000 0.0176 0.5950 0.0000 0.0038
2012 13 0.0350 0.7580 0.0045 −0.0480 0.6740 0.0153 −0.2030 0.0720 0.0189
2013 9 0.4690 0.0000 0.2400 0.4790 0.0000 0.0360 0.4490 0.0010 0.0217
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index was applied for determining the start dates of birch pollen sea-
sons over 18 years (Hogda et al., 2002). In this way, we have studied
1279 days over 20 years, which is a longer period than in other studies.
Furthermore, NDVI has been used for phenological studies on species
such as oak trees (Liu et al., 2017) or birches, by the onset flowering
for 8 years (Karlsen et al., 2009), the length of the growing season for

7 years (Karlsen et al., 2008) and the onset of phenological phases
(Karlsen et al., 2006) for 20 years.

Focusing on our results, the maximum correlation between NDVI
and airborneQuercus pollenMPS for the studied period and three train-
ing area zones varied between 0.63 and 0.59. Lu et al. (2015) obtained a
correlation (R2 = 0,26 for NDVI) among the vegetation index at the red
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edge and 2-day average maize pollen. He et al. (2017) correlated linear
trends of growing season NDVI and temperature, obtaining values of R2

between 0.44 and 0.01. In this study, the distances of influence on the
contribution of oak (Quercus) pollen to the sampler have shown statis-
tically significant results depending on the year studied. In the same
way, the number of days of NDVI that can predict values that will be re-
corded in the sampler varies depending on the year (from 13 days in
2007 and 2012 to 1 day in 1996, 1999 and 2000). Several works indi-
cated results in this line.White andNemani (2006) showed that a hypo-
thetical land surface phenology event could be predicted with a lead-
time of 7 days for an allowable prediction uncertainty of 2 days. For
Karlsen et al. (2006), the onset of the growing season in the NDVI-
based measurements is tuned to occur, on average, b2 days before the
onset of leafing. The standard deviation (SD) between field data and
NDVI data is b10 days for all stations.

The relationship between distant sources of oak trees and the sampler
point has been explained by the long distance transport (LDT) forQuercus
pollen in the UK (Skjøth et al., 2015) and Spain, such as in Andalucía
(Hernández-Ceballos et al., 2011) or Extremadura (Maya-Manzano
et al., 2016). The last authors estimated the closest sources of airborne
Quercus pollen in 40 km (Plasencia-North Ex), 66 km (Don Benito- Mid-
dle Ex), and 62 km (Zafra-South Ex). In the same region, Maya-Manzano
et al. (2017) reported also a medium-long transport behaviour for this
pollen type. These results agreed with the maximum predictive power
observed for the current study at medium and long distance transport
(beingbetter forNDVI25). Among all the combinations thatwere studied,

the combination between NDVI50 and NDVI25was also the onewith the
most predictive capability. In this work, we have studied the regional
scale (50, 25 and 15 km) up to a 100 km limit to consider a wide range
of potential sources (Seinfeld and Pandis, 2006). The importance of the
relation between the distribution of the oak trees and the distance to
the trapwas studied in Spanish urban areas, such as Badajoz and Córdoba
(Fernández-Rodríguez et al., 2014b; Velasco-Jiménez et al., 2013). The
idea of the present study is to analyze, with detail, the influence of
short and medium-distance sources (local urban, surrounding urban
and far away urban) on the regional scale and the relationship with
NDVI to improve future forecasting of Quercus pollen concentrations
(Fernández-Rodríguez et al., 2016a). Also the wind speed has been pro-
posed as having great importance by Maya-Manzano et al. (2016), who
reported an increase in the Quercus concentrations in wind speed range
from 6 to 10 m s−1, in the same region of study. In the same way, the
wind direction is important, because the sources are playing an impor-
tant role in the airborne content and the oak forests are heterogeneously
dispersed along the territory. Moreover, wind direction pattern can over-
estimate concentration if sources are in the line of the predominantwind
direction pattern. However, the lack of records for this parameter during
a part of the studied period made impossible to include it in the model.

