
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Electrical and Electronic Engineering 

2019 

Performance of a campus photovoltaic electric vehicle charging Performance of a campus photovoltaic electric vehicle charging 

station in a temperate climate station in a temperate climate 

Ayda Esfandyari 
Technological University Dublin, ayda.esfandyari@tudublin.ie 

Brian Norton 
Technological University Dublin, brian.norton@tudublin.ie 

Michael Conlon 
Technological University Dublin, michael.conlon@tudublin.ie 

See next page for additional authors 

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 

 Part of the Power and Energy Commons 

Recommended Citation Recommended Citation 
Ayda Esfandyari, Brian Norton, Michael Conlon, Sarah J. McCormack, Performance of a campus 
photovoltaic electric vehicle charging station in a temperate climate, Solar Energy, Volume 177, 2019, 
Pages 762-771, ISSN 0038-092X, DOI: 10.1016/j.solener.2018.12.005. 

This Article is brought to you for free and open access by 
the School of Electrical and Electronic Engineering at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact 
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
gerard.connolly@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 
Funder: Technological University Dublin 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart2
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart2?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Authors Authors 
Ayda Esfandyari, Brian Norton, Michael Conlon, and Sarah J. McCormack 

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/engscheleart2/269 

https://arrow.tudublin.ie/engscheleart2/269


Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener
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A B S T R A C T

A photovoltaic (PV) array can be combined with battery energy storage to satisfy the electrical demand of
lightweight electric vehicles. Measured solar resource and vehicle energy consumption, together with locational,
mechanical and electrical constraints were used to design a vehicle charging station comprised of a 63 m2

10.5 kW AC PV array, with a 9.6 kWh lithium-ion battery. PV output, battery charge and discharge, electricity
flows were monitored over one year. Deviations between measured and calculated annual AC generation
averaged to 14%. Average annual direct consumption, self-consumption and system self-sufficiency were 8.47%,
30.3% and 74.36% respectively.

1. Introduction

A photovoltaic (PV) array with battery storage for powering light-
weight electrical vehicle (EV) is examined with the aim to maximise
self-consumption and autonomy.

A smart charging infrastructure can use solar PV (Tamis et al.,
2017), to provide sustainable and CO2 savings in both electricity gen-
eration and consumption for charging electric vehicles (EV). There is
limited research on the holistic design, operation and optimisation of
self-generating autonomous campus PV EV charging stations, especially
in temperate climates. The advantage of an AC coupled battery base
campus PV EV charging station connected to the university’s micro-grid
lies in its dispatch strategy, in which PV output not used directly for EV
or battery storage charging is not wasted, it can be utilised to balance
supplementary demands met by the campus micro grid. Any surplus PV
generation spilled in the campus micro-grid only has economic gains
equal to the grid tariff, as microgeneration feed-in tariffs (FIT) have
declined in Germany (Weniger et al., 2014) and Ireland (SEAI, 2017).

2. Background literature

Kineavy and Duffy (2014) and Foley et al. (2010) have provided
comprehensive reviews of grid-to-vehicle charging. International stan-
dards for EV infrastructure classify standard plugs and sockets for EV
charging by rated power and charge with technical specifications for
residential slow charging, public quick charging and off-board fast

charging now available (Tie and Tan, 2013; Torreglosa et al., 2016).
The use of PV generated electricity for EV charging is well established
(Goli and Shireen, 2015; Tulpule et al., 2013). A smart charging in-
frastructure achieves greater grid stability with PV generation by taking
into account PV generation, charging times, energy curtailment and
load shifting (Goli and Shireen, 2014; Tamis et al., 2017).

The efficiency with which PV systems convert solar radiation into
electricity is affected by weather conditions, system operation and the
conditions of system components (Mondol et al., 2006a). A PV in-
stallation is designated to harness available solar energy resource in a
specific location to satisfy an electrical load profile, using specifications
of selected PV array, balance- of-system components (BOS) available
within budget (Hasapis et al., 2017; TU Delft, 2018). The inter-
relationships between factors determining grid-connected PV system
sizing are shown in Fig. 1 (Mondol et al., 2006b). Annual performance
indicators for PV plants include DC and AC array output, array yield,
final yield, reference yield, performance ratio, capacity factor, system
efficiency, array capture loss and system losses (Ayompe et al., 2011a;
Kymakis et al., 2009; Mondol et al., 2006a; Sundaram and Babu, 2015).
Monitored data can be compared with performance predictions from
simulations (Mondol et al., 2007).

Battery storage allows for PV generated energy to be stored for use
when (i): there is no load and/ or when grid feed-in electricity prices
are low, and (ii): solar energy is not present or the grid buying tariffs
are higher (Van Der Kam and Van Sark, 2015). Several studies have
considered battery integration and battery management in grid-
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connected PV systems (Lorenzi and Silva, 2016; Riffonneau et al., 2011;
Van Der Stelt et al., 2018). Economic optimal performance (Kusakana,
2017) with increased self-consumption can be achieved via appropriate
battery management (Luthander et al., 2015). Self-consumption ratio is
that between the PV energy used directly (to serve either the load or
charge a battery) and the overall PV energy produced (Weniger et al.,
2014). Self-consumption ratio is influenced by the power rating of the
PV array, the available solar energy resource as well as daily and load
demand patterns (Bertsch et al., 2017).

Battery storage combined with demand side management can be
used to maximize self-consumption ratio; by using a Mixed Integer
Linear Programming (MILP) technique to minimize grid dependency
(Van Der Stelt et al., 2018) or a dynamic optimization strategy for
power flow management in a grid-connected battery system
(Riffonneau et al., 2011). Self-sufficiency ratio indicates the extent of
grid independency (Luthander et al., 2015), being the demand supplied
by battery discharge or direct consumption to total load demand. Nu-
merous studies (Bertsch et al., 2017; Delfanti et al., 2015; Mouli et al.,
2016; Nyholm et al., 2016; Speidel and Bräunl, 2016; Weniger et al.,
2014) have shown that using battery storage and demand-side man-
agement enhances self-consumption and thus self-sufficiency of dwell-
ings with PV.

Numerous studies have examined PV EV charging (Bdwawi et al.,
2015; Birnie, 2009; Mouli et al., 2016, 2015; University of Iowa, 2018;
Van Der Kam and Van Sark, 2015; Wanitschke et al., 2017). Mouli
(2018); Mouli et al. (2015) when comparing different PV EV charging
system architectures and power converter topologies, found a three-
port modular power converter that established bidirectional EV grid
connection was a feasible option as it enabled interconnecting PV and
EV on DC with connection to the AC grid. In a 10 kW workplace PV EV
bidirectional dynamic charging station, due to the variations of summer
and winter PV production, grid extension only became viable for a 30%
oversized PV array in comparison to its inverter (Mouli et al., 2016).
Numerous examples of advanced energy managements for EV urban
mobility control charging infrastructure are available (Bhatti et al.,
2016; Codani et al., 2015; Gurkaynak et al., 2009; Kineavy and Duffy,
2014; Mouli et al., 2016; Roggia et al., 2011)

Bhatti et.al. (2016) in a review of PV EV charging methods, power
converter topologies and control mechanisms for both standalone and
grid connected PV charging infrastructures, highlighted the importance
of optimized energy management systems, while acknowledging the
advantages of heuristic rule-based charging strategies for energy

management. Kineavy and Duffy (2014) assessed the feasibility of a PV
charging station to accommodate four EVs (Nissan Leaf), travelling
50 km throughout the day in Galway in Ireland through a 6.5 kW PV
infrastructure, considering both DC and AC conversion efficiencies. The
control strategy adopted attempted to maximize the PV energy usage,
reduce the impact on the AC grid, while meeting the demand of the EV
batteries. Codani et al. (2015) examined smart charging strategies in
France, taking into account regional characteristics, PV and wind re-
sources and energy management systems (EMS) for control of EV
charging patterns. They highlighted the advantages of EV charging with
EMS control, especially in sunnier regions. A micro grid incorporating a
2.34 kW peak PV and a 4.4 kW biodiesel generator, for supplying 12 kW
residential AC/DC type load as well as a 2.5 kW EV incorporated energy
storage (Roggia et al., 2011). The operation considered constraints such
as PV power, load demand, SOC of storage and the grid tariffs.