The use of polygons for delimiting soil and vegetationwas created by
several methodologies. Nevertheless, considering the number and size
of the polygons for mapping, both fit well to power laws across several
orders of magnitude, showing that both exhibit a scale invariance
pattern (Ibáñez et al., 2016). In the Ibáñez study, totals of 5864

Fig. 3. a: Percentage of change between consecutive data of pollen time series versus the percentage of change in the mean NDVI within the three training areas (years 1994–1999). b:
Percentage of change between consecutive data of pollen time series versus the percentage of change in the mean NDVI within the three training areas (years 2000–2015). c: Percentage of
change between consecutive data of pollen time series versus the percentage of change in the mean NDVI within the three training areas (years 2006–2011). d: Percentage of change
between consecutive data of pollen time series versus the percentage of change in the mean NDVI within the three training areas (years 2012–2013).

Table 2
Comparative values for all the Artificial Neural Networksmodels are shown, including and removingNDVI values. The goodness of fit was expressed by RMSE values (lower valuesmean-
ing better results). The optimized structure for hidden layers in eachmodel is shown. Sheets in bold are shown the best performance for themodels. Themore robust (NDVI25)was com-
pared with other by adding the Lag 5 days.

All NDVI included
4:1

None NDVI included
5:1

NDVI50
5:3

NDVI25
10:4

NDVI15
5:3

NDVI25 and NDVI15
4:1

NDVI25 and NDVI50
4:1

NDVI15 and NDVI50
4:1

RMSE 4.365 4.375 4.366 4.254 4.339 4.367 4.321 4.367

NDVI25
10:4

NDVI25_Lag 5
8:4

rho Spearman 0.774 0.771
RMSE 4.254 4.261
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(1:10,000) and 2448 (1:100,000) polygons were created for potential
vegetation analysis and soil associations, respectively, in the Almería
province (8775 km2). The proportion of our study is similarwith amax-
imum total training area of 50 km (7853 km2) located in Badajoz and
Alentejo provinces. Inside this area, we have studied 268 polygons of
Quercus spp. covering an area of 2598 km2. Cho et al. (2017) produced
100 polygons to determine the influence of varying tree cover, and
Wang et al. (2018) created 106,300 vegetation polygons in a reach of
the Sacramento River, USA, for five major vegetation types (cotton-
wood, mixed forest, riparian shrub, invasive species and grass) simu-
lated in 20 vegetation species. (Szilassi et al., 2017) studied 40,000
CLC polygon categories for class-level analyses of the landscape pattern
(artificial surfaces, agricultural areas, forest and semi natural areas, wet-
lands and water bodies).

According to the range of years, in all years of this study (except
1996 and 1999, in which significant results were not obtained for the
Spearman test), there is a statistically significant positive correlation.
However, 2012 showed a negative correlation. He et al. (2017) found
negative correlations between NDVI and vegetation growth for several

years (1998–2011) of their study. They explained this fact by the sensi-
tivity of vegetation growth to temperature change. We found 14 years
with statistically significant results using the Granger causality test
(1994, 1996, 1999, 2000 and 2003–2013). Among those years with sig-
nificant results using the Granger test, there is no significant correlation
between NDVI and vegetation growth in 1996, 1999 and 2012. There-
fore, for these years, it cannot be said that the NDVI that was measured
in the different study areas behaves as a predictor of the pollen concen-
tration recorded in the sampler.

If we consider the distance, approximately 50 km, to the sampler, in
2004 and 2007, there was significant causality. For these years, it can be
affirmed with a 95% probability of success that the NDVI measured in
the study area located 50 km around the collector is a predictor of the
amount of pollen recorded in it. In 2004, a rise in the value of the NDVI
predicted increases for pollen that were recorded 4 days later in the col-
lector, while in 2007, the prediction was made 13 days in advance.