University campuses can often have open areas with relatively un-
shaded roofs and south facades suitable for building integrated (BI) PV
array installation (Talavera et al., 2014; TU Delft, 2018). There are thus
large BIPV installations in many university campuses with examples in
Greece (Hasapis et al., 2017), Spain (Talavera et al., 2014), Netherlands
(TU Delft, 2018), Jordan (Hamzeh et al., 2017), Australia (Islam and
Mithulananthan, 2018; Yan et al., 2016) and the USA (Lee et al., 2016;
Tian et al., 2014). A 2.25 MWp PV array at the University of Queens-
land was used to a test a SOC-based EV charging strategy that combined
the state of charge (SOC) of EVs with a non-iterative PV output model
using real-time measurements and historic PV ramp data (Islam and
Mithulananthan, 2018). A smart grid at the Illinois Institute of Tech-
nology campus in Chicago, USA included a 20 kW PV array EV charging
station canopy (Tian et al., 2014). In a smart micro-grid campus in
Berlin, Germany with 1 MW of battery storage capacity, optimal per-
formance was achieved by combining storage, load curtailment and
energy spillage (Wanitschke et al., 2017b). For a 31 kWp PV EV char-
ging system a smart controller was developed for bidirectional EV
charging that increased self-consumption ratio from 49% to 87% to
reduce a grid peak demand from 27% to 67% (Van Der Kam and Van
Sark, 2015). A PV system charging for golf cart EVs in the United Arab
Emirates composed of a PV array and a DC-DC buck-boost power
converter charged EVs in 8 h without battery storage or grid extension
(Bdwawi et al., 2015). MILP has been applied for optimal EV charging
using the real time electricity tariffs (Mouli et al., 2017). An analytical
approach to optimize PV EV energy management has been validated via
comparison with output from the Transient System Simulation Tool

Nomenclature

d daily
LS System Losses
Diff Difference AC-AC (%)
DoD Depth of Discharge
EDC_Calculated DC Generation (kWh)
EAC_Calculated AC Generation (kWh)
EAC_Field AC Generation Field (kWh)
ELV Extra Low voltage
Gm Inclined Global Radiation (MJ/m2)
h/d Hour per Day
LC Array Capture Losses (%)
m Monthly
mh Total Hours in a Month
PSH Peak Sunshine Hour
PPV-rated Rated PV Specification (Watt)
YA Array Yield (h/d)
YF Final Yield (h/d)
Y R Reference Yield (h/d)
ȠSystem System Efficiency (%)

Abbreviations

AC Alternative Current
BEM Battery Energy Management
BEVs Battery Electric Vehicles
BOS Balance of System
CF Capacity Factor (h/d)
CS Radio Control Smart Socket
DC Direct Current
EC Energy Controller
EMET PV Energy Meter
ELV Extra Low voltage
EVs Electric Vehicles
GM Grid Meter
LEVs Light weight Electric Vehicles
Li-ion Lithium-ion
RC Remote Control Battery Management
PV Photovoltaic
PR Performance ratio (%)
SOC State of Charge
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(TRNSYS) (Esfandyari et al., 2016b).

3. PV EV charging station design

An AC coupled 10.5 kW, 9.6 kWh battery energy storage PV EV
charging station was studied that charged two 13.76 kWh Lightweight
Electric Vehicles (LEVs) used on a 73 acre campus for a variety of tasks

day and night (Esfandyari et al., 2015a). An energy management con-
troller (EMC) was incorporated to prioritise dispatch flows.

Each LEV (Buggyman Ltd Vehicles, 2018) incorporates eight lead-
acid batteries with a total capacity of 13.76 kWh recharged via standard
three- pin electricity sockets at 230 V/13 A. In the design phase, the
energy usage of the LEV’s over a day was observed for two months to
determine the PV battery system yield required to consistently satisfy

Fig. 1. Factors included in design and performance for campus PV EV charging station (Mondol et al., 2006b).
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this demand.
Electricity demand at one minute intervals was measured using

current transformers wired to the LEVs grid-fed charging point. Voltage
and current profiles were recorded every time a LEV was plugged in a
charging point. Table 2 presents the measured demand profile. The
average and peak EV load consumptions was 6 and 12 kWh/day re-
spectively for each vehicle.

Four optional PV EV charging station configurations are shown in
Fig. 2, which options 1, 2 and 3 have been previously identified and
discussed in (Esfandyari et al., 2015a, 2015b). Nonetheless, Option 4 in
this study is amended to a fully AC coupled connection between PV,
battery and grid.

Option 1, was a direct PV to LEV connection in which the PV array
would be the sole source of power. PV panels on the roof of the vehicle
provide DC electricity fed directly to the lead acid batteries and/or DC
brushed motor. With particularly low average daily winter total solar
radiation intensity of 4000 J/cm2 (Met Éireann, 2018) a demand profile
that could reach 13.76 kWh as shown in Table 1, would require a
11.4 m2 PV array area on the LEV rooftop. This option was thus dis-
carded as unfeasible (Esfandyari et al., 2015b).

Option 2 was a standalone configuration coupled PV with storage to
operate on DC voltage only with generation regulated through a charge
controller and stored in a battery. During low solar radiation, the bat-
tery would serve as the primary source of energy to meet the load. Due
to the absence of any back-up generator, if the discharged battery was
not recharged by the PV, the charging station could cease to function.
This operational risk makes this option unattractive (Esfandyari et al.,
2015b).

Option 3 was a coupled PV-grid without storage that allowed the
load to be charged on both DC-AC voltages, depending on available
solar radiation. During daytime, PV would be the primary generation.
This requires parking the LEVs during sunlight hours to recharge the
batteries directly from the PV. During low solar radiation and/or higher
demand, the load could be supplied by the utility grid. However, this

option would not be feasible, as LEVs used could be charged at night
(Esfandyari et al., 2015b).

Option 4 involves AC coupling of a PV array, battery and grid. PV is
used during daylight to generate electricity that charges the load, with
surplus PV generation stored in the battery. This option was chosen as
the battery could be used to charge LEVs, during low or no sunshine
periods. Where the batteries are full any surplus in PV generation can
be sent to the grid. The grid could also be utilised as a back-up to
compensate for generation shortfalls. The inclusion of battery as part of
the overall design would enhance the level of solar self-sufficiency and
self-consumption ratios. This is thus the preferred option.

The PV array was located on a relatively shadow-free flat roof able
to structurally support the array with low wind exposure. As the
building chosen was on a vehicle route, it was convenient for EV
parking and charging. Average daily LEV demand and average daily
solar radiation intensity were the key determinants of PV array size
(Khatib, 2010). A LEV daily demand of approximately 30 kWh, requires
42, 1.63 m2 250 W monocrystalline PV panels, occupying ∼69 m2 of
the total available south-facing roof area.

To meet the maximum DC voltage input constraint of the inverter to

Fig. 2. Schematic diagrams for charging station design options (Esfandyari et al., 2015a, 2015b).

Table 1
Specifications of a “CarryAll 500 “LEV.

CarryAll 500 Specification

Motor Type 48 V DC
Rating 2.7 kW rated

Peak 14.9 kW
Transmission Direct/Drive double reduction

Speed Maximum speed 15 mph (∼25 km/h)

Battery Model Trojan (T-145) with Flip-Flops × 8 Units
Voltage 48 V (6 V × 8 Units)
Capacity 13.76 kWh (1.72 kWh Each Unit)

260 Ah (Each Unit)
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which each string was connected, the PV array was divided into two
strings of 21 modules, each connected to a 5 kW maximum AC rating
inverter. Each individual string was divided into two substrings con-
nected to a dedicated maximum power point tracker (MPPT), to reduce
cable run and ohmic losses. The manufacturer specifications of the
monocrystalline silicon PV module installed and the inverter are given
in by Table 3 (SMA, 2018; Vikrams, 2018).

The recommended size of the battery depended on the EV load
demand and the electricity tariffs. Using a simple payback evaluation,
the optimal capacity ranged between 7 kWh and 14 kWh. A Lithium-ion
battery (LG Chem.) of the capacity range of 9.6 kWh (composed of
6.4 kWh unit with a supplementary 3.2 kWh unit) also outlined in
Table 3 was thus used. The battery inverter provides battery energy
management (Esfandyari et al., 2016a).