In 2005, a significant causality occurred in the 15 km zone, and NDVI
predicted increases for pollen 12 days later in the sampler. Likewise, in
2009, there was significant causality at 50 and 25 km around the sam-
pler with increases in the NDVI, having predicted increases in oak
(Quercus) pollen concentration 6 days later in the sampler. In 2010
and 2013, there was only a significant positive correlation in the areas
of 25 and 15 km. In these zones, the NDVI is the Granger cause of the
concentration of pollen registered in the sampler. The main contribu-
tion to the pollen collected in the sampler comes from the production
sources located at short and medium distances (15 and 25 km). For
both years, rises in theNDVI have predicted increases in pollen recorded
in the collector 9 days later. On four occasions (1994, 2003, 2008 and
2011), therewere significant values of positive correlation and causality
in the three study areas with increases in the NDVI predicted (9, 11, 7
and 1 days later, respectively) over sources located at short, medium
and long distance (15, 25 and 50 km). Finally, in five years (1995,
1997, 1998, 2001 and 2002), significant values of causality were not
found, but a positive correlation in the three study areas was. Therefore,
in these years, the NDVI and pollen variables were positively related to
each other, but it cannot be affirmed that the NDVI can be a predictor of
the concentration of pollen registered in the sampler.

Consequently, we assume that temporal correlations between years
and spatial correlations of several distances between the NDVI values of
oak trees (Fernández-Martínez et al., 2012; Pinto et al., 2011) and the

Fig. 4. Artificial Neural Network for the model proposed (Including NDVI25_lag5).

Fig. 5. Observed vs. predicted values obtained by the ANN model (r = 0.77).
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concentration of airborne oak (Quercus) pollen are influenced by mete-
orology (García-Mozo et al., 2012; García-Mozo et al., 2007). Moreover,
it should benoted that Spearman correlation andGranger causality tests
require checkingwhether the results of one variable serve to predict an-
other one and whether this relationship is unidirectional or bidirec-
tional. Therefore, we have studied two variables, NDVI and pollen
concentration; however, new related reports should contemplate
additional statistical analyses, including those of meteorological data
(considering parameters such as temperature and accumulative tem-
perature, rainfall andwind or even sunlight hours,which influence phe-
nology). Moreover, it would be interesting to study other pollen types
such as Olea or Poaceae pollen, which are, together with Quercus pollen,
themost represented and abundant of Extremadura and Alentejo in the
SW Iberian Peninsula (Fernández-Rodríguez et al., 2015; Fernández-
Rodríguez et al., 2016a; Fernández-Rodríguez et al., 2014a). The novelty
of this study includes the positive role of big data analysis in ecological
environmental change and natural management, specifically related to
land cover and NDVI change trend analysis. In this way, future studies
could be designed as local responses to activities and ecological changes
at several scales, being in line with Li et al. (2017). The use of available
satellite data, such as NDVI, together with pollen grain sampling, mete-
orological and phenological data (Bogawski et al., 2019), has been pro-
posed as a powerful tool to be used with aerobiological purposes
(Scheifinger et al., 2012). It should allow a quick information at real-
time monitoring, predicting short-term data of oak (Quercus) pollen
concentration to be implemented (Fernández-Rodríguez et al., 2016a).

5. Conclusions

The innovation in this article is the relationship among the NDVI
value of oak trees (Q. rotundifolia and Q. suber) over several distances;
local urban (15 km), surrounding urban (25 km) and far away urban
(50 km), with oak pollen count daily average from 1994 to 2013 in
the SW Mediterranean region, by Spearman and Granger causality
tests. Also the creation of one predictive analysis by using ANNmodels,
with a r= 0.77 and a forecast horizon of 5 days, applying the 5 days-lag
for NDVI25. Of the 20 studied years, 9 showed a significant relationship
betweenNDVI and pollen concentrationwith theGranger causality test,
while there were showed significant values in 12 years by Spearman
test.

The distances of influence on the contribution of oak (Quercus) pol-
len to the sampler showed statistically significant results depending on
the year studied. In the sameway, the number of days that NDVI values
can predict recorded values of pollen concentration in the sampler
ranged depending on the year (from 13 days in 2007 and 2012 to
1 day in 1996, 1999 and 2000). The number of years with significant
correlations obtained within 50 km and 25 km was similar, but within
15 km, the number decreased slightly, and it may be in relation to a
lower abundance of trees closer to the urban area. It agreed with the
findings regarding the forecast capacity for the different NDVI indexes
in the ANN model. It could be explained the variability among years
due to the influence of local meteorology, including the effect of far
away air masses with aerobiological particles from potential sources.
For this assumption, new studies should be considered phenological
data, additional statistical analysis, more pollen types in order to get
quick information at real-time monitoring, predicting short-term data
aerobiological information.
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