The signalling details for energy management control, commu-
nication and sensors are delineated in the dashline area as shown in
Fig. 3. The components are: battery energy management (BEM), remote
control battery management (RC), radio control smart socket (CS), PV
energy meter (EMET), grid meter (GM), energy controller (EC) and web
portal.

The overall energy flow is prioritized to maximise self-consumption.
The controller receives all the measurement inputs from battery, grid,

PV and load. It dispatches the managed output signals based on the
preference priority algorithm. For both load presence and solar radia-
tion availability, PV generated electricity is consumed directly, with
any surplus generated energy used to charge the battery or is spilled to
the grid. When PV generation is considerably lower than demand, to
achieve higher levels of self-consumption, the significant portion of
load is accommodated from the battery with the grid used as back-up.

The inverter can be configured to control the system from a central
location, where battery charge and discharge signals are communicated
automatically via Bluetooth to EC. The measured energy load demand
was communicated to the EM via Bluetooth. This allows cost optimi-
sation and/or load shedding, where the control decision is made by EM.
EMET and GM components sense the correct phase and balanced
electrical measurements, i.e. the measured signals are grid feed-in and
purchased electricity meter. These values are sent along with PV gen-
eration (EAC), data to the EM.

4. Performance metrics

Total calculated daily or monthly energy yield of EDC and EAC were
given by Eqs. (1) and (2),

Table 2
Sample daily EV load profiles (kWh).

Days

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Week 1 2.9 0.85 2.25 4.44 4.9 1.93 4.28
2 4.34 4.43 1.62 4.45 0.53 1.15 11.85
3 1.38 4.59 5.86 1.17 4.33 5.66 5.65
4 6.08 3.01 2.41 3.24 3.16 5.74 4.72
5 8.04 0 4.84 0 6.99 0.47 4.72
6 4.2 0 0 0 2.98 11.95 5.283
7 6.16 4.42 4.06 0.88 2.66 3.67 6.71
8 0 0 7.18 4.06 3.46 1.39 2.80

Table 3
System component specifications (SMA; Vikrams, 2018).

P V Array Type Polycrystalline Silicon
Module efficiency 15.37%
Maximum power (Pmax) 250 W
Maximum power voltage (Vmpp) 30.58 V
Maximum power current (Impp) 8.18 A
Open circuit voltage (VOC) 37.45 V
Short circuit current (ISC) 8.70 A
Temperature coefficient of Pmax −0.41 5/°C
Module area 1.62 m2

Number of modules 42
Number of strings 4 strings of 2 × 10 and 2 × 11
NOCT 45 °C
Manufacturer Vikram Solar Pvt Ltc
Inclination 10°
Orientation Southeast (135°)
Installation type Roof Parallel
PV generator surface 68.3 m2

Fill factor 0.76775

Inverter Manufacturer SMA solar technology AG 2 × Sunny Boy 5000TL
Configuration (Transformer less) MMP1 : 1 × 11|MMP2 : 1 × 10
Maximum DC power 5250 W
Maximum AC voltage 5000 W
Voltage range at MPPT 500 V
Efficiency 0.99

Battery Manufacturer SMA solar technology AG
BB Inverter SMA Sunny Island 8.0–11 Set –LG Chem 5.0 kWh
Batteries LG Chem – 1 × LG RESU 6.4 kWh + 1 unit extension 3.2 kWh
Nominal capacity 189 Ah
Weight 60 kg
Dimension 664 mm × 406 mm × 165 mm
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=E d m G µ( | ) .DC Calculated M PV_ (1)

=E d m E µ( | ) .AC Calculated DC Inverter_ (2)

The difference between field measurements and calculated AC data
is given by;

=

+

diff E vsE E E

E E

% ( )

/( /2)
AC AC AC Calculated AC Field

AC Calculated AC Field

_ _

_ _

Calculated Field

(3)

A net production matrix can be used to determine the daily/
monthly and annual effectiveness of PV EV charging station (Pless et al.,
2005), is given by;

=PVEffectiveness d m E G% ( | ) (d|m)/ 100%AC Calculated AC Field M_ | _ (4)

The array yield (YA.) is the percentage ratio of the average daily
EDC,d or monthly EDC,m of the PV EV system (PPV_rated) is given by;

=Y d m E P( | (%)) (d|m)/A DC Calculated PV rated_ _ (5)

The daily/monthly average final yield, (YF) enables the comparison
of this system to other cases in a specific geographic region. Average
final yield is the ratio of the final generation output to the rated
Standard Test Conditions (STC), given by;

=Y d m E P( | (%)) (d|m)/F AC Calculated AC Field PV rated_ | _ _ (6)

The reference yield is the ratio of the total global (Gm) to the total
reference solar radiation on the array, as given by;

=Y d m G G( | (%)) ( / )R M STC (7)

Instantaneous system efficiency is defined by Eq. (8), to allow ratio
estimation of available solar insolation on the total array area that is
converted to the system AC electricity output, as given by;

= ×µ E G( / Array area)System AC Calculated M_ (8)

The overall losses from PV array depends on the solar radiation, PV
temperature, shading, PV losses, inverter inefficiencies or failures
(Mondol et al., 2006a). The Performance ratio (PR) indicates the

proximity of a PV system’s output to “ideal” performance that is given
by;

=PR Y Y( / )F R (9)

Capacity factor (CF) is the ratio of actual annual output to the
amount of energy that the PV system can deliver per day annually. CF
varies in proportion to the final yield. When a PV system delivers its full
rated power continually, CF will be close to unity. Capacity factor given
by;

=
=

CF G PR P mh( ( / )) )
d

N

M PV rated
1

_
(10)

Array capture losses due to the variation of the actual irradiance
from the reference were calculated from;

=LC Y YR A (11)

PV system losses due to the difference between array yield and final
yield result mainly from discontinuity of operation of the inverter over
the monitored period. This was calculated from;

=LS Y YA F (12)

The total quantity of avoided greenhouse gas emissions by PV EV
charging system (in kg CO2/kWh or tonnes CO2/MWh) replacing the
amount of energy purchased from the grid calculated in Eq. (13). To
calculate CO2 savings, the monthly EAC obtained from field measure-
ment was multiplied by the percentage / fraction of onsite usage of this
AC yield (Fon), and the average carbon intensity for electricity gener-
ated in Ireland (ghg Intensity). Hence, The average carbon intensity of the
Irish electricity for 2015 was 0.393 tonnes of CO2 per MWh
(Commission for Energy Regulation (CER), 2015).

=GHG E F ghgAvoided AC on Intesity (13)

The embodied emissions due to the production of the PV system
components were not considered (Norton, 1999).

Fig. 3. AC coupled PV-CS components (control and ancillary monitoring sensors) and control room.
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5. Annual performance

IEC61724 procedures were used for measuring and reporting PV
array performance (Ayompe et al., 2011b; Mondol et al., 2006a).
TRNSYS software was used to simulate the electricity generated by the
PV array (Mondol et al., 2009). Experimentally measured solar radia-
tion data provided by the Irish meteorological service (Met Éireann) at
one minute intervals was used with horizontal solar radiation data
converted to inclined plane solar radiation via a TRNSYS processor.

Fig. 4(A) shows the monthly weather variations including air tem-
perature, rain, ground temperature, wind speed and sunshine divisions
with monthly total daily insolation (MJ/m2). As shown in Fig. 4(B), the
total daily horizontal insolation was divided into 10 evenly spaced bins,
considering the common ratio factor of 1.67, where approximately 23%
of data was in

the first range.
Table 4 outlines the calculated monthly total daily AC generation

(EAC_Field,m), calculated AC generation (EAC_calculated,m), as well as the
diff between field and monitored AC outputs, calculated from Eqs.
(1–3). The minimum generation occurred in the month of December,
where the maximum output was in May. The average value for EDC,m,
EAC_Field,m and EAC_calculated,m were 905.1 kWh, 770.9 kWh and
868.9 kWh respectively, taking into account 15.7% efficiency losses of
array and 0.96% conversion losses of inverter. Moreover, the annual
total DC and AC generated outputs were 1034.4 kWh/kWp and
881.1 kWh/kWp. The percentage conversion error losses between esti-
mated and monitored values of AC-AC are shown in Table 4. As in-
dicated, the average values for percentage conversion loss of
(EAC,Calculated vs EAC,Field) was 14.05%. As evident by Table 4: EAC,Field m,
and EAC,Calculated m. follow a comparable trend.

Finally, the annual average value for PV effectiveness for
(EAC,Calculated) that calculated by Eq. (4) was approximately 15.1%, as it
considered the efficiency losses of both DC and AC.

Table 5 presents the system efficiency, average daily, final and re-
ference yields (PSH) of the PV system during the monitoring period, as
described by Eqs. (5–7). Average efficiency of the system (µSystem) using
Eq. (8), was found 13.4%.

The monthly average daily array yield varied between 0.5 h per day
(h/d) to 5.3 (h/d) in December 2016 and May 2017 respectively.
Subsequently the monthly average daily final yield (EAC,Field m) oc-
curred at 0.46 (h/d) to 4.62 (h/d) for the same months. Finally, the
reference yield ranged from 0.49 (h/d) to 5.18 (h/d), where the aver-
aged PSH for Dublin, Ireland was estimated to be approximately 2.72.

Fig. 5 shows the data in Table 5 graphically as well as the variation
of PR and CF as defined by Eqs. (9) and (10). The annual average daily
PR ratio was 87%, where the minimum and maximum range varied
between 71% and 93%. This minimum value was due to lower solar
intensity (0.77 W/m2), which impacted the reference yield and subse-
quently PR. CF percentage varied between 2% and 19.2% with an
average of 10%. Fig. 5 also shows the monthly average array capture
losses and system losses over the monitored period. As calculated by
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Fig. 4. Climate at the location of PV array.

Table 4
Energy output, percentage conversion loss and PV effectiveness.

EDC,m EAC_Field,m EAC_calculated-m %diff

August 1263.2 1094.53 1212.67 10.241
September 909.41 776.81 873.03 11.66
October 646.70 498.84 620.83 21.79
November 394.51 291.12 378.72 26.15
December 165.33 152.06 158.71 4.28
January 256.46 180.37 246.20 30.86
February 363.70 310.50 349.152 11.71
March 895.862 750.713 860.028 13.57
April 1052.48 932.22 1010.38 8.04
May 1726.38 1505.32 1657.32 9.61
June 1572.21 1347.48 1509.32 11.32
July 1615.07 1411.39 1550.40 9.38
Average 905.106 770.94 868.9 14.05

Table 5
Array, Final and Reference Yield variations.

µSystem(%) Array yield (h/d)
to the rated
10.5 kW power

Final
yield (h/
d)

Reference
yield (h/d)

Month August 13.63 3.88 3.36 3.79
September 13.44 2.88 2.46 2.82
October 12.14 1.98 1.53 1.94
November 12.03 1.25 0.92 1.18
December 14.65 0.5 0.46 0.49
January 11.04 0.78 0.55 0.77
February 14.88 1.23 1.05 1.09
March 13.22 2.75 2.30 2.68
April 14.39 3.34 2.95 3.16
May 13.72 5.30 4.62 5.18
June 13.93 4.99 4.277 4.72
July 13.77 5.12 4.48 4.84

Average 13.40 2.83 2.415 2.72
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Eqs. (11) and (12), array capture losses varied between −0.018 in
December/January and −0.28 in July. The system losses fluctuated
between minimum of 0.04 in December and maximum of 0.71 in the
month of June.

Table 6 presents the monthly variation for direct consumption, self-

consumption and self-sufficiency along with CO2 savings. The combi-
nation of PV and battery with smaller load demand, resulted in a high
level of system self-sufficiency. The self-consumption ratio over the
months of November, December and January was high, 74%, 83% and
64% respectively.

As indicated by the black line in Fig. 5, PV generation at the starting
month of winter period (September) was around 1094.5 kWh. The
output gradually decreased and experienced the lowest generation of
152 kWh in December. Output increased significantly in the summer
period with the maximum generation output of 1411 kWh. LEV total
demand at the start of the annual period (August) was around 177 kWh.
This value increased in November (206 kWh). Hence, this increase
emerged due to the colder weather conditions, which encouraged the
users to utilise LEVs more frequently. In December as the campus was
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Fig. 5. System performance; (A): Monthly array, final, reference yield, PR and CF, (B): Array capture losses and system losses, (C): Direct-consumption, self-
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Table 6
CO2 saving, direct consumption, self-consumption and self-sufficiency.

Direct
consumption
(%)

Self-
consumption
(%)

Self-
sufficiency
(%)

GHG
avoided/CO2

saving (kg)

August 8 21 88 430.153
September 10 28 89 305.287
October 8 33 79 196.047
November 14 74 67 114.407
December 19 83. 54 59.757
January 14 64 77 70.888
February 3 13 53 122.029
March 2 6 62 295.03
April 11 3 74 366.36
May 1 5 87 591.59
June 2 6 84 529.56
July 8 21 75 554.67

Average 8 30 74 302.98

Table 7
Annual variation of CO2 emission and tax savings (AC coupled Campus PV EV
charging).

EAC consumed onsite
kWh

GHGavoided

Tonnes
GHGavoided

€//tonnes

fon (%) 100 9251.353 3.63 72.72
80 7401.09 2.9 58.18
60 5550.81 2.18 43.29
40 3700.54 1.45 29.09
20 1850.27 0.72 14.54
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less occupied in the winter holiday season, this value was only
179.1 kWh. In February-June users solely drew from the grid. As a re-
sult, the calculation for the average daily LEV load consumption took
into account the active period only which was estimated at around
5.74 kWh.

6. Discussion and future work

A PV system cost and benefits can be appraised from financial and
environmental aspects (Ayompe et al., 2010; Ramadhan and Naseeb,
2011). The level of CO2 savings were estimated using Eq. (13) for 100%
on-site usage of EAC, i.e., as the key benefit of the AC coupled design is
that can allow promoting 100% PV utilisation. Maximum CO2 savings
of 591.6 kg occurred in May 2016. Table 7 shows the variation of
fraction of PV generation used onsite (fon) and its impacts on the annual
EAC consumed onsite (kWh), i.e., for the field monitored generation
outputs and a ghg intensity of 0.393 (tonnes). The Commission for
Taxation in Ireland has assigned GHG tax receipts of 20 €//tonnes to
energy production of solid fuel (Department of Finance, 2017). The
estimated GHG avoided resulted in both CO2 emission and tax saving. In
other words, AC coupled design could result in 3635.78 kg of avoided
GHG and ∼73 euros on CO2 tax.

Future work would consider simulation of energy management
controller with two distinct load and battery priorities that could con-
sequently optimize the energy dispatch and GHG savings potentials.
Further comparison between field and simulated could be conducted.
The cost benefit analyses would be extended to estimate the payback
and net present value of the installation, and impact of different PV and
battery sizes on economic indicators.

7. Conclusions

This paper discusses the adopted procedure for design of an AC
coupled campus PV EV charging station, while the results obtained
from monitoring the PV EV charging infrastructure in a university
campus in Dublin, Ireland between August 2016 and July 2017 have
been presented. The deployed AC coupled campus charging infra-
structure can offer 100% percentage on-site electricity use. The annual
unsubsidized excess of PV yield results in CO2 emission and tax savings
of up to 3635.78 kg/kWh and 73 euro/tonnes regularly. The annual
average daily final yield, array yield and reference yield were 2.41, 2.83
and 2.72 kWh/kWp /day respectively. Moreover the annual average
daily performance ratio and capacity factor were 87% and 10% re-
spectively. Annual average PV electricity generation efficiency was
13.5%. The maximum 1442.8 kWh grid feed-in occurred in May, while
both the peak battery charge of 145 kWh and discharge of 101 kWh
took place in November. Fig. 6 shows that overall LEV consumption
which were dispatched by field energy controller. The demand could be
met by a combined dispatch via direct consumption, battery discharge
and grid supply. From November to January, when the load was active
and the solar intensity low, battery discharge and the grid accom-
modated the EV load, so system self-sufficiency was much lower at 67%
in November and 57% in December. During the peak generation month
of May, the PV EV charging station had higher level of self-sufficiency
(88%) with lower self-consumption ratios of only 4%.
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